SciPost Phys. 10, 144 (2021)

One loop verification of SMEFT Ward Identities
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Abstract

We verify Standard Model Effective Field Theory Ward identities to one loop order when
background field gauge is used to quantize the theory. The results we present lay the
foundation of next to leading order automatic generation of results in the SMEFT, in
both the perturbative and non-perturbative expansion using the geoSMEFT formalism,

and background field gauge.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) [1,2] is a core theory for interpreting
many current and future experimental measurements in particle physics. The SMEFT is defined
by the field content of the Standard Model, including an SU; (2) scalar Higgs doublet (H), and
a linear realization of SU(3) x SU[(2) x U(1)y symmetry. Operators of mass dimension d are
suppressed by powers of an unknown non-Standard Model scale A%,

The SM treated as an EFT has both derivative and field expansions. The Higgs field ex-
pansion plays an essential role as it can collapse terms in a composite operator onto a target
n-point interaction when the classical background field expectation value of the Higgs is taken.
This introduces modifications of low n-point functions, and the corresponding Lagrangian pa-
rameters such as the masses, gauge couplings and mixing angles. These modifications result
in much of the interesting phenomenology of the SMEFT.

Actively organising the formulation of the SMEFT using field space geometry is advanta-
geous. This approach is known as the geoSMEFT [3], and builds on the theoretical foundation
laid down in Refs. [4-10]. The geoSMEFT separates out the scalar field space expansion (in a
gauge independent manner) from the derivative expansion. This approach naturally general-
izes the SM Lagrangian parameters to their SMEFT counterparts, which are understood to be
the masses, gauge couplings and mixing angles on the curved background Higgs manifold.!
The degree of curvature of the Higgs field spaces is dictated by the ratio of the Electroweak
scale ¥ = +/(2HTH) compared to the scale of new physics A. The geoSMEFT enables all
orders results in the ¥4 /A expansion to be defined, due to the constraints of a self consistent
description of the geometry present in the theory, and has already resulted in the first exact
formulation of the SMEFT to (9(17; J/AH [11].

Organizing the SMEFT using field space geometry can be done while background field
gauge invariance is maintained by using the Background Field Method (BFM). The BFM is
also advantageous, as then gauge fixing does not obscure naive and intuitive one loop Ward-
Takahashi identities [12,13] (hereafter referred to as Ward identities for brevity) that reflect
the unbroken SU;(2) x U(1)y global symmetries of the background fields. The geoSMEFT
approach was developed by first determining the BFM gauge fixing in the SMEFT in Ref. [9].
The BFM Ward identities for the SMEFT were reported in Ref. [10].

Remarkably, the BFM Ward identities are, for the most part,? the natural and direct gen-

!Generally the canonically normalised SMEFT parameters consistently defined on the curved background man-
ifold of the Higgs are denoted in this work with a bar superscript, such as M, — M;,,s, — s etc..

2An exception is the modification of the tadpole terms dependence in the SMEFT Ward identities, due to the
need to carefully treat two derivative operators involving the Higgs field.
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eralization of the SM BFM Ward identities; with the SM parameters generalized to the curved
field space Lagrangian terms in the geoSMEFT [10]. This supports the notion that the use
of the BFM in the SMEFT is of increased importance. When a field theory does not have a
physical non-trivial background field configuration, the use of the BFM is largely a choice of
convenience in a calculation. In the SMEFT the physics is different, as it is an EFT with a non-
trivial background manifold, namely, the Higgs taking on its vacuum expectation value (V7).
As such, a BFM based approach to the SMEFT naturally and efficiently organizes the physics
that is present, at higher orders in the power counting expansions, and the loop expansion.
Considering the complexity of the SMEFT, the cross checks afforded in this approach are quite
valuable to validate results and avoid subtle theoretical inconsistencies. Although subtle, such
inconsistencies can introduce violations of background field symmetries (i.e. make it impos-
sible to consistently incorporate the IR effect of the field space geometries) and dramatically
impact conclusions drawn from experimental constraints, which are S matrix elements that
depend on a consistent projection of the field space geometry. For a discussion on one such
subtlety in Electroweak precision data, with significant consequences to the SMEFT global fit
effort, see Ref. [14].

The BFM Ward identities constrain n-point functions and the SMEFT masses, gauge cou-
plings and mixing angles. As the higher dimensional operators in the SMEFT also obey the
SU(3) x SUL(2) x U(1)y symmetry of the SM, the one loop Ward identities formulated in the
BFM are respected operator by operator in the SMEFT. In this paper, we demonstrate this is
indeed the case. We explicitly verify a set of these identities (relating one and two point func-
tions) to one loop order, and demonstrate the manner in which various contributions combine
to satisfy the BFM Ward identities of the SMEFT operator by operator, in a consistent formu-
lation of this theory to (’)(1772~/A2 ggM/167'52).

2 SMEFT and geoSMEFT

The SMEFT Lagrangian is defined as

(d)
ESMEFT = [’SM + [,(d) 5 L(d) = Z % Qfd) ford > 4. (1)
L

The SM Lagrangian and conventions are consistent with Ref. [3,15,16]. The operators di)
are labelled with a mass dimension d superscript and multiply unknown Wilson coefficients
Cl.(d). Conventionally we define C’l.(d) = Cl.(d)f/%_“//\d_“. The parameter v; = +/(2HTH) in
the SMEFT is defined as the minimum of the potential, including corrections due to higher-
dimensional operators. We use the Warsaw basis [2] for £®) and otherwise geoSMEFT [3] for
operator conventions. GeoSMEFT organizes the theory in terms of field-space connections G;
multiplying composite operator forms f;, represented schematically by

ESMEFTZZGi(I,A,¢~--)fi: (2)

where G; depend on the group indices I, A of the (non-spacetime) symmetry groups, and the
scalar field coordinates of the composite operators, except powers of D*H, which are grouped
into f;. The field-space connections depend on the coordinates of the Higgs scalar doublet
expressed in terms of real scalar field coordinates, ¢; = {¢1, P2, P53, P4}, with normalization

L[¢2+i¢1].

73 | b —ids (3)

H(¢;) =
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The gauge boson field coordinates are defined as WA = {W! w2 w3 ,B} with A= {1,2,3,4}.
The corresponding general coupling in the SM is ay = {g5, 29,29, 21}. The mass eigenstate
field coordinates are A% = {W*, W™, Z, A}.

The geometric Lagrangian parameters that appear in the Ward identities are functions of
the field-space connections. Of particular importance are the field space connections h;;, g45
which we refer to as metrics in this work. These metrics are defined at all orders in the
geoSMEFT organization of the SMEFT operator expansion as

Euv 52 LomgrT
h($) = 22
u(@)= 6(Du ) 8(DybY | (410 @
and

—28uv8op 62 Lsvprr
= 5
8as(¢) 72 WA SWE )

L(a,pB++)—0,CP-even

The notation L£(a, 3 ---) corresponds to non-trivial Lorentz-index-carrying Lagrangian terms
and spin connections, e.g. (D*®)X and Wlfv. The explicit form of the metrics are given in
Ref. [3]. Here d is the spacetime dimension. The matrix square roots of these field space
connections are /g5 = (g45)'/% and vh;; = (h;;)}/2. The SMEFT perturbations are small
corrections to the SM, so the field-space connections are positive semi-definite matrices, with
unique positive semi-definite square roots.>

The transformation of the gauge fields, gauge parameters and scalar fields into mass eigen-
states in the SMEFT is given at all orders in the vy /A expansion by

WA = /g Uz A©, (6)
at = /g UpcBC, (7)
¢;J = \/EJKVKL‘f’L s (8)

A

with A = W)W, 2, A), oL = {é*,8~, 7,H}. BC is obtained directly from a” (defined
above) and Ug. The transformation of the quantum fields is of the same form. The matrices
U,V are unitary, and given by

1 1 - 1
N ZE 0
Ue=|v @ © 9, Ve=|v v ° 9
0 0 c5 s3 0 0 —-10
0 0 —s5 cg 0 0 0 1

These matricies U,V are rotations; i.e. orthogonal matricies whose transpose is equal to the
matrix inverse. The short hand combinations

Us = N UM =U g,
AB
Ve =vVh Vg, V2 =VPEVhy,

are useful to define as they perform the mass eigenstate rotation for the vector and scalar fields,
and bring the corresponding kinetic term to canonical form, including higher-dimensional-
operator corrections. As can be directly verified, the combined operation is not an orthogonal
matrix whose transpose is equal to the matrix inverse; i.e. U2, Vé are not rotations. Although
the transformation between mass and canonically normalized weak eigenstates are properly
and formally rotations in the SM, this is no longer the case in the SMEFT.

*Note that ,/g"* /g = 6% and VR VR = 5.
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3 Background Field Method, Gauge fixing and Ward identities

The BFM [17-19] is a theoretical approach to gauge fixing a quantum field theory in a man-
ner that leaves the effective action invariant under background field gauge transformations.
To this end, the fields are split into quantum (un-hated) and classical (hatted) background
fields: F — F + F. The classical fields are associated with the external states of the S-matrix
in an LSZ procedure [20], and a gauge fixing term is defined so that the effective action is
unchanged under a local gauge transformation of the background fields in conjunction with a
linear change of variables on the quantum fields, see Ref. [19].

In the BFM, relationships between Lagrangian parameters due to unbroken background
SUL(2) x U(1)y symmetry then follow a “naive" (classical) expectation when quantizing the
theory. These are the BFM Ward identities. In the case of the SMEFT, the naive BFM Ward
identities of the SM are upgraded to involve the canonically normalized Lagrangian parameters
(i.e. barred parameters) defined in the geoSMEFT by using the field space connections.

The BFM generating functional of the SMEFT is given by

Z[ﬁ‘ J] = f DF det |:A—gA:| eifdx4(S[F+ﬁ]+EGF+SOurCeterms)
’ AoB .

The generating functional is integrated over the quantum field configurations via DF, with F
field coordinates describing all long-distance propagating states. The sources J only couple to
the quantum fields [21]. The issue of gauge fixing the SMEFT in the BFM was discussed as a
novel challenge in Ref. [22] (see also Refs. [23-25]). The core issue to utilizing the BFM in
the SMEFT (to calculate complete dependence on IR quantities such as masses) is to define
a gauge fixing procedure in the presence of higher dimensional operators, while preserving
background field gauge invariance. Ref. [9] reported that such a gauge fixing term is uniquely

g

Lop=—222G"GP, GX = g WHH = E Wi+ 28 hu 78,07 (9

E
Here & and h are the background field values of the metrics, as indicated with the hat super-
script. See Ref. [9] for more details. This approach to gauge fixing has an intuitive interpreta-
tion. The fields are gauge fixed on the curved Higgs field space defined by the SMEFT (field)
power counting expansion (i.e. in ¥;/A). This is done by upgrading the naive squares of fields
in the gauge fixing term, to less-naive contractions of fields through the Higgs field space met-
rics gap, hyx. Such contractions characterize the curved Higgs field space geometry the theory
is being quantized on to define the correlation functions. When the field space metrics are
trivialized to their values in the SM: le 7 =0y and g4p = 645. The field space manifold is no
longer curved due to SMEFT corrections in this ¥/A — 0 limit. The gauge fixing term in the
Background Field Method then simplifies to that in the SM, as given in Ref. [26-28].

The Faddeev-Popov ghost term, derived from Eqn. 9 is [9]

Lyp =— gaptl” [—3252 W€D WPH + WPy + e WD?“ (10)
eADE FCWD(WFM + WFM) - AAD(qu + ¢ )Yc J hIK ?g’L qSL)] uC

Our notation is such that the covariant derivative acting on the bosonic fields of the SM in
the doublet and real representations respectively is [9]

DYH = (M +ig,W%o,/2+1ig,y,B")H, (11)
1
(DHP) = (85— W, )97, (12)
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with symmetry generators for the real scalar manifold )71{\1. (see Ref. [3,9] for the explicit forms
of the generators). Here o, are the Pauli matricies and a = {1, 2, 3}, y;, is the Hypercharge of
the Higgs field. The structure constants (that absorb gauge coupling parameters) are

éf};c =82 6/}30’ with élzs = 82,
I
. g9Y%,, forA=1,2,3
fas=1" 1" (13)
” 817y forA=4.
For infinitesimal local gauge parameters d &,(x) the BF gauge transformations are
N YAJ rJ
Spl=—5a4 == qb
SWAH = —(aM5A + e WEn5aE,
R
6hy; =hgy ——— + ,
17 = ks — K 5
88ap = o5 €5, 00° + 8ac €5, 507,
56X = —eAB 544G3,
5fi = A’i &'Afj>
5fi = AAfj[\ju . (14)

The BFM Ward identities follow from the invariance of I[F,0] under background-field
gauge transformations,

ST[F,0]
————F—=0. 15
6aB (15)
In position space, the identities are [9]
. or YBJ 5F — 6F ;
0=(0"54— &%, WoH) — hJ ( A ) (16)

The structure constants and generators, transformed to those corresponding to the mass
eigenstates, are defined using bold text as

1
€ oy = U™ ! gEADEuD TIG,L = _YALUA

i Al A
Ay j = Aty
The background-field gauge transformations in the mass eigenstates are

5AH = —[0"55 + €%, A ]5p¢

5 = —(V G ViV 5. (17)
The Ward identities are then expressed compactly as [9]
0o = 2 (8)
6p6
6T -—j oI &r _or .
_ au ol eC Avu 1 LgN
"o ;(fj “sf of: Xjfj) s A 5 K(V T, Ve

In this manner, the “naive" form of the Ward identities is maintained. The descending relation-
ships between n-point functions encode the constraints of the unbroken (but non-manifest in
the mass eigenstates) SU(2);, x U(1)y symmetry that each operator in the SMEFT respects.

6
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4 Background Field Ward Identities

The results of this work are the SMEFT extension of the treatment of the Electroweak Standard
Model in the BFM, as developed in Refs. [26-33]. Our results (with appropriate notational
redefinitions) simplify to those reported in these past works in the limit ¥ /A — 0. The back-
ground Higgs field H takes on this vacuum expectation value, while the quantum Higgs field
has vanishing expectation value
ﬁwa=3;ﬂ¢”fwh}, —Lf“iWﬂ.
V2 [Vr+¢s—id3 V2 | P4—i3

In the remainder of this paper we verify that a set of the Ward identities hold at one loop
order. This requires some notation. Our convention is that all momentum are incoming (here
denoted with k*) and we define short hand notation as in Refs. [28-33]

H(¢p) =

SN oo Ko\ oo Kok, oo
—ir,;" (k) = (—guvk® + Kk, + g, 12)5"Y +(—gw+ ‘;2 )z?v - Zz =Y, (19)

2 oA

0T esdiqe, 20)
5 Am5H3

5°T i)

—— = k"N, (21)
5 A% 5d4

5T 5°T i} )

———— = —————— =ik"|iMz + T (kY |, (22)
5835 43 5437583 [0t ]

_O°T_ = ik®+ix1(k?) (23)
53593 ’

62F — 2+ AF
—— = =ik’ |£My, + =¥V (kYD) |, (24)
5&=5 )+ [ ]

5°T _
———— = k| FMy + 2V (KP) |, (25)
SWEr 5 [ \s)

5°T .

— = kK+ix?? (), (26)
5d+58- (k%)

0T ey + i ). @27)
SHSH H

The two point function mass eigenstate SMEFT Ward identities in the BFM are [10]

2
PP — 28)
5 A5 AY
2
028“/\6—1—‘/\) (29)
S A4S P!
2 2
omgn_ O o 8T (30)

sAMmEAYY 7 5835 AV’
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and

5°T - 5T
0=t —F—Mz———
S A3ME P! 6P35P!
gz OT [3,3] [4,3] [3,4] [4,4]
+ &2 _[(\/ﬁ[‘h‘ﬂ \/H — \/ﬁ[4,3] \/Z ) 5? — (\/ﬁ[‘hﬂ \/E — \/ﬁ[4,3] \/E ) 5?] ,

(31

2 564
5°T . 5°T
0=0V———=FiMy—F—7+, (32)
SWELG AYY 6PE5AYY
5T _ 8T ig, ST
_Au . 182 .
0=20 —5WiM5</I\)I + lMW 5(i\)i5<i>l F 4 5&)4 (\/E[4,4] + l\/ﬁ[4’3]) X (33)

1,1 2,2 1,2 2,1 1,1 2,2 1,2 2,1
[(\/ﬁ[ L v i iV s s (VR = VR iV 2 i ])5f].

To utilize these definitions, note that sign dependence of k* being always incoming in the case
of charged fields leads to several implicit sign conventions that must be respected to establish
the Ward identities. From these identities, it follows that

sAAK?) =0, sAA0) =0, (34)

Pk =0, zp2(0)=0, (35)
and

sA42(k2) =0, s AR (k2 =0, (36)

Limiting the evaluation of the field space metrics to £©® corrections in the Warsaw basis [2],
further identities that directly follow are

0 =522 (k¥ —iMzx72(k?), (37)
0 = k2222 (k2) — iM 5 TRE (K2) + i %ZTH (1—Ca) (38)
and
0= VW (k2) £ w1, 2V (k2), (39)
AMESF — S3EHF g ~ é
0=FKk>=W* (k2) £ My, =272 (kz)q:%TH (1—CHD+%). (40)

Note the appearance of the two derivative operators involving the Higgs field modifying the
tadpole terms TH = —i5T/6H fixing the vev. It is important to include such corrections, which
are a consistency condition due to the background field geometry the SMEFT is quantized on.

Several of the remaining two point functions vanish exactly, and the corresponding Ward
identities are trivially satisfied. The geometric SMEFT Lagrangian parameters to £(®) appear-
ing in the Ward identities are the geometric SMEFT masses [15]

5252

_ 1%

=21 (41)
4

72 ‘772"—2 -2 1 5,9 —oyx 1 5, _ =~

MZ::(gl + 85 )+§VT(g1 + 85 )CHD+£VTglg2CHWB, 42)

_ _ C iy C

mi:Z)Lv%[l—Sﬁ-i—Z(CHD—%)], (43)
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and the geometric SMEFT couplings
- 8182 8182 - - [— 2, =2 8182 ~
€= > 2|:1_—2 —2CHWB:|, 8&2=VE&1 & +TCHWBs (44)
Val+etl B 5 +2

21 =81 (1+Cyp), 22 =g2(1+ Cyy). (45)

These parameters are defined at all orders in the /A expansion in Ref. [3,11], and we stress
the Ward identities hold at all orders in the /A expansion, and also hold for cross terms in the
perturbative expansion and v /A expansion. As such, the Ward identities provide a powerful
and important cross check of non-perturbative and perturbative results in the SMEFT.

4.1 SM results; Bosonic loops

We verify the Ward identities at the level of divergent one-loop contributions to the various
n-point functions. In the case of the SM, we confirm the results of Refs. [28-33] and reiterate
these results here for a common notation and due to their contributions to the SMEFT Ward
identities. We focus on two point functions involving the gauge fields due to the role that the
scalar and gauge boson field space metrics have as the field space geometry modifies the Ward
identities into those of the SMEFT. The results (using d = 4 — 2¢ in dim. reg.) are

: 2,2
PR g1 g —7
s AA (12 — 102 kz( ) 46
[ 7 )]SM (g2 +¢2) 16m2e )’ (40)
a2 div
AAcr2 _
[z = o, (47)
s div 43g2 + g2
[Zﬁz(kz)] - __ 818 42 8 T &) ’ 48)
SM (gf + g%) 96m2e
A5 div
AZ 1.2 —
(=0 = o, (49)
and
[Zéé(kz)]div B 8k2(gf'—43g;') +3(&E+ 3)17% (gf +g§)2 (gf +3g§) 50)
T SM 768 2 e (g7 + g3) ’
220200 _ (& +3)v7(g7 +g5)(g? +3g3) .
[ZL ( )]SM B 256m2¢ ’ 1
P (& +3)vry/87 +8; (g7 +383)
[z, = —i : (52)
SM 128712¢
: 2 =202 2y _ 2
[Zwiw;(kz)]dw _ g2(3(§+3)vT(g1 +3g2) 344k=) (53)
T sM 768m2¢ ’
. 2 _2 .2 2
I:Zy\)ﬂ/\ﬁ(kz)]d“’ _ gz(g +3)VT(g1 + 382) (54)
L M 256m2¢ ’
Sy - div Ty div &2 (€+3)‘7T(g2 +3g2)
¢ 1.2 — _[yd Wt 2 __ 1 2
(2], = [V, = T , (55)
. 2052 2
51 oNTdV 3+ ,1.2 div _ 1 div (‘§+3)k (gl +3g2)
(200 = [k )]SM_E[T Tomr — = ,  (56)
() o v3(3g7 +9g5 +96A% + 12g2A& + g2(6g2 + 4AE)) )
sM 256 72 € ‘

Reducing to the SM limit the SMEFT Ward ID (A — o0, V; — v) yields the corresponding
SM Ward ID, consistent with Refs. [28-33]. These expressions satisfy the SM Ward identities.

9
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The fermion self energies in the SM, and the fermionic contributions to the bosonic two point
functions are suppressed here.

4.2 SM results; Fermion loops

Unlike the contributions to the bosonic one and two point functions discussed in the previous
section, the contributions from fermion loops depend on the number of fermion generations.
We discuss these contributions in a factorized fashion in the SM and the SMEFT for this reason.
The bosonic one and two point functions contributions in the SM from fermion loops are shown
in Fig. 1, which give the results

2,2 2
di
[ZAA(kZ :I iv _ g1 85 (32) k— n, (58)
SM (gl +g2) 1672¢
di
[=Man] " = o, (59)
[ZAZ(kZ ]dw _ _Zng g, —12¢, gg’ k2 60)
sMo 9(g12+g22) 16m2e "
di
(=20 = o, (61)
+ div 4g2 2 gz
D AARAA 2) To2 _ w
[ (k ]SM 3 16n2e Z 32m2e (62)
A by A — div g
W ’lP 2
(=Y ad] —Z e (63)
div 5g +3g k2 (gl +g2)
ZZ01.2 1 2 _NTNY 11)
[Z (k ):I M gi+g2 36n2¢ ' Z 3272e &9
52,19 div Nw w(g1+g2)
(222 )] o —Z e (65)
2, 2
s, div Veiteg
2712 . W 1782
I:Z X(k )]SM —1 Z N YTP T W B (66)
R Ay div
W12 Wt 1.2 _ Y12 o 82
[Z (k )]SM [ (k )]SM _%:NC Yy 32m2e ©7)
17 (1.2 div k2 P 2 1_’7% I
B0 = fgmre 2N Y~ fopre 2N K (68
div k2 v
$téd 1.2 Y32 T Y y4
(26797 (k )] o ore 2 V= NE Y (69)
g div Y 4
[T 16nZeZN v (70)

Here Yy, is the fermion ¢ Yukawa coupling, and Nép

= (3,3,1) for up quarks, down quarks

and leptons respectively. n sums over the generations and colours in each generation. These
expressions, consistent with those in Ref. [28-33] satisfy the SM limit BFM Ward identities.

10
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4.3 SMEFT results; Bosonic loops

Directly evaluating the diagrams in Fig. 1, with a full set of all possible higher dimensional
operator insertions, we find the following for the SMEFT. The results have been determined
automatically using a new code package for BFM based SMEFT calculations to one loop order.
This code package is reported on in a companion paper [34]. The results have also been
directly calculated by hand independently in a cross check and verification of the automated
generation of results. In many cases, consistently modifying the SM parameters into those
of the geoSMEFT leads to some intricate cancelations in Wilson coefficient dependence in
a Feynman diagram, through modified Feynman rules in the BFM, and subsequently in the
summation of the diagrams into the two point functions. Further cancelations, and non-trivial
combinations of Wilson coefficient dependence, occurs combining the full two point functions,
with the geoSMEFT lagrangian parameters that feed into the Ward identities. Such intricate
cancelations follow from the unbroken background field symmetries.

4.3.1 Operator Qyp

Defining the combinations of coupling which occur frequently for this operator as

(g7 +3gNE+4g2g2(E—7)+8(g2+gH)N)

1 _
Pens = 3272¢ 71)
2 2
P2 (B+&)(gy +2g35) 72)
CHB 32m2¢ ’
2 2
CHB 48m2¢
2 2
- _ 9(g7 +83)+4A¢& 74)
CHB 1287m2¢ ’

the two point functions in the SMEFT are

. 2l

d . P

~1\/ = Cup k2 gi—C};Bz , (75)
HE (g7 +8&35)

. = 0, (76)

. 1 3
‘fl" _ _C,HB kz [gl &2 PCHB 8182 PCHB :| , (77)

[=6)]

=6

[ ] (g3 +83)* 2(gi+g3

(=200 = o, (78)
div . g2pl g27)3 ) gZPZ
T A el
22

[ o = Cupraticm ZCHB, (80)
540

. ) 2 2
d . v (E+3)(3gs+5
Y= Cup r& &1 82 ) (81)

Cuip V& +g2128n2e
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[Z?iW*(kz)]‘é:; = CHB _% % > (82)
[Zyiwx(kz)](é:; = CHB _2% > (83)
[ @] = [V ] =G —gfiifz: 2 (84)
[Zﬂ(kz)]d;\; _ [Z‘i’+‘f’7(k2):|2:; = Cup & [_kz?’gz%i +‘772’PgHB] ’ 85)
[TH]ELVB = Cyp & vaPeup; (86)

[ZAA(kZ)] and [ZAZ (kz)] v are exactly vanishing in the BFM, consistent with the BFM

div P div
Ward 1dent1t1es. Conversely [Z“ﬁ““(kz)]é and [Z}gf‘““(kz)]é are proportional to k2, and only
HB HB
vanish as k> — 0. This is also consistent with the SMEFT BFM Ward identities.
The remaining Ward identities are maintained in a more intricate and interesting fashion.
For example
R Vet $27 (12 div . g ChpVr s, o div
i) = VISV [y ST s a]
HB

2

A g3(3g%+5g5) g>(gi+3g2)
= —Cugvi(E+3
up V7 (€ )[ 25672 ¢ 2567%¢
i g3(g? +2¢3)
= —Cyp¥ (£+3)#, 87)
7'E €

s s di
which exactly cancels [Zfz(kz)] éw establishing the corresponding BFM Ward identity.
H.

Here we have not expanded mft v, simply for compact notation. Expanding vy out in
terms of the SM vev and corrections does not change the Ward identity for this operator.
The manner in which the Ward identities are maintained in the SMEFT involves a nontrivial
combination of the appearance of the SMEFT geometric Lagrangian parameters in the Ward
identities, in conjunction with the direct evaluation of the one loop diagrams in the BFM. In
the later, one must expand out the dependence on corresponding Wilson coefficient in the
geometric SMEFT pole masses diagram by diagram.

Similarly, the following Z identity has the individual contributions

s div y 7 82(E+3)(3g2+5g2
R[22, = —iCupk? r&1C+3)Bea +5¢, (88)

Cup 1/g%+g§1287‘526
o JET g2 26,059
—iMZ [Em{(kz)]dlv - w [ XX(kZ)]d:; —i% [EXX(kZ)]dw
24/87+8;

.,V (E+3)(387+583) €
= 1Cupk® — . —i=, 08l /&l + 8 Py

V& +g5128n2e

— l% I:TH]div (89)
SM >
2 \/gf+g2
8z 0 _ CHB 4 . Cup g1 gdiv
IET = V gl +g2 Prp + [T :|5M > (90)

\/81 +82
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that combine to satisfy the corresponding Ward Identity.
The charged field Ward identies are satisfied directly for this operator, as
S di % f A di
[V W], + L2V ] =0

CH B CN‘H B

and

el di 5 - di )
k2 I:ZWJWP (kZ)]é:; + gZZVT I:Zcb <I>+(k2):|é:; _ % [TH]dé:; =0.

4.3.2 Operator Qg

Defining the combinations of coupling which occur frequently for this operator as

(g7 +3gN)E+4g7g2(E—7)+8(g2+8) M)

1
Penw = 32m2¢
2 2
b _ Broegdise)
CHW 32m2¢ ’
2 2
p? _ 5g7—37g;
CHW 48m2e¢
2 2
i _ (9g7 +27g5) +12A¢&
CHW 128m2e ’

the two point functions in the SMEFT are

[ZAA(kz)]d” — O g2 81 Penw
T éHW HW ]2-+g§)2,
A A div
AAcr2 _
(=], = o,
18 di . Pl P2
(220, = cHsz[glfz w5152 CHZB],
Criw (gl+g2) 2(g1+g2
. s di
=20, = o
HW
22,219 _ A » 85 Peuw 2 85 Porw . -2 8 Ponw
[ZT (k )]~ = Cuw|k 2 22 2 2 T )
Crw (g1 +gz) (81 +g2) 2
. 22
55 d . P
[Zfz(kz)]éw = Gy 72 &2 2CHW,
HW
. -2 2 2
s div . Vrgy(E+3)(781+9835)
[ZZx(kz)]éHw = —iCyy ;ﬁu; 2 2)
g1 +85 m2e
[PV = Gyl D o Tl g G ODEE
Caw g +85 g +8; 12872%¢
[ZW*W*(kz)]di" _ o 52 (81+683)85(E+3)
L Cow  OWT 128m2e ’
PR div [ div ~ (g2+9g2)g2(§+3)
PTWT (1.2 _ _[syé W2 —_ _ \8 2
(=" )]CHW RUC )]éHw Chw Vo8 e
729 $+8- 2410 _ & 2 _q28+3 | o
(220 = =k )]éHw_cng2 3K 97 Pl |-
gdiv. = 2-3p4 .
[T ]éHW = Cuw & V1 Penws
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(oD

(92)

(93)

(94)

(95)

(96)

97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)
(107)

(108)
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P div .
[Z“L“A(kz)]cl [ZAZ(kZ)] =0and [ZAA(kZ)] [ZAA(kZ)] f have the same depen-
HW H H
dence on k? as in the case of C p- The corresponding SMEFT BFM Ward identities are satisfied
in the same manner. Further, we find

[02 1+ 525 . 24 - .
_ s, g1t &V s, d Cyw VvV s, d
SRS = S [ i [P )
HW 2 & +g2
2(7 2 2 20,2 2
— G, |8 (781 +98;) 8 (81+385)
T 2562 € 25672%¢
g5(2g7 +3g3)
= —C +3)——, 109
Hw V7 (€ ) cAnZe (109)
div
which exactly cancels [ZZZ (kz)] )
ClHW
In the case of Cyyy, the remaining Z identity has the individual contributions
s di . v (E+3)(7g+9 )
R[22 = =ik 8 (¢ 811985 (110)

Crw V& +g2128n2e
i - . e+ giv >Crw v
—iMZ [Zxx(k2)]dlv - w [ Xx(k2):|d;vw —l% [le(k2)]d1v
24/87+8;

= 2 2 2
e vr g5 (E+3)(7g1+983) c s
= lCHwkz T62 1 2 HW V g1+g2P1?IW
V&i+g3128m2e
~ 2
_ Chw &) TH]div

SM ?
2418 +¢3

. .C _ . C~7ng2 di
(2T = T 250 e g Py i [T, (12)

(111)

that combine to satisfy the corresponding Ward Identity.
A charged field Ward identities is satisfied directly, as

I:ZW+W (kZ):IdW

82V [ ¢+ 12474 gsz Wt 219 _
+22T (= 9" (k )]C Cow [ 2V 9 (k )]SM_o, (113)

C'HW HW

the remaining identity also requires the redefinition of the ¥} mass into the geoSMEFT mass
to be established as

@[ (kz)]:vw _ éHwksz(gf+ig2§8):2z(€+3), (114)
My [E‘i’_‘i’+(k2)] _ 822VT [2<1> q>+(k2):| HVW N g22VT Corw [2<1> q>+(k2)]zli\;

= B, [ [ g 5, GO B D

20 = L [, - L1 15
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R O

Figure 1: Two point function diagrams evaluated in the SMEFT. In each diagram,
all possible operator insertions are implied in the one and two point functions. Here
long dashed lines are scalar fields, including Goldstone boson fields, and short dashed
lines are ghost fields.
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4.3.3 Operator Qyy 3

The Wilson coefficient of the operator Q5 modifies the Weinberg angle of the SM into the
appropriate rotation to mass eigenstates in the SMEFT, given in Eqn. (6). The same Wilson
coefficient shifts the definition of the Z mass in Mz, modifies g, to g, etc. The various con-
tributions to the BFM Ward identities combine in the following (somewhat intricate) fashion.
Again defining combinations of coupling which occur frequently as

1
7DCHWB

2
PCHWB

3
PCHWB

4
PCHWB

(g7 +3g5)E+12g5 +4g2 g5 (E—4)+8(g? +g2)?\)

(3+8&)(g>+2g3)

32m2e

g7 —3g2

32m2e

>

9(g1+g )+4ArE

1287m2e

the two point functions in the SMEFT are

[ZAA(kz)]

Crws

div

div
ZAZ(kZ

Lo
Ve

div
AZ
»AZ(12) ]

5 Z(kz div

div

[
[
[
[ Lo
=7 ]dw
pr]
[ZWiW*(kz ]d”
[Zwiw*(kz ]d”
[ 6 W (k2 ]dw
e,
[r7]s)

Once again

and the fact that

e

3

3271%e

= 2 8182 Peuws

—Chwa )
(g3 +g35)2
0,
2 2y pl
C k2 [_(82_ 81) Peuws 3 ]
HWB 2(g1+g2)2 CHWB | >
0,
1 2 2
. k P
¢ +k2 CHWB -2 ' CHWB ;
HWBg1g2[ (g 2+g2)2 4n2e T o
_2 8182 Pgng
Caws Vv T o
s Vr 8182 (5 +3)(3g2+5g2)
—1 CHWB )
V& +g2128n2e
. k2 V2g2(5+3)
HwB 8182 | ez T T 128n%e |’
n 8 g5 (E+3)
HWB YT ~ o8 m2e
. 2
[P div 818 (€+3)
s Wt 12 — 5 S1o2%s 7/
I:Z (k )]CHWB N CHWB VT 647‘[26 ’
Py div ~ g +3
$td= (7.2 _
[2 (k )]éHWB = Chwa &1 gz[ 327%e + 9% Pluws
CN'HWB 8182 \7§P§ng .
div div
k2 ) ZAZ kZ :0,
&), =[=Fw],

[=M]) ok,

HWB

16

[=2260]) ock?,

HWB

}

(116)

117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)


https://scipost.org
https://scipost.org/SciPostPhys.10.6.144

Scil SciPost Phys. 10, 144 (2021)

directly establish the SMEFT BFM Ward identities involving the photon. Due to the modifica-
tion of the mass parameter of the Z to Mz one finds

2 25 = - .
LiNLRE(KY) = —i V&1 ‘;gz Vr [sz(kz)]iw _;818 Cuws Vr [Zéf(kz)]z;
HWB 2 /g% +g§
g182(387+583) g182(g7+3¢3
= —Cpwp 77 (£+3) 3 5
256 € 2567%¢
. 8182(8% +2g2)
= —C 2432 27 133
Hws V7 (€ +3) cAnZe (133)

s s di
This combined result cancels [ZLZZU{Z)] élv exactly. A similar modification of g, to g, in the
SMEFT Ward identities in the BFM resultsH Vlvr]i

T di . v +3)(3g2+5g2
kZ[EZx(kZ)]fV — _iCHWBkZ Tgng(g )( &1 gz)
Crws V& +g2128n2e
iM 17214 = ; Vg%+g§‘7T 271,274 -gngCN’HWBf’T 24 ¢1.2779
—iMz [SH2(D]T = —1#[2 (k )]éHWB—l—2 > (222 (k)],,,
24/81 183

- 178182(E +3)(387 +5¢2) . Cuws R )
= iCyypk? ! 2= —i gngV?" g%+g§P;WB

V&2 +g2128n2e 2

[THEVV, ; (135)

(134)

; éHWB 8182
2485 +¢2

¢
l'g_ZTH — ;-HWBE&182 HWBgng 3 / +gszIB+l HWBglgz [TH]dw (136)

2\/g1+g2

The remaining two point function Ward identities are trivially satisfied for this operator.

4.3.4 Operator Qpp

For all operators in the SMEFT, a consistent analysis of the effects of an operator is essential to
avoid introducing a hard breaking of a symmetry that defines the theory. The two derivative
Higgs operators in £ satisfy the Ward identities in a manner that involves a direct modifica-
tion of tadpole contributions. Including such effects in a formulation of the SMEFT is essential,
even at tree level, for the background field gauge invariance encoding unbroken but non man-
ifest SU(2);, x U(1)y symmetry of the theory to be maintained. These symmetry constraints
are the Ward identities.
We define for Cy;p the short hand notation

2(g7+383)E+(9g7 +21g3)+242

pl = , 137

CHD 512n2e (137)

2 15g7+30g7 g5 +9g5 —608A% —4E A(g] + 3g§) 138)
CHD ™ 1024 2 ¢
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The one and two point functions dependence on Cy;p at one loop is

st = o a
P div
[thA(kz)]éHD = 0, (140)
P div
Qg _ g g2 8182
I:ZT (k )]éHD B CHD 192 2¢ ’ (141)
A div
[Zfz(kz)]aw = 0, (142)
(220 ]" = Gup[K25_ a2 (g2 4 g2y (143)
T G CHP| N Qgn2e 81 +8) Peup
5 4 div - _
[Zfz(kz)]éHD = C'HD ij" (g1 +g2) CHD (144)
sy div L 3(g2+3g2)&+15g2+33g2 + 482
[zzl(kz)]% = —iCypip g2+ g2 12 512%22 2 , (145)
AL A div bR div 1_}2 (gz_gz)
W=WF 1 2 _ WEW* (1.2 _ ap 20187
(=Y (k )]CHD = [="V )]CHD =-3Cupg) 2, (146)
I div F At div -~ gz(gz—gz)
$IW (g2 — e = 8218~ &)
(=27 (k )]CHD = —[=*V(k )]NHD =3Cup Iy~ (147)
div . (87 +3g3)E +6(g] +2g37) +24A
[Z“(kz)] Cup —k? HD ! - 128713
e 3g2 (g2 +2g2)—2A (g% +3g2)E —176A° (148)
T ~HD 256m2¢ ’
I div . 3(g2—g?) . 9(g2+g2)?—25672
TP 7.2 _ 2 2 =2 1 2
[Z (k )]CHD = K Cup 64 2e Vr Crp 512m2¢ ’ (149)
di 5
[T"], = Cun¥} Péup- (150)

The photon Ward identities are trivially satisfied for this operator. As [ZAZ (kz)] o< k? the

remaining identity for e directly follows. Further, Mz is modified by Cj;p in the geoSMEFT,
and one finds the expected relationship

V& +eir

N T 252413 5CHp VT [ 2520740
MK = [=%7(k )]CHD ,/gﬁng [=%7(k )]SM
= —Cup v (&2 +8)Plup> (151)

leading to the cancelation of [ZLZZ (kz)]éw

HD
The remaining Z identity has individual contributions

[ 52 25
—ift [ (k3)]" = —i—glzgm[ 1AL ~ +g2 Cup V1 it g2y |0
2 2

.V 8118 di

NG F— as»
- [¢2 + o2 .

&z _ VE&LTE [TH]‘é”, (153)

2 2 HD

that combine to satisfy the corresponding Ward Identity. The BFM Ward identity: ZK%W_ +
My, WV =0, is directly satisfied for this operator. More interesting is the modified Tadpole
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contribution in the identity

0=Kk2xW' 4 g, 28—

gz (1+CHD).
2 4

The individual terms of this Ward identity, dependent on Cy;p expand out as

k2 ZVA\/+&>7

My, =¥

gz (1 + CHD)
2 4

div . g(82—g)
K2 [oVré —3k2 9y Cyyp 2222217
[ ]CHD VT HD o8 e

(82— 52 9(g%+ g2)*—256A°
128 m2¢ T 102412e

J

vr éHD 82 [3 k?

g div & di
_?2 [TH]C;VD 82 Cup [ ]s;\; ’

and the Ward identity is satisfied as

. 9(gl+g2)*—256A2

HD

4.3.5 Operator Qpp

1287m2¢

gt G e,
T

The one and two point function dependence on Cy is

div

I:ZAA(kz)] —

Cro
[Z?é(kz
I:ZLZAZA(kZ div

Cun

u
—
<

I:ZZA)?(kZ
[Ep}iy\ﬁ(kz

(=1 e

i
—
<

I:Z<1§+W_(k2
[Z}?}?(kz div

div

[Zq>+<1> (kz)] _

Cun

[T =

Cho

I
I
Ji
I -
Ji
Ji
le,.

P div PO div div
AAr1.2 _ AZ 1.2 AZ 2 _
(=% )]CHD =[=% )]é . == )]C =0,
~ @1 +8) 0 g2
HD384—2[4k +9vT(g1+g2)]
SC _2 (g1+g2)2
HOVT Jogn2e
(g +ed)
_BICHDVT g]. +g2 647'[2 5
g2
2
CHD384 o [4k*+9g272],
~ ?>g2 vT
HB12872¢”
. 3
LAt div o _ g
L, = e gy
~ g +e  , 6422
C 3k? +92 ——
Ho [ 32n2¢ T 322
. g5 64 A2
2 2 =2
Cria [_3;( 32m2¢ T327r26]
x o 3g1+6g1g2+9g2+6087L2+4/1§(g1+ g2)
HD "1 256 M2 €

(154)

(155)

, (156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

. (168)

For Qyp the identities involving the photon are trivially satisfied. The identities without a
tadpole contribution are also directly satisfied for this operator. For the identities involving a
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tadpole contribution, the dependence on Cp5 combines to satisfy the BFM Ward identity as

5 . div . _ (g2 +g2
k> [sz(kz)] = —3iCynk®vr /g2 + g§—62 nzi , (169)
. 2 2 2
Y 7 d Lo g8 t8 5 644
—iby [BH )] = =iy Cug /g2 + 82 [—3 k2 614n2€2 + V7 647‘E2€:| , (170)
i [02 4 o2 [2 . o2
.87 -H 5, . &1 18 g div V81185 . pdiv
l?T (1_CH|:|) - 1—2 [T ]éHD_l—Z CHI:I [T ]SM
L A2
= iCygvi /g2 +g2 e (171)

and the individual terms in the corresponding charged field Ward identity, dependent on Cp
expand out as

% [zw‘f"]‘f” = Cyuir k23—g§, (172)
Cr 64m2e
Miy [Zé_&]gu = Cua¥r [_Bkz 64g7§26 I 6644%212]’ (173)
B (1-Co) = ST + £ 8y [17]E
_ _éHD%. (174)

4.3.6 Operator Qg

The operator Qy leads to a modification of the vacuum expectation value in the SM into that
of the SMEFT. Qy also contributes directly to the Goldstone boson two point functions, and
generates a tadpole term at one loop. It follows from the results in Ref. [10] that for this
operator

[ 0 = (242 = 5y (1712 a7s)

H

and we find this relationship holds as expected, with

Cu 128712 ¢ '
4.3.7 Operator Qy,
The two point function dependence on €y, is entirely transverse and is given by
A A div s div 5 5 div AR div
AAr7.2 — AZ 1.2 _|sv2Z2..2 — | $WEWTF 12 —
(=% )]Cw =[5« )]@W =[=2%k )]éw ==V (k )]GW =0, Q77
1 di 3Cy g2 K2
i)l = — S8 g e, 79
Cw 8m2e(gy + g5 v
12 di 3¢ 2 K2
R IR e 1 a79
Cw 8m2e(gy + g5) Vi
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[ZZZ(kZ div

Cw

Q..

iv

&
§

iv

I:ZZX(kZ)

iv

Je
[ Wiw*(kz ]
Je,
I

Oxm.. Qz

[ H

3Cy g3 k2
- __otwék |:3g 2—] k2, (180)
87T26(g1 + gz) vT
3C’Wgz 2 k? 2
= — 3g:—2— |k 181
8m2e [ &2 17% ’ (181)

w

= 0. (183)

As the contributions from this operator come about due to field strengths, which limits the
Helicity connections, the results are purely transverse, and also proportional to k2. The overall
coupling dependence also directly follows from rotating the fields to mass eigenstates. For this
operator, the SMEFT Ward identities are directly satisfied.

4.4 SMEFT results;

4.4.1 Operator Qyp

| —
™

~ N

(NS
—~
»
N
—

| E—

I

[Zzz(kz

QL
sy
<

»'I:
=~

I
BRI
R

[ s W (kZ)] -

Cup

Fermion loops

2 2
- 818 64 k
= Cyp —2 > (184)
(g3 +42)* 9 16n%
= 0, (185)
N = 8182 .
= —Cyp @R (5 +18g2 g2 —3g7) o, (186)
= 0, (187)

—C Zqu g% 8éHB kzn gl (5g1+10g1 gz 382)
e " T6n2e 9 16m2e (g2 +g2)

(188)

Y om
Ng my, 81
. w 1
—Chg §¢ “16m2e ’ (189)

(=]

HB

_ [243+¢3_(k2)]z;; — [249+W‘(k2)]?v —0, (190)

HB

2 -
. g] vr Y 2
iC E NcY, (191)
e 32m2e ,/g1 +g2
A A gidiv _
[ 20D, =[T"]; =0. (192)

Most of the BFM Ward identities are trivially satisfied. These contributions come from rescaling
of SM results to the two point functions through fermion loops. An interesting case is the Z
Ward identity where the geometric Z mass dependence on this Wilson coefficient plays a role

n22 il nt = [Zfz]dw M[zéf]d” _yEtei [=#]" =0. (193)

SM 2 HB

G 2y/gt+ g3
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4.4.2 Operator Qpy
. 4 2
v div -~ gres 64 k
sk = 12 194
[ 7 ( )]CHW W(g1+g2)2 9 16m2e (194
P div
AAr1.2 _
(=7 (k)]@m] = 0, (195)
PO div - k2
AZ (1.2 _ 8182 4
[ZT (k )]@Hw = —Chw (gf—z)z 9 ( g1 —14g} g5 —3¢3) Tonze (196)
PR di
0] - o a9
HW
. 2 >~ 2 —
s div g 8Cyw k2n \ g5 (587—6g7¢5—3¢g5)
TEEY|. = -C NS m? =2 Hw
[z )]cHW HWZ "y Tonre T\ o TerZe (g2 +g2)
(198)
54 div g
£Z012 _ w 2
[ZL (k )]éHW = —Chw Z T6m2e (199)
A div g5 8C k%n
WHW= 1.2 _ 'lp 2 HW 2
[ZT (k )]éHW B CHWZ Ne ‘/’ 16m2e +( 3 &2 167‘526) ’ (200)
[EW*VV’(kZ)]d” - ¢ Z iy €2 (201)
L Crw HW 1672e
fyone di
[z67¢ (kz)]éw Y (202)
HW
PR div
W12 _ Wt 12 25 &2
(=47 (k )]CHW = — [z ] —CHWZN Vv (203)
2
[2%2(»)]. = iCyw Y NV, £2 , (204)
Crw m 32n26,/gf+g§
[0 = [T]E =o. (205)

The BFM photon Ward identities are trivially satisfied. The remaining Ward identities we

examine work out as

222 Mzt

K222t M, TR i gzz TH
=V & g, VT

I:ZLZAZA]div B iéHW g§ Vr [Zéf]div

_ i v g% +g§f]T [ZZJ(

0, (206)

¢ g2 17'1" 22 Nw 2 ]dlv 1 [TH]le
tCyw 5 ,—gl n g2 1671:26 SM SM
0, (207)

YT 14V gy VT Wegs 7div - Weee 1div
[ZL :|~HW 2 ([Z ]~ Cw [Z ]SM)
0, (208)
kz [Zwiﬁﬁ]di\/ CHW ) ( [Z(I):Fq:,i]div [ ]dlv)
GHW SM SM

0 (209)
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4.4.3 Operator Qyyp

. 3.3 2
Aoa div ~ 81 8 64 k
s Ad 2y ] ¢ 152 n, 210
[ )]CHWB TP (g2 + g2 9 167 oY
PO div
AAr12 —
I:ZL (k )]CHWB - 07 (211)
. 2 2
P div ~ 818 32
AZ .12 _ 102 2_g2
I:ZT (k )]CHWB - CHWB( 2 2)2 9 ( 1 8 ) 167'[26 (212)
PN div
[ZAZ(kZ)]~ = 0 (213)
L Caws ’
S2200] = Gy S NE m2 18 (4 Kn )88 o
T Covn HWB - C " 16m2e 9 16m% ) (g2 +g2)?’
Y _ 2
A div ~ NC mw 8182
50, = G 2 o
Y
ALa_ div div
W+W 2 _ W+W 2 =
I:ZT (k )]@HWB - I:Z (k )]CHWB =0, 10
AL div
$767 (k2 = [2¢ V@2 =
(=979 (k )]CHWB [267V (k )]CHWB 0, 217)
N div
20002 _ 25, 8182
[2 (k )]CHWB i Caws ZNC Yy 32 2 g2+g2’ (218)
V&1 2
N di di
[Zm(kz)]é;vwg = [rH ]@;sz =0. (219)

The BFM Ward identities involving the photon and charged fields are trivially satisfied. The
remaining identities of interest work out as

(g - P [

22 o 2p _
DEE—iMz At =

CN‘HWB 2 CHWB
e 818V 2574
— (Gt [2P1] =0, (220)
24/82+g2 M
5, qdiv
KenZi_ i, siiy i S i k2 [2%]
2 CHWB

$18 T, [z22]0 —[T]0] = 0. (221)

L éHWB SM SM
2¢/87+¢5

4.4.4 Operator Qgp

For this operator the non-zero divergent results for the fermion loops are

5, div ~ &1 t8&
23012 — = 1 2 Y 52
[=%7(k )]CHD = i CupPy o 3 Jv2, (222)
Crpv?
oy1div LHD ¥4 12 CHD P 2
(222 (k)] G = 33n2e A Ne Y=k o 5 E N; Yy (223)
gidiv. éHD g div
(T )6, = == [T s (224)
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Only the Ward identities involving the Tadpole contributions are non trivial for this Wilson
coefficient dependence, and these results combine with the SM divergent terms from fermion
loops to exactly satisfy the Ward identities.

4.4.5 Operator Qg

The fermion loops are simple for this operator, with only the Tadpole being non-vanishing
when considering divergent terms at one loop

(1718 = Cua [T Ty (225)
so that
TH(1—Cyp) =0. (226)

4.4.6 Class 5 operators: Qy

Class five operators (in the Warsaw basis, see Table 1) can act as mass insertions and also lead
to direct vertex corrections emitting goldstone bosons. In addition, a four point interaction is
present that is not present in the SM which contributes to two point functions through a closed
fermion loop, as shown in Fig. 1. We define the mass eigenstate Wilson coefficients

pr

with the rotation between mass (primed) and weak eigenstates

Yrr=UCH,LIRWY] g, (228)

where the fermion sum is over v = {u,d, £} and p,r sums over mass eigenstate flavors. The
contributions to the one and two point functions are

div Aoa div
[z, = [=Me],] =[] =[x =
11[)_
WHA— 1.2 div _ WA~ 12 div _ NC ngz -
[Z (k )]CW o [Z (k ):ICW Z 6412¢ Y;/’FCIPH’ (230)
22, 9,74 22, 9,74V vaz(gl—kgz) ~,
[=22(k )]CW = [Z220))] W:; e YI%C%[, (231)
. Yoo
[zéf(kz)]d” = —IZN T g1+g2Y (232)
Cyn 32m2¢ i 15;;”
P -
div + div N vr go o
W (k2 20V (k2 = € "2y, ¢, 233
- ( )]CW [ ( )]CW 2 32n2¢ ?’br vH (233)
KNy
2 div _
(272 ()L o= —Z e Yy 1/)H+Z 16n26 2l (234)
pp pp pp
div kzNw 3N¢\72
2977 (k2) = — ¢y —< Tys¢ (235)
[ ]CW Z:167'52 gpp %g %: 16m2¢ 1% lll;g
Y =3
; 3N v
g div _ C T 3 27
[T = ; = Y}% C;’;fj' (236)

The Ward identities are satisfied in the same manner as those in the SM involving fermion
loops.
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4.4.7 Class 6 operators: Q.gz, Qgp, Qup

Class six operators (see Table 1) only act as vertex corrections. We define the mass eigenstate
Wilson coefficients

Clp =U' (Y, L) Cyp U, R), (237)
pr
and find
Py div Ayby A e div 5 4 div
Adsr2 _ AZ (12 _[vW W12 w2212 _
[Z (k )]c;pB - [ZL (k )]% - [ZL (k )]é;pB - [EL (k )]qfw =0, (238)
[ZM(kZ)]dW 818K [Q Ye G+ QuN.Ya Gy +QuN.Yu Gl +h ] (239)
= ——5 5| Q. Ye Cly +QuN. +QuN,YuCly+hec. |,
! Cup (g1 +g2)47'52€ PP pp ‘ PdP s PP b
[zAz(kz)]dw 82K (g2—7g2)Ye Clp+(13g2—3g2)Yu C’ +hc}
= — e — u
Cus (g% + g2)32m2e | %= 78 pp pg 81738 TR
gzk2 [
(3g2—5g2)Y4 ¢ +hc:| (240)
(g1 +g2)32n26 2 Y op 25
div k? [ 3g2—5g%)N .
[=220D)]., = &1 (Bgi-g))Ye 063+Myu c;B+h.c.]
Cup (g2 + g2)16m2e | pp 3 PP pp
2 -3 -
81k ((s1-3g)Ne, ch+h.c.], (241)
(gl +g2)16ﬂ,’26 | 3 PP pp
Ay A — div R A — div Py At div
(k) = [2220D)], =-[=2V D], =[=V0H]., =0, @42
[ T ( ]%B [ ( ]%B [ ( ]C:pB [ ]C{pB
55 div A+ b= div div
[zmkz)]éz,w = [z¢' (kz)]% =g =0. (243)

Here Q,, = (—1,—1/3,2/3) for+ = (e,d,u). As the non-vanishing divergent results are purely
transverse, the SMEFT Ward identities are trivially satisfied. A subset of these results can be
checked against the literature, and they do agree with Ref. [35].

4.4.8 Class 6 operators: Q. , Qaw, Quw

We define mass eigenstate Wilson coefficients in the same manner for this operator class and
find

div A by A — div
[ ( ] [ ( )]%W [ L ( )]%W [ ( )]c{pw
2
div g gzk
ZAAkZ = 1—[QY ¢ +N.QyYqCl +N.QYuC +hc],(245)
[E00)e, = G a7y Qg Gy o h Gy
div glkz
z:f‘z(k2 = (3g2—5g2)Ye Clyy + (5g7 —11g2)Yu €.y, +hoc.
[ ] (g2+g2)32m2e | ! PP oy ! PPy
+ gk” (g1 7824 C +h.c.}, (246)
(g1+g2)32n2 PP pp
5 5 div g2k2
222, = (3g2 )YeC +(5g%2—3g2)YuC’, +h.c.
) v e e AR
+ g2k° (g1 3g2)Y 4 €l +h.c.i|, (247)
(g1+g2)167'c2 PP pp

25


https://scipost.org
https://scipost.org/SciPostPhys.10.6.144

Scil SciPost Phys. 10, 144 (2021)

div g kz -
VIV (1e2) = —Z—[UPMNS Cl Ye +h.c.] (248)
[ ]C:PW (g1 +g2)167'[2 pr ervc‘{ pq
— gz—kz Nc Vekm é/W Yu +N¢ Vekm (N:‘/iw Yqg +he.|,
(g1+g2)16ﬂ:2 pr L;’q Pq pr rq P9
5 4 div ¥ P At div
2222 = (=YL =[=2V ] =o, (249)
T [ N
div L+ P div div
NEAS = [z (k). TH =0. 250
[ma]e = [0 )]%W [T, (250)

Once again, the non-vanishing divergent results are purely transverse, and the SMEFT Ward
identities are trivially satisfied.

4.4.9 Class 7 operators: Qp,, Quu> Qrds> Quud
For this operator class, we define the mass eigenstate Wilson coefficients

Cliy, = U (W, R) Cary U, R), (251)
pr

and note that only the flavour diagonal contributions r = p contribute at one loop due to the
lack of flavour changing neutral currents in tree level couplings in the SM. Directly we find

div div

AAr.2 _ AAr2 —
(=M )]CWR = [z )]%R—o, (252)
12,2479 g18&K [ - . ~
=42 (k?) = =2 ¢l +N.Q,Cl +N:.QqCl . |, 253
[ r ]CH¢ 24m2e R 2’5 «Qu I;zl)l ¢ gg e
PO div
[Z“L“Z(kz] = o0, (254)
2 =2
o g2 NC VT Yd Yu
WHA- 2 div -7 * rr PP
(=Y (k ]%R = i Vou—ggmze e (255)
2 =2
g2No72Y4 Yu
. div . 2 T
SV (2 = ¢, Viey———"L the., 256
) @s6)
21.2
div g k ~ ~ o~
[EZZ(kz)]CHw = 1217'526 [Qec;,eJrNcQuC,;quQchcI;d} (257)
R pp pp pp
(gi+8)v [ ., , 5 2 5 2
e c,gereP —NCC;IUYPL;) +Nc Gy Y5 |, (258)
pp pp PP pP
5 div (g2 +g)val . . .
[ZLZZ(kZ)](; = —16 : Cro Y2 —Nc Cly Y2 + N CL, Y2 |, (259)
Hyg /A pp PP pp PP pp pp
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5 div \/g +g5vr - -
(2] = —11—22|:C Y2 —N¢ Gy, Y2 +NCC;IdY§], (260)
HYyR 8m pp PP pp PP pp PP
di . - 9 k2
(222 ()], H = —[Cée Y2 —N1C[, Y2 +N:Cl, Yﬁ]—z, (261)
VR pp PP pp PP pp ppl 4T2€
. div PovA div N g Ne v Y4 YL
26 W (k2 = — |2V |, =-C v PP 4 he., (262
[ ( )]cHwR [ ( )]cHwR Hud “CKM - 32n2¢ (262)
i O Ne¥a ¥y
= k = & v #M.c., 263
i
[TH]c;Vw = 0. (264)
R

These results directly satisfy the corresponding SMEFT Ward identities.
4.4.10 Class 7 operators: ng, Q(l)

For the left handed fermion operators in this class, we similarly define the mass eigenstate
Wilson coefficients

Crv2 =uU'(y, 1) G U, 1), (265)

Again, only the flavour diagonal contributions r = p contribute at one loop due to the lack of
flavour changing neutral currents in tree level couplings in the SM. We find

div div

[Z?A(kz)] A1) T [ZAA(kZ)]-/(I) =0, (266)
Hyy H¢L
AZ % Ne ~ g1 82 k2
ZAZ k2 ) — C/(l) C/(l) , 267
e L @s7
A5 div
I:thz(kz ] /(1) = 0, (268)
Chrap
L
Ay A — div AR, div
[Z]fww (k*) ]c’“) = [ZKWW (kz)]é,m =0, (269)
Hy, Hyy
. 27.2
23 div N~ . . g k
Z2Z01.2 _ | 2NC A1) A1) 1
R )]”I’ﬁ},L - [ 3 Cf;g Gt ]24n26
(g2 + g2) 72 )
- ST NG -y GOvE | @70)
nee pp pp pp pp PP
(g7 +83)v7 i}
[ZZZ(kZ)]N,m - _% LW —v2yrerz | @
CH”L/)L 32ne PP pp PP pp PP

2 25
- V81 T8V
[sz(kz)]m) - 1[ ED(y? — Yﬁ)+c§g)yﬁ]l—” (272)

Hyy pp pp PP pp PP l6n2e
k2
[zll(kz)]% - [NC ’(1)(Y2 Y§)+C/(1)Y2}—2 (273)
CHy, pp pp PP pp 81
R Ay div [ div di
(20w = [0 =[] =0. (274)
Hvy; Ha, H’l/)

Again the SMEFT Ward identities are directly satisfied by these expressions.
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4.4.11 Class 7 operators: Q(;g, Q(?’)

In this case one finds

div div

20 e = [BM0] e =0, 275)
H’l/)L Hl//‘L
. s k2
(=220, = [N c’(3)+c’(3)} f182° (276)
H% P 48m4e
PO div
50 ] = o, 277)
Hyy,
21.2
Ay A— div 8 k
[Zp w (k2 ]~,(3) = |:NC C/(B)V CKM +C/(3)U PMNS +h :|482 3 (278)
“Hy, o o n-e
g2 ‘—/2
— 6427[; [ Cr Ve (Y2 +Y2)+ CDUp s Y2 +h.c}, (279)
pr rpTT pp pr rpTT
Wb 2\18 &) "% =/(3) 2, y2 /3) 2
[EL (k )]é,(g) = Toamce ¢ Cry Verm(Yi +Y3 )+c Upyns Ye +hec. |, (280)
Hy, n R oo pr rp T
21.2
di k
(22203 = [N c’(3’+c’(3)} 5 ) (281)
CHyp, pp 24mze
—~ [NC G2 +72)+CY Yz]—(g1+g2)v (282)
bR P pp pp PPl 321
(g7 +83) 7
(=220, = [N ED (2 +v2)+ ¢ Yi}%, (283)
“Hy, bE o wp pp pp Pp] 32m7€
2 25
vVE +85V
[zZ%(kZ)],@) - [N C/(B)(Yz +Y?2 )+c’(§)yz}l—2”, (284)
Hy pp pp pp pp PP 16me
k2
[n22 (kz)]dﬁé) = [NC G2 +72)+ ¢ P v? } —, (285)
CHyp, pp pp pp PP 8me
+ PV
[2¢ W (kz)]é,(3) = I:Zd) W (kz)]é/(S)
Hy, Hyp
= %[NC CrVe (Y2 +Y2)+ C DU s V2 +h.c.:|, (286)
pr rp T pp pr rp PP
[m679 (kz)]dw _ K [NC OV (V2 +72) + EDup v +h.c.] (287)
CH’L[JL 167T2€ I;g ,prM rr pp pr PA;IIIJVS pp ’
[TH]4e = o. (288)
HWL

Again, these results directly satisfy the corresponding SMEFT Ward identities.

5 Discussion

Theoretical consistency checks, such as the BFM Ward identities examined and validated at one
loop in this work, are useful because they allow internal cross checks of theoretical calculations,
and provide a means of validating numerical codes that can be used for experimental studies.
This is of increased importance in the SMEFT, which is a complex field theory.
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It is important to stress that the Ward identities are always modified transitioning to the
SMEFT from the SM, but the nature of the changes to the identities depends on the gauge
fixing procedure. If the Background Field Method is not used, then only more complicated
Slavnov-Taylor [36-38] identities hold. These identities also necessarily involve modifications
from the SM case due to the presence of SMEFT operators. The derivation in Ref. [9], that is
expanded upon in this work, should make clear why this is necessarily the case. The identities
are modified because the Lagrangian quantities on the curved background Higgs manifold’s
present, that the correlation functions are quantized on, and related in the Ward or Slavnov-
Taylor identities, are the natural generalization of the coupling constants and masses of the
SM for these field spaces.

To our knowledge, the first discussion on the need to modify these identities in the SMEFT
in the literature is in Ref. [39], and this point is also consistent with discussion in Ref. [40,41],
which recognizes this modification of Ward identities is present.

In the literature, one loop calculations have been done in the SMEFT within the BFM
[15, 22, 35,42-46], and also outside of the BFM [23,40, 41, 47-53]. It is important, when
comparing results, that one recognizes that radiative scheme dependence, includes differing
dependence on Wilson coefficients in the two point functions. These functions differ in the
BFM in the SMEFT, compared to other schemes, because the corresponding symmetry con-
straints encoded in the Ward identities or Slavnov-Taylor identities also differ. Scheme depen-
dence is manifestly a very significant issue in the SMEFT when seeking to build up a global
fit, which will necessarily combine many predictions produced from multiple research groups.
It is important that scheme and input parameter dependence is clearly and completely spec-
ified in a one loop SMEFT calculation to aid this effort, and one should not misunderstand
scheme dependence, and equate differences found in results in different schemes with error
when comparing. In this work, we avoid such an elementary mistake. In any case, we stress
again that in the SMEFT, in any gauge fixing approach, the Ward identities, or Slavnov-Taylor
identities, necessarily differ from those in the SM.*

We also emphasize the appearance of the two derivative Higgs operators in the Ward iden-
tities, modifying the tadpole contributions. This is consistent with, and an explicit representa-
tion of, the discussions in Refs. [16,54,55]. The subtle appearance of such corrections again
show the need to take the SMEFT to mass eigenstate interactions in a consistent manner.” A
consistent treatment of the SMEFT to all orders in v /A [3] while preserving background field
invariance leads directly to the geoSMEFT. This approach also gives an intuitive interpretation
of how and why the Lagrangian parameters are modified, due to the presence of the curved
Higgs field spaces modifying correlation functions.

6 Conclusions

In this paper we have validated Ward identities in the SMEFT at one loop, when calculating
using the Background Field Method approach to gauge fixing. These results lay the ground-
work for generating numerical codes to next to leading order in both the perturbative and
non-perturbative expansions in the theory while using the Background Field Method in the
geoSMEFT. The results also offer a clarifying demonstration on the need to carefully define
SMEFT mass eigenstate interactions, to ensure that the theory is formulated in a consistent
manner. Utilizing the Background Field Method is of increased utility (in the opinion of the
authors of this paper) in the case of the SMEFT, as this is an effective theory including a Higgs
field. Any correct formulation of the SMEFT is consistent with the assumed SU(2); x U(1)y

“For an alternative point of view on these issues see Ref. [49]
>It is interesting to compare the treatment of such effects in this work to Ref. [56]
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Table 1: The independent dimension-six operators built from Standard Model fields
which conserve baryon number, as given in Ref. [2]. Four-fermion operators have
been removed as they aren’t relevant to this analysis. The operators are divided
into seven classes: X3, H®, etc. Operators with +h.c. in the table heading also have
hermitian conjugates, as does the vy2H2D operator Qp,4. The subscripts p,r are
flavor indices. Table taken from Ref. [42].

1:x3 2:H° 4:X’H?
Q | freGrGrGr Qu | (H'HY Que | H'HG,G™
Qs | FPGyGGEH Quz | H'HG,G"
Qu | e’fwwlewkn Quw | HHW, W
Qw | e wWrwlewks 3:H*D? Quw | H'HW, wh
Qug (H'H)O(H'H) Qus H'HB,,B"
Qup | (H'D,H) (H'D,H) ws | H'HB,B"
Quws | H'tT'HW] B*
Quws | H'T'HW/! B*

5:%H% + h.c. 6:?XH +h.c. 7 :42H?D
i v P =
Q. (H;H)(Eperq) Quw | @o" e )T HW], QSZ) (H' (1_13 AL
Qu (H)‘H)(C_lpurH) Qs (lpO'“”er)ng QSZ) (H'i D IH)(l_pTI}/“lr)
Qan | (H'H)(G,d,H) Que | @o0"" T u)HG e
Q (— uv If_i W'l;v QHe (H iD MH)(epYHer)
uw qu' ur)T uv (1) H‘;? H)(G.v*
QuB (qu'”vur)ITIBm, QHq ( (l_> u )(qu qr)
Qu | (@,0""T*d,)H G, Qiy | W'iD LG, ')
QdW (on-ﬂvdr)TlH W;v QHu (HTi(B)MH)(apYMur)
QdB (on.'uvdr)HBuv QHd (Hil D MH)(deHdr)
Quua + hec. i(H'D,H)(@,y"d,)

symmetry at one loop, and this can be checked by comparing against the Ward-Takahashi
or Slavnov-Taylor identities. We encourage those developing alternative formulations of the
SMEFT to demonstrate the consistency of their results with the corresponding symmetry con-
straints classically, and at one loop, to ensure that the various approaches are all well defined.

In this work we have demonstrated that the Ward identities provide an excellent opportu-
nity to cross check loop calculations performed in the SMEFT. In future works, this will allow
for consistency checks of relevant full one-loop contributions to the effective action. For ex-
ample, the full one-loop calculation of the W-boson propagator can be consistency checked
against the full loop calculation of YW-¢ mixing. The background field method will also allow
for Dyson resummation of the one-loop corrections to the propagator without breaking gauge
invariance [32]. To the best of the authors’ knowledge, no works concerning the SMEFT have
formulated or confirmed the corresponding Slavnov-Taylor identities for traditional R gauge
fixing. This work provides a clear foundation from which these next steps can be approached.
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