
SciPost Phys. 10, 134 (2021)

Analyticity of critical exponents of the O(N) models from
nonperturbative renormalization

Andrzej Z. Chlebicki and Pawel M. Jakubczyk?

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,
Pasteura 5, 02-093 Warsaw, Poland

? pawel.jakubczyk@fuw.edu.pl

Abstract

We employ the functional renormalization group framework at the second order in the
derivative expansion to study the O(N)models continuously varying the number of field
components N and the spatial dimensionality d. We in particular address the Cardy-
Hamber prediction concerning nonanalytical behavior of the critical exponents ν and
η across a line in the (d, N) plane, which passes through the point (2, 2). By direct
numerical evaluation of η(d, N) and ν−1(d, N) as well as analysis of the functional fixed-
point profiles, we find clear indications of this line in the form of a crossover between
two regimes in the (d, N) plane, however no evidence of discontinuous or singular first
and second derivatives of these functions for d > 2. The computed derivatives of η(d, N)
and ν−1(d, N) become increasingly large for d → 2 and N → 2 and it is only in this limit
that η(d, N) and ν−1(d, N) as obtained by us are evidently nonanalytical. By scanning
the dependence of the subleading eigenvalue of the RG transformation on N for d > 2
we find no indication of its vanishing as anticipated by the Cardy-Hamber scenario. For
dimensionality d approaching 3 there are no signatures of the Cardy-Hamber line even
as a crossover and its existence in the form of a nonanalyticity of the anticipated form is
excluded.
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1 Introduction

The O(N)models count among the most paradigmatic systems in the theory of critical phenom-
ena and were with great success applied to address universal characteristics of an amazingly
broad variety of physical situations [1,2]. Even though the physically most relevant cases corre-
spond to integer number of order-parameter components N and integer spatial dimensionality
d, it has proven extremely fruitful to consider these quantities formally as continuous parame-
ters, leading to the development of theoretical approaches such as the (4−ε)-expansion, (2+ε)-
expansion, or the 1/N -expansion, where one accesses the most relevant range of parameters
(d = 3 in particular) by expanding around an analytically soluble point in the (d, N)-plane. It
is also worthwhile observing that there has recently been certain interest (both experimental
and theoretical) in engineering situations, where the effective dimensionality of the system
would not coincide with the physical dimensionality and, in particular, might take a fractional
value (see e.g. Refs. [3–5]). Also note that mathematically rigorous meaning can be provided
for continuous range of N [6].

A very peculiar physical situation corresponds to (d, N) = (2,2), representing the Kosterlitz-
Thouless (KT) universality class [7,8]. The vicinity of this point in the (d, N) plane is schemat-
ically illustrated in Fig. 1. By infinitesimal variations of (d, N) from the KT point one changes
drastically the system behavior, and the anticipated character of this change heavily depends
on the direction. The KT universality class is itself very special due to its unique, vortex un-
binding driven mechanism of the phase transition. The behavior of the correlation length is
controlled by an essential singularity rather than a power law, making it distinct from the
transition at any d > 2. It follows that the critical exponent ν(d, N = 2) diverges for d → 2+.

The KT case (d, N) = (2, 2) is analytically tractable and it is natural to adopt the d = 2+ε
expansion in an attempt to access also higher dimensionalities. It was this approach that was
pursued [10] by Cardy and Hamber and led to the prediction of the existence of a line [here-
after referred to as Cardy-Hamber (C-H) line] in the (d, N) plane across which the critical
exponents would not be analytical functions of (d, N). The procedure adopted in Ref. [10]
combines the equations studied before by Nelson and Fisher [11] (valid for N = 2, d ≥ 2
and constituting an extension of the KT equations) with those analyzed by Brézin and Zinn-
Justin [12] (valid for N > 2 and zero vortex fugacity y2). Under the assumption of analyticity,
one may simply add up the beta functions of the renormalization group (RG) equations from
both these studies and interpolate between the two limiting cases. In Ref. [10], this reason-
ing led to a set of equations for y2 and the interaction coupling g expanded to the order
O(d − 2, N − 2, y2).

The predicted nonanalyticity of the critical exponents arises due to the existence of two
distinct solutions to the fixed-point equations. Each of the solutions is physical and describes
a critical point only in a restricted region of the (d, N)-plane. The boundary between these
regions defines the C-H line. At the approximation level of Ref. [10], across the C-H line,
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Figure 1: (Color online) The (d, N) plane in the vicinity of the Kosterlitz-Thouless
(KT) point (2, 2), schematically illustrating the landscape of universality classes with
some of its most characteristic features. The Mermin-Wagner line separates the re-
gions with possible and impossible symmetry-breaking phase transitions for N > 2.
The critical exponents are expected to be non-analytical across the Cardy-Hamber
line, which separates the regimes characterized by irrelevant (N large) and relevant
(N small) vortices. Exact expressions for the ν−1 and η exponents are available along
the Nienhuis line [d = 2, N ∈ (−2, 2)] as well as in the limit N →∞ for d > 2. The
region corresponding to d < 2 and N < 2 [9] is not discussed in the present paper.

the fixed points collide, which leads to the nonanalyticity of the critical exponents. One con-
sequence [10] of the supposed nonanalyticity is the restriction of applicability of the 2 + ε-
expansion to the region above the C-H line (see Fig. 1). As a result of truncating at leading
order in ε = d − 2, the Cardy-Hamber study does not fully characterize this predicted nonan-
alyticity. The shape of the C-H line is also evaluated only in a linear approximation around
(d, N) = (2,2); it is nonetheless expected to survive also for higher N , crossing N = 3 some-
what below d = 3, and even extending towards N →∞. The reason for its absence in 1/N
calculations was attributed [10] to the non-perturbative nature of this aspect at N large. To our
knowledge, the C-H prediction was thus far not addressed within any alternative theoretical
framework. We are also not aware of a systematic derivation of the analyzed flow equations,
in particular of any studies going beyond the leading order in the 2+ε expansion implemented
by Cardy and Hamber.

In the present paper we revisit the issue of analyticity of the critical exponents from the
point of view of nonperturbative RG applied to the φ4 theory. Our motivation follows pri-
marily from the fact that (to the best of our knowledge) the shape of the C-H line seems to
have never been calculated beyond the linear order in ε. Neither was the character of the
expected nonanalyticity of the critical exponents quantified. With this in mind, employing
the nonperturbative RG and the derivative expansion (DE) at order ∂ 2, we have scanned the
dependence of the critical exponents η and ν−1 on (d, N), with particular focus on the limit
(d, N)→ (2,2), taken along different paths. Our results clearly indicate two distinct regimes
in the (d, N) plane predicted by the C-H calculation, but no evidently nonanalytical behavior
(that would be visible as singularities or discontinuities of any of the first two derivatives) ex-
cept for (d, N) = (2,2). The computed derivatives of ν−1(d, N) and η(d, N) exhibit maxima of
magnitude divergent for (d, N)→ (2, 2) along a line in the (d, N) plane. This locus of maxima
turns out to be situated not far from the expected position of the C-H line for (d, N) ≈ (2,2),
however rapidly smoothens and vanishes completely upon increasing dimensionality towards
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d = 3, where our calculation becomes progressively more accurate. Another key signature an-
ticipated at the C-H line is the vanishing of the subdominant eigenvalue e2 of the linearized RG
transformation marking the collision with another (multicritical) fixed point. Our calculation
allows for a reliable estimate of e2 for d separated from 2 (d ¦ 2.2) and yields no signatures
of an approach of e2 towards zero.

In addition to evaluating the exponents, we inspect the structure of the fixed-points located
in the functional space (depending on d and N). We recover a rapid change of the fixed-point
profiles upon crossing the C-H line, which reflects the onset of vortex-dominated behavior.
This is particularly transparent in the longitudinal stiffness coefficient, which exhibits a violent
increase above the C-H line. There is however no signature of nonanalyticity of the fixed-point
profiles marking a fixed point collision.

The paper is structured as follows: In Sec. 2 we briefly review the Cardy-Hamber approach
leading to the predicted nonanalyticity of critical exponents η(d, N) and ν−1(d, N). In Sec. 3
we discuss the (subsequently applied) truncation of functional RG relying on the derivative
expansion. In Sec. 4 we restrict to dimensionality d = 2, where the functional forms of the
exponents ν−1(d = 2, N) and η(d = 2, N) are exactly known for N < 2. We compare our
results obtained at order ∂ 2 of the DE to the exact values. In Sec. 5 we analyze the numerically
extracted profiles of the critical exponents and provide a connection to the C-H prediction. We
in particular demonstrate the smoothening of ν−1(d, N) and η(d, N) upon moving away from
(d, N) = (2, 2) and emphasize that [after excluding the immediate vicinity of (d, N) = (2,2)]
the first two derivatives of these functions show no clear signatures of singular behavior. We
identify nonetheless two regimes of the (d, N) plane characterized by distinct (large-N -like
and small-N -like) behavior of the critical exponents, in full consistency with the known results.
The crossover between these two is very sharp for (d, N)≈ (2,2), but rapidly smoothens upon
increasing the dimensionality d. For d > 2.2 we additionally present the evolution of the
subdominant eigenvalue e2 interpolating between N = 2 and N →∞. Contrary to the C-H
prediction e2 remains well separated from zero for all N . In Sec. 6 we analyze the obtained
functional fixed-point profiles, demonstrating the rapid (however smooth) change across the
C-H line with no indication of a collision with a different fixed-point. Sec. 7 contains summary
and conclusion.

2 The Cardy-Hamber approach

The RG equations analyzed in Ref. [10] are given as
¨

ġ = −εg + (N − 2) f (g) + 4π3 y2 + . . .

ẏ2 =
�

4− 2π
g

�

y2 + . . .
(1)

and combine the equations studied by Nelson and Fisher [11] [obtained by putting N = 2 in
Eq. (1)] with those considered by Brézin and Zinn-Justin [12] [recovered for zero y2 from

Eq. (1)]. Here g is the interaction coupling, and f (g) = g2

2π + O(g3). The quantity y is
the vortex fugacity for (d, N) = (2, 2), but otherwise its interpretation is unclear. The small
parameters ε= d−2, (N−2) and y2 are assumed to be of the same order, while the neglected
terms (indicated as dots) are of order ε2. Eq. (1) admit two families of fixed point solutions
parametrized by ∆= επ/2− (N − 2) f (π/2):

y2
I =O(ε2) , f (gI) = gI [ε/(N − 2) +O(ε)] , (2)

and

y2
II =∆/(4π

3) +O(ε2) , gII = π/2+O(ε) . (3)
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When ε/(N − 2)→ 0 one recovers from (yI, gI) the fixed-point of Ref. [12], while for N = 2
and ε= 0 (yII, gII) goes into the Kosterlitz-Thouless fixed-point. As argued by C-H, the sign of
∆ determines which fixed point governs the second-order transition:

• for ∆< 0 the first FP is critical and the second is located outside the real domain;

• for ∆= 0 the two solutions intersect;

• for ∆> 0 the first FP is tricritical and the second is critical.

The collision of fixed point families is the source of the expected nonanalyticity of the critical
exponents and defines the condition for the occurrence of the C-H line. Additionally, upon
crossing the C-H line (∆ = 0) the first fixed point changes its stability, which requires that
the subdominant RG eigenvalue e2 vanishes upon the collision. This constitutes a testable
prediction which we aim to validate.

It is important to note, that the Kosterlitz-Thouless RG equations, employed in this analysis,
are derived within the low-temperature expansion. Therefore the Eq. (1) are expanded not
only in ε, (N − 2) and y2 but also g. It is well conceivable, that the higher-order terms might
smoothen out the transition between the two families of solutions, with the nonanalyticity
surviving only when ε = 0. Our present study indicates a smooth crossover between the two
asymptotic regimes, sharpening into a singularity only for (d, N) → (2, 2) and smoothening
rapidly for increasing d. It also gives a hint on the actual shape of this crossover line in
the (d, N) plane. We find no indication of e2 vanishing for any N and d ¦ 2.2, where our
calculation of this quantity may be considered as fully reliable. Quite contrary, e2 remains
well-separated from zero in the entire scanned region of the (d, N) plane.

3 Functional RG and the derivative expansion

With the problem presented above in mind, we employ the one particle-irreducible variant of
nonperturbative RG, adopting the exact Wetterich equation [13]

∂kΓk[φ] =
1
2

Tr
n

∂kRk

�

Γ
(2)
k [φ] + Rk

�−1o

, (4)

as the point of departure. Eq. (4) describes the flow of the regularized effective action Γk[φ]
upon varying the (momentum) cutoff parameter k between the microscopic scale (k = Λ) and
k→ 0. The quantity Γk[φ] evolves from the microscopic action Γk=Λ[φ] = S[φ] towards the
free energy Γk→0[φ] = F[φ] as the infrared cutoff is gradually removed. The latter is imple-
mented by adding a momentum-dependent function Rk to the inverse propagator, which leads
to damping of modes with momentum q < k (while leaving the modes with q > k unaffected).
The trace in Eq. (4) sums over momentum and components of the order-parameter field φ,
while Γ (2)k [φ] denotes the second (functional) field derivative of Γk[φ].

The general framework resting upon Eq. (4) was successfully applied in a diversity of
contexts over the last years (for reviews see e.g. [14–19]). The present study focuses on the
canonical case of the O(N) models, where the microscopic action is given by

S[φ] =
∫

dd x
�

1
2
(∇φ)2 +

λ

8

�

φ2 −φ2
0

�2
�

. (5)

Above we restricted to a form valid in the symmetry-broken phase, where the RG flow must be
initiated in order to converge for k→ 0 to a fixed point describing the critical state. Note that
φ is an N -component (real) field. The scheme of the derivative expansion proposes an ansatz
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for the flowing effective action Γk[φ], classifying the (symmetry-allowed) terms according to
the number of occurring derivatives and truncating terms of order higher than a prescribed
value. In the present study we consider the ∂ 2 truncation, where Γk[φ] is parametrized as

Γk[φ] =

∫

dd x
§

Uk(ρ) +
1
2
(Zk(ρ)− 2ρYk(ρ)) (∇φ)

2 +
1
4

Yk(ρ)(∇ρ)2
ª

, (6)

retaining all the terms involving at most 2 derivatives and truncating those of higher order.
Here ρ = 1

2φ
2, and the presence of the Yk(ρ) term distinguishes between the gradient coef-

ficients of the longitudinal and transverse modes. Note that our convention differs from the
most standard one (see e.g. Refs. [14, 19, 20]) by subtraction of the term 2ρYk(ρ) in the
(∇φ)2 coefficient. No truncation of the field dependencies is imposed, so that the set of three
flowing functions Fk(ρ) = {Uk(ρ), Zk(ρ), Yk(ρ)} is determined by the flow itself and is not
constrained by any pre-imposed parameterization. The procedure of projecting the Wetterich
equation on the flow of Fk(ρ) amounts in essence to plugging Eq. (6) into Eq. (4) and is
well described in literature (see e.g. Ref. [19]). The resulting flow equations are given in the
Appendix. We note at this point that the longitudinal inverse propagator reads

Γ (2)σ (q,ρ) = Zk(ρ)q
2 + U ′k(ρ) + 2ρU ′′k (ρ) , (7)

while the transverse component of the inverse propagator is evaluated as

Γ (2)π (q,ρ) = [Zk(ρ)− 2ρYk(ρ)]q
2 + U ′k(ρ) . (8)

The resulting set of three coupled nonlinear partial-differential flow equations can be analyzed
numerically. It is convenient to rephrase the flow equations using the dimensionless (rescaled)
quantities ρ̃, uk(ρ̃), zk(ρ̃), yk(ρ̃), where

ρ = Z−1
k kd−2ρ̃ , Uk(ρ̃ ) = kduk(ρ̃ ) , Zk(ρ̃) = Zkzk(ρ̃) , Yk(ρ̃) = Z2

k k2−d yk(ρ̃) . (9)

In terms of these, the fixed-point behavior at the critical point is manifest. The rescaling factor
Zk is related to the flowing anomalous dimension via η= − k

Zk
∂kZk and is defined by imposing

the condition zk(ρ̃η) = 1 with ρ̃η arbitrary. Note that the flowing anomalous dimension is
evaluated from the longitudinal component of Γ (2). This choice allows for an arbitrary value
of N , including N = 1, where the transverse modes are absent. We have verified that the
differences in our results (relating to the critical point) obtained with η evaluated from the
longitudinal or from the transverse directions are negligible. We additionally choose ρ̃η = 0.

Our analysis of the RG equations implements a discretization of the ρ̃ grid and follows two
complementary paths. On one hand we integrate the flow starting from the initial condition of
Eq. (5) and tune the initial condition so that the flow converges to the fixed point for vanishing
cutoff scale. On the other hand, we solve directly the fixed-point equations. The subsequent
linearization around the obtained solution and diagonalization of the obtained matrix allows
for identifying the ν−1 exponent as the leading (and only positive) eigenvalue. These two
distinct methods lead to very similar results, the latter being significantly faster and, in our
assessment, also more accurate. We have extensively tested the sensitivity of the obtained
results on the applied method [stability matrix analysis vs integration of the flow] as well as
parameters of the grid discretization and accuracy of the integration. Our results indicate
that errors related to numerical inaccuracies are way smaller as compared to those due to the
truncation, and may be disregarded for all practical purposes relevant here.

Even though the framework of the derivative expansion was applied over many years, two
impressive advancements related directly to the pure O(N) models took place only very re-
cently. The first concerns the resolution of the multicritical fixed point structure, including
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identification of nonperturbative fixed points in d = 3 that had never been found before [21].
The second relates to establishing the methodology of the DE as a high-precision computational
approach, capable of providing in d = 3 estimates of the critical exponents with accuracy com-
parable to (or even better than) those delivered by Monte-Carlo simulations and perturbative
approaches. This required [22] calculations at order ∂ 4 of the DE. For the less complex case of
Ising symmetry-breaking (N = 1) the computation was performed [20] even up to order ∂ 6.
In addition to numbers (including errorbars), these studies delivered insights pointing towards
rapid convergence of the DE, emphasizing (and clarifying [23]) the role of the so-called prin-
ciple of minimal sensitivity (PMS) [24]. The latter amounts to demanding that the analyzed
quantity (e.g. a critical exponent) be (locally) stationary with respect to the regulator choice.

The present study utilizes the DE at order ∂ 2, which, however, is entirely sufficient for the
purposes described above. An extension of this study to the fourth-order DE would entail using
13 functions parametrizing the effective action (instead of 3) and would require a tremendous
effort both analytical and numerical. The first calculations at the fourth order DE for O(N)
models were published only very recently [20] and were performed, so far, only in three spatial
dimensions.

We emphasize that the employed framework is applicable in the entire (d, N) plane which
constitutes its unique advantage. We also note that a somewhat similar scan of the critical
indices in the (d, N) plane was performed in Ref. [25] using a simpler truncation of functional
RG, where the field dependencies of Z and Y were dropped. For an analogous calculation
restricted to N = 1 see Ref. [26]. The limit d → 2+ with N > 1 was also examined in Ref. [27]
within another simplified functional RG truncation.

3.1 Regulator choice

In the numerical evaluation of the flow equations we implement the Wetterich cutoff [14]

Rk(q) = αZkq2/[exp(q2/k2)− 1] , (10)

with a variable parameter α. Refs. [22, 23] reveal the increasing role of the PMS principle in
high-precision evaluation of the critical indices upon elevating the truncation order. At the ∂ 2

order of the DE this dependence is however relatively modest. In Fig. 2 we demonstrate the
evolution of the PMS value of α varying dimensionality. We find a notable increase of variation
of αPMS approaching d = 2 and no PMS value in the immediate vicinity of d = 2. In d = 3
our results for η and ν [e. g. ηPMS(d = 3, N = 2) ≈ 0.047 and νPMS(d = 3, N = 2) ≈ 0.67]
coincide (up to two digits) with those of Ref. [22] obtained at the ∂ 2 truncation order with
the same regulator [see Table XVI of Ref. [22]]. In principle a small difference in the obtained
values might arise due to dropping the terms of order higher than 4 [arising from multiplying
the functions Γ (3)] in the calculation of Ref. [22]. This however turns out not to influence the
obtained numbers up to the precision of two digits.

In Fig. 3 the PMS value of the exponent η is compared to the value of η obtained for α= 2
as function of d. Except for the immediate vicinity of d = 2 the difference between the two
cases is negligible. The subsequent illustration (Fig. 4) exhibits the dependence of η on α for a
sequence of dimensionalities very close to 2. In particular, it demonstrates that no PMS value
of α could be found for d very close to 2 (i.e. for d < d0 ≈ 2.01).

An alternative procedure of optimizing the regulator was introduced in Ref. [28] specifi-
cally for (d, N) = (2,2). For this case, when integrating the flow in the algebraic (low-T) phase
one does not recover the expected line of fixed points exactly, but only it the form of slightly
tilted plateaus (quasi-fixed points). The plateau slope can be positive or negative depending
on α. One may therefore tune α so that the quasi-fixed point becomes transformed into a true
fixed point. This constitutes a phenomenological procedure of compensating the deficiency of
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Figure 2: (Color online) Evolution of the PMS values of the regulator parameter α
depending on dimensionality d for N = 2. A substantial increase of its variation
occurs for d approaching 2. No PMS value is found for d in the immediate vicinity
of 2.

the truncation with a ’smart’ regulator choice, which however enforces by hand the existence
of the fixed-point line in the low-T phase. For T high enough (above the KT phase transi-
tion) the fixed point cannot be obtained for any value of α, which signals the normal phase.
Ref. [28] identified the ’optimal’ value αopt ≈ 2.0 at T = TKT and αopt(T ) < 2.0 for T < TKT .
Note however, that this ’optimal’ value (alike PMS) does depend on the renormalization point
ρ̃η. We also point out that if the procedure of regulator tuning is abandoned, the KT transition
is captured [29,30] in a form of an extremely sharp crossover into a phase characterized by an
enormously large (but finite) correlation length which would be practically indistinguishible
from infinite in an experiment or simulation.

In what follows we present our results for η(d, N) and ν−1(d, N) as obtained keeping
the regulator fixed, with α = 2.0. On one hand, this corresponds to an ’average’ value for
d ∈ (2,3] (at least for N = 2), on the other it is close to the ’optimal’ value for (d, N) = (2,2).
We emphasize that the differences between the PMS values of critical exponents (whenever
αPMS can be identified) and the values obtained at α= 2 are relatively small. We also verified
that the key results of the paper (see Sec. 5) are not changed if the PMS regulators are used
(whenever they exist, i.e. for d sufficiently separated from 2).

4 Dimensionality d = 2

In this section we analyze the case d = 2, approaching N = 2 from below. For the KT transition
[(d, N) = (2, 2)], the (complete) DE at order ∂ 2 was addressed in Refs. [28, 29, 31]. The
flow equations solved in the present paper are equivalent to those analyzed therein at the
fixed point. For studies of the KT transition with other truncations of the functional RG, see
Refs. [30,32–38]. We point out that the present approach, despite the lack of vortices present
as explicit degrees of freedom, accurately reproduces the key features of the KT transition,
including the phase stiffness jump, the value ofη and the essential singularity of the correlation
length.

The values of the critical exponents ν−1 and η are however exactly known also for
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Figure 3: (Color online) Comparison of the exponent η calculated for αPMS and α= 2
depending on dimensionality d for N = 2.

(d = 2, N < 2) [39], providing a suitable opportunity for further benchmarking our results.
For t defined by N = −2cos(2π/t), t ∈ [1, 2] the exact critical exponents read [39]

ν−1 = 4− 2t , η= 2− t/2− 3/(2t) , (11)

and, for N = 2−δ, can be expanded in δ as follows:

ν−1 =
4
π

p

δ+O(δ) , η=
1
4
+

1
4π

p

δ+O(δ) . (12)

The first derivatives of both the exponents with respect to N diverge as N → 2−, providing a
clear indication of nonanalyticity of ν−1(d, N) and η(d, N) at (d, N) = (2, 2).

Fig. 5 shows a comparison between the results obtained by us within the present functional
RG truncation and the exact values of the critical exponents. The second-order DE approach
yields systematically overestimated values of η and fairly accurate values of ν−1. More impor-
tantly, our results capture the nonanalytical behavior of the exponents in the vicinity of N = 2.
A power-law fit for ν−1(d = 2, N) in the neighborhood of N = 2 yields the exponent 0.45,
which is relatively close to the exact value. We note that our results slowly oscillate around
the prediction of Nienhuis; we underestimate ν−1 very close to N = 2, and overestimate it for
lower N . As concerns η(d = 2, N) in the vicinity of N = 2, a power-law fit yields the exponent
0.77, which is clearly overestimated as compared to the exact value 1/2.

We attribute the inaccuracies concerning the numerical values of the exponents to the
low level of the implemented truncation and point out that the case of d = 2 is the least
favorable for the present approach due to relatively large values of the anomalous dimen-
sion. [19, 20, 22, 23] The accuracy of our method is expected to increase upon raising d. It
is nonetheless doubtless from our above results that the second-order DE is able to capture
nonanalytic behavior of the critical exponents at (d, N) = (2,2). In the following section we
use an analogous strategy in an attempt to identify the nonanalyticities at d > 2 expected to
occur along the C-H line.

We note at this point that the C-H mechanism may be interpreted as a change of the
universality class of the transition caused by a change of relevance of vortices. These may
be neglected above the C-H line, but become important below it. One might wonder if the
present approach does not suppress the vortices and in consequence is not really adequate
to address the posed problem. For (d, N) = (2, 2) the vortex-dominated picture is described
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Figure 4: (Color online) Variation of η depending on α for a sequence of dimen-
sionalities in close vicinity of 2 and N = 2. No PMS value is found for d sufficiently
low.

Figure 5: The critical exponents ν−1 and η as functions of N for d = 2. The singular
first derivatives at N = 2 are clearly visible.

accurately for a fine-tuned regulator, however as already mentioned, if an arbitrary regulator
is implemented, the KT transition is also captured in the form of an extremely sharp crossover.
Importantly, as demonstrated by the work of Motrunich-Vishwanath [40] (see also Ref. [41]),
vortex-like excitations are also relevant for the Heisenberg (N = 3) transition at dimensionality
d = 3. The authors of this study addressed the nature of the phase transition in the O(3) sigma
model where they (artificially) suppressed vortices. They obtained a phase transition from a
completely different universality class (characterized in particular by a very large anomalous
dimension η≈ 0.6). There is no doubt that the transition obtained by us is in the Heisenberg
(and not the non-compact CP universality class discussed in Ref. [40]). The relevant excita-
tions are therefore captured. The onset of vortex-dominated physics across the C-H line is also
evident from inspecting the profiles of the functional fixed point solutions which we present
in Sec. 6.
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5 The Cardy-Hamber line

In an attempt to detect the C-H line, we identify a (functional) fixed point corresponding to
(d, N) located far away from the expected nonanalyticity. This can be done by integrating the
flow (tuning the initial condition so that the system flows sufficiently close to a fixed-point
solution). We subsequently study the evolution of ν−1 and η as either d or N varies towards
the region where the C-H line should be found. In practice we either gradually decrease d or
increase N . The fixed point at (d, N) serves as the initial condition for the fixed-point equations
at (d−δd, N) or (d, N +δN), which (after discretization) are solved using standard algebraic
routines. We are able to scan the (d, N) plane and extract numerically the functions η(d, N)
and ν−1(d, N) traversing the region where the C-H line is expected.

In the following subsections we present the results of this scanning procedure along hori-
zontal (subsection 5.1) and vertical (subsections 5.2 and 5.3) trajectories in the (d, N) plane.
We note that the procedure of finding the fixed point becomes progressively harder when low-
ering d and the step in the (d, N) plane must then be tiny. This is (at least partially) related
to the fact that the profile of the fixed point effective potential acquires at d low an increas-
ingly strong variation at large ρ̃. For selected choices of (d, N) we checked the results against
those obtained by integration of the flow. We note that for N > 2 we were not able to solve
the fixed-point equations for d arbitrarily close to 2, but anyway significantly lower than the
anticipated position of the C-H line.

5.1 d-dependence

The left panel of Fig. 6 demonstrates the dependence of the ν−1(d) exponent on dimension-
ality for a sequence of values of N . Our results are juxtaposed with the known exact results
ν−1(d, N =∞) = d−2. In the limit d → 2+, the exponent ν−1(d, N = 2) vanishes with a very
large (presumably infinite) derivative. Only at this point are we dealing with a clear nonana-
lyticity of ν−1. For each N > 2, there exists a characteristic value of dimensionality dc(N) at
which ν−1 converges rapidly towards the large-N behavior; dc(N) increases for growing N .

Our results for the exponent η(d) as a function of the dimensionality are presented in the
right panel of Fig. 6 along with the exact result η(d, N =∞) = 0. The distinct characteristic of
the case N = 2 is equally pronounced as for the exponent ν−1. While η(d, N = 2) approaches
a non-zero value η(d = 2, N = 2)≈ 0.27 in the limit d → 2, the curves corresponding to N > 2
converge towards 0 in agreement with the ε-expansion results [42]. As we already remarked,
we are not able to get arbitrarily close to d = 2 for N > 2, however the range of d where the
curves in Fig. 6 terminate is significantly lower that the expected position of the C-H line. The
dimensionality dc(N) corresponds to the maximum of η(d), where one crosses over between
the large-N -like and small-N -like behaviors.

The difference between the behavior of the critical exponents between low-N and large-N
regimes fits nicely into the picture presented by Cardy and Hamber and it is natural to relate
dc(N) with the C-H line. We also note that dc(N) is situated close to the predicted position
of the C-H line. However, the crossover from low-N -like to large-N -like behavior remains
analytical (or at least of the C2 type). This suggests that the fixed points’ collision described
in Ref. [10] is actually avoided within our calculation. Instead, the obtained picture indicates
a crossover between the situations controlled by the two fixed points of the C-H analysis with
no indication of nonanalyticity [except for the immediate vicinity of (d, N) = (2,2)].

5.2 N -dependence

The picture becomes even more transparent when we inspect the N -dependence of the critical
exponents. The left panel of Fig. 7 illustrates the variation of ν−1 between N = 1 and N = 6

11

https://scipost.org
https://scipost.org/SciPostPhys.10.6.134


SciPost Phys. 10, 134 (2021)

Figure 6: The critical exponents ν−1 and η as functions of d for a sequence of values
of N . In particular, for N = 2 we find η(d → 2+, N = 2) approaching the value
≈ 0.27 with a singular first derivative.

Figure 7: The critical exponents ν−1 and η as functions of N for a sequence of values
of d. Continuous lines denote the ε-expansion predictions; the lines corresponding
to d = 2.5 were removed to avoid obscuring the illustration. The stars indicate our
estimate of Nc(d) (see the main text).

for a sequence of values of d. These results are compared to the predictions of the ε-expansion
at order ε4 [42]. In two dimensions, ν−1 approaches 0 in a square-root like fashion, exhibiting
the nonanalyticity at N = 2. At higher dimensions ν−1 reaches the large-N limit, but no
clear nonanalyticity is present. Instead, a crossover-like behavior between low-N and large-N
regimes occurs. This crossover smoothens progressively upon increasing d. This transition
seems to be closely related to the point where the divergence between our results and the
predictions of the ε-expansion occurs.

The right panel of Fig. 7 displays a comparison between our results for the exponent η and
the predictions of the ε-expansion. At the point (d, N) = (2, 2), η has a discontinuity and a
singular derivative. These two properties do not survive when we move to larger dimensions;
η(d > 2, N) slowly approaches its large-N limit (η(d, N =∞) = 0) in an apparently analyt-
ical fashion. Our results indicate that the nonanalyticity of the critical exponents present at
(d, N) = (2, 2) becomes smoothened as we move to higher dimensions.

We finally examine the derivatives of the critical exponents ν−1(d, N) and η(d, N). In Fig.
8 we plot ∂ 2

Nν
−1 and ∂Nη; by following their maxima/minima we observe the emergence of the
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(a) ∂ 2
Nν
−1 (b) ∂Nη

Figure 8: The derivatives of the critical exponents as functions of N for a sequence
of values of d. The stars indicate the maxima/minima, which serve as our defining
property of the Nc(d) line.

singularities at (d = 2, N = 2). The values of these functions at their extrema are increasingly
large as ε = d − 2 approaches 0, yet they become infinite only in this limit. We adopt the
position of these extrema as the (phenomenological) property determining the position of the
crossover line Nc(d) between the large-N -like and the small-N -like regimes.

The maxima of ∂ 2
Nν
−1 and the minima of ∂Nη lie very close to each other. Notably, the val-

ues of the derivatives at maxima become increasingly small as d grows signalling smoothening
of the crossover between the large-N -like and the small-N -like behaviors. Between d = 2.75
and d = 3. the maximum of ∂ 2

Nν
−1 disappears completely. The loci of the maxima of ∂ 2

Nν
−1 and

the minima of ∂Nη are plotted in Fig. 9 in the (d, N) plane. In the vicinity of (d, N) = (2,2),
they are found close to the expected position of the Cardy-Hamber line.

Figure 9: Loci of the maxima of ∂ 2
Nν
−1 and the minima of ∂Nη compared to the C-H

line.
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5.3 Subdominant eigenvalue

We now analyze the behavior of the subdominant RG eigenvalue e2 which determines the
correction to scaling exponent ω. The fixed point collision scenario by C-H requires as a
necessary condition that the subdominant eigenvalue vanishes identically everywhere on the
C-H line. Fig. 10 demonstrates the dependence of e2 on N for a sequence of values of d.
Resolving the limit of e2 as (d, N)→ (2, 2) is not possible at the present approximation level
and would require a substantial refinement of the truncation. Our results for e2 are however
fully reliable in the vicinity of d = 3. For this case in Fig. 10 they are juxtaposed with the very
accurate values obtained within the derivative expansion at order ∂ 4 [22] and the results of
the 1/N expansion [43]. We note that the presented ∂ 4 results are of similar accuracy as the
most recent Monte Carlo results, and were chosen as a convenient reference point offering
data for a wide range of N . The differences between the values obtained at order ∂ 2 and ∂ 4

turn out negligible for the present purposes; note that the more precise results are separated
from 0 even a bit further than ours.

We observe a continuous interpolation between the well-established results. The curve for
d = 3 remains very well separated from zero in the entire range of N . Note that consistency
with the C-H scenario would require e2 to be located in a completely different range of values.
The obtained picture provides strong evidence against the existence of the C-H line for d = 3.
Upon reducing dimensionality, the picture evolves continuously and remains qualitatively un-
changed down to d ≈ 2.2. In an exact calculation, in the limit d → 2+ we would expect a
violent increase of the maximal value of e2 towards zero, such that e2(d → 2+, N = 2)→ 0−.
This feature is not captured at the present level of approximation. Nonetheless the results of
this section allow us to exclude the possibility of existence of the C-H line of nonanalyticities
in a broad vicinity of d = 3. In consequence, the validity of the C-H fixed-point collision pre-
diction, which is built upon the 2+ ε expansion, would require that either the nonanalyticity
line terminates at some point close to d = 2, or it extends up to large N , but becomes vertical
at some dimensionality close to d = 2. The question concerning the mechanism governing the

Figure 10: The subdominant eigenvalue e2 as function of N for a sequence of values
of d. Continuous lines denote the 1/N -expansion predictions. The stars denote the
results of derivative expansion at order ∂ 4 for d = 3.

change of the vortices’ relevance without vanishing of e2 requires clarification. In particular,
as argued in Ref. [44] the 2+ ε expansion continued to d = 3 is expected to describe the C P1

model [40] [which is very distinct from the O(3) model]. The failure of the 2+ ε expansion
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to account for the O(3) model in d = 3 fits very nicely into the C − H scenario. Intriguingly
the 2+ε predictions deviate from our results below the crossover line obtained by us at low d
(compare Fig. 7). A resolution of this puzzling issue is not achieved in the present work and
calls for further investigations.

6 Fixed points

We now inspect the fixed-point profiles and investigate how the onset of the vortex-dominated
physics upon increasing d (or reducing N) is reflected by their violent change in the vicinity
of the C-H (crossover) line.

Fig. 11 demonstrates the variation of the functional fixed point obtained by us across the
(d, N) plane. In large dimensions, the fixed point effective potential very much resembles
the effective potential of the φ4 theory, at least up to ρ̃ corresponding to the minimum. The
derivative of the effective potential is almost exactly linear in ρ̃. In addition, there is almost
no difference between the longitudinal and transverse fluctuation suppressors [zσ(ρ̃) = zk(ρ̃)
and zπ(ρ̃) = zk(ρ̃)−2ρ̃ yk(ρ̃) respectively]. Both fluctuation suppressors are almost constant
as functions of ρ̃.

Figure 11: Critical fixed points for N = 2.5 and a series of values of d. The left panel
shows the fluctuations suppressors: longitudinal zσ(ρ̃) (main plot) and transverse
zπ(ρ̃) (inset). Particularly visible is the drastic (but smooth) increase of zσ(ρ̃) upon
crossing the C-H line located slightly below d = 2.2. The right panel shows the
derivative of the local potential u′(ρ̃). The axes were rescaled, so that the minimum
of the local potential always lies at ρ̃ = 1.

When lowering the dimensionality, the fixed point effective potential acquires a pronounced
minimum, effectively trapping the order-parameter in its close vicinity. At the same time, the
longitudinal fluctuations become strongly suppressed while the cost of the transverse fluctua-
tion decreases. A violent (but smooth) increase of zσ(ρ̃) appears upon traversing the vicinity
of the C-H crossover line and continues rapidly as the dimension d decreases. This structure
of the effective action, with (almost) fully suppressed longitudinal fluctuations, resembles the
non-linear σ model. The fixed point structure present in low dimensions (strong transverse
and weak longitudinal fluctuations) is consistent with the prediction that vortices change rel-
evance upon traversing the crossover line.

In Fig. 12 we also exhibit the evolution of the fixed point parameters u′′(ρ̃), zσ(ρ̃) and
zπ(ρ̃) evaluated at the minimum of the local potential ρ̃ = ρ̃0 upon varying d and N . The
dependence of these parameters on d is non-trivial, in some cases showing more than one local
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Figure 12: Critical fixed point parameters at the minimum ρ̃0 of the local potential as
a function of d and N . The left panel shows the fluctuations suppressors: longitudinal
zσ(ρ̃0) (main plot) and transverse zπ(ρ̃0) (inset). The right panel shows the second
derivative of the local potential u′′(ρ̃0).

extremum. Our earlier phenomenological identification of the position of the C-H line via the
extrema of the derivative of the critical exponents (see Sec. 5) turns out to lie very closely to
the maxima of u′′(ρ̃0), the minima of zσ(ρ̃0), as well as the inflection points of zπ(ρ̃0).

The analysis of the fixed point profiles can also serve to illustrate two problems arising in
the numerical analysis of the functional RG equations close to d = 2. For every value of N > 2,
both zσ(ρ̃) and u′′(ρ̃) exhibit very large derivatives for ρ̃ large (beyond the local potential
minimum), which seem to diverge as we approach the limit d → 2+. This divergences make
our numerical procedure of approximating the derivatives with finite differences unreliable.

The second problem lies in the numerical calculation of the loop integrals. For low values
of u′(0) ¦ −α, the transverse propagators, present in our calculation suffer from a pole close
to q2 ≈ −α−u′(0), where q is the loop-integral momentum. Even though in the studied cases
this pole lies on the imaginary axis, it can strongly affect the precision of numerical integration
when u′(0) is sufficiently close to −α; this again happens for any N > 2 when d → 2+. Due
to the above technical problems, throughout the paper we have removed the obtained fixed
points for which sufficient numerical precision could not be achieved.

The above analysis of the fixed point structure strongly indicates that the fixed point effec-
tive action smoothly interpolates between the behavior characterized by theφ4 theory in large
dimensions and the nonlinear-σ model in low dimensions. The cross-over is smooth, occurs
in the vicinity of the predicted C-H line, and may be interpreted as being due to the vortices
becoming a relevant perturbation.

7 Conclusion

In this paper we have addressed the analyticity of the critical exponents ν(d, N) and η(d, N)
of the O(N) models in d ≥ 2, N ≥ 2, varying continuously dimensionality d and the number
of order parameter components N . We confronted our results obtained from functional renor-
malization group (truncated at order ∂ 2 of the derivative expansion) against those derived
long ago by Cardy and Hamber within the 2+ε expansion [10] of the non-linear sigma model
at order ε. Except for (d, N) = (2,2) we did not recover signatures of nonanalyticities of the
critical exponents that would be manifest from the properties of the first two derivatives of the
functions ν−1(d, N) and η(d, N). Instead, we obtained a locus of maxima of the derivatives
of the functions ν−1(d, N) and η(d, N), terminating with a singularity at (d, N) = (2, 2) and
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a related crossover of the critical exponents between large-N -like and small-N -like regimes.
Moreover, our results indicate that the subdominant eigenvalue of the RG transformation does
not vanish anywhere in the (d, N) plane (except, perhaps at dimensionalities close to d = 2,
where our approach is not sufficiently accurate) - which is a necessary condition for the fixed
point collision yielding the nonanalytical critical exponents in the C-H scenario. Quite con-
trary, at least for d ¦ 2.2 where our calculation of this quantity is reliable, it remains very well
separated from zero. This result demonstrates the non-existence of the C-H line in the vicinity
of d = 3 and constitutes a strong disagreement with the results of Ref. [10].

We cannot rule out the possibility that the nonanalyticity line indeed exists in a narrow strip
around d = 2, but on the other hand we note that the prediction of Cardy-Hamber involves the
phenomenon of fixed-point collision, which may be smoothened when terms of higher order in
ε and g are taken into account. It is also not unimaginable that the C-H nonanalyticity arises
as an artifact of the procedure of merging the flow equations coming from two completely
distinct calculations, where in addition one of the two flowing parameters lacks a clear physical
meaning except for (d, N) = (2, 2).

As concerns the vicinity of d = 2 we cannot completely exclude the possibility that the locus
of derivatives’ maxima obtained by us at the present truncation level (order ∂ 2 of the derivative
expansion) is in fact a ’fingerprint’ of the Cardy-Hamber line, which would build up into a
true nonanalyticity upon including higher-order terms of the derivative expansion, indicating
that the present framework is insufficient to capture the rather subtle ’fixed point collision’
phenomenon. This possibility seems unlikely to us, since, if this was really the case, this
insufficiency would apply both to the vicinity of (d, N) = (2,2), as well as larger dimensions,
where our approximation scheme is expected to become increasingly more reliable [20, 22]
and where the C-H approach can by no means be treated as accurate.

In summary, our work excludes the possibility of the existence of the Cardy-Hamber line of
nonanalyticities of the critical exponents in the form envisaged by the C-H scenario in spatial
dimensionality d approaching three. It also suggests that this line is in fact a crossover also
for d close to two, and evolves into a true singularity only in the limit (d, N)→ (2, 2).
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Appendix - fRG flow equations

In this section we present the RG equations that were used in this work. To simplify the expres-
sions we first introduce the fluctuation suppressors: Zσ(ρ) = Zk(ρ), Zπ(ρ) = Zk(ρ)−2ρYk(ρ)
and the “dressed” propagators:

Gσ(ρ) =
�

Zσ(ρ)q
2 + U ′(ρ) + 2ρU ′′(ρ) + R(k,q2)

�−1
, (13)

Gπ(ρ) =
�

Zπ(ρ)q
2 + U ′(ρ) + R(k,q2)

�−1
, (14)
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where the index k denoting the running scale dependence was dropped for clarity. The flow
equations for the dimensional functions U ′(ρ), Zσ(ρ) and Zπ(ρ) read:

∂kU ′(ρ) = −
1
2

∫

q
R(1,0)

�

k,q2
�

�

(N − 1)Gπ(ρ)
2
�

q2Z ′π(ρ) + U ′′(ρ)
�

+ Gσ(ρ)
2
�

q2Z ′σ(ρ) + 3U ′′(ρ) + 2ρU (3)(ρ)
�

�

, (15)

∂kZσ(ρ) =
1

2d

∫

q
R(1,0)

�

k,q2
�

�

− 4(N − 1)ρGπ(ρ)
5
�

R(0,1)
�

k,q2
�

+ Zπ(ρ)
� �

q2Z ′π(ρ) + U ′′(ρ)
�

2

�

q2
�

(d − 4)Zπ(ρ)− 4R(0,1)
�

k,q2
��

+ dR
�

k,q2
�

+ dU ′(ρ)
�

− Gσ(ρ)
2
�

4ρGσ(ρ)
2
�

q2Z ′σ(ρ) + 3U ′′(ρ) + 2ρU (3)(ρ)
�

�

�

R(0,1)
�

k,q2
�

+ Zσ(ρ)
� �

(d + 4)q2Z ′σ(ρ) + 3dU ′′(ρ) + 2dρU (3)(ρ)
�

+ 2q2R(0,2)
�

k,q2
� �

q2Z ′σ(ρ) + 3U ′′(ρ) + 2ρU (3)(ρ)
�

�

− 16q2ρGσ(ρ)
3
�

R(0,1)
�

k,q2
�

+ Zσ(ρ)
�

2
�

q2Z ′σ(ρ) + 3U ′′(ρ) + 2ρU (3)(ρ)
�

2

− 4ρGσ(ρ)Z
′
σ(ρ)

�

(2d + 1)q2Z ′σ(ρ) + 6dU ′′(ρ) + 4dρU (3)(ρ)
�

+ dZ ′σ(ρ) + 2dρZ ′′σ(ρ)
�

+ 8(N − 1)q2ρGπ(ρ)
4
�

q2Z ′π(ρ) + U ′′(ρ)
�

�

−R(0,2)
�

k,q2
� �

q2Z ′π(ρ) + U ′′(ρ)
�

− 2Z ′π(ρ)
�

R(0,1)
�

k,q2
�

+ Zπ(ρ)
��

+ 4d(N − 1)Gπ(ρ)
3

�

q2ρZ ′π(ρ)
2

d
+ (Zσ(ρ)− Zπ(ρ))

�

q2Z ′π(ρ) + U ′′(ρ)
�

�

−
d(N − 1)Gπ(ρ)2

�

ρZ ′σ(ρ)− Zσ(ρ) + Zπ(ρ)
�

ρ

�

, (16)

∂kZπ(ρ) =
1

2d

∫

q
R(1,0)

�

k,q2
�

�

−
1
ρ

�

Gπ(ρ)
2

�

Gσ(ρ)
2
�

d
�

q2 (Zσ(ρ)− Zπ(ρ)) + 2ρU ′′(ρ)
�

2

�

R(0,1)
�

k,q2
�

+ Zσ(ρ)
�

+ 8q2 (Zπ(ρ)− Zσ(ρ))
�

q2 (Zπ(ρ)− Zσ(ρ))− 2ρU ′′(ρ)
�

�

R(0,1)
�

k,q2
�

+ Zσ(ρ)−ρZ ′π(ρ)
�

+ 4R(0,2)
�

k,q2
� �

q3 (Zσ(ρ)− Zπ(ρ)) + 2ρqU ′′(ρ)
�

2
�

− 4q2Gσ(ρ)
3
�

q2 (Zσ(ρ)− Zπ(ρ)) + 2ρU ′′(ρ)
�

2
�

R(0,1)
�

k,q2
�

+ Zσ(ρ)
�

2

− 2Gσ(ρ)
�

d (Zπ(ρ)− Zσ(ρ))
�

q2 (Zπ(ρ)− Zσ(ρ))− 2ρU ′′(ρ)
�

+ 2q2
�

−Zσ(ρ) +ρZ ′π(ρ) + Zπ(ρ)
�

2
�

+ d(N − 1)ρZ ′π(ρ) + dZσ(ρ)− dZπ(ρ)

��

−
1
ρ

�

Gπ(ρ)
3Gσ(ρ)

2
�

R(0,1)
�

k,q2
�

+ Zπ(ρ)
� �

q2 (Zσ(ρ)− Zπ(ρ)) + 2ρU ′′(ρ)
�

2

�

q2
�

(d − 4)Zπ(ρ)− 4R(0,1)
�

k,q2
��

+ dR
�

k,q2
�

+ dU ′(ρ)
�

�

+ 4Gπ(ρ)Gσ(ρ)
2Z ′π(ρ)

�

q2
�

dZσ(ρ) +ρZ ′π(ρ)
�

− dq2Zπ(ρ) + 2dρU ′′(ρ)
�

− dGσ(ρ)
2
�

Z ′π(ρ) + 2ρZ ′′π(ρ)
�

�

. (17)
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In the formulas above
∫

q =
∫ ddq
(2π)d . The flow of Yk(ρ) can be simply recovered as:

∂kYk(ρ) =
∂kZσ(ρ)− ∂kZπ(ρ)

2ρ
. (18)
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