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Abstract

We analyse the correlation function of the quantum curvature in complex quantum sys-
tems, using a random matrix model to provide an exemplar of a universal correlation
function. We show that the correlation function diverges as the inverse of the distance
at small separations. We also define and analyse a correlation function of mixed states,
showing that it is finite but singular at small separations. A scaling hypothesis on a uni-
versal form for both types of correlations is supported by Monte-Carlo simulations. We
relate the correlation function of the curvature to the variance of Chern integers which
can describe quantised Hall conductance.
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1 Introduction

The quantum curvature Ωn of an eigenstate of a quantum system (with index n) is an ob-
ject which characterises the sensitivity of the eigenfunction to variation of parameters of the
Hamiltonian. It plays an important role in the the dynamics of quantum systems [1–4]. In
this paper we characterise fluctuations of the quantum curvature in generic complex quantum
systems (which have many energy levels and no constants of motion or Anderson localisation
effects). We analyse correlations of the quantum curvature in parameter space using random
matrix models [5, 6], which are applicable to generic complex quantum systems upon appli-
cation of a scaling transformation. We relate the correlation function to statistics of the Chern
numbers, which arise in the analysis of quantised conductance phenomena.

The quantum curvature is defined for a system with a Hamiltonian Ĥ, which depends upon
at least two parameters (with the position in parameter space being denoted by X= (X1, X2)).
It may be defined for a non-degenerate level by writing

Ωn dX1 ∧ dX2 = −i tr
�

P̂ndP̂n ∧ dP̂n

�

, (1)

where P̂n = |φn〉〈φn| is the projection onto the eigenstate |φn〉 of Ĥ with index n. Several
dynamical applications of Ωn have been discovered. Mead and Truhlar [1] showed that when
X is varied slowly, there is a component of the Born-Oppenheimer reaction force which is
proportional to Ωn and to the rate of change of parameters, Ẋ. Related applications arise
in solid-state physics [2, 3]. Berry [4] emphasised that the integral of Ωn over an arbitrary
surface is proportional to a ‘geometric phase’ which appears in adiabatic approximations to the
wavefunction, and this is our motivation for referring to Ωn as a ‘quantum curvature’. Note,
however, that Ωn is identically zero if the Hamiltonian can be represented by a real-valued
matrix.

In the applications considered in [1, 3, 4], the parameter X is varied slowly as a function
of time. This can result in transitions between energy levels, so that the system will evolve to
a mixed state. In particular, near-degeneracies of levels will allow Landau-Zener transitions
between states [7], which results in a diffusive spread of the probability of a given level being
occupied [8]. In cases where the system has many energy levels, we shall also consider a
‘smoothed’ curvature, Ω̄ε(E), involving a weighted average of Ωn over an energy interval of
length ε centred at E:

Ω̄ε(E,X) =
∑

n

Ωn(X)wε(E − En(X))

wε(E) =
1

p
2πε

exp(−E2/2ε2) .
(2)

A Gaussian smoothing is preferred here because this is the kernel for diffusive spread over
energy levels. If the density of states is ρ, we assume ρε� 1, so that many levels are included
in the average, but that ε is small compared to other energy scales in the system. Another
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motivation for considering Ω̄ε is that we shall see that the dependence of its statistics upon ε
allows inference about correlation of the Ωn between different values of the level index, n.

It is known that quantum systems with many energy levels may exhibit universal behaviour
if there are no constants of motion other than the Hamiltonian, and no Anderson localisation
effects. These universal properties are most conveniently computed using random matrix en-
sembles [5, 6, 9]. We shall discuss the use of random matrix models in section 2. There we
review how random matrix approaches have been extended to systems where the Hamiltonian
depends smoothly on a parameter [10–15], and introduce (section 2.4) a hypothesis on the
universal form of the correlation functions of the quantum curvature. In order to compute
this universal correlation function, we consider a random matrix model in which the Hamilto-
nian depends smoothly upon two parameters. We argue that the short-ranged statistics of the
quantum curvature are dominated by near-degeneracies of energy levels, which will be faith-
fully described by random-matrix models. In this work we analyse a random matrix model
(introduced in section 2.5) in which 〈Ω〉 = 0, and for which the statistics are homogeneous
and isotropic in parameter space. For this model we investigate two correlation functions

Cnm(X ) =〈Ωn(X)Ωm(0)〉 ,

C(∆E, X ) =〈Ω̄ε(E0 +∆E,X)Ω̄ε(E0, 0)〉
(3)

where X = |X|, and where the angle brackets denote expectation values throughout. The ex-
pectation values could be averages over energy in a specific physical system, but in this work
we evaluate expectation values over an ensemble of random matrices: these two approaches
are expected to give equivalent results. Specific examples of complex quantum systems may
have a non-zero value of 〈Ωn〉. We hypothesise that the short-ranged correlations of the curva-
ture will have universal properties which are correctly described by our random matrix model,
while the long-ranged correlations of Ωn will be model-specific.

Thouless et al. [2] showed that Ωn arises in an evaluation of the Hall conductance via the
Kubo formula, and that the the Hall conductance of a filled band is quantised by arguing that

Nn =
1

2π

∫

BZ

dX Ωn(X) , (4)

takes integer values (where, in this case, the parameter X is a Bloch wavevector and where
the integral runs over the Brillouin zone). This topological invariant is known as the Chern
index [16]. The integral ofΩn/2π over any closed two-dimensional manifold is also an integer-
valued topological invariant. Later Thouless extended these results to show quantised conduc-
tance in ‘sliding’ periodic potentials [3], using adiabatic approximations, akin to those in [1],
rather than the Kubo formula. We shall use our results on the correlation function C(X ) to
compute the variance Var(Nn) of the Chern integers in our model. We also argue that the cor-
relation function of the Chern integers in complex quantum systems is well-approximated by:

〈NnNm〉 − 〈Nn〉〈Nm〉=
1
2

Var(Nn)
�

2δnm −δn,m+1 −δn,m−1

�

, (5)

(we have 〈Nn〉= 0 for our random matrix model). The Chern integers can change by ±1 when
energy bands become degenerate [17], and equation (5) is consistent with the effects of these
degeneracies being uncorrelated between different levels.

While the general question of spectral statistics of systems depending on parameters has
been quite extensively studied, relatively little attention has been devoted specifically to the
statistical properties of the quantum curvature. In an early paper, Berry and Robbins [18]
studied semiclassical approximations for the curvature in systems with a chaotic classical limit
using Gutzwiller’s periodic orbit theory [19]. The expression for the quantum curvature ob-
tained in [18] is not rigorously defined, and while it has been successfully applied to fami-
lies of unitarily equivalent Hamiltonians [20], the semiclassical curvature statistics of generic
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families is still unknown. While not dealing directly with the curvature, Walker and Wilkin-
son [21] studied the related questions of the statistics of degeneracies, where the curvature
diverges, and Chern numbers in random matrix fields, arguing that they are universal, and
developing a scaling theory for them. Berry and Shukla [22–24] studied the single-point prob-
ability density function p(Ω) of the curvature, and showed that the distribution has a power
law decay p(Ω) ∼ |Ω|−5/2 for |Ω| large. The tails of the curvature distribution are dominated
by near-degeneracy events, and the decay exponent, determined by the codimension of the
degeneracies, is small enough that the variance of the single-level curvature 〈Ω2〉 is infinite,
while the expectation value 〈Ω〉= 0 converges due to symmetry.

As a consequence of the broad distribution of Ωn, the single level correlation functions
Cnm(X ), m = n, n± 1, which are finite for X 6= 0, diverge as X → 0. The smoothed curvature
correlation function Cε(∆E, X ) is finite for all X , but fluctuations due to near degeneracies
make it singular at short separations with a discontinuous derivative at X = 0. We calculate
the contribution of near-degeneracy fluctuations to the two-point correlation functions, which
together with the one-point correlation function of the smoothed curvature completely de-
termines the short-separation behaviour of both the single-level and the smoothed curvature
correlation functions. This is the first main theoretical result of this paper; the other main
result is the scaling forms of the two types of curvature correlation function that are conjec-
tured to be universal. Both the short-distance and the scaling of the correlations are compared
with comprehensive Monte-Carlo simulations, that support the theoretical prediction in the
large-matrix-size limit.

In section 2 we describe and motivate the random matrix models that we use. Section
3 discusses our theoretical and numerical results on the correlation functions of the single-
level curvature Ωn. The analogous discussion for the correlation function of the smoothed
curvature Ω̄ε is the subject of section 4. We consider the implications for Chern numbers in
section 5, estimating their variance and presenting an argument in support of equation (5).
Finally, section 6 discusses our conclusions and prospects for further studies.

2 Random matrix model

There is ample evidence for universality of the properties of complex quantum systems (loosely
defined as systems with many energy levels, which do not have Anderson localisation effects
or constants of motion which are independent of the Hamiltonian) [5,9]. The universal prop-
erties are manifest in spectral properties which involve small energy scales, or equivalently in
dynamical behaviour on long timescales. Hermitean random matrix models are examples of
complex quantum systems, and have the attractive feature that they may be used to compute
the universal properties analytically [6].

Consider a Hamiltonian depending upon two parameters, X1, and X2 (write X= (X1, X2)).
The quantum curvature Ωn is a fundamental characterisation of the sensitivity to parameters
of the projection P̂n onto the level with index n. Following [4], we can use perturbation theory
to express Ωn in terms of matrix elements of derivatives of the Hamiltonian, and energy levels.
This leads to the expression

Ωn = Im
∑

m 6=n

∂1Hnm∂2Hmn − ∂2Hnm∂1Hmn

(En − Em)2

= −i
∑

m6=n

∂1Hnm∂2Hmn − ∂2Hnm∂1Hmn

(En − Em)2
.

(6)

Here En are eigenvalues of the Hamiltonian Ĥ(X1, X2) with eigenvectors |φn〉 and ∂iHnm are
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matrix elements of derivatives of the Hamiltonian in its eigenbasis:

∂iHnm = 〈φn|
∂ Ĥ
∂ X i
|φm〉 . (7)

Equation (6) will be the basis for our calculations of the statistics of the curvatures, Ωn. In
order to evaluate (6) we require information about statistics of both energy levels and matrix
elements.

2.1 Distribution of energy levels

The statistics of the energy levels En for complex quantum systems have been very extensively
studied [5, 6, 9]. It is hypothesised that short-ranged statistical properties of the spectrum,
such as the probability distribution of the spacing of adjacent levels, are universal once the
energy levels are transformed to levels with unit mean spacing. If N(E) is a smooth function
representing the mean integrated density of states, the transformed levels are en = N(En).
In many cases the complex system is close to a classical limit, and the integrated density of
states can be derived from the Weyl rule [19]. There are three universality classes of bulk level
statistics, which are exemplified by three Gaussian random matrix ensembles. Individual ma-
trices of our model have the Gaussian unitary ensemble (GUE) statistics, because the curvature
is odd under time reversal, and therefore zero in the other Gaussian ensembles (orthogonal
and symplectic) that obey time-reversal symmetry. Equation (6) shows that Ωn diverges if En
approaches degeneracy with either the level above or below. For this reason the probability
distribution function of the separation of two levels will play a central role in our analysis. If
ρ(E) = dN/dE is the mean density of states, then the probability density function (PDF) of
the normalised separation S = (En+1 − En)ρ is well approximated by the Wigner surmise: for
the GUE this takes the form

P(S) =
32
π2

S2 exp(−4S2/π) . (8)

The exact form of the distribution is complicated but when the matrix size is large it tends to
a universal limit, which for S� 1 has the asymptotic approximation

P(S)∼
π2

3
S2 . (9)

2.2 Distribution of matrix elements

In order to compute the statistics of the Ωn, we also need information about the statistics of the
matrix elements of derivatives of the Hamiltonian with respect to its parameters. In complex
quantum systems, theoretical arguments and numerical experiments [10] support the use of a
model where the off-diagonal matrix elements (7) are statistically independent of each other,
independent of the energy levels, and approximately Gaussian distributed, with mean value
equal to zero. To complete the characterisation of the distribution of these elements, we must
specify their variance. The variance is a function of the energies of the two states, and we
define

σ2
i j(E,∆E) =

1
ρ(E +∆E/2)ρ(E −∆E/2)

×
∑

n

∑

m

∂iHnm∂ jHmnwε(E − (En + Em)/2)wε(∆E − (En − Em)) , (10)

(where the energy window function wε is used instead of a Dirac delta function, so thatσ2
i j has

a smooth dependence upon its arguments). If the complex quantum system has a good classical
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limit, the covarianceσ2
i j(E,∆E) can be calculated using the method described in [25]. Because

(6) implies that small energy separations dominate the sum, it is the value of σ2
i j(E,∆E) with

∆E → 0 that determines the statistics of the curvatures Ωn. We can always make a locally
linear transformation of the coordinates (X1, X2) so that the covariance σ2

i j is a multiple of

the identity, with diagonal elements denoted by σ2. For convenience, the universal form for
the correlation functions that we consider in this work will be computed in such an isotropic
coordinate system. However, for the purposes of understanding the dimensions of expressions
it is convenient to distinguish between derivatives with respect to X1 and X2. For this reason
we shall express the statistics of Ωn in terms of two variances

σ2
i = 〈|∂iHn+1,n|2〉 , (11)

where the angular brackets indicate an average over n: in terms of equation (10), we identify
σ2

i = σ
2
ii(E, 0).

2.3 Projection into a two-level subspace

In the case where two levels become nearly degenerate, we can approximateΩn by a projection
onto a two-level subspace: in section 3 this approach will be used to determine the behaviour
of C(X ) analytically in the limit X → 0. Write

Ĥ(X) = Ĥ0 +
∑

i=1,2

∂ Ĥ
∂ X i

X i , (12)

and the matrix elements are

Hnm = Enδnm +
∑

i=1,2

∂iHnmX i , (13)

(where the states |φn〉 are eigenstates at X = 0). Assume that the levels n, n + 1 are nearly
degenerate at X = 0, with the separation En+1 − En being much smaller than other gaps in
the spectrum. In this case the curvature close to X = 0 is determined by the projection of the
Hamiltonian into the two-level subspace spanned by |φn〉 and |φn+1〉. The projection of the
Hamiltonian into this subspace is represented by a 2× 2 matrix, which can be written in the
form

H̃(X1, X2) =
3
∑

i=0

hi(X , Y )τi , (14)

where the σ̃i are Pauli matrices ,

τ1 =

�

0 1
1 0

�

, τ2 =

�

0 −i
i 0

�

, τ3 =

�

1 0
0 −1

�

, (15)

with τ0 equal to the 2× 2 identity matrix. Because adding multiples of the identity does not
change the eigenvectors (and therefore leaves the curvature invariant), we assume without
loss of generality that h0 = 0. Close to the origin the projected Hamiltonian is then

H̃ = ετ3 +
3
∑

i=1

∑

j=1,2

Wi jτiX j . (16)

Here

ε=
En+1 − En

2
, Wi j =

∂ hi

∂ X j

�

�

�

�

X1=X2=0
. (17)
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The Wi j are related to the matrix elements of the derivatives as follows:

W1, j = Re[∂ jHn+1,n] , W2, j = Im[∂ jHn+1,n] , W3, j =
∂ jHn+1,n+1 − ∂ jHn,n

2
. (18)

In a complex system, the matrix elements ∂ jHnm appear random. For a system with a complex
Hermitean Hamiltonian, we expect that Re∂iHn+1,n, Im∂iHn+1,n are independent Gaussian
variables, with mean equal to zero and variance σ2

i /2. The diagonal matrix elements need
not have a mean value equal to zero (as evidenced, for example, by semiclassical calculations
on chaotic quantum systems, presented in [14, 26]). However, using arguments about uni-
tary invariance of the ensemble of Hamiltonians, it is argued that the variance of the diagonal
elements is Var[∂iHn+1,n+1] = Var[∂iHn,n] = σ2

i [10, 26]. Because these elements are inde-
pendent, W3,i = [∂iHn=1,n+1 − ∂iHn,n]/2 has variance σ2

i /2. We conclude that the Wi, j are
Gaussian random variables with mean value zero and variance

〈W 2
i, j〉=

σ2
j

2
. (19)

2.4 Universality hypothesis for curvature correlation

The universality hypothesis is most extensively supported for energy level statistics [5,9], but
there is also strong evidence that it holds for parametric dependence of energy levels [10–15],
and by extension it should also hold for dynamical properties [8].

In the case of a system which depends upon a single parameter X , it is argued [10] that
the eigenfunctions depend very sensitively upon parameters, so that correlation functions
decay on a characteristic length scale ∆X upon which the eigenfunction lose their identity.
Furthermore, perturbation theory indicates that 〈φn|∂ Ĥ/∂ X |φn+1〉∆X ∼ ∆E, where ∆E is
the typical separation of energy levels. Because the typical size of the matrix element is
〈φn|∂ Ĥ/∂ X |φn+1〉 ∼ σ, and the typical spacing of levels is ∆E ∼ ρ−1, we expect that cor-
relation functions will be functions of the dimensionless variable ρσ∆X , and this is in accord
with numerical investigations [10,12].

In order to define the quantum curvature, however, we must consider a Hamiltonian which
depends upon more than one parameter. Let us assume that our system has two parameters,
Y = (Y1, Y2) say, and that the matrix elements of derivatives with respect to the Yi variables
have a covariance Σ2

i j (defined by analogy with equation (10)). We can apply a smooth trans-
formation of the parameter space to produce a set of transformed coordinates X = (X1, X2),
so that small displacements in parameter space close to Y are described by a unimodular 2×2
matrix M̃ :

δX= M̃ δY , det(M̃) = 1 . (20)

We shall calculate the correlation functions in these transformed coordinates, X = (X1, X2).
We choose the transformation matrix M̃ so that the covariance matrix σ̃2 (with elements σ2

i j)
is a multiple of the identity matrix, with diagonal elements equal to σ). If these diagonal
elements are denoted by σ2, then M̃ satisfies

Σ̃2 = M̃σ̃2M̃T = σ2M̃ M̃T , σ4 = det(Σ̃2) . (21)

Now consider the form of the correlation function in the isotropic coordinates, Cnn(X ), which
must be a function of σ1, σ2 and ρ. Dimensional considerations imply that Cnn is proportional
to σ2

1σ
2
2ρ

4. In terms of the transformed variables, in which the covariances are diagonal
(σ2

i j = σ
2δi j), the correlation function takes the form

C(X ) = σ4ρ4 f (ρσX ) , (22)
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where f (·) is a universal function. We shall determine f (x) numerically, and compute its
asymptotic behaviour as x → 0 analytically. In the original variables, where the coordinate
dependence is not isotropic, we have

C(Y) = det(Σ̃2)ρ4 f
�

ρ[det(Σ̃2)]1/4|M̃Y|
�

. (23)

The arguments leading to (22) are immediately applicable to off-diagonal correlation functions
Cn,n+s with fixed s, so that

Cn,n+s(X ) = σ
4ρ4 fs(ρσX ) , (24)

with a set of universal scaling functions fs(x).
The smoothed curvature correlation function depends on the energy separation ∆E in ad-

dition to the parameter separation X . In section 5 we show that C is proportional toσ2
1σ

2
2ρ

3/ε3

and argue that its scaling form is

C(∆E, X ) =
π3/2

6
σ4ρ3

ε3
g(ρσX ,∆E/ε) , (25)

in the isotropic coordinates (the dimensionless coefficient is chosen so that g(0, 0) = 1) and
calculate explicitly the small-x asymptotics of g(x , y) for any y . Furthermore we shall deter-
mine g(x , y) numerically for all x and y , and confirm that it is indeed universal.

Our ‘universal’ scaling forms for the correlation functions, equations (22) and (25), are
obtained under the assumption that the statistical properties are homogeneous. Specifically,
they depend upon two nonuniversal parameters, ρ and σ, and we expect local universality in
regions in energy and parameter space where the Hamiltonian varies sufficiently slowly that
these are approximately constant.

2.5 Random matrix fields on the two-sphere

We performed our numerical studies on a field of M×M random matrices taking values on the
two-sphere. At each point, the statistics of the matrix field are representative of the Gaussian
unitary ensemble (GUE), as defined in [6]. By choosing the distribution that is homogeneous
and isotropic, the model is fully specified by 〈H〉= 0 and the two-point matrix element corre-
lation function

〈Hi j(X)H
∗
i′ j′(X

′)〉= c(θ )δii′δ j j′ , (26)

where θ is the angle subtended by the points X and X′ on the sphere; c is a smooth function of
θ with c(0) = 1 and c′(0) = 0, making the random matrix field realisations smooth functions
on the sphere with variance equal to unity.

The simulation results shown below were all obtained for a Gaussian correlation function
c(θ ) = exp(−θ2/2θ̃2), where θ̃ is a parameter of the model. For this model, the covariance
coefficients σi j of the matrix element variances form a diagonal matrix, so that the coefficients
in equation (11) are σ1 = σ2 = 1/θ̃ . The single point distribution implied by (26) is standard
GUE, so that when M is large the mean density of states is well-approximated by Wigner’s
‘semicircle law’ [6],

ρ(E) =
p

4M − E2

2π
, |E| ≤ 2

p
M , (27)

and zero otherwise.
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3 Correlation function of the curvature

3.1 Small-separation asymptotics

Consider the form of the correlation function C(X ) in the limit as X → 0. In this limit the
correlation function diverges, due to near-degeneracies, and we can calculate its form using
the projection into a two-dimensional sub-space, as considered in subsection 2.3.

The quantum curvature 2-form, denoted by Ω̃, is described by a single coefficient Ωn when
expressed in terms of the coordinates (X1, X2):

Ω̃= ΩndX1 ∧ dX2 . (28)

We can also write Ω̃ using the coefficients hi (defined in equation (16)) as coordinates, in
which case it is expressed in terms of components Ω jk,

Ω̃ =
∑

j,k
j<k

Ω jk dh j ∧ dhk

= Ω12 dh1 ∧ dh2 +Ω13 dh1 ∧ dh3 +Ω23 dh2 ∧ dh3 . (29)

The quantum curvature for a two-level system H̃ =
∑3

i=1 hiσ̃i was computed by Berry [4]: the
coefficients are

Ω jk =

∑3
i=1 εi jkhi

2
�

∑3
i=1 h2

i

�3/2
, (30)

that is

Ω12 =
h3

2||h||3/2
, Ω13 = −

h2

2||h||3/2
, Ω23 =

h1

2||h||3/2
, (31)

where ||h||=
q

h2
1 + h2

2 + h2
3.

To express the curvature in terms of the (X1, X2) coordinates, note that

dhi =
∑

j=1,2

Wi jdX j , (32)

so that

Ω̃ = Ω12(W11dX1 +W12dX2)∧ (W21dX1 +W22dX2)

+ Ω13(W11dX1 +W12dX2)∧ (W31dX1 +W32dX2)

+ Ω23(W21dX1 +W22dX2)∧ (W31dX1 +W32dX2) . (33)

That is
Ωn = Ω12Θ3 +Ω13Θ2 +Ω23Θ1 , (34)

where

Θ1 =W21W32 −W22W31 , Θ2 =W11W32 −W12W31 , Θ3 =W11W22 −W12W21 . (35)

We have assumed that h1 = h2 = 0 at (X1, X2) = (0,0). The curvature in the (X1, X2) space at
(X , 0) is then

Ωn(X ) =
(ε+W31X )Θ3 −W21XΘ2 +W11XΘ1

2
�

(ε+W31X )2 +W 2
21X 2 +W 2

11X 2
�3/2

. (36)

9

https://scipost.org
https://scipost.org/SciPostPhys.10.6.149


SciPost Phys. 10, 149 (2021)

We now wish to compute the correlation function Cnn(X ) = 〈Ωn(0)Ωn(X )〉 where the expecta-
tion value averages over the distributions of the Wi j and the ε. We shall average over the Wi,2,
then over the Wi,1, and finally over ε. We find the following results for averages over Wi2:

〈Θ1Θ3〉Wi2
= −

σ2
2

2
W11W31 , 〈Θ2Θ3〉Wi2

=
σ2

2

2
W21W31 , 〈Θ2

3〉Wi2
=
σ2

2

2
[W 2

21 +W 2
11] . (37)

At this stage it is convenient to change the Wi1 variables to polar coordinates (R,θ ,φ)

W31 = R cosθ , W21 = R sinθ cosφ , W11 = R sinθ sinφ , (38)

so that, noting that the Wi j are independent Gaussian distributed variables with zero mean
and variance σ2

j /2, the probability element for these variables is

dP =
1

(πσ2
1)3/2

exp[−(W 2
11 +W 2

21 +W 2
31)/σ

2
1]dW11dW21dW31

=
1

π3/2σ3
1

R2 exp(−R2/σ2
1) sinθ dR dθ dφ . (39)

Now consider the average of Ωn(X )Ωn(0), evaluated using (36). First we average over Wi2
using equation (37):

〈Ωn(0)Ωn(X )〉Wi2
=

σ2
2

8ε2

W 2
21[(ε+W31X )−W31X ]

[ε2 + 2εRX cosθ + R2X 2]3/2

+
σ2

2

8ε2

W 2
11[(ε+W31X )−W31X ]

[ε2 + 2εRX cosθ + R2X 2]3/2

=
σ2

2

8ε2

R2 sin2 θε

[ε2 + 2εRX cosθ + R2X 2]3/2
. (40)

Now introduce a dimensionless parameter

λ=
RX
ε

, (41)

and compute the average of equation (40) over the Wi1:

〈Ωn(0)Ωn(X )〉Wi j
∼

1
4
p
π

σ2
2

ε4σ3
1

∫ ∞

0

dRR4 exp(−R2/σ2
1)F(λ) , (42)

where

F(λ) =

∫ π

0

dθ
sin3 θ

[1+ 2λ cosθ +λ2]3/2
. (43)

Introducing another dimensionless variable

µ=
ε

σ1X
, (44)

we have

〈Ωn(0)Ωn(X )〉Wi j
=

1
4
p
π

σ2
2ε

σ3
1X 5

G(µ) , (45)

where

G(µ) =

∫ ∞

0

dλλ4 exp(−µ2λ2)F(λ) . (46)
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Finally, we average over ε, and multiply by a factor of two because the near-degeneracy can
be with either a level above or one below. Hence the contribution to the correlation function
from nearly degenerate levels is

〈Ωn(X )Ωn(0)〉 ∼
4π3/2

3

ρ3σ1σ
2
2

X

∫ ∞

0

dµµ3G(µ) . (47)

This is the dominant contribution to the curvature correlation as X → 0. Evaluating the inte-
grals, we find

F(λ) =

∫ π

0

dθ
sin3 θ

[1+ 2λ cosθ +λ2]3/2
=

� 4
3 0< λ < 1
4

3λ3 λ≥ 1
(48)

then integration over µ then λ gives

Cnn(X )∼
4π3/2

3

ρ3σ1σ
2
2

X
. (49)

This is consistent with the expected universal scaling form, equation (22), with

f (x)∼ 4π3/2/3x , (50)

as x → 0.
The arguments leading to (49) extend easily to describe the short-range correlations of

the curvature of adjacent levels. For small separations both Cnn and Cn−1,n are dominated by
events of near degeneracy of En−1 and En, but since Ωn−1 and Ωn are anticorrelated during
these events, Cn−1,n must have the opposite sign, and since Cnn receives an independent equal
contribution from near degeneracies of En and En+1 while Cn−1,n does not, the latter should
be also be smaller by a factor of two in absolute value. It follows that

Cn−1,n(X )∼ −
2π3/2

3

ρ3σ1σ
2
2

X
, (51)

and therefore f1(x)∼−2π3/2/3x in the limit as x → 0 (where fs(x) was defined in equation
(24)).

3.2 Universality of correlations at arbitrary separations

We investigated the correlation function C(X ) numerically for our M ×M GUE random matrix
field model defined on a unit 2-sphere, as described in subsection 2.5. For this purpose we sam-
pled the joint probability distribution of two matrices Ĥ(X1), Ĥ(X2) subtending angle θ on the
sphere, as well as their X derivatives. Since different matrix elements of Ĥ(X) are independent
(except for those related by hermiticity), it is sufficient to sample independent realisations of
the six-variable joint Gaussian distribution for H(X1) jk, H(X2) jk, ∂αH(X1) jk, ∂βH(X2) jk
(α,β = 1,2), for each 1 ≤ j ≤ k ≤ M to sample a single realisation of Ω(X1) and Ω(X2). The
six-by-six covariance matrix of the matrix elements and their derivatives is straightforwardly
determined from the matrix-element correlation function c(θ ) and its derivatives.

This process was repeated for a number nθ of equally spaced angular separations between
zero (exclusive) and θm. The respective values of nθ and θm were 120 and 0.18π for M = 30,
120 and 0.15π for M = 50, 100 and 0.1π for M = 100, and 80 and 0.08π for M = 150. The
curvature correlation functions reported here were calculated by averaging the product of the
curvatures of matrices randomly sampled in this manner. We used 106 realisations of 30× 30
matrices, 5×105 realisations of 50×50, 105 of 100×100, and 5×104 realisations of 150×150
matrices.
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M = 100
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Figure 1: Plot of x fs(x), obtained by the scaling transformation (24) of the shifted
single-level correlation function Cn,n+s(θ ), s = 0,1, calculated numerically by Monte-
Carlo simulations for the Gaussian random matrix field model with Gaussian matrix
element correlation functions and correlation length θ̃ = 1 for several matrix sizes
M and energy level groups. Each data set shows the average of x fs(x) over a range
of four (M = 30) to twenty (M = 150) consecutive energy levels as a function of
x . Positive (negative) values correspond to s = 0 (s = 1), respectively, and s = 1
data points are shown in lighter hue. The colours next to each value of M represent,
from bottom to top, the following energy-level intervals: 16 ≤ n ≤ 17, 19 ≤ n ≤ 20,
22 ≤ n ≤ 23, 25 ≤ n ≤ 26, for M = 30; 26 ≤ n ≤ 28, 30 ≤ n ≤ 32, 34 ≤ n ≤ 36,
38 ≤ n ≤ 40, for M = 50; 51 ≤ n ≤ 55, 58 ≤ n ≤ 62, 65 ≤ n ≤ 69, 72 ≤ n ≤ 76,
for M = 100; and 76 ≤ n ≤ 84, 89 ≤ n ≤ 96, 101 ≤ n ≤ 108, 113 ≤ n ≤ 120,
for M = 150. Each energy-level interval is averaged with the corresponding levels
below the midpoint of the spectrum.

Figures 1 and 2 show the numerical results in the form of a data collapse for the scaled di-
agonal and nearest neighbour correlation functions f and f1 (defined as in equations (22) and
(24)) as a function of the scaled separation x . Different colours correspond to different choices
of M , θ̃ , and energy level range. In figure 1 we vary the energy interval of the spectrum, and
in figure 2 we show data for two different values of the correlation length θ̃ , combining data
for different values of the matrix dimension M in each plot. The quality of the data collapse
is a strong indication that the functions f (x) and f1(x) are universal, and the short distance
asymptotics, equations (49) and (51), are confirmed by the matching of the dashed horizontal
lines at 4π3/2/3 and −2π3/2/3 with small x calculations of x f (x) and x f1(x) (respectively).
The solid curves are quadratic-exponential fits

x f (x)≈ (4π3/2/3)exp[−(ax + bx2)] , x f1(x)≈ (−2π3/2/3)exp[−(a1 x + b1 x2)] , (52)

with a = 3.56, b = 2.03, a1 = 3.43, b1 = 3.55; we use the fits to estimate the value of integrals
which will play a role in section 5:

I =
∫ ∞

0

dx x f (x)≈ 1.69 , I1 = −2

∫ ∞

0

dx x f1(x)≈ 1.58 . (53)
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Figure 2: Points show scaled diagonal and nearest neighbour single-level correla-
tion functions, as described in figure 1, except that data are averaged only over the
central range of energy levels (as detailed in figure 1), but for different matrix ele-
ment correlation lengths, confirming universality. The colours next to each value of
M represent, from bottom to top, θ̃ = 1/2, 1 (M = 100) and θ̃ = 1,2 (M = 150).
The dashed lines and solid curves have the same meaning as in figure 1.

4 Smoothed curvature correlation functions

We present analytical results on the correlation function of the smoothed curvature, C(∆E, X ),
in the cases where X = 0 (subsection 4.1) and X nonzero but small (subsection 4.2), before
presenting our numerical results on this correlation function in subsection 4.3. We defined
Ω̄ε(E,X) as a local, smoothly weighted average of the Ωn in an interval of width ε centred on
E, by equation (2), and its correlation function C(∆E, X ) by (3). We expect the dependence
of C on the energy base point E0 is weak, and only through the mean density of states in the
universal part of the smoothed curvature correlation function. In principle C may depend E0
indirectly through the matrix element correlation length as well.

4.1 One-point correlations

Unlike the single-level curvature correlations, the correlations of the smoothed curvature do
not diverge as X→ 0, but degeneracies do play a significant role by causing the X -dependence
of the correlation function to have a discontinuous derivative. First we consider the correlation
function at X = 0, before looking at its behaviour for small X in section 4.2.

In this subsection we calculate C(∆E, 0), starting from equation (6). Using equations (2)
and (6), and noting that Ωn is real, we have

C(∆E, 0) =
­

∑

n

∑

n′
wε(E0 +∆E − En)wε(E0 − En′)

∑

m 6=n

∑

m′ 6=n′

Knmn′m′

(En − Em)2(En′ − Em′)2

·

, (54)

where
Knmkl = [∂1Hnm∂2Hmn − ∂2Hnm∂1Hmn][∂1Hkl∂2Hlk − ∂2Hkl∂1Hlk]

∗ . (55)

Now consider how to compute (54) in random matrix theory. Note that Ĥ, ∂1Ĥ and ∂2Ĥ
are independent GUE matrices. Because Ĥ is statistically independent from ∂i Ĥ, and GUE is
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invariant under unitary transformations, the matrix elements ∂iHnm in the eigenbasis of Ĥ have
standard GUE statistics with variances σ2

i = 〈|∂iHnm|2〉. Furthermore, averaging over ∂iHnm
is independent of the average over Ĥ, which is implemented as an average of the eigenvalues,
En. The expectation value of Knmlk for the GUE model is

〈Knmkl〉= 2σ2
1σ

2
2[δnkδml −δnlδmk] , (56)

so that

C(∆E, 0) = 2σ2
1σ

2
2

­

∑

n

∑

n′
wε(E0 +∆E − En)wε(E0 − En′)

×
∑

m 6=n

∑

m′ 6=n′

δnn′δmm′ −δnm′δmn′

(En − Em)2(En′ − Em′)2

·

= 2σ2
1σ

2
2

­

∑

n

wε(E0 +∆E − En)
∑

m 6=n

[wε(E0 − En)−wε(E0 − Em)]
1

(En − Em)4

·

. (57)

The largest terms in the m sum are those with m close to n. For such m we can approximate
the difference of the window functions by its Taylor series

wε(E0 − En)−wε(E0 − Em) = w′ε(E0 − En)(En − Em)−
1
2

w′′ε (E0 − En)(En − Em)
2 + · · · (58)

since terms with m = n ± m̃ cancel, the last sum in (57) is dominated by terms of
O(〈(Em − En)−2〉m), where 〈〉m stands for averaging over the distribution of Em with En fixed.
This expectation value is finite because level repulsion implies that the probability that
|Em− En|< ε is ∼ ε3 for ε small. The fast decay of 〈(Em− En)−2〉m as |m− n| increases makes
the terms with m close to n dominant, so that the higher order terms in (58) are negligible,
implying

C(∆E, 0) = −σ2
1σ

2
2

∑

n

­

wε(E0 +∆E − En)w
′′
ε (E − En)Sn

·

, (59)

where we define

Sn =
∑

m6=n

­

1
(En − Em)2

·

m
. (60)

Since Sn is dominated by the smallest separations of energy levels, we expect that Sn ∼ Aρ2(En)
where A is a dimensionless constant. The value of A can be deduced from a ‘virial relation’
derived by Dyson (see discussion in [6]), who showed that the eigenvalues of a M × M GUE
matrix satisfy

M
∑

n=1

∑

m 6=n

〈(En − Em)
−2〉= M(M − 1) . (61)

Combining this with Wigner’s semicircle law (27) for the mean density of states we find

Sn ∼
2π2

3
[ρ(En)]

2 . (62)

Hence, in the limit where ρε� 1

C(∆E, 0)∼ −
2π2

3
σ2

1σ
2
2ρ

3

∫ ∞

−∞
dE wε(E +∆E)w′′ε (E)

=
π3/2

6

ρ3σ2
1σ

2
2

ε3

�

1−
1
2

�

∆E
ε

�2
�

exp

�

−
∆E2

4ε2

�

.

(63)

Note that this is consistent with the universal scaling form, equation (25), with

g(0, y) =

�

1−
1
2

�

∆E
ε

�2
�

exp

�

−
∆E2

4ε2

�

. (64)
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Figure 3: Plot of the numerically calculated (dots) scaled one-point smoothed-
curvature correlation function g(0, y), obtained by (25) from C(0,∆E), as a function
of y =∆E/ε, compared with the exact large-M asymptotic (64) (solid curve). Dots
of different colours correspond to different matrix sizes M , and several energy win-
dow widths ε, all centered at E0 = 0. The colours next to each value of M represent,
from bottom top, data for ε/π = 0.33,0.42, 0.5,0.67 (M = 30), 0.31, 0.38,0.5, 0.63
(M = 50), 0.25,0.3, 0.4,0.5 (M = 100), and 0.23, 0.38,0.54, 0.69 (M = 150).

4.2 Two-point correlations at small separations

We can also consider the parameter dependence of the correlation function of the smoothed
curvature, namely C(∆E, X ), following a similar approach to that leading to equation (49).

The value of Ω̄ε(E) diverges at degeneracies, but 〈Ω̄2
ε〉 is finite. The change in the correla-

tion function close to X = 0 is determined by nearly-degenerate levels. If En is close to En+1,
the change in Ωε due to varying the parameters by a small displacement (X , 0) is

∆Ω̄ε(X ) = w′ε(E − En) (∆E(X )Ωn(X )−∆E(0)Ωn(0)) , (65)

where∆E(X ) = En+1(X )− En(X ), and where Ωn(X ) is given by equation (36), which we write
in the form

Ωn(X ) = 4
(ε+W31X )Θ3 −W21XΘ2 +W11XΘ1

[∆E(X )]3
, (66)

where Θi were defined in equation (33), and

∆E(X ) = 2[(ε+W31X )2 +W 2
21X 2 +W 2

11X 2]1/2 . (67)

We shall consider the quantity Ω̄ε(E +∆E, 0)[Ω̄ε(E, X )− Ω̄ε(E, 0)]≡ Ω̄ε∆Ω̄ε. This is

Ω̄ε∆Ω̄ε = w′(E +∆E − En)w
′(E − En)

Θ3

ε

�

(ε+W31X )Θ3 −W21XΘ2 +W11XΘ1

(ε+W31X )2 +W 2
21X 2 +W 2

11X 2
−
Θ3

ε

�

. (68)

Taking the expectation value of Ωε∆Ωε(X ), using the same approach and notations as before
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Figure 4: Same as figure 3 but with correlation functions calculated numerically for
energy windows centered at E0/

p
M = 0,1/2,1, 3/2 and fixed width ε = π/4.

in section 3, we find

〈∆Ωε(X )Ωε〉Wi2
= w′ε(E +∆E − En)w

′
ε(E − En)

σ2
2

2

�

R2 sin2 θ

ε2 + 2RXε cosθ + R2X 2
−

R2 sin2 θ

ε2

�

〈∆Ωε(X )Ωε〉Wi j
= w′ε(E +∆E − En)w

′
ε(E − En)

σ2
2p

πσ3
1ε

2

∫ ∞

0

dR R4 exp(−R2/σ2
1)

×
∫ π

0

sin3 θ

�

1
1+ 2λ cosθ +λ2

− 1
�

〈∆Ωε(X )Ωε〉= w′ε(E +∆E − En)w
′
ε(E − En)

8π3/2ρ3σ2
2σ

3
1X

3

×
∫ ∞

0

dµ µ5

∫ ∞

0

dλ λ4 exp(−λ2µ2)F(λ) , (69)

where we have taken expectation values with respect to the Wi2, then Wi1 then ε (using the
same polar coordinates for the Wi1, the same definitions of λ and µ as section 3), and

F(λ) =
∫ π

0

dθ sin3 θ

�

1
1+ 2λ cosθ +λ2

− 1
�

. (70)

This yields

〈∆Ωε(X )Ωε〉=
8π3/2A

3
[w′ε(E − En)]

2ρ3σ3
1σ

2
2X , (71)

where

A=

∫ ∞

0

dµ µ5

∫ ∞

0

dλ λ4 exp(−λ2µ2)F(λ) = −π
2

8
. (72)

Finally, we multiply by two, to account for near degeneracies with the level below as well as
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the level above, and sum over energy levels. Noting that
∑

n

w′ε(E +∆E − En)w
′
ε(E − En)∼

ρ

2πε6

∫ ∞

−∞
dE E2 exp

�

−
E2

2ε2

�

exp

�

−
(E +∆E)2

2ε2

�

=
ρ

4
p
π

1
ε3

�

1−
1
2

�

∆E
ε

�2
�

exp

�

−
∆E2

4ε2

�

. (73)

We then have

C(∆E, 0)− C(∆E, X )∼
π3

12

ρ3σ2
1σ

2
2

ε3
ρσ1X

�

1−
1
2

�

∆E
ε

�2
�

exp

�

−
∆E2

4ε2

�

. (74)

This is consistent with C(∆E, X ) having the universal scaling form (25) where the scaling
function g(x , y) satisfies

g(x , y) ∼
x�1

�

1−
y2

2

�

exp(−y2/4)

�

1−
π3/2

2
|x |+O(x2)

�

. (75)

If the Ωn were statistically independent, we would expect to find C ∼ ε−1. The fact that
C ∼ ε−3 is indicative of cancellation effects due to correlations between the Ωn, as described
by equation (51).

4.3 Correlations at arbitrary separations and two-variable universality

We used the data from the Monte-Carlo simulations described in subsection 3.2 to evaluate
the smoothed curvature correlation function C(∆E, X ) for the parametric GUE model defined
in subsection 2.4. We examined the scaling of the correlation function as we varied several
parameters: the matrix dimension M , the width ε of the energy interval, the position in the
spectrum of the states included in the averaging (which affects the density of states, ρ), and
the correlation length θ̃ of the random matrix model.

The scaled numerically-calculated single-point correlation function g(0, y) (where
y = ∆E/ε) is shown in figures 3 and 4 overlaid with the large-M exact asympototics (63).
The numerical results indeed approach the universal correlations when M increases, but the
convergence is slow, with a few percent deviation even for M = 150. In figure 3 we vary the
width of energy interval, ε, confining the average to states close to the centre of the spectrum.
In figure 4 we vary the position of the averaging interval within the spectrum (keeping ε = 1/4
fixed).

The slow convergence as M increases is also observed in figures 5, 6, and 7, where the nu-
merically calculated g(x , y) is plotted as a function of x = σρX for a few values of y =∆E/ε.
All of these figures show data for a wide range of different values of M : in figure 5 we vary
ε (keeping close to the centre of the band), in figure 6 we vary the energy interval (keeping
ε fixed), and in figure 7 we compare results for different values of θ̃ . The slow convergence
as M increases obscures the scaling collapse of the discontinuity of slope of g(x , y) at x = 0.
In order to illustrate the validity of (75), the slowly converging part is removed from the
correlation function in figures 8, 9, and 10. These show the subtracted correlation function
g(x , y)− g(0, y), with slopes at x = 0 that agree well with the small-x singularity of (75), and
exhibiting a very good data collapse confirming the universality of the scaling function g.

5 Statistics of Chern numbers

Finally, we show how our results on the correlation function of the quantum curvature can be
used to make deductions about statistical fluctuations of Chern numbers. The Chern number
can be expressed as an integral of the quantum curvature: see equation (4)
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Figure 5: Plot of the numerically calculated scaled smoothed-curvature correlation
function g(x , y), obtained by (25) from C(X ,∆E), as a function of x = ρσX , for
a few fixed values of y = ∆E/ε. Horizontal dashed lines show the exact large-M
asymptotic (64) of g(0, y) for the corresponding y , and also serve to label the data
sets. Curves of different colours correspond to different matrix sizes M , and en-
ergy window widths ε, all centered at E0 = 0 with fixed correlation length θ̃ = 1.
The gaps at x = 0 between the data curves and the dashed lines decrease for
larger M , as seen in figure 3. Collapse of the data curves confirms two-variable
scaling and universality. The colours next to each value of M represent, from bot-
tom to top, data for ε/π = 0.33,0.42, 0.5,0.67, (M = 30), 0.25, 0.38,0.5, 0.63
(M = 50), 0.3,0.4, 0.5,0.6 (M = 100), and 0.38,0.54, 0.69,0.85 (M = 150) ex-
cept that ε/π = 0.31,0.38, 0.46,0.54 for y = 1.6, M = 150, and that for y = 3.2,
ε/π = 0.17,0.25, (M = 30), 0.13, 0.19,0.25, 0.31 (M = 50), 0.15, 0.2,0.25, 0.3
(M = 100), and 0.15, 0.23,0.31 (M = 150).

First, let us estimate the variance of Nn. In our random matrix model it is clear that
〈Nn〉 = 0. We consider the case where the parameter space is isotropic, so that the corre-
lation function C(X ) is independent of the direction of X . In this case, we write σ1 = σ2 ≡ σ.
Taking the second moment of (4), and using the fact that when M � 1 the support of the
correlation function is small compared to the extent of the parameter space, we have

〈N2
n 〉 ∼

1
2π

Aσ2ρ2I , I =
∫ ∞

0

d x x f (x) , (76)

where A is the area of the closed surface of the parameter space, and f (x) is the function
defined in equation (23). Numerical evaluation of the integral in (76) (quoted in equation
(53)) gives I ≈ 1.69. This result is compatible with the results of [21], (based upon data
obtained with less powerful computers) which suggest that I ≈ 1.5.

We can also use our results to support the hypothesis about correlations of Chern num-
bers contained in equation (5). We define (by analogy with equation (2)) a smoothed Chern
number

Nε(E) =
∑

n

Nnwε(E − Ēn) , (77)

where Ēn is an average of En(X) over the Brillouin zone. We can express the variance of the
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Figure 6: Numerical data and horizontal lines as in 5, except that data are shown for
energy windows based at E0/

p
M = 0, 1/2,1 and one width for each M and y; the

energy window width is equal to the second in the list of ε values shown in figure 5
for the corresponding M and y .

smoothed Chern number in two ways. First, express this in terms of the correlation function
of Ωε(E,X):

〈N2
ε 〉 =

1
(2π)2

∫

dX

∫

dX′ 〈Ω̄ε(E,X)Ω̄ε(E,X′)〉

∼
A
(2π)2

∫

dX C(0, |X|) , (78)

where A is the area of the Brillouin zone, and in the final step we assume that the correlation
is homogeneous, isotropic and short-ranged. The scaling form for the correlation function C,
equation (25), indicates that

〈N2
ε 〉 ∼

p
πκ

12
Aρσ2

ε3
, (79)

where κ is an integral of the scaling function:

κ=

∫ ∞

0

dx x g(x , 0) . (80)

Alternatively, we can compute the variance of the smoothed Chern number directly, if we as-
sume that the correlation function of Chern numbers is given by (5). (This hypothesis is equiv-
alent to assuming that the Chern number increments associated with gaps are uncorrelated).
Using (5) we infer that

〈N2
ε 〉=

∑

n

∑

m

wε(E − En)wε(E − Em)〈NnNm〉

∼ Var(Nn)
∑

n

wε(E − En)
�

wε(E − En)−
1
2

wε(E − En−1)−
1
2

wε(E − En+1)
�

. (81)
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Figure 7: Numerical data and horizontal lines as in 5, except that data are shown for
energy single energy window based at E0 = 0, but for different correlation lengths
θ̃ = 1/2,1 (M = 100) and θ̃ = 1,2 (M = 150). The energy window widths are
equal, respectively for each M and y , to the second in the list of ε values shown in
figure 5.

Expanding the term in square brackets about E − En, we have:

〈N2
ε 〉 ∼ 〈N2

n 〉
∑

n

wε(E − En)
�

1
2

w′ε(E − En)(En+1 + En−1 − 2En)

−
1
4

w′′ε (E − En)[(En+1 − En)
2 + (En−1 − En)

2]
�

. (82)

The terms En+1+En−1−2En fluctuate in sign so that the sum containing w′ε(E−En) as a factor
vanishes. The remaining term gives

〈N2
ε 〉 ∼ −

〈N2
n 〉〈∆E2〉

2
ρ

∫ ∞

−∞
dE wε(E)w

′′
ε (E) =

〈N2
n 〉〈∆E2〉ρ
8
p
πε3

, (83)

where 〈∆E2〉 is the mean-squared nearest neighbour spacing. On the basis of the univer-
sality hypothesis discussed in section 2, we expect 〈∆E2〉 = γ/ρ2, where γ is a universal
dimensionless constant. Using the ‘Wigner surmise’ distribution for ∆E, equation (8), yields
γ= 〈S2〉= 3π/8 and hence, using (76), we obtain

〈N2
ε 〉=

3I
128
p
π

Aρσ2

ε3
, (84)

which is consistent with equation (79). The fact that 〈N2
ε 〉 is proportional to ε−3 is, therefore,

an indication that the fluctuations of Chern numbers on successive levels are anticorrelated,
as described by equation (5).

6 Conclusion

We have analysed the universal fluctuations of the adiabatic curvatureΩn for complex quantum
systems, as exemplified by a parametric GUE model. We find that the correlation function C(X )
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Figure 8: Plot of the same data as in figure 5, showing differences between scaled
smoothed curvature correlation function g(x , y) at different points, and the correla-
tion function g(0, y) at the same point, as a function of x for several fixed values of
y . Straight dashed lines show the small-x asymptotic (75) of g(x , y) for the corre-
sponding y , and also serve to label the data sets. Compared to figure 5 the curves
exhibits significantly better data collapse, and good agreement with the slopes of the
dashed lines.

of Ωn has a X−1 divergence as X → 0, which is a consequence of near-degeneracies (equations
(49), (50)). We also investigated the correlation function numerically, and found that it is
consistent with the scaling hypothesis of parametric random matrix theory (equation (22)), as
illustrated by figures 3–4.

Because of Landau-Zener transitions these near-degeneracies spread the density matrix
over a range of eigenstates, implying that we should also consider a smoothed curvature,
Ω̄ε. We find that the correlation function C of Ω̄ε scales as ε−3 (equation (63)), and has a
discontinuous first derivative at X = 0, described by equations (74) and (75). The numerical
evaluation of the smoothed correlation function is illustrated in figures 5–10.

We used these results to analyse the variance of the Chern integers. Their variance is given
by (76), which is consistent with the surmise made in [21], and we present evidence that their
correlation function is described by (5).

Our results were obtained for a random matrix model, for which the mean value of the
quantum curvature is zero. Physically realistic models need not satisfy 〈Ωn〉= 0. It is hypoth-
esised that the short-ranged statistics of quantum curvature fluctuations in physically realistic
models are determined by degeneracies and near-degeneracies between energy levels, which
will be faithfully reproduced by our random matrix model. We hope that this hypothesis will
be tested in subsequent studies.
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