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Abstract

An intriguing correspondence between ingredients in geometric function theory related
to the famous Bieberbach conjecture (de Branges’ theorem) and the non-perturbative
crossing symmetric representation of 2-2 scattering amplitudes of identical scalars is
pointed out. Using the dispersion relation and unitarity, we are able to derive several
inequalities, analogous to those which arise in the discussions of the Bieberbach conjec-
ture. We derive new and strong bounds on the ratio of certain Wilson coefficients and
demonstrate that these are obeyed in one-loop φ4 theory, tree level string theory as well
as in the S-matrix bootstrap. Further, we find two sided bounds on the magnitude of
the scattering amplitude, which are shown to be respected in all the contexts mentioned
above. Translated to the usual Mandelstam variables, for large |s |, fixed t , the upper
bound reads |M(s , t )| ® |s2|. We discuss how Szegö’s theorem corresponds to a check
of univalence in an EFT expansion, while how the Grunsky inequalities translate into
nontrivial, nonlinear inequalities on the Wilson coefficients.
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1 Introduction

In mathematics, the Bieberbach conjecture is about how fast the Taylor expansion coefficients
of a holomorphic univalent1 function, of a single complex variable z, on the unit disc (|z|< 1)
grows. If we write this function as

f (z) =
∞
∑

n=1

bnzn , (1)

then according to this conjecture
|bn| ≤ n|b1| . (2)

This famous conjecture was put forth by Bieberbach in 1916 [1] and resisted a complete proof
until 1985 when it was proved by de Branges [2]. Another important property for such uni-
valent functions is what is known as the Koebe Growth theorem which says that

|b1z|
(1+ |z|)2

≤ | f (z)| ≤
|b1z|
(1− |z|)2

, (3)

providing a two-sided bound on the absolute value of the function. In the course of 70 years,
attempts at proving the Bieberbach conjecture led to the invention of new mathematical results
such as (3) and techniques in the area of geometric function theory.

1A function is univalent on a domain D if it is holomorphic, and one-to-one, i.e. for all z1, z2 ∈ D, f (z1) 6= f (z2)
if z1 6= z2.
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Now it is certainly not obvious, but we claim that (2) and (3) have analogues in the context
of 2-2 scattering in quantum field theory. To see this, we will make use of the crossing sym-
metric representation of the 2-2 scattering of identical massive scalars, first used in the long-
forgotten work by Auberson and Khuri [3] and resurrected in [4, 6]. If we consider M(s, t)
and assume that there are no massless exchanges, then we expect a low energy expansion of
the form

M(s, t) =
∑

p≥0,q≥0

Wpq x p yq , (4)

where x and y are the quadratic and cubic crossing symmetric combinations of s, t, u to be
made precise below. Normally, the term dispersion relation for scattering amplitude M(s, t)
refers to the fixed-t dispersion relation, which lacks manifest crossing symmetry. As we will
review below, in order to exhibit three-channel crossing symmetry in the dispersion relation,
we should work with a different set of variables, z and a ≡ y/x . For now, we note that both
x , y∝ z3/(z3−1)2. As such, the appropriate variable is z̃ = z3. We write a crossing symmetric
dispersion relation in the variable z̃ keeping a fixed. This dispersion relation, together with
unitarity, leads to similar bounds as in (2) for the z̃ expansion of M(z̃, a) and as in (3) for
|M(z̃, a)|. The expansion of M(z̃, a) around z̃ = 0 is similar to a low energy expansion and
the bound (2) relates to bounds on the Wilson coefficients Wpq.

Over the last few months, the existence of upper and lower bounds on ratios of Wilson
coefficients have been discovered [4,10,11]. These bounds are remarkable since they say that
Wilson coefficients cannot be arbitrarily big or small and, in a sense, corroborate the efficacy
of effective field theories. One of the interesting outcomes of our analysis is that

−
9

4µ+ 6δ0
<

W0,1

W1,0
<

9
2µ+ 3δ0

, (5)

where µ = 4m2 with m being the mass of the external scalar and δ0 is some cutoff scale in
the theory. Expanding δ0� µ leads to the 2-sided, space-time dimension independent bound
− 3

2δ0
<

W0,1
W1,0

< 3
δ0

. Compared to [10,11], the lower bound is identical but the upper bound we
quote above is stronger. We have checked this inequality for several known examples. Other
fascinating consequences of the analogs of (2) will be discussed below.

Univalence of a function leads to further nontrivial constraints in the form of the Grunsky
inequalities, which are necessary and sufficient for an analytic function on the unit disk to
be univalent. If these were to hold in QFT, they would imply non-linear constraints on Wpq.
Unfortunately, proving univalence is a tough problem. The z̃ dependence in the crossing sym-
metric dispersion relation arises entirely from the crossing symmetric kernel. One can show
that this kernel, for a range of real a values, is indeed univalent! Therefore, one concludes
that for unitary theories, the amplitude is a convex sum of univalent functions. However, a
complete classification of circumstances as to when a convex sum of univalent functions leads
to a univalent function does not appear to be known in the mathematics literature. Neverthe-
less, just by using the univalence of the kernel, we will be able to derive analogues of (2) and
(3). What we will further show is that as an expansion around a ∼ 0, the Grunsky inequal-
ities hold as the resulting inequality on W is known to hold using either fixed-t or crossing
symmetric dispersion relation. Therefore, at least around a ∼ 0, it is indeed true that the
amplitude, and not just the kernel in the crossing symmetric dispersion relation, is univalent.
Our numerical checks for known S-matrices, such as 1-loop φ4, π0π0 → π0π0 arising from
the S-matrix bootstrap, tree-level string theory, suggest that there is always a finite region near
a ∼ 0 where univalence holds. Thus we conjecture that we can impose univalence on the am-
plitude even beyond the leading order in a. This gives rise to a non-linear inequality for the
Wilson coefficients; as a sanity check, this inequality is satisfied for all the cases studied in this
paper.
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The discussion above may seem to suggest that we may need to know the full amplitude
in QFT to check for this seemingly magical property of univalence. Fortunately, this is not the
case. In QFT, we would like to work in an effective field theory framework where we have
access to certain derivative order in the low energy expansion. Thus we would need to know
about the analogous statement in the mathematics literature, which deals with partial sums
(truncations) of f (z). Indeed there is such a theorem, called Szego’s theorem! This remarkable
theorem allows us to examine univalence for partial sums and, loosely speaking, states that
the radius of the disk within which univalence holds for the partial sums of a function f (z),
which is univalent inside the unit disk, is at least 1/4. We will use this theorem to rule out
situations where univalence fails.

We should add that we are not the first to discuss univalence in physics: however, such
discussion is scarce in the literature. To the best of our knowledge, in the context of high
energy scattering amplitudes, such an investigation was first undertaken in the mid-1960s by
Khuri and Kinoshita [7]. In more recent times, possible use of univalence of complex function
has been discussed in the context of scattering amplitudes in [8] and in the context of bounding
transport coefficients using AdS/CFT in [9]. We will review all three papers in an appendix.
However, we want to emphasize that our treatment of univalence is quite different from all of
these, as will become apparent in due course of time.

Let us now lay out the organization of the paper. First, we give a survey of the various
aspects of univalent functions relevant to our analysis, in section 2. Next, in section 3, we
review the crossing-symmetric dispersion relation and associated structures. Following this,
we discuss the bounds on the Taylor coefficients of the scattering amplitude in section 4 the
physical implications of which for Wilson coefficients is discussed in section 5. Next, we derive
two-sided bounds on the scattering amplitude in section 6. In section 7, we look for hints of
univalence in EFT amplitudes with the aid of Szegö’s theorem followed by an exploration of
Grunsky inequalities for amplitudes in section 7.1. Finally, we discuss the conclusions and
provide outlooks on future directions in section 8. Various explorations associated with the
main text providing the analysis with wholesomeness have been placed in the appendices.

2 Univalent functions and de Branges’s theorem: A survey

A central theme of complex analysis is to study a complex function by the nature of the mapping
produced by the function. A complex function w = f (z) can be geometrically viewed as a
mapping from a region in z−plane to w−plane, defined by u= u(x , y) and v = v(x , y), where
z = x + i y and w = u+ iv. This aspect of complex analysis is known as “Geometric Function
Theory". In geometric function theory, a class of functions called univalent functions play
particularly important role. These functions will play a central role in our subsequent QFT
analysis. Therefore, we will survey the crucial aspects of the univalent function in this section.

2.1 Univalent and schlicht functions

A function f is defined to be univalent on a domain2 D ⊂ C if it is holomorphic3 and injective.
The function is said to be locally univalent at a point z0 ∈ D if it is univalent in some neigh-
bourhood of z0. The function f is locally univalent at some z0 ∈ D if and only if f ′(z0) 6= 0. It
is to be emphasized that even if a function is locally univalent at each point of D, it may fail to

2A domain is defined to be a simply-connected open subset of the complex plane C.
3The definition of univalent function can be extended to consider meromorphic functions as well. A meromor-

phic univalent function on a domain D can have at most one simple pole there. See [12] for a discussion. Since
we are only concerned with holomorphic function in the present work, we decide to include the requirement of
holomorphicity in the definition of the univalent function.
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be univalent globally on D. For example, the function f (z) = ez is locally univalent at all the
points of the disc Dr := {z : |z| < r} with r > π, but fails to be globally univalent. From now
on, by univalent functions, we will always mean globally univalent functions.

We will be primarily concerned with the class S of univalent functions on the unit disc
D = {z : |z| < 1}, normalized so that f (0) = 0 and f ′(0) = 1. These functions are also called
schlicht4,5 functions. Thus each f ∈ S has a Taylor series representation of the form

f (z) = z +
∞
∑

p=2

bpzp , |z|< 1 . (6)

Note that a schlicht function f (z) can always be obtained from an arbitrary univalent function
defined on D, g(z), by an affine transformation with the definition

f (z) :=
g(z)− g(0)

g ′(0)
. (7)

The usefulness of a schlicht function is that its characteristic normalization makes various
numerical estimates pertaining to it simpler compared to an arbitrary univalent function.

The class S is preserved under a number of transformations. We will mention two of these
transformations.

(i) Conjugation: If f (z) belongs to S, so does

g(z) = g(z∗)∗ = z +
∞
∑

p=2

b∗pzp . (8)

(ii) Rotation: The rotation of a function f is defined by

fθ (z) := e−iθ f (eiθ z), θ ∈ R . (9)

If f ∈ S then fθ ∈ S as well for every θ ∈ R.

Koebe Function: The leading example of a schlicht function is the Koebe function

k(z) :=
z

(1− z)2
= z +

∞
∑

p=2

p zp . (10)

Koebe function and its rotations are often solutions to various extremal problems pertaining
to schlicht functions. Koebe function will play a central role in our subsequent analysis of
scattering amplitudes.

Now that we have given a brief overview of univalent functions and the subclass of schlicht
functions thereof, we will discuss a few crucial theorems and results on the schlicht functions,
which will play critical roles in our analysis of the crossing-symmetric dispersive representation
of scattering amplitudes.

2.2 Conditions for univalence of a function

In the previous section, we laid down basic notions of univalent and schlicht functions. We
saw that the condition of non-vanishing first derivative of the function over a domain is not
sufficient for the function to be globally univalent on the domain. However, the condition is
a necessary one. In this section, we will discuss two important sufficient conditions and two
necessary conditions for univalence, or equivalently schlichtness (with the specific normaliza-
tion), of a function on the unit disc.

4In literature often, the terms univalent and schlicht are used interchangeably. Conway [13] reserves the term
schlicht for describing univalent functions with the specific normalization introduced thus defining the class of
schlicht functions, S, as a subclass all the univalent functions. We follow this custom in the present work.

5The word “schlicht” is German and means “simple"!
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2.2.1 Grunsky inequalities

Grunsky inequalities [12] are necessary and sufficient inequalities satisfied by a function f to
be a schlicht on the unit disc.

Consider a holomorphic function f : D→ C with the power series representation given by
(6), and let

ln
f (t)− f (z)

t − z
=

∞
∑

j,k=0

ω j,k t jzk , (11)

with constant coefficients {ω j,k}. These are called Grunsky coefficients. It is straightforward
to observe that ω j,k =ωk, j . These coefficients have an interesting property. Let h : D→ C be
a composition of a Mobius transformation with f , i.e.

h(z) :=
a f (z) + b
c f (z) + d

, ad − bc 6= 0 , (12)

and let { eω j,k} be corresponding Grunsky coefficients. Then,

eω j,k =ω j,k , ∀ j, k ≥ 1 . (13)

Theorem 2.1. f ∈ S if and only if the corresponding Grunsky coefficients satisfy the inequalities
�

�

�

�

�

N
∑

j,k=1

ω j,kλ jλk

�

�

�

�

�

≤
N
∑

k=1

1
k
|λk|

2 , (14)

for every positive integer N and all λk, k = 1, . . . , N.

As an example, the Grunsky coeffiecients of the Koebe function k(z) are given by
ω j,0 =ω0, j = 2/ j, ω j,k = −δ j,k/ j, with δ j,k being the usual Kronecker delta.

Logarithmic coefficients: Note that the Grunsky coefficients {ω j,0} do not enter the inequal-
ity above. One wonders whether there exists any bounding relations satisfied by these Grunsky
coefficients. Indeed they satisfy very important and interesting bounds. In the literature, these
Grunsky coefficients are studied as logarithmic coefficients because of the simple observation

ln
f (z)

z
=
∞
∑

n=0

ωn,0 zn , f ∈ S . (15)

The logarithmic coefficients {γn} are defined by

γn =ωn,0/2 . (16)

These logarithmic coefficients satisfy interesting inequalities. They satisfy the celebrated de
Branges’s inequalities (previously Milin conjecture ) [2] which state that for f ∈ S the corre-
sponding logarithmic coefficients satisfy

n
∑

k=1

k(n− k+ 1) |γk|2 ≤
n
∑

k=1

n+ 1− k
k

, n= 1, 2, . . . , (17)

the equality is satisfied if and only if f is a rotation of Koebe function. de Branges used this
inequality in his proof of the famed Bieberbach conjecture [see section 2.4 ]. There have been
attempts at obtaining sharp bounds on the individual coefficients |γn|. While the following
sharp estimates have been obtained [2]

|γ1|< 1 , |γ2| ≤
1
2

�

1+ 2e−2
�

, (18)

the problem of finding sharp upper bounds for |γn| for n ≥ 3 in general is still an open one.
However, there are some sharp estimates for modulus of logarithmic coefficients in some sub-
classes of S.
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2.2.2 Nehari conditions

In a seminal work, Nehari [14] provided a necessary and a sufficient condition for the univa-
lence of a function on the unit disc D. The conditions are expressed in terms of Schwarzian
derivative of the function. Schwarzian derivative of a function f (z) w.r.t z is defined by

{ f (z), z} :=
�

f ′′(z)
f ′(z)

�′

−
1
2

�

f ′′(z)
f ′(z)

�2

. (19)

One advantage of these conditions are that these are independent of the normalization corre-
sponding to the schlicht functions. Thus, these conditions work with univalent functions with
generic power series

g(z) = b0 + b1z + b2z2 + . . . . (20)

This is to be contrasted with the Grunsky inequalities whose precise form requires the normal-
ization of schlicht functions.

The conditions can be stated as following theorems.

Theorem 2.2 (Sufficient condition). A function g(z) holomorphic on the open disc D will be
univalent if its Schwarzian derivative satisfies the inequality

|{g(z); z}| ≤
2

(1− |z|2)2
. (21)

Theorem 2.3 (Necessary condition). If a holomorphic function g(z) is univalent in the open
disc D then

|{g(z); z}| ≤
6

(1− |z|2)2
. (22)

2.3 Koebe growth theorem

A very important theorem that shines in our analysis of scattering amplitude is the Koebe
Growth Theorem. This theorem, essentially, puts upper and lower bound on the magnitude of
a schlicht function f ∈ S.

Theorem 2.4. If f ∈ S and |z|< 1, then

|z|
(1+ |z|)2

≤ | f (z)| ≤
|z|

(1− |z|)2
. (23)

One of the equalities holds at some point z 6= 0 if and only if f is a rotation of the Koebe
function.

We want to emphasize that the bounds are the consequence of f being univalent. Thus,
the converse of the theorem need not be true, i.e. a function defined on the unit disc D with
the normalization same as that of a schlicht function satisfying any one of the four bounding
relations above need not be univalent.

2.4 de Branges’s theorem

One of the most important properties of univalent functions is that its Taylor coefficients are
bounded. For a schlicht function f ∈ S, Bieberbach proved in 1916 [1] that the second coef-
ficient b2 in the Taylor series representation (6) is bounded as

|b2| ≤ 2 , (24)

7

https://scipost.org
https://scipost.org/SciPostPhys.11.1.002


SciPost Phys. 11, 002 (2021)

with equality holding if and only if f is a rotation of the Koebe function. In the same work,
Bieberbach conjectured the following bound for the general coefficient bn:

|bn| ≤ n , ∀n≥ 2 ; (25)

with the equality holding if and only if f is a rotation of the Koebe function. This conjecture
came to be known as the famed Bieberbach Conjecture and resisted a rigorous proof for about
seven decades until Louis de Branges proved it in 1985 [2], and the result came to be known
as de Branges’s Theorem. For completeness, let us note down the full statement of de Branges’s
theorem.

Theorem 2.5. Let f be an arbitrary schlicht function, f ∈ S, with the power series representation
defined by (6). Then the Bieberbach conjecture holds true, i.e.

|bn| ≤ n , ∀n≥ 2 ; (26)

with the equality holding if and only if f is a rotation of the Koebe function k(z) defined in (10),
i.e. if and only if

f (z) = e−iθ k(eiθ z) , ∀θ ∈ R . (27)

While de Branges proved the Bieberbach conjecture in its full generality only in 1985, vari-
ous special cases have been proved earlier. One particular case relevant to our QFT discussion is
the Bieberbach conjecture for schlicht functions with real Taylor coefficients, an ∈ R. This par-
ticular case was proved independently during 1931-1933 by Dieudonné [15], Rogosinski [16],
and Szász [17].

2.5 Partial sums of univalent functions: Szegö theorem

Consider a schlicht function f (z) on the unit disc with the power series representation (6).
The nth partial-sum, or nth section, of the function f , denoted by fn, is defined by

fn(z) := z +
n
∑

k=2

bkzk . (28)

Now, the important question is what is the domain of univalence for the partial sum fn. While
that is, in general, a difficult question to answer, one can still ask as to what is the largest
domain over which any section of an arbitrary f ∈ S is univalent? Szegö [18] proved the
following theorem in this aspect. See [20, §8.2, pp. 241-246] for a proof.

Theorem 2.6 (Szegö theorem). Define the numbers
�

rn ∈ R+
	

such that the mth section of a
schlicht function f ∈ S, fm, is univalent in the disc Drn

for all m≥ n. Then,

r1 =
1
4

, (29)

i.e., each section remains univalent in the disc D1/4, and the number 1/4 can’t be replaced by a
higher one.

The statement of the number 1/4 not being replaceable by a higher number needs some
explanation. Consider an arbitrary f ∈ S, and let the domain over which the nth section fn is
univalent be D fn

. Then the above theorem tells that

D fn
⊇ D 1

4
, ∀n≥ 2 . (30)

8

https://scipost.org
https://scipost.org/SciPostPhys.11.1.002


SciPost Phys. 11, 002 (2021)

Equivalently, this can be expressed as
⋂

f ∈S
n∈Z+, n≥2

D fn
= D 1

4
. (31)

The number 1/4 is the best estimate because the domain of univalence for the second section
of the Koebe function k(z) is exactly equal to the disc of radius 1/4, i.e.

Dk2
= D 1

4
. (32)

Note that this theorem does not tell anything about the exact domains of univalence of sections
of arbitrary schlicht functions. All this theorem tells us that whatever the domain of univalence
of a section of a schlicht function be, it is at least large enough to contain the disc D 1

4
, or

equivalently, every section of any schlicht function is univalent on D 1
4
.

The evaluation of exact domains of univalence of sections of arbitrary schlicht function is
still an open problem.

3 Crossing symmetric dispersion relation: A brief review

We will begin our QFT discussion by reviewing key aspects of crossing symmetric dispersion
relations. At the onset, we should point out that unlike the Bieberbach conjecture, where
univalence played a crucial role, in QFTs, we will be able to derive certain inequalities by just
using the univalence of the kernel in the dispersion relation and unitarity. This enables us
to derive inequalities like |bn| ≤ n as well as the two-sided bounds on |M| without needing
univalence of the full amplitude. The question of univalence of the full scattering amplitude
is a harder one to tackle in generality. We will begin a preliminary attack on this question
without being able to settle the issue completely.

Scattering amplitudes of 2-2 identical scalars are functions of Mandelstam invariants s, t, u,
they are related via s+ t + u= 4m2 = µ. For our convenience, we will work with shifted vari-
ables s1 = s− µ3 , s2 = t− µ3 , s3 = u− µ3 . Such scattering amplitudes M(s1, s2) are fully crossing
symmetric, namely M(s1, s2) =M(s2, s3) =M(s3, s1) . Scattering amplitudes have physical
branch cuts for sk ≥

2µ
3 . To write down a crossing symmetric dispersion relation the most

useful trick is to parametrize the s1, s2 as [3,4]

sk = a−
a (z − zk)

3

z3 − 1
, k = 1,2, 3 , (33)

with a being real, and zk ’s are cube roots of unity. The z, a are crossing symmetric variables.
They are related to the crossing symmetric combinations of s1, s2, namely a = y/x ,
x = − (s1s2 + s2s3 + s3s1) =

−27a2z3

(z3−1)2 , y = −s1s2s3 =
−27a3z3

(z3−1)2 .

Fully crossing symmetric amplitude can be expanded like

M(s1, s2) =
∞
∑

p=0,q=0

Wp,q x p yq . (34)

The parametrization in (33), maps the physical cuts sk ≥
2µ
3 in a unit circle in z-plane, see

figure (1a) for −2µ
9 < a < 0. If a < −2µ/9, then as [3] show, there will be branch cuts on

the real z axis. In the transformed variables the amplitude becomes a function of z, a, namely

9
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M(z, a). The most usefulness of (33) is that it enables us to write a dispersion relation which
is manifestly crossing symmetric, see [3,4].

M(z̃, a) = α0 +
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1 ; s(+)2

�

s′1, a
�

�

H
�

s′1, z̃
�

, (35)

where A(s1; s2) is the s-channel discontinuity (discontinuity of the amplitude cross s1 ≥
2µ
3 ),

α0 =M(z = 0, a) is the subtraction constant independent of a, and

H(s′1, z̃) =
27a2z̃

�

2s′1 − 3a
�

27a3z̃ − 27a2z̃s′1 − (1− z̃)2
�

s′1
�3 ,

s(+)2

�

s′1, a
�

= −
s′1
2

�

1−
�

s′1 + 3a

s′1 − a

�1/2�

,

(36)

where we have introduced the new variable z̃ := z3. This is because all the manifestly crossing
symmetric functions are functions of z̃ = z3.

Let us expound a bit on the analyticity structure of the amplitude on the complex z̃−plane.
The figure (1b) below shows the image of the physical cuts in z̃ = z3-plane (for −2µ

9 < a < 0).
Notice that in z̃ = z3 plane, the images of the physical cuts in all three channels are same.
We will focus on the situation where a is real and note that |z̃| = 1 if s1, s2 are real (we will
set µ = 4m2 = 4 here). In the z̃ plane, the forward limit (s2 = −4/3, s1 ≥ 8/3) corresponds
to arcs that start at z̃ = −1 and approaching z̃ = 1 along |z̃| = 1. If s2 > −4/3 then the full
boundary of the disc is not traversed while if s2 ≤ −4/3 then the full boundary is traversed6. A
further important point to keep in mind is that since real s1, s2 correspond to |z̃|= 1, to access
the inside of the disc we need to consider complex s1, s2. Since later on, we will keep a real,
a complex s1 will give us a complex s2 since a = s1s2(s1 + s2)/(s2

1 + s1s2 + s2
2). Plugging back

into z̃, we get two values, one which lies inside the disc and the other which lies outside.
The scattering amplitude M admits a power series expansion about z̃ = 0 converging in

the unit disc |z̃|< 1,

M(z̃, a) =
∞
∑

n=0

αn(a)a
2n z̃n . (37)

For a local theory7, αn(a)a2n can be a polynomial in a of order at most 3n. It can be seen from
the expression

αp(a)a
2p =

p
∑

n=0

n
∑

m=0

Wn−m,mam(−1)p−n(−27)n a2n
�

−2n
p− n

�

. (39)

This expression also implies that αn(a) is in general a Laurent polynomial8. Similarly, the

6There are two trajectories corresponding to the two roots of z̃ which are obtained on starting with x , y in
terms of z̃, a and solving for the latter in terms of s1, s2. If s2 > −4/3 then the starting point is on the circle away
from z̃ = −1. As s1 increases from 8/3 the trajectory reaches z̃ = −1 and then retraces along the boundary till it
reaches z̃ = 1.

7This follows from the expansion in (34), see [3,4]

M(z, a) =
∞
∑

n=0

w̄n(a)x
n . (38)

8A Laurent polynomial `(x) over a field F is an expression of the form

`(x) =
∑

k∈Z

δk x k , δk ∈ F , (40)

where now k need not be necessarily positive and only finitely many coefficients δk are non-zero.
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(a) z plane
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Re(z̃)

-1.5

-1.0

-0.5

0.5

1.0

1.5
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(b) z̃ = z3 plane

Figure 1: Image of the physical cuts. The blue line on z̃ = 1 indicates the forward
limit s2 = −4/3, s1 ≥ 8/3. The two trajectories start from z̃ = −1 and as s1 increases
they approach z̃ = 1.

crossing-symmetric kernel H(s′1, z̃) admits a power series expansion abut z̃ = 0:

H(s′1, z̃) =
∞
∑

n=0

βn

�

a, s′1
�

z̃n , (41)

with

βn

�

a, s′1
�

=
3
p

3a2−n
�

s′1
�−3n

Æ

a− s′1
Æ

3a+ s′1

�

�

27a3 − 27a2s′1 + 3
p

3a
Æ

a− s′1
Æ

3a+ s′1
�

3a− 2s′1
�

+ 2
�

s′1
�

3
�n

−
�

27a3 − 27a2s′1 + 3
p

3a
Æ

a− s′1
Æ

3a+ s′1
�

2s′1 − 3a
�

+ 2
�

s′1
�

3
�n
�

.

(42)

We can make two immediate and important observations from the above expression:

(I)
β0(a, s1) = 0 identically . (43)

(II)

β1(a, s1) =
27a2

s3
1

(3a− 2s1) . (44)

Now, recall that, the analytic9 domains for a and s1 are given by [−2µ/9, 2µ/3) and
[2µ/3,∞). Then, one can readily infer that β1(a, s1) non-vanishing for the entire phys-
ical range of s1 if and only if10

a ∈
�

−
2µ
9

,0
�

∪
�

0,
4µ
9

�

. (45)

9We are calling the above domain of a to be “analytic” since for this domain of a, the branch cuts in the complex
z̃ plane do not lie along the real line.

10The a = 0 point is trivial since both x , y = 0 and the amplitude is a constant. In what follows, if on occasion
we imply a 6= 0, this is to be kept in mind.
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Further, in this domain of a, β1 < 0 for the entire physical domain of s1. This sign of
β1 will play a crucial role for various proofs in the following analysis. For the string
amplitude, that we will frequently consider, µ = 0. We have subtracted the massless
pole, and the lower limit of the dispersion integral starts at s′1 = 1, which is the location
of the first massive string pole. This effectively leads to the replacement µ→ 3/2 in the
above discussion given a ∈

�

−1
3 , 0

�

∪
�

0, 2
3

�

.

The coefficients {βn(a, s1)} are of extreme importance because using the crossing symmetric
dispersion relation (35) along with (41), we can write an inversion formula

a2nαn(a) =
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�

βn

�

a, s′1
�

, n> 0 . (46)

Thus, we see that theαns are essentially integral transforms of βns convoluted with the s−chan-
nel absorptive part A

�

s1; s(+)2 (s1, a)
�

.
Let us conclude this section with a significant result on the absorptive part, which will be

crucial for our subsequent analysis in light of the inversion formula above.

Lemma 3.1 (Positivity lemma). For a unitary theory, if a ∈
�

−2µ
9 , 2µ

3

�

then the absorptive

part of the amplitude, A
�

s1; s(+)2 (s1, a)
�

, is non-negative for s1 ∈
�

2µ
3 ,∞

�

.

Proof. The s-channel discontinuity has a partial wave expansion

A
�

s1; s(+)2 (s1, a)
�

= Φ (s1;α)
∞
∑

`=0

(2`+ 2α)a` (s1)C
(α)
`

�
Æ

ξ (s1, a)
�

,

ξ (s1, a) = cos2 θs =

�

1+
2s+2 (s1, a) + 2µ

3

s1 −
2µ
3

�2

= ξ0 + 4ξ0

�

a
s1 − a

�

,

(47)

with ξ0 =
s2
1

(s1−2µ/3)2
and α= d−3

2 . Over the domain of s1 ∈
�

2µ
3 ,∞

�

, we find that,
p

ξ (s1, a)≥

1, which implies C (α)
`

�p

ξ (s1, a)
�

> 0 if a ∈
�

−2µ
9 , 2µ

3

�

. Next, for the given domains of s1 and

a one has ℜ
�

s+2 (s1, a)
�

∈
�

−µ3 , 2µ
3

�

. Now the analyticity domain E(s1) of A(s1, s+2 ) in t has
been determined [21] to be

E(s1) =



















































E

�

0, 2µ
3 − s1

�

�

�

�

4µ+ 48µ
3s1−2µ

�

, 2µ
3 < s1 <

11µ
3 ,

E

�

0, 2µ
3 − s1

�

�

�

�

192µ
3s1+µ

�

, 11µ
3 < s1 <

23µ
3 ,

E

�

0, 2µ
3 − s1

�

�

�

�

µ+ 48µ
3s1−11µ

�

, s1 >
23µ

3 ,

(48)

where E( f1, f2|d) stands for an ellipse with foci at s+2 = f1, s+2 = f2 and right extremity at
s+2 = d. It is straightforward to see that our s+2 values always lie in the interior of E(s1), i.e.

the partial wave expansion for A
�

s1; s(+)2 (s1, a)
�

above converges for the given domains of

a and s1. Next, 0 ≤ a`(s1) ≤ 1 on s1 ∈
�

2µ
3 ,∞

�

as a consequence of unitarity. There-

fore, if a ∈
�

−2µ
9 , 2µ

3

�

, A
�

s1; s(+)2 (s1, a)
�

, is non-negative for s1 ∈
�

2µ
3 ,∞

�

. If µ = 0, where

ξ= 1+ 4 a
a−s1

, for ξ > 1, a > 0 must hold11.
11For the string case, however, we will find that for a < 0 the bounds we will consider will still hold. We do

12

https://scipost.org
https://scipost.org/SciPostPhys.11.1.002


SciPost Phys. 11, 002 (2021)

4 Bounds on {αn(a)}

We can bound the Taylor coefficients {αn(a)} appearing in the power-series representation of
the scattering amplitude M, (37). Towards that end, let us first prove a lemma that will be
used repeatedly in our analysis that follows.

Lemma 4.1. Consider the kernel H(z̃; s1, a) of the dispersion relation given by (36),

H(z̃; s1, a) =
27a2z̃ (2s1 − 3a)

27a3z̃ − 27a2z̃s1 − (z̃ − 1)2 (s1)
3 . (49)

Define the function

F(z̃; s1, a) :=
H(z̃; s1, a)
β1(a, s1)

. (50)

For a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

and s1 ∈
�

2µ
3 ,∞

�

, F(z̃; s1, a) is a schlicht function, or equivalently,
H(z̃; s1, a) is a univalent function on the unit disc |z̃|< 1 .

Proof . For a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

and s1 ∈
�

2µ
3 ,∞

�

, we have already proved that β1(a, s1) 6= 0.
Thus, the function F is well-defined in these domains of a and s1. Further, since β0 = 0 iden-
tically, F(z̃) admits a power series expansion about z̃ = 0:

F(z̃; s1, a) = z̃ +
∞
∑

n=2

βn(a, s1)
β1(a, s1)

z̃n . (51)

First note that

F(z̃; s1, a) =
z̃

1+ γz̃ + z̃2
,

with γ= 27( a
s1
)2(1− a

s1
)− 2. To avoid a singularity inside the unit disc we need

|γ|< 2 ,

which translates to a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

for real a, which is the same condition mentioned

above12.
Next, observe that we can write

F(z̃; s1, a) = k(z̃)

�

1−
27a2(a− s1)

s3
1

k(z̃)

�−1

, (52)

where k(z̃) is the Koebe function defined in (10). It is straightforward to see that F can be
considered as a composition of a Moebius transformation with the Koebe function. Then, by
(13), F has the Grunsky coefficients

ωp,q = −
δp,q

p
, p, q ≥ 1 , (53)

and these satisfy the Grunsky inequalities of (14) for all N ≥ 1. Since Grunsky inequalities
are necessary and sufficient for an analytic function inside the unit disc to be univalent, this
completes the proof.

not have a general explanation for this apart from observing that α1 < 0 for certain −1/3< a < 2/3, which is the
range of a we will be interested in.

12Of course we could consider complex a as well at this stage. However, since we want to make use of the
positivity of the absorptive part of the amplitude later on, we will restrict our attention to real a.
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Observe that, F(z̃; s1, a) and H(z̃; s1, a) are related by an affine transformation. Thus, the
schlichtness of F implies that H is an univalent function on the unit disc |z̃| < 1 for the same
domains of a and s1.

Corollary 4.1.1. For a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

and s1 ∈
�

2µ
3 ,∞

�

, the Taylor coefficients {βn(a, s1)}
in the power-series expansion of H are bounded by

�

�

�

�

βn(a, s1)
β1(a, s1)

�

�

�

�

≤ n , n≥ 2 . (54)

Proof. Since F(z̃; s1, a) is a Schllicht function on the unit disc |z̃| < 1 in the given domains of
a and s1, we can apply de Branges’s theorem to the same to obtain the bound.

Let us note down another corollary of the lemma 4.1 for future reference.

Corollary 4.1.2. For a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

and s1 ∈
�

2µ
3 ,∞

�

, the Taylor coefficients {βn(a, s1)}
in the power-series expansion of H are bounded by

|z̃|
(1+ |z̃|)2

≤ |F(z̃; s1, a)| ≤
|z̃|

(1− |z̃|)2
, |z̃|< 1 . (55)

Proof. Applying Koebe growth theorem 2.4 to F(z̃; s1, a), one obtains the bounds.

Now that we have collected the necessary results, let us now turn to prove the following
theorem.

Theorem 4.2. For non-zero M(z̃, a) and a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

, with µ > 0,

�

�

�

�

αn(a)a2n

α1(a)a2

�

�

�

�

≤ n , ∀n≥ 2 . (56)

Proof . First, we make sure that the ratio is well-defined in a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

. In particu-

lar, we need to make sure that α1(a) 6= 0 for a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

since a2 is never zero due
to µ 6= 0. To do so, let us start with the inversion formula, (46), to write

−α1(a)a
2 =

1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�

�

−β1

�

a, s′1
��

. (57)

From the positivity lemma 3.1, we have thatA
�

s′1; s(+)2 (s
′
1, a)

�

≥ 0 for a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

and

s′1 ∈
�

2µ
3 ,∞

�

. Further, we have already seen that β1

�

a, s′1
�

< 0 for the same domains of a and

s′1. Thus, the integrand is non-negative. Further, since M(z̃, a) is non-zero, A
�

s′1; s(+)2 (s
′
1, a)

�

does not vanish identically over s′1 ∈
�

2µ
3 ,∞

�

. Hence, the integral will be positive implying

α1(a)< 0 , a ∈
�

−
2µ
9

,
4µ
9

�

. (58)

Therefore, the ratio under consideration,

a2n−2 αn(a)
α1(a)

, (59)

is well-defined for a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

.
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Now, let us use the inversion formula (46) once again, and taking the absolute values on
both sides of the formula one obtains

�

�αn(a)a
2n
�

�=
1
π

�

�

�

�

�

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�

βn

�

a, s′1
�

�

�

�

�

�

,

≤
1
π

∫ ∞

2µ
3

ds′1
s′1

�

�

�A
�

s′1; s(+)2 (s
′
1, a)

�

βn

�

a, s′1
�

�

�

� [Applying triangle inequality] ,

=
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�
�

�βn

�

a, s′1
��

�

�

A
�

s′1; s(+)2 (s
′
1, a)

�

≥ 0 by lemma 3.1
�

,

≤
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�

n
�

�β1

�

a, s′1
��

� [Applying corollary 4.1.1] ,

=
n
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2 (s
′
1, a)

�

�

−β1

�

a, s′1
��

[β1 < 0 ⇐⇒ |β1|= −β1] ,

= n
�

−α1(a)a
2
�

= n
�

�α1(a)a
2
�

� [α1(a)< 0 from (58)] . (60)

∴ For a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

,

�

�

�

�

αn(a)a2n

α1(a)a2

�

�

�

�

≤ n , ∀n≥ 2 . (61)

For illustration, we show
�

�

�

αn(a)a2n

α1(a)a2

�

�

� as a function of a for 1-loopφ4-amplitude and tree level

type II string amplitude in figure (2). The presented proof assumes the range a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

, even though the plots suggest that bound is still valid till a ∈
�

−2µ
9 , 0

�

∪
�

0, 2µ
3

�

, for

some cases. For the string amplitude a ∈
�

− s(0)1
3 , 0

�

∪
�

0,
2s(0)1

3

�

, where s(0)1 is the starting point

of the physical cuts in s-channel. We use the fact that first massive state is at s(0)1 = 1.

-0.5 0.5 1.0
a

-0.5

0.5

1.0

αn (a) a
2 n

α1 (a) a
2
n

n=1

n=2

n=3

n=20

n=50

(a) Tree level type II string amplitude. Red lines
are a = − 1

3 , 2
3
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a
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1.0
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2 n

α1 (a) a
2
n
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(b) 1-loop φ4-amplitude. Red lines are a = − 8
9 , 8

3

Figure 2: Bounds on
�

�

�

αn(a)a2n

α1(a)a2

�

�

� as a function of a
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5 Stronger bounds on the Wilson coefficients Wp,q

In order to derive bounds on Wp,q, we first recall the formula of (39). We have already proved

in equation (4.10) that α1 < 0 for a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

. Now, α1 = −W1,0

�

a
W0,1
W1,0
+ 1

�

which follows from (39). Further, W1,0 is strictly positive, which was shown in [4, 10, 25].

This immediately implies that
�

a
W0,1
W10
+ 1

�

> 0 for the given range of a quoted above. From
here, the bound in (62) follows.

−
9

4µ
<

W0,1

W1,0
<

9
2µ

. (62)

It is to be emphasized that if (62) is not satisfied, i.e., if W0,1/W1,0 is outside the range given
by (62), then dialing a within the range −2µ

9 < a < 4µ
9 , a 6= 0, one can make the factor

�

a
W0,1
W1,0
+ 1

�

change sign contradicting α1(a) < 0 in the said range of a.13 Let us present this
derivation a little differently as well. Using theorem 4.2 for n= 2 and (39), we find

−2≤ 2−
27a2

�

a
�

aW0,2 +W1,1

�

+W2,0

�

aW0,1 +W1,0
≤ 2 . (63)

Now if the denominator aW0,1 +W1,0 vanishes, then unless at the same point the numerator
vanishes, we will contradict the inequality. Suppose for a = a0, the denominator vanishes.
Then we must have a0(a0W0,2+W1,1)+W2,0) = 0 giving a relation between three apparently
independent Wilson coefficients. This appears unnatural to us and if we were to avoid this
possibility we would again get eq.(62). Using eq.(63), it is also possible to deduce bounds [29]
on the individual W0,2/W1,0,W1,1/W1,0,W2,0/W1,0 and these appear comparable to [11].

The condition − 9
4µ <

W0,1
W1,0

was derived in [4, eq (5)], while
W0,1
W1,0

< 9
2µ is a new finding.

For illustration purpose, we show in figure (3) that pion S-matrices satisfy them in a very
non-trivial way. We will comment more on the behaviour exhibited in figure (3) below.

1 2 3 4
s0

-0.5

0.0

0.5

1.0

01

10

Figure 3: Ratio of
W0,1
W1,0

obtained from the S-matrix bootstrap. The horizontal axis
is the Adler zero s0. The green points are for the pion lake [22]. The blue and red
points are for the upper and lower river boundaries [23, 24] while the black points
are for the line of minimum averaged total cross section S-matrices [24].

For the string example, we can ask the following question: Given W0,1,W1,0,W1,1,W2,0,
in other words the Wilson coefficients till the eight-derivative order term x2, how constraining

13Note that if we were to find stronger bounds on the ratio, we would need a wider allowed range for a and
vice versa, contrary to the naive expectation.
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2.5 3.0 3.5 4.0
02
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20

30

| b2
b1
|-2

0.6667 0.6333 0.6

(a) Tree level type II string amplitude

(b) Tree level type II string amplitude

-1.5 -1.0 -0.5 0.5 1.0
02

5
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15

20

| b2
b1
|-2

1.7778 1.7444 1.7111

(c) Pion scattering amplitude, s0 = 0.35

Figure 4: Constraints on Wilson coefficients using (63). Given W0,1,W1,0,W1,1,W2,0

figure shows that bound on the W0,2. Since
�

�

�

b2
b1

�

�

�− 2 should be less than zero, W0,2

must lie inside the triangle. Black line is the exact answer. Different values of a are
indicated with different colours.

is (63)? The situation is shown in fig(4b). Quite remarkably, the range of W02 is very limited;
the inequality is very constraining indeed!

We can further investigate the situation for n= 3. We get

− 3≤ 3+
27a2

�

a
�

−4aW0,2 + 27a
�

a
�

a
�

aW0,3 +W1,2

�

+W2,1

�

+W3,0

�

− 4W1,1

�

− 4W2,0

�

aW0,1 +W1,0
≤ 3 .

(64)

We give in the appendix a demonstration of how to constrain W0,3 using this inequality.

6 Two-sided bounds on the amplitudes

The crossing symmetric dispersion relation can enable us to derive 2−sided bounds on the
scattering amplitude M. In this section, we will derive such bounds. The result that we will
first prove is the following:

Theorem 6.1. Let M(z̃, a) be a unitary and crossing-symmetric scattering amplitude admitting
the dispersive representation (35) and admits the power series expansion (37) about z̃ = 0 which
converges in the open disc |z̃|< 1. Define the function

f (z̃, a) :=
M(z̃, a)−α0

α1(a)a2
, α0 =M(z̃ = 0, a) . (65)

Then for a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

,

(1)

| f (z̃, a)| ≤
|z̃|

(1− |z̃|)2
, |z̃|< 1 , (66)

(2)

| f (z̃, a)| ≥
|z̃|

(1+ |z̃|)2
, z̃ ∈ R ∧ |z̃|< 1. (67)
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Proof. Let us first prove the upper bound. Starting with the dispersion relation (35), we can
obtains

|M(z̃, a)−α0|≤
∫ ∞

2µ
3

ds′1
s′1

�

�

�A
�

s′1; s(+)2

�

s′1, a
�

�

�

�

�

�

�H(s′1, z̃)
�

� [Applying triangle inequality] ,

=
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�
�

�β1(a, s′1)
�

�

�

�F(z̃; s′1, a)
�

� [Using lemma 3.1 and (50)] ,

≤
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�
�

�β1(a, s′1)
�

�

|z̃|
(1− |z̃|)2

[Using corollary 55] ,

=
|z̃|

(1− |z̃|)2
1
π

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�

�

−β1(a, s′1)
�

[β1 < 0 ⇐⇒ |β1|= −β1] ,

=
|z̃|

(1− |z̃|)2
�

−α1(a)a
2
�

=
|z̃|

(1− |z̃|)2
�

�α1(a)a
2
�

� [α1(a)< 0 from(58)] . (68)

Thus, we have finally,
�

�

�

�

M(z̃, a)−α0

α1(a)a2

�

�

�

�

≤
|z̃|

(1− |z̃|)2
, |z̃|< 1; (69)

which proves part (1) of the theorem.
Next, let us prove the lower bound. First, we write

F(z̃; s1, a)≡
H(z̃; s1, a)
β1(a, s1)

=
z̃

(1+ z̃)2
×ρ(z̃; s1, a) , (70)

where

ρ(z̃; s1, a) :=
�

1+ z̃
1− z̃

�2

×
�

1−
27a2(a− s1)

s3
1

k(z̃)

�−1

, (71)

k(z̃) being the Koebe function of (10). Now it turns out that ρ > 1 for z̃ ∈ R+ and ρ < −1 for
z̃ ∈ R−. This immediately implies

|ρ|> 1 , (72)

z̃ρ = |z̃||ρ| . (73)

Next, we use the dispersion relation and (50) to get

|M(z̃, a)−α0|=
1
π

�

�

�

�

�

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�

β1(a, s′1) F(z̃; s1, a)

�

�

�

�

�

,

=
1
π

�

�

�

�

�

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�

β1(a, s′1)
z̃

(1+ z̃)2
×ρ(z̃; s1, a)

�

�

�

�

�

[Using (70)] ,

=
1
π

�

�

�

�

�

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�

β1(a, s′1)
|z̃|

(1+ z̃)2
× |ρ(z̃; s1, a)|

�

�

�

�

�

[Using (73)] ,

≥
1
π

|z̃|
(1+ |z̃|)2

�

�

�

�

�

∫ ∞

2µ
3

ds′1
s′1

A
�

s′1; s(+)2

�

s′1, a
�

�

β1(a, s′1)

�

�

�

�

�

[Using triangle ineq. and (72)] ,

=
1
π

|z̃|
(1+ |z̃|)2

�

�α1(a)a
2
�

� . (74)

Therefore, we have finally,
�

�

�

�

M(z̃, a)−α0

α1(a)a2

�

�

�

�

≥
|z̃|

(1+ |z̃|)2
, z̃ ∈ R ∧ |z̃|< 1 ; (75)

proving the second part and, hence, the theorem.
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We emphasize that our derivation for upper bound considers z̃ as complex numbers, while
we present the derivation for lower bound considering only z̃ real numbers. We worked with
a range of −2µ

9 < a < 4µ
9 . Nevertheless, both of the bounds are valid for complex z̃ as far as

we have observed. These bounds are satisfied by the 1−loop φ4 amplitude and close string
amplitude even for complex z̃, demonstrated in figure (5), (6).

Even though, we have presented our proof for the range a ∈
�

−2µ
9 , 0

�

∪
�

0, 4µ
9

�

, for certain

cases, we observed that bound is still valid till a ∈
�

−2µ
9 , 0

�

∪
�

0, 2µ
3

�

. For massless amplitude

its a ∈
�

− s(0)1
3 , 0

�

∪
�

0,
2s(0)1

3

�

, where s(0)1 is the starting point of the physical cuts in s-channel.

Let us now rewrite the two sided bounds of the familiar Mandelstam variables. Now first note
that, for real z̃ > 0, in terms of x , a variables, the bounds become

a2|α1(a)||x |
4|x |+ 27a2

≤ |M(z, a)−α0| ≤
|α1(a)||x |

27
. (76)

Here since x = −27a2z̃/(z̃ − 1)2, x is real and negative. Now let us examine these bounds in
the Regge limit where |s1| → ∞ with s2 fixed. From (33), it is clear that in this case in the
z-variable, z→ e2πi/3 which also takes s2→ a. Now writing s1 = |s1|eiθ/2, so that x ∼ |s1|2eiθ

when |s1| →∞, we find

1
4
−

27a2 sin2 θ
2

16 |x |
+O

�

1
|x |3/2

�

≤
�

�

�

�

M(z̃, a)−α0

α1(a)a2

�

�

�

�

≤
|x |

27a2 sin2 θ
2

−
1
4

cot2 θ +O
�

1
|x |1/2

�

. (77)

Let us comment on this form. First, since |x | ∼ |s1|2, the upper bound for fixed θ is the |s1|2

bound on the amplitude. Next, note the the important sin2 θ
2 factor. If we took s1 to be real

and positive, then the upper bound would be trivial. However, the real s1-axis gets mapped to
boundary of the unit disc, which is not a part of the open disc. Thus to use these bounds, we
have to keep θ ∈ (0,2π), with the end-points excluded. Next, note the more interesting lower
bound which begins with a constant! Finally, and importantly, the bound involves α1(a)a2. In
terms of Wilson coefficients, this involves only W01,W10. Thus, in the Regge limit, we have
the following interesting bound

27a2

4
|aW01 +W10|® |M(z̃, a)−M(0, a)|®

|s1|
2

sin2 θ
2

|aW01 +W10| . (78)

7 Univalence of the EFT expansion

So far, on the QFT side, we have focused on results motivated by the Bieberbach conjecture
but which one can derive by using the crossing symmetric dispersion relation. All the QFT
conditions we have derived so far hint at univalence. Establishing univalence in generality is
a hard question and beyond the scope of our present work. Nevertheless, we can investigate
scenarios where univalence is guaranteed to not hold. We will begin our investigations using
Szegö’s theorem14. For definiteness, consider the low energy expansion of the 2-2 dilaton
scattering in type II string theory with the massless pole subtracted. We will consider

f (z̃, a) =
M(z̃, a)−M(0, a)
∂z̃ M(z̃, a)|z̃=0

, (79)

14We thank P. Raman for numerous suggestions and discussions pertaining to this section.
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(a) Tree level type II string amplitude
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Figure 5: Bounds on amplitude, as in theorem (6.1), are satisfied by Tree level type
II string amplitude and 1-loop φ4-amplitude.
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Figure 6: Bounds on amplitude, as in theorem (6.1), are satisfied by Tree level type
II string amplitude and 1-loop φ4-amplitude. These bounds on amplitude valid for
complex z̃.

expanded around z̃ = 0. This corresponds to a low energy expansion of the amplitude since
z̃ ∼ 0 corresponds to x ∼ 0, y ∼ 0. If M(z̃, a) was univalent inside a disc D of radius R, for
a certain range of a, then f (z̃, a) should be locally univalent inside D. This means that the
absolute value of the smallest root (z̃ = ζmin) of ∂z̃ f (z̃, a) = 0 should be greater than 1/4 to
satisfy Szegö’s theorem. This can be easily checked using Mathematica to some high power in
the expansion in z̃. The plot in fig.(7a) shows that univalence of the full amplitude is only pos-
sible in the range a ∈ (−1/3, 2/3) as one may have anticipated from our previous discussion.
In fig.(7b) we show monotonicity of ζmin as a function of n for small a. This is intuitive in the
sense that for higher n’s, we are putting in more number of terms in the EFT expansion, as a
result of which the radius of the disk, within which there is potential univalence, increases.
We should point out, however, that for slightly larger values of a, for instance, a > 0.05, there
are other features that arise in the plot, which do not respect monotonicity—the physical im-
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plication of this finding is unclear to us. For 1-loop φ4, our findings are qualitatively similar.
In appendix D, we comment on the Nehari conditions.

n=9

n=5

n=1

-0.4 -0.2 0.0 0.2 0.4 0.6
a

0.2

0.4

0.6

0.8

1.0
ζmin

(a)
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n

0.1

0.2

0.3

0.4

0.5

ζmin

(b)

Figure 7: Testing univalence using Szegö’s theorem. (a) Plot of ζmin vs a.
This demonstrates that for the string amplitude to be potentially univalent,
−1/3< a < 2/3 must hold. (b) Plot of ζmin vs n for a = 0.02.

7.1 Grunsky inequalities and EFT expansion

From the expansion in (34), one can relate the Wp,q with the ω j,k in (14). One can easily
check that for each N in (14), p+ q ≤ 2N + 1 numbers of Wp,q appears in (14). Therefore, in
order to hold the (14) till N , for (65), one has to retain terms in EFT expansion (34) up to

p+ q ≥ 2N + 1 . (80)

Before delving into generalities, we begin by considering a toy problem.

7.1.1 A toy example: scalar EFT approximation

Since the general case of the univalence of the convex sum of univalent functions is not entirely
clear (or more appropriately known to us), let us consider a toy problem below. This problem
is enlightening for several reasons. For starters, the amplitudes we consider below are in two
“standard” forms. Both of these were considered in [11] to study scalar EFTs, and it was
found that scalar EFTs could be approximated as a convex sum of the amplitudes below. Thus
consider the sum

M(to y)(s1, s2) = µ1M1(s1, s2) +µ2M0(s1, s2) , (81)

where

M0(s1, s2) =
1

M2
1 − s1

+
1

M2
1 − s2

+
1

M2
1 + s1 + s2

−
3

M2
1

=
27a2z̃

�

2M2
1 − 3a

�

27a3z̃ − 27a2M2
1 z̃ −M6

1 (z̃ − 1)2
,

M1(s1, s2) = −
1

�

M2
2 − s1

� �

M2
2 − s2

� �

M2
2 + s1 + s2

� =
(z̃ − 1)2

27a3z̃ − 27a2M2
2 z̃ −M6

2 (z̃ − 1)2
.

(82)

In the range (we are considering real a only), −
M2

1,2
3 < a <

2M2
1,2

3 , individually M0(s1, s2),
M1(s1, s2) do not have any singularity inside the unit disk. A straightforward calculation

shows for both of them ω j,k = −
δ j,k

k for j > 0, k > 0. Therefore, M0(s1, s2), M1(s1, s2) are
individually univalent inside the unit disk when the restriction on a holds. Now the sum of
M0(s1, s2), M1(s1, s2), we denoted M(to y)(s1, s2) does not have any singularity inside the
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unit disk. We can check the univalence of the combination using the Grunsky inequalities

again. Quite remarkably, if M1 = M2, we again find that ω j,k = −
δ j,k

k for j > 0, k > 0.
Therefore, for any λ1,λ2 for the range of a above, the combination is univalent inside the
disk! When M1 6= M2 we get nontrivial constraints for univalence. Already at N = 1, the
Grunsky inequality (14) leads to

�

�

�

�

1−
729a4µ1µ2

�

M2
2 −M2

1

�

2
�

a−M2
1

� �

2M2
1 − 3a

�

3

M10
1

�

µ1(a−M2
1 ) +µ2M6

1 (2M2
1 − 3a)

�

2

�

�

�

�

≤ 1 , (83)

where we have expanded around M2
1 = M2

2 and retained only the leading term. This leads
to a constraint on µ1,µ2 in terms of M1, M2, a. One interesting point to make note of is the
following: for a ∼ 0, for the above condition to hold, we will need µ1µ2 < 0. This is a
consequence of unitarity and conforms with the signs in [11]. We leave a detailed investigation
of such constraints for the future15. Next, we will consider expanding the amplitude around
a ∼ 0 and will find that to leading order the Grunsky inequalities hold.

7.1.2 Proof of univalence of f (z̃, a) for |a| small

Using the expansion (34), one can calculate the Grunsky coefficients, {ω j,k}, for f (z̃, a) in
leading order of small a to obtain

ω j,k = −
δ j,k

k
+

729a4 jk
�

W1,0W3,0 −W2
2,0

�

W2
1,0

+O(a5) . (84)

From positivity [10, eq (6.4)], W1,0W3,0 ≥W2
2,0. Therefore second term in the above equation

is positive. Therefore, we get

|ω j,k| ≤
δ j,k

k
, for j = k . (85)

The off-diagonal terms ( j 6= k) starts at O(a4). From (14), we can say that for small a, Grunsky
inequalities are satisfied by f (z̃, a) in (65).

We can push the Grunsky inequalities further. If we assume that perturbatively around
a = 0, univalence should hold, then we can derive nonlinear inequalities by making clever
choice for the complex parameters λk in (14). For instance, for N = 2 in (14), choosing
λ2 = −λ1/2 and λ1,λ2 as real, we easily find the following complicated nonlinear inequality

−3W4
2,0 + 8W1,0W2

2,0W3,0 − 4W2
1,0W2,0W4,0 − 3W2

1,0W
2
3,0 + 2W3

1,0W5,0 ≥ 0 . (86)

We have verified that the string amplitude, as well as the pion S-matrices, satisfy this inequality.

7.2 Bounds in case of EFTs:

In an EFT, usually, the Lagrangian is known up to some energy scale. From that information,
one can calculate the amplitude up to that scale. In such cases, we can subtract off the known
part of the amplitude. These steps result in a shift in the lower limit of the dispersion integral
(35) by the scale δ0, namely µ→ µ+3δ0/2 (see [4]). Therefore, making this replacement in
(62), we have

−
9

4µ+ 6δ0
<

W0,1

W1,0
<

9
2µ+ 3δ0

. (87)

15In light of such complications, it seems to us that it will be more useful in physics to think about an approximate
notion of univalence, may be saying that a function is approximately univalent if the first few N ’s in the Grunsky
inequalities hold.
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Here W are the Wilson coefficients of the amplitude with subtractions. Now notice that if we
consider δ0� µ then we have

−
3

2δ0
<

W0,1

W1,0
<

3
δ0

. (88)

Let us compare this to [11]. Converting their results to our conventions, we find that the lower
bound above is identical to their findings–this is corroborated by the results of [10] as well as
what arises from crossing symmetric dispersion relations [4]. The other side of the bound is
more interesting. The strongest result in d = 4 in [11] places the upper bound at ≈ 5.35/δ0
in our conventions. Their approach also makes the bound spacetime dimension dependent.
Now remarkably, the bound we quote above and the d � 1 limit of [11] are identical! In EFT
approaches, one takes the so-called null constraints or locality constraints and expands in the
limit δ0� µ. It is possible that a more exact approach building on [11] will lead to a stronger
bound as in (88).

Let us now comment on the behaviour in the figure (3). First, notice that all S-matrices
appear to respect the upper bound we have found above; for the S-matrix bootstrap results,
we set δ0 = 0. For comparison, note that for 1-loop φ4, and 2-loop chiral perturbation theory,
we have

�

W0,1

W1,0

�

φ4

≈ −0.315 ,

�

W0,1

W1,0

�

χ−PT

≈ −0.135 , (89)

both in units where m = 1. These numbers would be closer to the lower black dashed line in
the figure (3), which is the bound that is common in all approaches so far. The upper black
dashed line is what we find in the current paper. For future work, it will be interesting to
search for an interpolating bound as in (87) which enables us to interpolate between δ0 = 0
and δ0� µ.

8 Discussion

In this paper, we have examined a potentially remarkable correspondence between aspects of
geometric function theory and quantum field theory. We believe we have just scratched the
surface. There are many interesting questions to pursue in the near future. By no stretch of
the imagination is our examination of the vast mathematics literature on univalent functions
exhaustive. While we believe we have identified some of the interesting mathematics theo-
rems which have either a QFT counterpart or applications in QFT, there must be a great many
connections waiting to be discovered. Let us first recapitulate what we accomplished in this
paper:

• We found QFT counterparts to (2) and (3). In QFT, we made use of the crossing sym-
metric dispersion relation and unitarity. The only place we used univalence was for the
kernel in the crossing symmetric dispersion relation, which we proved was univalent
inside the open disk D for a range of a. In deriving the appropriate kernel for the dis-
persion relation, we assumed that M(s, t) in the Regge limit went like o(s2). However,
the upper bound in (3) is stronger since it applies not just in this limit. To see this, recall
that the Regge limit was z̃→ 1, and the bound applies more generally.

• The univalence of the kernel enabled us to derive upper bounds on the Taylor coefficients
of the scattering amplitude via application of the de Branges’s theorem (Bieberbach con-
jecture) to the kernel. These bounds can be used to obtain inequalities concerning the
Wilson coefficients, and we found strong bounds which are respected by all theories con-
sidered in this paper, which include 1-loop φ4, pion S-matrix bootstrap (which included
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a plethora of examples which respects unitarity, crossing symmetry and has information
about the standard model ρ-meson mass) and even the massless pole subtracted string
tree-level dilaton scattering.

• We further derived two-sided bounds on the scattering amplitude. In deriving the upper
bound, we used the univalence of the kernel in the form of the Koebe growth theorem.
The upper bound, expressed in terms of the usual Mandelstam variables, translates to,
for large |s|, fixed t, |M(s, t)|® s2.

• We proved that to leading order in a, around a ∼ 0 the scattering amplitude is univalent
as it respects the Grunsky inequalities.

Here is our immediate wish-list:

• The crossing symmetric kernel was univalent for regions of complex a. We did not
examine this in detail in this paper since we wanted to make use of the positivity of the
absorptive part. It will be important to ask if the univalence of the full amplitude holds
for complex a.

• In examples that do not have three channel crossing symmetry, like open string scattering
amplitudes for Yang-Mills, or even Moller scattering, it will be interesting to identify the
appropriate variable in which univalence can be studied.

• In light of our proof of univalence to leading order in a, a more detailed study of what
is known about the convex sum of univalent functions should be made.

• While the power of univalence cannot be denied, in the mathematics literature, there
are also interesting and potentially powerful theorems (and conjectures) corresponding
to multivalent functions. The connection between multivalence and QFT should also be
examined.

As physicists, we should ask if univalence is a new/stronger condition or if it is possible to
simply prove this holds (for a range of a values) using standard QFT dispersion techniques.
While we do not have a conclusive opinion about this, we should point out that (83) holds
near a ∼ 0 only for unitary theories. Further, we have implicitly used unitarity to derive our
QFT results since it entered in showing positivity of the absorptive part. So maybe we can
sharpen this question by asking: Does dispersion relation and univalence imply unitarity?

It will be also interesting to expand the S-matrix bootstrap numerics to more general cases
(for instance, in higher dimensions, varying the ρ-meson mass etc) to examine the inequalities
considered in this paper16. In a related vein, the CFT Mellin amplitudes [26] also admit a
crossing symmetric representation [6]. One can ask related questions in these cases as well.
In [27] CFT correlators in position space in the diagonal limit were shown to be two-sided
bounded, reminiscent of (3). It is tempting to think that there will be a similar story at work
there.

It took around 70 years for the (now more than 100 year old) Bieberbach conjecture to be
proved in generality. We found an interesting connection with physics; it is highly likely that
there are more gems and hidden treasures buried waiting to be discovered!

16The Grunsky inequalities superficially have some similarities with the non-linear inequalities arising in the
EFT-hedron story in [25].
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A Univalence in Physics

As conveyed earlier, the discussion of univalence in physics is scarce to find in the literature.
However, such endeavours have been up taken in the distant past and in some recent work.
In this appendix, we will give concise reviews of such papers [7–9].

Univalence in forward scattering

To the best of our knowledge, univalence in the context of high energy scattering amplitude
was first considered in the mid-1960s in the background of axiomatic field theory considera-
tions. Khuri and Kinoshita [7] constructed a univalent function out of the forward scattering
amplitude. We will summarize their analysis in what follows. Starting from the forward scat-
tering amplitude M(s, 0), one can construct the function

g(s) =

∫ s

0

ds′
M(s′, 0)−M(0,0)

(s′)2
, (90)

which can be proved to be univalent in the upper-half s plane, i.e. for ℑ(s) > 0. See [7] for the
detailed argument of the proof.

Univalent functions satisfy sharp inequalities. However, usually, these inequalities are
stated for univalent functions on the open unit disc. But, by Riemann mapping theorem,
every simply connected, proper, open subset of the complex plane can be bi-holomorphically
(holomorphic bijective mapping) mapped onto the open disc D. Thus, we can map the upper
half-s-plane bi-holomorphically to D. One such bi-holomorphic mapping is

w(s) :=
s− iλ
s+ iλ

, λ > 0 . (91)

Under this map, the upper-half s plane is mapped to the unit disc |w|< 1, in the w plane with
s = iλmapped to the origin w= 0. It is to be emphasized that the mapping is defined for fixed
λ17. Now one can consider the function ϕ(w) defined by

ϕ(w) :=
g(s(w))− g(iλ)

2iλ g ′(iλ)
. (92)

Because g(s) is univalent in the upper half-s plane, g ′(iλ) 6= 0 necessarily. Thus ϕ(w) is well-
defined over |w| < 1. Further, since w(s) is a bi-holomorphism, ϕ(w) is a univalent mapping
on the open disc |w|< 1. Also note that, ϕ(0) = 0 and ϕ′(0) = 1. Thus, ϕ(w) admits a power
series representation of the form

ϕ(w) = w+
∞
∑

k=2

γk wk . (93)

Thus, it is a schlicht function, ϕ ∈ S. And now one can apply Koebe growth theorem to this
function to estimate bounds on g(s).

17In fact, this is the unique mapping with the property w(iλ) = 0 and Arg.[w′(iλ)] = 3π/2 for fixed λ.
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Univalence in flux-tube bootstrap

Recently in [8], possible role of univalent functions has been explored in the context of flux-
tube S-matrix bootstrap. We would like to thank Andrea Guerrieri for drawing our attention
to this work. We briefly summarize the investigation as below.

Excitations of the flux-tube can be modelled by massless particles called branon. Their
scattering is described by 2D massless S-matrix 18

S(s) = e2iδ(s) , (94)

with
2δ(s) =

s
4
+ γ3s3 + γ5s5 + γ7s7 + iγ8s8 +O(s9) . (95)

Here γ3,γ5,γ7 are non-universal parameters which parametrize the theory space. On the other
hand γ8∝ γ3

3 is not independent, see [8] for details.
The S-matrix S(z) is a holomorphic function from the upper half-planeH+ := {z| Im(z)> 0}

to the unit disk D. This can be seen as following. From unitarity, |S(z)| ≤ 1 for z ∈ R. Then
applying maximum modulus principle, we have

S(z)≤ 1, z ∈H+ . (96)

The holomorphic map S :H+→ D satisfies the Schwarz-Pick inequality:
�

�

�

�

�

S(z1)− S(z2)

1− S(z1)S(z2)

�

�

�

�

�

≤
�

�

�

�

z1 − z2

z1 − z̄2

�

�

�

�

, z1, z2 ∈H+µ . (97)

This can be obtained by applying Schwarz-Pick lemma to the holomorphic map S◦W−1 : D→ D ,
where W :H+→ D is Cayley transform defined by

W (z) =
z − i
z + i

, z ∈H+ . (98)

The equality in (97) above is satisfied if and only if S is a holomorphic isomorphism or equiv-
alently an univalent function.

We can now consider the function

S1(z|w) :=

�

S(z)− S(w)

1− S(z)S(w)

�

hz −w
z − w̄

i−1
. (99)

Then, the Schwarz-Pick inequality (97) gives
�

�S1(z|w)
�

�≤ 1 ,∀z, w ∈H+µ . (100)

Now inserting (94) and (95) into (100) above and expanding for small imaginary z and w, we
get

S1(i x |i y) = −1+
�

1
96
+ 8γ3

�

x y + · · · ≥ −1 . (101)

This leads to the bound

γ3 ≥ −
1

768
. (102)

The main important point in connection to univalence is that the bound is saturated by univalent
S-matrix. These functions have been called single CDD-zero functions in [8].

18Note that in 2D, we have a single Mandelstam variable s.
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Hydrodynamical bounds from univalence

In the recent work [9], the theory of univalent functions was put to use for deriving bounds
on the hydrodynamic transport coefficients. The starting point is the frequency-momentum
dispersion relation, ω(q2), obtained from linearised hydrodynamics. Here ω is the frequency,
and q2 is the momentum squared of a collective mode: diffusion or sound. In a hydrodynam-
ical theory preserving spatial rotations, the classical19 ω(q2) are given by infinite series of the
form

ωdiff

�

z ≡ q2
�

= −i
∞
∑

n=1

cnzn =
fdiff(z)

i
,

ω±sound

�

z ≡
Æ

q2
�

= −i
∞
∑

n=1

ane±
iπn
2 zn = f ±sound(z) ,

(103)

with an, cn ∈ R for all n ≥ 1. The coefficient c1 = D is the diffusivity, and a1 = vs is the speed
of sound. Treating z as a complex variable in both of the above equations, one investigates the
domains in the complex z plane on which ωdiff(z) and ω±sound(z) are univalent. The main tool
to establish this is to use Re f ′(z) > 0 which is a sufficient condition for an analytic function
to be univalent, which translates into conditions on the group velocity. Explicit checks for
situations where such conditions holds were done using holography–for more details see [9].
Then, in that domain one can use univalence to write bounds via Koebe growth theorem:

|ω0| (1− |ζ0|)
2

|ζ0|
�

�∂ζϕ−1(0)
�

�

≤ (D or vs)≤
|ω0| (1+ |ζ0|)

2

|ζ0|
�

�∂ζϕ−1(0)
�

�

, (104)

where ζ := ϕ(z) is the conformal mapping from domain of univalence to open unit disk, and
ϕ(0) = 0. z = z0 is a point in the domain of univalence such that ω0 := ω(z0) is known and
ζ0 = ϕ(z0). Also, one can write bounds from de Branges theorem

�

�

�

�

�

c2 +
D
2

∂ 2
ζ
ϕ−1(0)

�

∂ζϕ−1(0)
�2

�

�

�

�

�

≤
2D

�

�∂ζϕ−1(0)
�

�

. (105)

Using the relation between transport and chaos, which has been established in large-N the-
ories, namely via pole skipping considerations, which relate frequency at a specific complex
momentum with the Lyapunov exponent, interesting bounds were derived in [9] which give
two-sided bounds on diffusivity in terms of the Lyapunov exponent. The main challenge in [9]
as well as in the present paper is to identify conditions where univalence holds. As pointed
out in the main text, we were able to get mileage by knowing where the kernel appearing in
the dispersion relation was univalent. Further constraints will arise on establishing the pre-
cise conditions where the full amplitude (which is a convex sum of univalent functions) is
univalent.

B Various Amplitudes

B.1 Tree level type II superstring theory amplitude

The low energy expansion of the type II superstring amplitude is well known, see for exam-
ple [28] for a recent discussion. The amplitude after stripping off a kinematic factor and
subtracting off the massless pole is given below. This is what we will use. In order to facilitate

19The classical theory is devoid of any stochastic noise or loop corrections which lead to breakdown of analyticity.
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Table 1: Wp,q for tree level type II superstring theory amplitude

Wp,q q=0 q=1 q=2 q=3 q=4 q=5
p=0 2.40411 -2.88988 2.98387 -2.99786 2.99973 -2.99997
p=1 2.07386 -4.98578 7.99419 -10.9987 13.9998 -17.
p=2 2.0167 -6.99881 14.9984 -25.9995 39.9999 -57.
p=3 2.00402 -9.00023 23.9996 -49.9998 89.9999 -147.
p=4 2.00099 -11.0002 34.9999 -84.9999 175. -322.
p=5 2.00025 -13.0001 48. -133. 308. -630.

Table 2: Wp,q for 1-loop φ4 amplitude

Wp,q q=0 q=1 q=2 q=3 q=4 q=5
p=0 -5.22252 -0.0209238 0.000401094 -0.0000116118 3.9934× 10−7 -1.5104× 10−8

p=1 0.0663542 -0.0023309 0.0000983248 -4.4442× 10−6 2.0832× 10−7 -
p=2 0.00344623 -0.00027954 0.00001862 -1.1521× 10−6 - -
p=3 0.000267396 -0.0000348355 3.1948× 10−6 -2.5174× 10−7 - -
p=4 0.0000245812 -4.4442× 10−6 5.2081× 10−7 - - -
p=5 2.4827× 10−6 -5.7605× 10−7 - - - -

expansion, it is also useful to recast the Gamma function in terms of an exponential of sum of
Zeta functions as in [28].

M(cl)(s1, s2) = −
Γ (1− s1) Γ (1− s2) Γ (s1 + s2 + 1)

s1s2 (s1 + s2) Γ (s1 + 1) Γ (−s1 − s2 + 1) Γ (s2 + 1)
+

1
s1s2 (s1 + s2)

. (106)

Note that we have stripped off the kinematic factor x2 = (s1s2 + s2s3 + s1s3)2. Had we re-
tained it then the graviton pole subtracted amplitude in the Regge limit would have behaved
like |s1|2/t so that the dispersion relation would need three subtractions. Therefore, it is im-
portant that we remove this kinematic factor in what we do. The a`’s with this factor removed
continue to be positive–which is the main thing we used in our derivation.

B.2 1-loop φ4 amplitude

We just note the well-known standard result for the 1-loop φ4 amplitude.

M(φ4)(s1, s2) = −
2
q

s1 −
8
3 tanh−1

�
q

s1+
4
3

q

s1−
8
3

�

q

s1 +
4
3

−
2
q

s2 −
8
3 tanh−1

�
q

s2+
4
3

q

s2−
8
3

�

q

s2 +
4
3

−
2
q

s3 −
8
3 tanh−1

�
q

s3+
4
3

q

s3−
8
3

�

q

s3 +
4
3

.

(107)

B.3 Amplitude for pion scattering from S-matrix bootstrap

The S-matrix bootstrap puts constraints on pion scattering using unitarity and crossing sym-
metry. Some additional phenomenological inputs like ρ-meson mass or certain theoretical
constraints like S/D wave scattering length inequalities are used. For more details, the reader
is referred to [22–24]. The allowed S-matrices are displayed as regions on the Adler-zeros
(s0, s2) plane. In [23], a river like region of S-matrices on this plane was identified. The chiral
perturbation theory appeared to lie close to a kink-like feature near s0 = 0.35. As such this
particular S-matrix is of interest to us. In the main text, we have considered a plethora of
S-matrices like the lake in [22], the upper and lower boundaries of the river in [23] as well
as the more interesting line of minimization (where the total scattering cross-section is mini-
mized for a given s0) in [24]. The amplitude for pion scattering from S-matrix bootstrap with
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Table 3: Wp,q for pion scattering from S-matrix bootstrap with s0 = 0.35

Wp,q q=0 q=1 q=2 q=3 q=4 q=5
p=0 -1.90562 5.02671 -0.249527 0.0118008 -0.000555517 0.0000262344
p=1 5.72161 0.395863 -0.0520982 0.00402939 -0.000264317 -
p=2 0.642298 0.0217519 -0.00787377 0.000904172 - -
p=3 0.0796397 -0.000836409 -0.000995454 0.000166504 - -
p=4 0.0101505 -0.000579411 -0.000103708 - - -
p=5 0.0013093 -0.000136893 - - - -

s0 = 0.35 is given20 below for a = 1/2

M(z̃, a) = −1.90562− 55.586z̃ − 75.7314z̃2 − 49.2812z̃3 + 3.43872z̃4 + 45.4445z̃5 +O
�

z̃6
�

.
(108)

In table (3), we have listed various Wp,q.

C Grunsky inequalities (14) and s0 = 0.35 pion amplitude

Using the table (3), one can check the Grunsky inequalities (14) for N = 2, with some random
λ1,λ2. Since we are truncating the sum over Wilson coefficient expansion, if this truncated
sum comes from a univalent function (in the range of −2µ

9 < a < 4µ
9 ) and the truncated sum

is itself univalent. Therefore, it may be expected that the radius of the disc where univalence
holds should be smaller. This translates into the range of a, which should be now −µ9 < a < 2µ

9
(or maybe a smaller range of a). This can be realized from Szegö’s theorem, since a2n always
comes with z̃n, reducing the radius to 1/4 means reducing the range of a by 1/2 for unit disk
in z̃-plane. One can see in figure (8) that our expectation matches21 exactly. The main point
of the above discussion is that, there exists a finite range of a for which the f (z̃, a) is univalent.

-0.5 0.5 1.0
a

-8000

-6000

-4000

-2000

2000

LHS-RHS

λ1=1+2i, λ2= 21+97i λ1=130+91i, λ2=51+115i

λ1=13-227i, λ2= 21+97i λ1=10+20i, λ2= 50-50i

λ1=52i, λ2= 32i λ1=70, λ2=117

Figure 8: Red lines are the a = −4/9, 8/9

20One can write these kind of expansion for a general a upto desired order in z̃. To minimize numerical errors
in our calculations, we had to rationalize upto 20 decimal place.

21There can be some random λ1,λ2 for which the curves can be slightly below the line a = 8/9
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(a) Tree level type II string amplitude
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(b) Pion scattering amplitude, s0 = 0.35

Figure 9: Constraints on Wilson coefficient W0,3 using (64), where
W0,1,W1,1,W1,0,W2,1,W1,2W2,0,W3,0 are given. Figure shows that bound on

the W0,3. Since
�

�

�

b3
b1

�

�

�− 3 should be less than zero, W0,3 must lie inside the triangle.

Black dashed line is the exact answer. Different values of a are indicated with
different colours.

D Constraints from (64)

Suppose we consider W0,1,W1,1,W1,0,W2,1,W1,2W2,0,W3,0 as given. We can constrain W0,3,
using (64). See figure (9).

E Nehari conditions in 1-loop φ4-theory.

Using the 1-loopφ4-amplitude, we can check the Nehari conditions. For the range−4/9< a <
16/9, we find that Nehari necessary condition (2.3) always holds. Further, we find that Nehari
sufficient condition (2.2) does not always hold within the unit circle. Nevertheless, there are
regions where 1-loop φ4-amplitude respects Nehari sufficient condition (2.2). For example
within the radius22 of 2

3 for the range −4/9< a < 16/9 , the Nehari sufficient condition (2.2)
holds.

We can also check the Nehari conditions in a ∼ 0 region. We can expand the amplitude
around a = 0, then calculate the Schwarzian derivative (19). For example upto a4, we find

{ f (z), z}= −
6

(z2 − 1)2

�

1−
0.971a4(z + 1)4

(z − 1)4

�

. (109)

Of course, for the full range of a, the above (109) need not to satisfy the Nehari necessary
condition (2.3), since this is an EFT type expansion, and by Szegö theorem, we don’t expect
the univalent to hold in the same range of −4/9 < a < 16/9. Further, there always exists a
smaller range of a, where it is univalent. For example if we consider the radius 1/2, the above
(109) satisfies Nehari necessary condition (2.3) for −0.301< a < 0.301. Qualitatively similar
features hold for the string amplitude as well.

22These can be realized replacing z→ 2z/3, and check the conditions for the given ranges of a.
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