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EFT and the SUSY index on the 2nd sheet
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Abstract

The counting of BPS states in four-dimensional N = 1 theories has attracted a lot of
attention in recent years. For superconformal theories, these states are in one-to-one
correspondence with local operators in various short representations. The generating
function for this counting problem has branch cuts and hence several Cardy-like limits,
which are analogous to high-temperature limits. Particularly interesting is the second
sheet, which has been shown to capture the microstates and phases of supersymmetric
black holes in AdS5. Here we present a 3d Effective Field Theory (EFT) approach to the
high-temperature limit on the second sheet. We use the EFT to derive the behavior of the
index at orders β−2,β−1,β0. We also make a conjecture for O(β), where we argue that
the expansion truncates up to exponentially small corrections. An important point is the
existence of vector multiplet zero modes, unaccompanied by massless matter fields. The
runaway of Affleck-Harvey-Witten is however avoided by a non-perturbative confinement
mechanism. This confinement mechanism guarantees that our results are robust.
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1 Introduction and summary

It is by now a standard fact that every 4d N = 1 theory with a continuous R-symmetry can be
studied on the spatial manifold S3 while preserving four (time-independent) supercharges [1–
4], see also the reviews [5, 6]. The virtue of having the theory in compact space is that the
spectrum is discrete and the states are easier to count. One can define the Hamiltonian by
picking a supercharge Q and declaring the Hamiltonian to be proportional to {Q,Q†}. It is
particularly interesting to consider the states which have zero energy. Those, as usual, need
to be annihilated by Q, Q†.

If the original theory has N = 1 superconformal symmetry then these zero-energy states
are in one-to-one correspondence with quarter-BPS local operators. It is therefore not surpris-
ing that typically there is an infinite number of such zero-energy states and hence it is necessary
to count them more carefully. This is achieved by introducing two chemical potentials ω1,ω2
which are conjugate to charges that commute with Q,Q†.

In this way, one is led to the refined Witten index

I(ω1,ω2) = Tr (−1)F e−{Q,Q†}−ω1(J1+
1
2 R)−ω2(J2+

1
2 R) , (1.1)

which famously receives only contributions from states which are annihilated by Q,Q† [7]. R
stands for the R-charge and J1,2 are the spins corresponding to the two diagonal combinations
of the Cartan generators of SU(2) × SU(2). For fermionic fields both J1, J2 must be half-
integral and for bosonic fields both must be integral. Further, it is natural to view ω1,ω2 as
independent complex parameters. (In the literature, the notation p = e−ω1 , q = e−ω2 is also
common.) Of course we could have put any coefficient in front of {Q,Q†} in (1.1) as the index
receives only contributions from states which are annihilated by Q,Q†.

There is a simple path integral interpretation for (1.1): it is computed by a Euclidean
path integral on an S1 × S3 topology with complex structure parameters ω1,ω2 and periodic
boundary conditions for the fermion fields around S1 [8–10]. The precise way the field theory
is coupled to the background is determined by new-minimal background supergravity [4,11].
The metric on S1×S3 does not matter – it turns out to beQ-exact (as long as it is Hermitian) [8–
10]. Due to this metric-independence, we can view this construction as a holomorphic twist.1

Above we have identified the chemical potentials ω1,ω2 with the complex structure pa-
rameters on S1×S3. This is however only locally correct. Indeed, inspecting (1.1) it is obvious
that the index is generally not periodic under 2πi shifts of ω1 or ω2. It is therefore more ap-
propriate to think about (1.1) as a function living on a multiple cover of the space of complex
structures. We can switch between the different branches by shifting ω1 or ω2 by 2πi.2

1There is potentially a certain holomorphic anomaly [12], and see also [13–17]. This is expected to (perhaps)
affect the partition function only at order O(β) in the high-temperature expansion and hence we do not expect
that it will affect this paper, apart possibly for the O(β) term.

2This is reminiscent of non-modular invariant partition functions of 2d CFTs. For instance, one can think of
chiral torus characters. Such objects may not be invariant under τ→ τ+1, though this is an equivalent two-torus
as far as the complex structure goes. Here the situation is similar to chiral characters: we have a holomorphic
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In new-minimal supergravity, this multi-valuedness arises because it is necessary to choose
an R-symmetry gauge field, and if the R-charges of various fields are not integral, certain large
gauge transformations are not allowed. For instance, in N = 4 super Yang-Mills theory, all
bosonic elementary fields have R-charges of the form 2Z

3 , all the fermionic fields have R-charges
of the form 2Z+1

3 . As a result, shifting ω1→ω1 ± 6πi or ω2→ω2 ± 6πi takes us back to the
original index. In addition if we perform ω1→ω1 ± 4πi along with ω2→ω2 ∓ 4πi then we
likewise return to the same index (this holds more generally than in N = 4 super Yang-Mills
theory). We can use this freedom to put Im ω1 ∈ [0,6π) and Im ω2 ∈ [0, 2π). Hence, the
index of N = 4 super Yang-Mills theory takes values on a triple cover of the space of complex
structures.3

A very natural problem is to try and understand the limit of small chemical potentials

ω1,ω2→ 0 (1.2)

(with ω1/ω2 fixed) which is in some sense a measure of the asymptotic growth of BPS oper-
ators. In the microcanonical ensemble, this corresponds to a limit of large charges J1 +

1
2R,

J2+
1
2R. It is analogous to the high-temperature/large-charge limit of ordinary statistical sums.

In 2d, for critical systems, Cardy famously argued that the high-temperature asymptotics
is controlled by the trace anomaly c [18]. We will see that the problem of counting heavy BPS
operators is similarly controlled by central charges.

For real ω1,ω2, we may write ω1 = β b/`, ω2 = β/(`b), where β is the circumference of
S1 (the “thermal” circle), ` is the radius of S3, and b is a squashing parameter of S3. Then
the limit (1.2) of small complex structure parameters corresponds to the small-circle limit
β/`→ 0 while keeping the squashing b fixed. This justifies thinking about this limit as a high-
temperature limit. As we will discuss in detail later, general complex values of ω1,ω2 can be
obtained by considering a twisting of S3 over S1. (This is analogous to turning on τ1 in 2d
theories, where it represents a twisting of the space-like circle over the thermal circle.) Note
that complex values of ω1,2 still admit a perfectly Hermitian metric and they correspond to
well-defined points in the space of complex structures. The imaginary parts ofω1,2 are merely
certain “rotation” parameters describing the twisting of S3 over S1.

The problem can be therefore attacked by dimensionally reducing on the S1, remembering
that there could be various non-decoupling effects due to the Matsubara modes. This is a
standard high-temperature expansion approach to thermal field theory, see e.g. [19]. Here,
since, as we said, the fields all obey periodic boundary conditions, the KK zero modes must
be treated very carefully. There are zero modes both from the matter fields as well as from
the vector multiplet. The zero modes enjoy some complicated 3d dynamics. If the zero modes
settle in some “nice” 3d SCFT on R3, one can use powerful 3d effective field theory techniques
to conclude that [20]

logI = −8π2

3
ω1 +ω2

ω1ω2
(a− c) +O(1) (1.3)

on the first sheet of the index. The asymptotics is therefore controlled by a combination of the
a, c trace anomalies (more generally, for non-conformal theories a−c is replaced by TrR, which
is the ’t Hooft mixed gravitational anomaly of the R-symmetry). Since logI scales as ∼ 1/β ,

function of the complex structure parameters ω1,2 which is not necessarily single valued on the space of complex
structures.

3In fact, two of the branches are related by complex conjugation. To see that pick Im ω1 ∈ [2π, 4π) and
Im ω2 ∈ [0,2π) then transform to Im ω1 ∈ [−2π, 0) and Im ω2 ∈ [4π, 6π) and then reversing the signs of both
Imω1,2, which corresponds to complex conjugation of the index, we find Imω1 ∈ (0, 2π] and Imω2 ∈ (−6π,−4π]
and this can be finally transformed to Im ω1 ∈ (0,2π] and Im ω2 ∈ (0,2π]. Therefore, we have come back to
where we started. In particular the limit Im ω1 → 2π+ together with Im ω2 → 0+ is identified with the limit
Im ω1,2 → 2π− upon complex conjugation, which is tantamount to the statement that the Cardy limit on the 3rd
sheet is the complex conjugate of the Cardy limit on the 2nd sheet.
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which is like one positive power of the temperature, this is reminiscent of a 2d growth of oper-
ators. It is tantalizing that a similar slow growth is observed in non-supersymmetric theories
with periodic boundary conditions for the fermions [21]. The O(1) corrections to (1.3) are
not universal and in particular receive a model-dependent contribution from the f -coefficient
of the SCFT in 3d. By contrast, below we will study a different limit where the O(1) correction
is universal (on any suitable three-manifold).

A key assumption in the discussion above was that the 3d zero modes settle in a “nice”
3d SCFT. Let us now explain what “nice” means in this context. In Lagrangian theories, upon
studying the theory on a finite S1, the holonomies of the vector multiplet gauge fields become
periodic scalar fields u which are always flat at tree level and need to be integrated over. In
some cases, they may remain flat to all orders in perturbation theory on S1 ×R3. Typically a
potential is induced on S1×S3, V eff(u), and since the potential has terms scaling with negative
powers of β one has to simply account for the saddle points of V eff(u) in order to understand
the behavior of the theory at β → 0. The theory is “nice” if u = 0 is a saddle point and
it is the dominant one (one can relax this a little, allowing the moduli space of u to not be
lifted at all). This condition seems to hold quite generally. In fact, for a ≤ c and for charge
conjugation invariant theories (vector-like theories) it appears to be always the case, as far
as we know [22–25]. It seems reasonable to conjecture that (1.3) indeed holds for charge-
conjugation invariant theories with a ≤ c, even for non-Lagrangian theories. Since N = 2
theories are always vector like, this might explain why indeed (1.3) always seems to hold
when a ≤ c [26].

Having emphasized that the index is in fact defined on a multiple cover of the space of
complex structures, it becomes evident that (1.2) is not the only possible “high-temperature”
limit. For instance, we can first go to the second sheet and only then take the S1 to shrink.4

Recently, starting with [27–29], prompted by [30], there has been a lot of activity on
the holographic microstate counting for supersymmetric black holes in AdS5. The analysis
of the Cardy-like limit on the second sheet has played an important role in displaying the
correct asymptotic growth accounting for the black hole microstates, see [28, 31–38]. This is
complementary to the study of the large-N limit of the index, discussed in [29,39–47]. If one
takes the large-N limit first, there are many saddles (some of which have a direct holographic
interpretation within the classical gravitational theory). If one subsequently takes the Cardy-
like limit on the second sheet, a drastic simplification occurs and a clear dominating saddle,
corresponding to the black hole, is singled out.5 If one takes the limits in the opposite order,
i.e. implementing the large-N limit after taking the Cardy-like limit on the second sheet, the
large N limit becomes straightforward. The Cardy limit on the second sheet is therefore quite
an interesting object to study and it is for this reason that we dedicate the paper to the physics
on the second sheet.

To land on the second sheet we transform ω1→ω1+2πi and ω2→ω2 in terms of which
we can rewrite the index (1.1) as [27,33,34]

I = Tr e−πiR e−{Q,Q†}−ω1(J1+
1
2 R)−ω2(J2+

1
2 R) . (1.4)

One can readily see that this index is again sensitive only to ground states since for massive
representations the phase e−πiR leads to exact cancelations multiplet-by-multiplet; because of
this weighting by e−πiR, we may refer to (1.4) as the R-charge index. It is interesting that among
the ground states, the phase e−πiR leads to somewhat less cancelations than the previous (−1)F

and this is why on the second sheet indeed the index I typically grows faster in the new Cardy-

4In 2d CFTs, going to the second sheet is achieved by acting with the T matrix – see Footnote 2.
5Numerical analyses show hints of the gravitational behavior of the index already at finite (moderately large)

N [48,49].
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like limit:
ω1,ω2→ 0 . (1.5)

One can give a direct path integral interpretation for the index on the second sheet (1.4).
It is computed by a Euclidean path integral on an S1 × S3 topology with complex structure
parametersω1,ω2 as before, however now we are imposing different boundary conditions for
the fields around S1. Indeed, since in (1.4) the (−1)F insertion is replaced by e−πiR, we have
that for any field χ with R-charge R and fermion number F , when we go once around S1 we
get the twisted identification

χ(τ+ β) = eπi(R+F)χ(τ) , (1.6)

τ being the coordinate on S1.6 Unlike the situation on the first sheet, now the chiral multiplet
fields generically have no zero modes on the circle since generically R 6= 0 mod 2 for chiral
multiplets. On the other hand, the vector multiplet fields have zero modes since the R-charge
of the gaugino is always 1. It is also important to notice that since the supercharges commute
with the R + F operator defining the boundary conditions, a reduction along S1 preserves
supersymmetry.7

At tree-level, the low-energy theory after the circle reduction is therefore a pure 3d N = 2
vector multiplet. This model famously [50] has a runaway behavior and no stable vacuum. It
might therefore appear that the small circle limit (1.5) is problematic.

An important property of the second sheet is that because of the phase (1.6) the KK modes
are in fact generically not symmetric about the origin (we will sometimes say that they are not
“vector like”). For this reason, the non-decoupling effects of the KK modes could influence the
non-perturbative dynamics of the 3d N = 2 vector multiplet! Indeed, a Chern-Simons term for
the vector multiplet is induced and it so happens that this Chern-Simons term is just right to
guarantee that in the limit (1.5) the vector multiplet theory flows to a trivial, confined vacuum.
For SU(N) gauge theory, the Chern-Simons term is at level N . This also explains the recent
observation of [37] that an SU(N) Chern-Simons theory at level N emerges at O(β0) from the
counting problem in certain gauge theories in four dimensions. The situation outlined above
is ideal in order to develop a consistent EFT in the “high-temperature” limit. At order O(β0)
in the expansion there will be a contribution from the gapped degrees of freedom of the zero
modes, while at orders O(β−2), O(β−1) the zero modes do not contribute by virtue of them
being gapped in a healthy vacuum. Since the zero modes are gapped, one can equally easily
make predictions for the behavior of the index on a large class of spatial three-manifolds.

In terms of the holonomy potential V eff(u), the claims above can be re-stated by saying
that on the second sheet the origin u= 0 is always a saddle in a certain range of the chemical
potentials. The potential grows like V eff(u) ∼ u2/β2 around the origin which in the effective
field theory on S1 ×R3 we interpret by saying that the Chern-Simons term lifts the Coulomb
branch. This renders the EFT approach more robust on the second sheet than on the first sheet,
where the existence of a minimum at the origin relies on some additional assumptions which
we reviewed above. Due to the universal nature of the second sheet, where the Coulomb
branch around the origin is lifted by a level N Chern-Simons term, the predictions of the
corresponding EFT are more universal.

In fact we will see an example of a theory which is not charge conjugation invariant and
has c > a, where the two sheets are identical in terms of the microscopic counting problem
but look very different in terms of the S1 reduction. There is complicated dynamics on the first

6More generally the shift ω1 → ω1 + 2πin0, with n0 an integer, leads us to explore the different sheets of the
refined index, whenever they exist, and gives the twisted identifications χ(τ+ β) = eπin0(R+F)χ(τ).

7An effective field theory approach to this problem was previously discussed in [28, 33]. Here we present a
manifestly supersymmetric reduction and the metrics both in 4d and in 3d are regular and real.
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sheet with a nontrivial minimum for the holonomies that “conspires” to reproduce exactly the
predictions of the second sheet with the minimum at the origin.

Due to the zero modes being lifted on the second sheet, their contribution and that of the
massive KK modes are captured by 3d local contact terms. Similarly to the analysis of [20] on
the first sheet, the coefficients of these contact terms are regularized sums over all Matsubara
frequencies (albeit with different charges under the KK gauge symmetry due to our twisted
identifications (1.6)).

Putting the contribution of all contact terms together, the result we obtain is

logI = 1
48ω1ω2

�

− 8π3i (TrR3 − TrR)− 4π2 (ω1 +ω2)(3TrR3 − TrR)

+ 6πi (ω1 +ω2)
2 TrR3 − 2πi (ω2

1 +ω
2
2)TrR

�

+ log |G|+O(β) . (1.7)

TrR3 and TrR are the R-symmetry ’t Hooft anomalies and they can be rewritten in terms of
a, c if the R-symmetry is the superconformal one. The meaning and origin of log |G| will be
explained below. This coincides with the O(β−2) term obtained in [33, 34], the O(β−1) term
given in [34] as well as the O(β0) term recently found in a class of theories for ω1 =ω2 [37].

We leave to future work the detailed clarification of the O(β) terms. This problem is well
defined since at O(β) there is no covariant and gauge-invariant supersymmetric counter-term
in 4d [51,52] (see [14] for a discussion of O(β) terms in relation with the matter of Footnote 1).
It has been argued in [37] that all terms beyond O(β) are exponentially suppressed. Let us give
an argument to that effect from our EFT approach. Since we are evaluating a supersymmetric
effective action on a background that preserves two supercharges with opposite R-charge,
local terms that are true D-terms must evaluate to zero. The Chern-Simons terms contributing
to (1.7) are an exception since they are not given by a supersymmetry variation of well defined
(gauge invariant) quantities. Since one does not expect any Chern-Simons-like terms beyond
those we investigate here, it then must be true that all the other covariant local terms are
true D-terms and the high-temperature expansion for the partition function Z truncates, up
to exponentially small terms. For instance, the curvature-squared invariants given in [53]
are of this type. (It would be nice to be able to understand the exponentially small terms
in terms of an EFT language – see [54] and references therein for a study of exponentially
small corrections in a different EFT.) These arguments imply that log Z should already truncate
at O(β0). However, here one must remember that the index and partition function differ
by the supersymmetric Casimir energy [9, 52, 55] at O(β), log Z = −βECasimir + logI, and
hence the small-β asymptotics of logI must contain precisely the Casimir energy at O(β)
(see [32] for a related discussion). This seems perfectly consistent with the examples we
considered. Therefore, if the above statement about D-terms can be turned into a proof, one
can then easily extend the predictions of the EFT to all perturbative orders in β by including

βECasimir =
(ω1+ω2)3

48ω1ω2
(TrR3 − TrR) + ω1+ω2

24 TrR into (1.7)8 and rearranging the expression so as
to obtain:

logI =
(ω1 +ω2 + 2πi)3

48ω1ω2
TrR3 −

(ω1 +ω2 + 2πi)(ω2
1 +ω

2
2 − 4π2)

48ω1ω2
TrR

+ log |G|+O(e−`/β) . (1.8)

This exhausts all the analytic terms in the Cardy limit on the second sheet.9 For large-N
holographic theories, where the TrR3 term dominates, (1.8) agrees with the function proposed

8Here we are using the prefactor βECasimir given in [52], analytically continued to complex chemical potentials.
The validity of this continuation has been demonstrated in [56] for the twisted background of interest to us. The
prefactor of [27] was computed using a slightly different background gauge field.

9Continuing with our analogies to 2d, it is true that the expansion of log Z at finite temperature in any 2d
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in [30] and derived as a supergravity on-shell action in [27], whose Legendre transform gives
the black hole entropy.

Let us discuss some important issues concerning the regime of validity of (1.7) (and con-
jecturally (1.8)).

• The most singular piece in (1.7) is − π3 i
6ω1ω2

�

TrR3 − TrR
�

. This corresponds to a purely
oscillating behavior of the index (1.4) for real ω1,2 → 0. Therefore one needs to have
some small twisting of the S3 over the S1 to find the desirable exponentially growing
density of operators. For instance we may take ω1 → 0+ and ω2 = (1 − i)ω1. Then,
if R above corresponds to the superconformal R-symmetry, we would always find an
exponentially growing index on the second sheet since TrR3 − TrR ≥ 0 is guaranteed to
hold by unitarity [57].10 A similar small imaginary piece in ω1,2 is necessary to make
our discussion of the u= 0 minimum of V eff(u) rigorous.

• The effective field theory techniques we use allow us to establish that there is a local
minimum of V eff(u) at u= 0 and they allow us to make predictions for the corresponding
contributions to the index at each order in β . These facts are model independent and
presumably hold also for non-Lagrangian theories. It is however not possible to use
the effective field theory techniques discussed here to say something general about the
possibility of other minima of V eff(u), away from the origin. One example where other
degenerate minima must exist is when we have a one-form symmetry in the original
4d theory, e.g. ZN in N = 4 theory with gauge group SU(N). Since u = 0 breaks it
spontaneously we ought to have additional N −1 exactly degenerate local minima, each
contributing in the same way to the index. This is the standard situation in theories
with a spontaneously broken one-form symmetry [59]. Therefore, in any theory with a
one-form symmetry (Abelian) group G of order |G|, there will be a log |G| term in the
asymptotics of the index as in (1.7). It is tempting to hypothesize that no other minima
can exist save for those guaranteed by the spontaneously broken one-form symmetry (if
a one-form symmetry is present). It would be interesting to investigate this question in
the future. Needless to say, the existence of minima that are more dominant than the
minimum at the origin would invalidate (1.7) and (1.8). No such example is presently
known.

We can also consider more general backgrounds involving a three-manifold M3 different
from the squashed three-sphere discussed so far. For instance, we can take M3 to be a Lens
space (or a more general Seifert manifold) compatible with the R-charge assignments, twist
it over S1, and arrange the new-minimal supergravity auxiliary fields so as to obtain a super-
symmetric background. The corresponding supersymmetric index (see [60, 61]) in general
should admit a second sheet, and our EFT analysis should still capture some of the relevant
physics. Indeed, since the zero modes are trivially gapped, all we need to do is to recom-
pute the integrals (2.4)–(2.7) below, and this will automatically provide a prediction for the
β−2,β−1,β0 terms. This is conceptually different from the first sheet, where there is typically
a massless theory at the origin and hence the β0 term in the asymptotic expansion has to be
studied on a case-by-case basis. The prediction for the β−2,β−1,β0 terms on the second sheet
should be thus completely universal by virtue of the tree-level zero modes flowing to a gapped
theory at the origin. To adapt the prediction of the O(β) term to Seifert manifolds one may

critical system truncates up to exponentially small terms with the local term which is extensive in the volume of
space, i.e. `/β , where the coefficient is famously proportional to the central charge and ` is the length of the spatial
slice. This is simply because no local term other than

∫

dx
p

g can be written in one space dimension. The leading
exponentially small correction is determined by the scaling dimensions of the first nontrivial operator.

10The case TrR3 − TrR= 0 is presumably never realized in interacting theories [58].
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use the supersymmetric Casimir energy given in [61]. (Here we are talking, as before, about
the contribution from the universal saddle at the origin.)

Another possible extension of our approach is to 6d theories, which should similarly have a
second sheet and a manifestly supersymmetric 5d effective theory describing the high-temperature
expansion. See [28,62–64] for some work on the subject, building on the method developed
for the first sheet [20,65,66].

The rest of the paper is organized as follows. In Section 2 we discuss some general features
of the small-circle expansion of the 4d partition function and introduce the relevant supersym-
metric local terms. In Section 3 we study the zero modes and show that they are governed by
a Chern-Simons gauge theory. In Section 4 we combine the zero mode contribution with the
contribution arising from integrating out the massive modes. We give the result for the β → 0
limit of the partition function up to O(β0) for the case of real parametersω1,ω2 and extend it
to complex values by analyticity. In Section 5 we study some examples, including a chiral the-
ory. In Section 6 we evaluate the supersymmetric contact terms in a twisted background with
general complex structure parametersω1,ω2 and prove that the analytic continuation done in
the previous section is correct (modulo one integral that we had some difficulties with). Some
details about the KK reduction of the 4d supergravity multiplet are collected in an appendix.

As this paper was being completed, the preprint [67] discussing related topics appeared.

2 General features of the 3d effective action

We start our discussion by recalling some general features of the supersymmetric 3d effective
field theory describing the asymptotics of the 4d index. In particular, we introduce the relevant
contact terms.

Let us assume that the four-dimensional theory is trivially gapped on S1 × R3. Then the
path integral on S1 ×M3 (with M3 much larger than the S1) can be captured by local terms
for background fields on M3. The reason is that since the theory is gapped in infinite volume,
correlation functions on S1 ×M3 are exponentially decaying as we take points on M3 far
from each other. Hence the effective action is purely made of contact terms, that is, analytic
functionals of the background fields. This gives an expansion of the free energy in powers of
β and it captures all the terms in this expansion save for the exponentially small ones. As we
will show soon, our problem is exactly of this nature.

In general, for massless theories on S1 × R3, the dependence of the partition function Z
on the geometry of M3 is hopelessly complicated. But for gapped theories it admits a simple
expansion in the inverse size of S1 where each term in the expansion is a local integral on M3.

Since as we argued in the introduction the S1 dimensional reduction preserves supersym-
metry (even when we consider the twisted boundary conditions (1.6)), the contact terms must
respect N = 2 supersymmetry in three dimensions. In the present work the only choices of
M3 that we will discuss are R3 and S3

b (but many other choices are possible, too) where S3
b

is the supersymmetric squashed three-sphere background, which may also be twisted over S1.
The spectrum on S3

b is discrete and the volume is finite so the partition function is a very nice
object to study.

In the general setting of the small circle limit β → 0, the most straightforward terms one
can imagine may contribute to log Z are ∼ β−3

∫

d3 x
p

g, ∼ β−1
∫

d3 x
p

g R etc., where g is
the metric on M3 and R is the Ricci scalar. The first term corresponds to the usual thermal
free energy density and the second term gives a sub-extensive correction at finite volume.
The coefficients of these terms are usually very hard to compute analytically. However in the
present setting where we have N = 2 supersymmetry the term β−3

∫

d3 x
p

g is forbidden since
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it cannot be supersymmetrized [68].11 The term β−1
∫

d3 x
p

g R is luckily accompanied due
to supersymmetry by a certain Chern-Simons term and the latter is one-loop exact. In fact,
up to and including order O(β0), all the possible N = 2 supersymmetric contact terms are
related to various Chern-Simons terms and are one-loop exact. If the argument given in the
introduction about all other possible contact terms being true D-terms is correct, the expansion
of log Z will therefore truncate at O(β0), up to exponentially small terms.

A four-dimensional N = 1 theory with an R-symmetry can be coupled to background new-
minimal supergravity [4, 11]. In addition to the metric, new-minimal supergravity [68, 69]
comprises the R-symmetry U(1) gauge field and a (globally well-defined) one-form back-
ground field. Consequently, the gauge fields obtained after the circle reduction are the KK
photon gauge field c arising from the 4d metric, the U(1)R-gauge field Ǎ, and we also have
the 3d spin connection ωab (we use theˇsymbol to distinguish 3d quantities from similar 4d
quantities). It is convenient to take c = cidx i to have the dimension of a length and Ǎ= Ǎidx i

to have dimension 0. Similarly, the spin connection has dimension 0 as a one-form. Up to
normalization, we can hence form four independent Chern-Simons terms

c ∧ dc, Ǎ∧ dc, Ǎ∧ dǍ, tr
�

ω∧ dω+
2
3
ω∧ω∧ω

�

, (2.1)

the last one being the gravitational Chern-Simons term. From dimensional analysis it is clear
that c∧dc and its supersymmetric partners will lead to a contribution at order β−2, Ǎ∧dc and
its partners will lead to a contribution at order β−1 and Ǎ∧dǍ, the gravitational Chern-Simons
term and their partners lead to contributions of order β0. Each of these must be turned into
an N = 2 supersymmetric contact term in 3d.

The reduction of the 4d new-minimal supergravity multiplet yields the 3d new-minimal
supergravity multiplet and an abelian gauge vector multiplet, that we will dub the KK photon
multiplet as it contains the KK photon. For the structure of 3d new-minimal supergravity see
e.g. [53, 70–72]. The bosonic components of the 3d new-minimal supergravity multiplet are
given by

supergravity multiplet =
�

ǧi j , Ǎi , V̌i , H
�

, (2.2)

where in addition to the 3d metric ǧi j and the R-symmetry gauge field Ǎi , we have the globally
well-defined one-form V̌i , satisfying ∇̌i V̌

i = 0, and the scalar H. The KK photon multiplet has
bosonic components

KK photon multiplet = (σkk , c , Dkk ) , (2.3)

where σkk is a real mass scalar field and Dkk is the auxiliary field in the vector multiplet. Using
these we can construct the supersymmetric completion of the background Chern-Simons terms
(2.1), see Section 6.3 for some more details. The resulting terms are:

1) KK photon Chern-Simons term

I1 =
1

4π

�

2π
β

�2
∫

(i c ∧ dc − 2σkkDkk vol3) , (2.4)

2) mixed KK photon–R-symmetry Chern-Simons term

I2 =
1
β

∫

�

i
�

Ǎ−
1
2

V̌
�

∧ dc −HDkk vol3 −
1
4
σkk

�

Ř+ 2V̌ i V̌i + 2H2
�

vol3

�

, (2.5)

3) R-symmetry Chern-Simons term

I3 =
1

4π

∫

�

i
�

Ǎ− 1
2 V̌
�

∧ d
�

Ǎ− 1
2 V̌
�

−
1
2

H
�

Ř+ 2V̌ i V̌i + 2H2
�

vol3

�

, (2.6)

11We thank M. Rocek for discussions on this topic.
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4) gravitational Chern-Simons term

I4 =
i

192π

∫

�

tr
�

ω∧ dω+
2
3
ω∧ω∧ω

�

+ 4
�

Ǎ−
3
2

V̌
�

∧ d
�

Ǎ−
3
2

V̌
�

�

, (2.7)

where Ř is the Ricci scalar of the 3d metric.
Another basis of contact-terms that is very slightly more convenient for computations is

I ′1 = I1 , I ′2 = I2 , I ′3 = I3 , I ′4 = I4 −
1
12

I3 . (2.8)

The slight computational advantage of the I ′ basis is that each Chern-Simons term appears
exactly once.

In order to obtain our effective description of the index asymptotics, we should evaluate
the contact terms above in the relevant background, and determine the respective coefficients.

We can evaluate the contact terms on the supersymmetric squashed sphere S3
b background

of [73], for instance. This gives [24,72,74]

I1 =
4π3i`2

β2
, I2 =

2π2`(b+ b−1)
β

, I3 = −
πi (b+ b−1)2

4
, I4 =

πi
48
[(b− b−1)2 + 2ν].

(2.9)

When evaluating the gravitational Chern-Simons term in (2.7) we have taken into account
the familiar framing anomaly. Due to the non-invariance of the spin connection under frame
rotations, different choices of frame allow to shift I4 by πi

24 ν, where ν is an integer, and thus
multiply the partition function by eπikg/24 [75], where in our normalization, kg = 1 from
integrating out a Dirac fermion. The choice ν= 0 in the expression (2.9) is natural from the 3d
point of view and indeed this arises naturally from localization: ν= 0 corresponds to a frame
adapted to the transversely holomorphic foliation (THF). Even if it is not necessarily fixed from
the 3d point of view, from the 4d point of view it is, since there cannot be a corresponding
counter-term. When the contact term is evaluated in a frame compatible with the complex
structure in 4d, as in (2.9), we have ν= 0. We will make this choice in the following.

The 3d S3
b background of [73] is the KK reduction of an S1×S3

b direct product background
where the complex structure parameters ω1,ω2 are real. In order to make the story complete
we need to, and in fact we must, consider a more general background where S3

b is twisted
over S1 (generalizing the construction of [76]), so as to encode general complex structure
parameters ω1,ω2. We will also need to develop the corresponding dictionary between the
4d supergravity fields and the 3d supergravity fields. This will allow us to express the answer
using the generically complex chemical potential ω1,ω2 that appeared in the superconformal
index. We will first sidestep this exercise and arrive at our final answer in Section 4 using
holomorphy and later in Section 6 we will fill this gap.

As explained in [20], the coefficients of the contact terms I1,2,3,4 are obtained by summing
the contribution of the infinite KK modes (i.e. Matsubara frequencies), weighted by the charges
of the KK modes under the KK photon and under the R-symmetry gauge field. The contribution
of each particular KK mode is essentially as originally found by [77] (see also [72, 74] for
additional details). The sum over the infinite KK tower is divergent and has to be suitably
regularized.

Given the twisted boundary condition (1.6) we are considering, relevant to describe the
index on the second sheet, the expansion in Fourier modes on S1 for any field χ of R-charge R
is

χ(τ) =
∑

n∈Z
χn e

2πi
β (n+ R+F

2 )τ . (2.10)
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Hence, the KK charge and mass of the KK mode χn is

qn = n+
R+ F

2
, mn ∼

1
β

�

n+
R+ F

2

�

. (2.11)

In the following we first discuss the physics of the zero modes and then we combine their
contribution with that of the rest of the KK tower.

3 Analysis of the zero modes

3.1 SU(N)N Chern-Simons dynamics

Since we are ultimately interested in the limit of small S1, it is useful to set up an effective
theory on S1 × R3 and then turn the R3 into a large S3. This is the standard approach to
the high-temperature limit. For that we must first and foremost understand the fate of the
zero modes remaining after imposing the boundary conditions (1.6) on the S1. As we said,
generically, the only zero modes are in the vector multiplet. To prepare, let us first review the
dynamics of the N = 2 vector multiplet with and without a Chern-Simons term. For simplicity
we will focus on the SU(N) vector multiplet with level k ∈ Z Chern-Simons term.

• The k = 0 theory has a runaway (no stable vacuum) [50]. This is what we find when do-
ing naive dimensional reduction on the S1 before taking into account the non-decoupling
effects of the KK modes.

• For 0 < |k| < N the theory has a SUSY breaking vacuum. The vacuum supports a
Goldstino Dirac fermion and a nontrivial TFT, U(N − k)k,N (for 0< k < N and a similar
result for −N < k < 0) Chern-Simons theory [78]. Neither the SUSY breaking nor the
nontrivial TFT can be seen in perturbation theory.

• For |k|> N the theory has a gapped SUSY vacuum with the low energy theory being the
SU(N)k−N TFT for k > N and SU(N)−k+N TFT for k < −N . This can be seen by a weak
coupling analysis for |k| � N where the gaugino fermions can be integrated out at weak
coupling since they are heavy. The TFTs SU(N)k−N or SU(N)−k+N lead to deconfinement
and a nontrivial vacuum degeneracy of SUSY vacua on the torus for |k|> N .

• For k = ±N the theory confines and there is a unique gapped trivial vacuum.

It is a surprising fact that regardless of the original N = 1 theory that we started from, we
obtain k = N from integrating out the KK modes. By the above classification of the phases of
the vector multiplet, our zero modes are therefore trivially gapped and confined on R3. This
is a very promising starting point for the effective theory in the small S1 limit. The fact that
the zero modes furnish the k = N Chern-Simons theory for the vector multiplet will be crucial
to explain the recent observation of [37] that in the high-temperature limit on the second
sheet of N = 4 SYM and N = 1 quiver gauge theories, a matrix model of a supersymmetric
Chern-Simons theory miraculously emerges. Our results should extend to more general gauge
theories and gauge groups, thus explaining similar observations made in [38].

Let us now derive the fact that k = N always holds. Consider some gauge theory with
SU(N) gauge group and chiral multiplets with R-charges RI in some representations RI of
the gauge group. The low-energy theory for small S1 is therefore a 3d N = 2 SU(N) vector
multiplet. Due to the phase eπiRI that is picked up by chiral fermions the spectrum of KK modes
is not vector-like. The masses of the various KK modes are 1

β (n+RI/2) for n ∈ Z. Integrating
out these modes induces a CS term for the dynamical SU(N) gauge fields. The condition that
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the R-symmetry is a true symmetry (anomaly free) in the original 3+1 dimensional theory
reads:

∑

I ∈ chirals

(RI − 1)T (RI) + N = 0 . (3.1)

On the other hand, upon a KK reduction with circle boundary conditions with a phase eiπRI

for every such chiral multiplet, the induced CS term for the dynamical gauge fields is given
by T (RI)sgn(n+RI/2) from every KK mode of a chiral multiplet in representation RI . There
is no contribution from massive KK gaugino modes since they are vector like. Therefore the
coefficient of the CS term for the zero modes reads

kdynamical =
∑

I ∈ chirals

T (RI)
∑

n

sgn(n+ RI/2) =
∑

I ∈ chirals

T (RI)(1− RI) = N . (3.2)

In the last step we used the anomaly-free condition (3.1) and in the step before that we used
the standard result of zeta function regularization.12

Therefore, the tree-level zero modes flow to SU(N)N N = 2 theory which in the deep
infrared is trivially gapped and confined. It follows that the partition function of the zero
modes is analytic in all external parameters and in particular cannot influence the singular
terms in the high-temperature expansion. Furthermore, since we know a lot about SU(N)N
N = 2 theory from localization, we can use it to make a prediction about the β0 term in the
small β expansion.

The argument around (3.2) easily generalizes to any quiver gauge theory, conformal or
not. We get after the circle reduction a product gauge group each at the exactly correct level
that leads to a trivial gapped vacuum.

While the arguments so far that led to SU(N)N N = 2 theory were very much using a
Lagrangian formalism and an explicit mode expansion, one can hope to go beyond that. Here
we make a very modest remark in that direction. Starting from some abstract 4d N = 1 theory
that may not have a Lagrangian, it is believed that the circle reduction does have a Lagrangian
description, see e.g. the examples of [79]. We can then ask what is the Chern-Simons level of
a certain SU(N) gauge theory node. At least for theories with a one-form symmetry, it is easy
to prove that the level has to be an integer multiple of N . Otherwise, the one-form symmetry
would be anomalous [80–82]. By contrast, in the original theory the one-form symmetry is
non-anomalous since there cannot be a pure one-form symmetry anomaly in 4d and there
cannot be a mixed anomaly with a continuous R-symmetry either.

There are some exceptions that need to be considered separately: one is the case where
RI = 0,2 as then we have matter zero modes and the dynamics has to be re-considered.
An additional subtlety arises if some of the gauge groups have U(1) factors, then we find
that

∑

I(RI − 1)T (RI) = 0 (now T (RI) is proportional to the square of the U(1) charge).
In that event the induced CS term for the dynamical U(1) gauge fields is 0. Since U(1)0
gauge theory has a flat direction this again leads one to worry about the fate of the vacuum at
β = 0. However in this case monopole operators can be induced and the situation needs to be
considered more carefully (along the lines of [83]). We will not discuss these two subtle cases
here.

12Throughout we use the following identities:
∑

n∈Z

sgn(n+ R
2 ) = 1− R ,

∑

n∈Z

sgn(n+ R
2 ) (n+

R
2 ) = −

1
6
−

1
4

R(R− 2) ,

∑

n∈Z

sgn(n+ R
2 ) (n+

R
2 )

2 = −
1

12
R(R− 1)(R− 2) .
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3.2 The contribution to the partition function

We have established that the theory on S1 is gapped in infinite volume. (The gap of the zero
modes develops non-perturbatively.) We now compute the contribution from the zero modes
to the generating function. After we have understood the zero modes, we will proceed to make
a prediction for the β−2,β−1,β0 terms in the small β limit. (As we explained above, due to
the zero modes being trivially gapped, it is not actually necessary to analyze them in order to
obtain predictions for the β−2,β−1 terms. But we prefer to proceed in this way.)

We first record the result for the case of level k U(N) vector multiplet on the squashed
three-sphere S3

b, where b denotes the squashing parameter (see Section 6 for explicit formulae
describing this geometry). The gauge kinetic term is Q-exact and therefore the answer is
independent of the gauge coupling. The result for the S3

b partition function, is given by (see
the review [72] and references therein)

ZU(N)k =
1
N !

∫ ∞

−∞

N
∏

i=1

dλi eiπk
∑N

i=1 λ
2
i

∏

j>i

4sinh(πbλi j) sinh(πb−1λi j) , (3.3)

where λi j = λi − λ j . This integral can be performed (see [84, 85]) with the aid of the Weyl
denominator formula:

∏

j>i

2sinh(πb±1λi j) =
∑

σ

(−1)σ
∏

j

e2πb±1( N+1
2 −σ( j))λ j .

The integral can be now done explicitly and we find

ZU(N)k =
1
N !
(−ik)−N/2e−

πi
12k N(N+1)[6(N+1)−(b2+b−2)(N−1)]

∑

σ1,σ2

(−1)σ1+σ2e
2πi

k

∑

j σ1( j)σ2( j).

Simplifying the last remaining sum with the Weyl denominator formula again we find

∑

σ1,σ2

(−1)σ1+σ2e
2πi

k

∑

j σ1( j)σ2( j) = N ! e
2πi

k
N(N+1)2

4 (i)N(N−1)/2
∏

j>l

2sin
�

( j − l)
π

k

�

.

Combining these terms together we finally find:

ZU(N)k = k−N/2e
πi

12k N(N2−1)(b2+b−2)iN2/2
∏

j>l

2 sin
�

( j − l)
π

k

�

. (3.4)

We are ultimately interested in the SU(N)k partition function. It is given by

ZSU(N)k =
1
N !

∫ ∞

−∞

N−1
∏

i=1

dλi eiπk
∑N

i=1 λ
2
i

∏

j>i

4sinh(πbλi j) sinh(πb−1λi j) , (3.5)

where λN = −
∑N−1

i=1 λi . It is easy to evaluate this integral once the U(N)k case is known by
a simple change of variables, shifting all the eigenvalues other than λN by

∑N
i=1λi . We find

ZSU(N)k =
q

k
N ZU(N)k . As a result, we can summarize that

ZSU(N)k =

√

√ 1
N

k−(N−1)/2e
πi

12k N(N2−1)(b2+b−2)i
N2−1

2

∏

j>l

2 sin
�

( j − l)
π

k

�

. (3.6)

Let us see what are some of the consequences of (3.6). First, we see that k = 0 seems to
make little sense. This is in line with what we reviewed above: this theory has no vacuum. If
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0< |k| ≤ N − 1 then
∏

j>l 2 sin
�

( j − l)πk
�

= 0. The vanishing of the partition function should
be interpreted as a signal of spontaneous supersymmetry breaking, again in agreement with
what we explained before. Technically, the partition function vanishes because the theory has
a massless goldstino in flat space, but due to it being a Nambu-Goldstone fermion it is not
conformally coupled to the sphere and hence there is a zero mode of the corresponding Dirac
operator on the sphere (the fact that the goldstino must be accompanied by a nontrivial TFT
is not visible in this computation due to the zero mode). For |k| > N the theory flows to a
supersymmetric vacuum with a a topological field theory. This explains why the real part of
log ZSU(N)k is nonzero in this case (in fact, for k > N , it is just the f -coefficient of the SU(N)k−N
topological field theory, to which the supersymmetric theory flows). k = ±N is a special case
and it happens to be the case most interesting to us due to (3.2). For instance, setting k = N
and using

∏

j>l 2sin
�

( j − l)πN
�

= N N/2 we find

ZSU(N)N = e
πi
12 (N

2−1)(b2+b−2)+πi
4 (N

2−1) . (3.7)

That this is a pure phase is indicative of the fact that this theory flows to a trivially gapped
phase (since the corresponding f -coefficient vanishes). The gauge fields are confined and
decouple in the infrared and the gauginos are likewise massive due to the Chern-Simons term.

The phases in (3.7) can be interpreted as Chern-Simons contact terms for background
fields. To elucidate that, let us consider in a little more detail the case of k = N (the case of
k = −N is entirely analogous). Since the theory flows to a gapped trivial phase the infrared
contact terms can be understood from integrating out the gauginos at one loop. (There are
no nontrivial Hall conductivities.) They lead to a Chern-Simons term I ′3 for the R-symmetry
gauge field with coefficient −(N2 − 1)/2 and they also shift the gravitational Chern-Simons
term I ′4 as N2 − 1 Dirac fermions would do. Since the gauginos are un-charged under the KK
photon, we can ignore it. The dependence on squashing from the R-symmetry contact term
is e

πi
8 (N

2−1)(b2+b−2+2), and from the gravitational Chern-Simons term it is e−
πi
24 (N

2−1)(b2+b−2+ν)

(here we used the basis of contact-terms of (2.8)). Combining these together we obtain the
phase

e
πi
12 (N

2−1)(b2+b−2+3−ν/2) ,

which nicely agrees with the result found by localization (3.7) upon setting ν= 0. As already
mentioned, the choice ν= 0 arises naturally for a frame adapted to the supersymmetry of the
background.

A simple way to summarize these results is to say that the zero modes of the gauginos
behave as if they have a negative real mass and the zero modes of the vector fields confine and
decouple (they do not contribute to any Chern-Simons contact terms for background fields).

4 Combining with massive mode contributions

Armed with our understanding of the zero modes, with the simple conclusion being that we
need to treat the fermion zero modes as if they have a negative mass and the gauge fields
can be ignored altogether due to confinement, we can now compute all the supersymmetrized
background Chern-Simons terms in the effective theory from integrating out the massive KK
and (tree-level) zero modes. We have in total four Chern-Simons terms in the effective theory
and we need to evaluate each of them as follows:

• The coefficient of the KK photon Chern-Simons term (2.4) from a chiral multiplet with
R-charge RI is

1
2

∑

n

(n+ RI/2)
2sgn(n+ RI/2) = −

1
24

RI(RI − 1)(RI − 2) .
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We need to sum over all the chiral multiplets in the theory with their respective R-
charges. The vector multiplet makes a similar contribution provided we substitute RI = 2,
so that RI−1= 1 as required for the gaugino. Since the coefficient above vanishes for the
zero mode, we need not worry about it. In fact the whole contribution of the vector mul-
tiplet vanishes. (This can be explained in simple terms – the spectrum of the gauginos is
vector-like and hence parity preserving.) Therefore, the total KK photon Chern-Simons
term coefficient is − 1

24

∑

I RI(RI − 1)(RI − 2), where we sum over all chiral multiplets.
This is in fact identical to −1

24 (TrR3 − TrR) where the traces are taken over the fermions
with their corresponding R-charges, which are RI−1 in the chiral multiplets. Multiplying
it by I1 given in (2.9), this contributes to the partition function as

log Z = −
π3i`2

6β2
(TrR3 − TrR) . (4.1)

This is squashing independent.

• The coefficient of the mixed KK photon-R-symmetry Chern-Simons term (2.5) from a
chiral multiplet with R charge RI is

RI − 1
2

∑

n

(n+ RI/2)sgn(n+ RI/2) = −
RI − 1

12
−

1
8

RI(RI − 1)(RI − 2) ,

and we need to sum over all chiral multiplets along with the vector multiplet, which
again gives a contribution identical to the one above with RI = 2. Note an important
thing: the gaugino zero mode does not contribute since it has zero KK charge (however,
the gaugino nontrivial KK modes do contribute). The above combination is observed to
be identical to− 1

24(3TrR3−TrR). Hence, using I2 in (2.9), the partition function receives
a contribution from this as

log Z = −
π2`

12β
(b+ b−1)(3TrR3 − TrR) . (4.2)

• The coefficient of the U(1)R-U(1)R Chern-Simons term (2.6) (in the basis (2.8)) receives
a contribution from a chiral multiplet with R-charge RI as

(RI − 1)2

2

∑

n

sgn(n+ RI/2) = −
(RI − 1)3

2
.

The gauginos have to be accounted for very carefully due to the gaugino zero mode.
Let us first compute the contribution from the non-zero modes. They are clearly vector-
like (symmetric about zero mass) and all the nontrivial KK modes have the same R-
charge and hence they give a vanishing contribution.13 Lastly we have to consider the
contribution of the gaugino zero mode. We have shown that quantum effects lift the
gaugino zero mode and effectively make it behave as if it was a massive particle with
a negative mass. Therefore it contributes to the U(1)R-U(1)R Chern-Simons term as
−(N2−1)/2. Combining these results we see that it matches −1

2TrR3 and multiplying it
by I3 in (2.9) results in a contribution to the partition function as

log Z =
πi
8
(b+ b−1)2 TrR3 . (4.3)

13This can be justified mathematically from
∑

n∈Z sgn(n+ RI/2) = 1− RI . Of course, this formula only makes
sense in some fundamental domain, say RI ∈ [0,2) and the function is periodic otherwise. In particular, at RI = 2
there is a discontinuity where from the left the function approaches −1 and from the right it approaches +1. This
jump is in accord with one eigenvalue crossing zero from below. Removing the contribution of that particular
eigenvalue either for RI = 2− or for RI = 2+ we find that the rest contribute 0. Therefore it is meaningful to say
that

∑

n 6=0 sgn(n) = 0.
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• Finally we need to consider the gravitational Chern-Simons term. From the chiral mul-
tiplets we have

∑

sgn(n+ RI/2) = −(RI − 1) .

Note that there is no factor of 1/2 since we are integrating out Dirac fermions. The non-
trivial KK modes of the gaugino again do not make a contribution since they are vector-
like. The zero modes should be treated due to non-perturbative effects as fermions with
negative mass. This gives another contribution which is −(N2 − 1). The gravitational
Chern-Simons term is therefore with coefficient −

∑

I(RI −1)− (N2−1), where the sum
over I is over all chiral multiplets. This can be summarized as −TrR. Therefore the
contribution to the partition function is

log Z = −
πi
24
(b2 + b−2)TrR ,

where we have used the expression for I ′4 = I4 −
1
12 I3, cf. (2.9), and fixed the framing

dependence as ν= 0.

Adding up all contributions, including the log |G| contribution from the degeneracy of
vacua, we obtain:

logI = −π
3i`2

6β2
(TrR3 − TrR)−

π2`

12β
(b+ b−1)(3TrR3 − TrR) +

πi
8
(b+ b−1)2 TrR3

−
πi
24
(b2 + b−2)TrR+ log |G|+O(β) . (4.4)

We now relate this to the behavior of the superconformal index in four dimensions, which
is a holomorphic function of ω1,2. To deduce this holomorphic function from the above dis-
cussion we recall that Reω1 = β b/` and Reω2 = β/(b`). We can rewrite (4.4) in terms of
Reω1, Reω2 and then remove the Re sign to obtain analytic functions in two variables. Doing
so, we obtain precisely the expression given in (1.7).

Since the EFT is trivially gapped all further terms contributing to the small-β expansion of
log Z should be contact terms. If our conjecture that these are all true D terms is valid, we can
extend our result to all polynomial order in β as discussed in the Introduction, and reach the
result (1.8).

5 Examples

5.1 Free chiral multiplet

Let us consider a single free chiral multiplet with R-charge 0 < r < 2. The supersymmetric
index is given in terms of the elliptic Gamma function as

Ichiral = Γ
�

e−
r
2 (ω1+ω2+2πin0), e−ω1 , e−ω2

�

, (5.1)

with Reω1 > 0, Reω2 > 0. The integer n0 distinguishes the different sheets: n0 = 0 is the first
sheet, while n0 = 1 leads us to the second sheet and n0 = −1 to its “complex conjugate” sheet.

Let us fix
ω1

ω2
∈ R and n0 = ±1 . (5.2)
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Then we can apply an asymptotic formula for the elliptic Gamma function (see [86, Prop. 2.11]
or [23]), implying that in the limit ω1,2→ 0,

logIchiral =
(ω1 +ω2 + 2πin0)

3

48ω1ω2
(r − 1)3 −

(ω1 +ω2 + 2πin0)
�

ω2
1 +ω

2
2 − 4π2

�

48ω1ω2
(r − 1)

+ O(e−`/β) . (5.3)

This expression agrees with (1.8), with |G| = 1 since this theory does not have a one-form
symmetry.

For ω1/ω2 /∈ R, we can still apply a slightly less accurate estimate [86, Prop. 2.12], which
only ensures control on the diverging terms in the limit.

5.2 A theory with just one sheet

We now discuss a peculiar example where the first and second sheet are the same.14

Consider an N = 1 theory with gauge group SU(3)×SU(3) and with 9 chiral multiplets in
the (3,0) representation, 9 in the (0, 3̄) and 3 in the bifundamental representation (3̄,3). The
superconformal R-charge is R= 2

3 . One can check that all fermionic gauge-invariant operators
have R-charge R= 1 (mod 2), while all bosonic gauge-invariant operators have R-charge R= 2
(mod 2), hence e−πiR = (−1)F . This implies that the first and the second sheet of the index
are the same. In particular, the Cardy limits on the first and second sheet must give the same
result. In fact, the two sheets must be related by a gauge transformation, i.e. a transformation
shifting the holonomies.

This poses some puzzles. This theory has TrR < 0 and hence one might expect (1.3) to
hold. But on the other hand, we claimed that the result on the second sheet (1.7) holds very
generally. These results clearly disagree. The resolution is very simple: Since the theory is
not vector like (i.e. it is chiral) in fact TrR < 0 is not sufficient to guarantee that (1.3) holds.
We will show below explicitly that the holonomy vacuum on the first sheet is away from the
origin. When considering the properties of that vacuum, we find exact agreement with the
most singular piece in the prediction (1.7). (We did not try to go beyond the most singular
piece.)

The Cardy limit of the index is controlled by an effective potential for the gauge holonomies
e2πiui , i = 1, . . . , rank Ggauge,

I ∝
∫

du e−V eff(u) . (5.4)

This takes an a priori different form on the first sheet, on the second sheet and on the complex
conjugate sheet. One has [34]

V eff = −
2π3i

3ω1ω2

∑

I∈chirals

∑

ρI ∈RI

κ
�

ρI · u− n0
rI
2

�

+O(β−1) , (5.5)

where I labels the chiral fields in the theory, and ρI are the weights of the representation RI
in which the I -th field transforms. The function κ is given by

κ(x) = {x}(1− {x})(1− 2{x}) , (5.6)

with {x} = x − bxc being the fractional part. Note that κ(−x) = −κ(x). Again the integer n0
distinguishes the different sheets.

14We thank S. Razamat for many discussions about such theories.
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It was proven in [34] that under mild assumptions on the R-charges, for n0 = ±1 there is
a saddle at ui = 0, i = 1, . . . , rank Ggauge, which leads to the estimate for the index (assuming
there are no other saddles that dominate over the one at the origin) in agreement with (1.7)

logI = ∓ π3i
6ω1ω2

(TrR3 − TrR) +O(β−1) , for n0 = ±1 . (5.7)

The estimate with n0 = 1 is valid in the regime of chemical potentials Re
�

i
ω1ω2

�

< 0, while

the estimate with n0 = −1 is valid in the opposite regime, Re
�

i
ω1ω2

�

> 0. Note that in our
description this requires at least one of the twisting parameters k1, k2 to be non-vanishing, so
that either ω1 or ω2 has a non-vanishing imaginary part.

For the theory at hand, TrR3 = 3 and TrR = −21, so we obtain

logI = ∓ 4π3i
ω1ω2

+O(β−1) , for n0 = ±1 . (5.8)

The general analysis of the effective potential on the first sheet, obtained by setting n0 = 0
in (5.5), can be found in [22, 24].15 For theories with charge-conjugation symmetry, namely
for theories such that for any weight ρ there is an opposite weight −ρ, the O(β−2) term in
(5.5) with n0 = 0 vanishes identically and the potential is controlled by the subleading O(β−1)
term. This is the situation on which the authors of [22, 24] mostly focused their attention.
However, the example we are considering here has no such charge-conjugation symmetry, and
the effective potential has a non-vanishing O(β−2) term even on the first sheet.

We denote by u1, u2 the variables parameterizing the gauge holonomies of the first SU(3)
and by u′1, u′2 those of the second SU(3). These are all taken in the fundamental domain [0,1).
We also introduce u3 = −u1−u2 and u′3 = −u′1−u′2 for convenience. Then the n0 = 0 potential
involves the function

∑

I∈chirals

∑

ρI ∈RI

κ
�

ρI · u
�

= 9
3
∑

i=1

κ(ui) + 9
3
∑

i=1

κ(−u′i) + 3
3
∑

i, j=1

κ(−ui + u′j) . (5.9)

We observe that shifting

ui → ui +
2
3

, u′i → u′i +
1
3

, (5.10)

yields exactly the n0 = 1 potential, while the shift

ui → ui +
1
3

, u′i → u′i +
2
3

(5.11)

gives the potential on the n0 = −1 sheet. It follows that the saddles at the origin that are found
on the n0 = ±1 sheets are mapped into saddles at non-trivial values of the gauge holonomies
in the n0 = 0 sheet. The two descriptions are equivalent and the physics is the same, just
occuring at different VEVs of the holonomies.

It should not be hard to carry out the analysis beyond the most singular term in the 1/β
expansion.

It was shown in [34] that the saddle at the origin is the dominant one for quiver gauge
theories with charge-conjugation symmetry and all R-charges being between 0 and 1. A nu-
merical study of the effective potential shows that the present theory is an example of a chiral
theory where the saddle at the origin also dominates the Cardy limit for n0 = ±1.

The example discussed here is obtained by taking the E-string theory on a genus 2 surface,
leading to the above 4d theory. This construction admits a generalization to the E-string on a
genus g surface. All of these theories will have the same property of having one sheet [87–89]
(see Figure 1 in the latter reference for the quiver of genus g).

15See Eq. (2.28) in [24]. There the chemical potentialsω1,ω2 are taken real, here we are very slightly extending
that analysis to a twisted S1 × S3

b background, which as we show in Section 6 gives complex chemical potentials.
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6 General twisted background

In this section, we define a supersymmetric 4d background of S1 × S3 topology that encodes
generically complex parameters ω1,ω2. We then reduce it along S1, obtain a supersymmetric
background of 3d new-minimal supegravity, and evaluate the relevant contact terms.

6.1 The background

In four dimensions, supersymmetric backgrounds with two supercharges of opposite R-charge
are constructed by solving the “new-minimal equations”,16

�

∇µ − iAµ + iVµ + iV νσµν
�

ζ = 0 ,
�

∇µ + iAµ − iVµ − iV νeσµν
�

eζ = 0 , (6.1)

where ζ and eζ are two-component spinors of opposite chirality and opposite R-charge, which
represent the parameters of the supersymmetry transformations. In addition to the metric,
one has a background gauge field Aµ, coupling to the R-current, and a globally well-defined
background one-form Vµ.

We consider a space with S1× S3 topology, parameterized by coordinates τ∼ τ+β on S1

and (θ ,ϕ1,ϕ2) on S3, with ϕ1 ∼ ϕ1 + 2π, ϕ2 ∼ ϕ2 + 2π and θ ∈ (0, π2 ). We take the metric

ds2 = Ω(θ )2
�

dτ2 + `2
�

b2 cos2 θ + b−2 sin2 θ
�

dθ2

+ b−2 cos2 θ (`dϕ1 + k1dτ)2 + b2 sin2 θ (`dϕ2 + k2dτ)2
�

, (6.2)

where the conformal factor Ω is any smooth positive function of θ ; later we will specify a
convenient choice. The real parameter b > 0 controls the squashing of S3, while the real
parameters k1, k2 specify the twisting of S3 over S1 and ` is the length scale of S3.17 When
b = 1, k1 = k2 = 0, the metric describes a space conformal to the direct product of S1 with a
round S3. For k1 = k2 = 0 but b 6= 1, the space is conformal to the direct product of S1 with
an elliptically squashed three-sphere, denoted by S3

b; this is the background considered in the
previous sections.

The metric admits the complex Killing vector

K =
1
2

�

−i
∂

∂ τ
+ `−1(b+ ik1)

∂

∂ ϕ1
+ `−1(b−1 + ik2)

∂

∂ ϕ2

�

. (6.3)

As a one-form, K reads

K =
1
2
Ω2
�

b−1 cos2 θ (`dϕ1 + k1dτ) + b sin2 θ (`dϕ2 + k2dτ)− i dτ
�

. (6.4)

This satisfies
KµKµ = 0 , and Kν∇νKµ − Kν∇νKµ = 0 . (6.5)

From the general discussion in [11, 90],18 these properties are sufficient to ensure that any
N = 1 field theory with an R-symmetry can be defined in the curved space under consideration

16We use the conventions of [9].
17Note that k1, k2 may be removed by shifting the angular coordinates as ϕ1 = ϕ̃1 − k1τ/`, ϕ2 = ϕ̃2 − k2τ/`.

However in this case the periodic identifications of the coordinates would be twisted, that is when making a
revolution around S1 we would have the identification (τ∼ τ+β , ϕ̃1 ∼ ϕ̃1+βk1/`, ϕ̃2 ∼ ϕ̃2+βk2/`). We prefer
to work with standard identifications of the coordinates.

18In particular, see Sect. 4.2 of [11]. A background similar to this one is discussed in [9, App. D].

19

https://scipost.org
https://scipost.org/SciPostPhys.11.1.004


SciPost Phys. 11, 004 (2021)

while preserving two supercharges of opposite R-charge, meaning that both equations (6.1)
admit a non-vanishing solution. This requires to choose the background fields as

V =
i dτ

`
p

b2 cos2 θ + b−2 sin2 θ
+ dxµJµ

ν∇ν logΩ+ κ(θ )K ,

A =
1

2`
p

b2 cos2 θ + b−2 sin2 θ

�

2i dτ− b−1(`dϕ1 + k1dτ)− b (`dϕ2 + k2dτ)
�

+
1
2
(dϕ1 + dϕ2) +

3
2

dxµJµ
ν∇ν logΩ+

3
2
κ(θ )K . (6.6)

The function κ(θ ) is arbitrary and will be fixed later. We have fixed the gauge of A so as to
ensure regularity at the poles of S3.19

We pick the frame

e1 = `Ω
p

b2 cos2 θ + b−2 sin2 θ dθ ,

e2 = Ω sinθ cosθ
�

b−1(`dϕ1 + k1dτ)− b (`dϕ2 + k2dτ)
�

,

e3 = Ω
�

b−1 cos2 θ (`dϕ1 + k1dτ) + b sin2 θ (`dϕ2 + k2dτ)
�

,

e4 = Ωdτ (6.7)

and define the volume form as vol4 = e1∧e2∧e3∧e4. The frame is chosen so that K = 1
2 Ω (e

3−i e4).
Then one can introduce the self-dual and anti-self-dual two-forms

J = −e1 ∧ e2 − e3 ∧ e4, eJ = e1 ∧ e2 − e3 ∧ e4 , (6.8)

and show that Jµν and eJµν are commuting integrable complex structures. The vector Kµ is
holomorphic with respect to both of them,

JµνKν = iKµ , eJµνKν = iKµ . (6.9)

In the chosen frame, the spinorial parameters solving the supersymmetry conditions (6.1),
read

ζ =

√

√Ω

2
e

i
2 (ϕ1+ϕ2)

�

0
1

�

, eζ =

√

√Ω

2
e−

i
2 (ϕ1+ϕ2)

�

1
0

�

. (6.10)

The supersymmetry transformations obtained from new-minimal supergravity on the back-
ground above give the algebra

{δζ,δeζ} = 2i
�

LK − iR KµAµ
�

, (6.11)

δ2
ζ = δ

2
eζ
= 0 , (6.12)

where LK is the Lie derivative along K , and R is the R-charge of the field on which the algebra
is represented.

Complex structure moduli. We have seen that our background space is complex. Every
complex manifold with S1× S3 topology is a primary Hopf surface, and our background qual-
ifies as a primary Hopf surface of the first type, see e.g. [8, 9] and references therein. These
are quotients of C2 − (0,0) where the coordinates (z1, z2) are identified as

(z1, z2) ∼ (pz1, qz2) , (6.13)

19For θ → 0 the differential dϕ2 is not well-defined, so one needs to make sure that Aϕ2
→ 0; analogously for

θ → π
2 , dϕ1 is not well-defined and one needs Aϕ1

→ 0.
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with p, q being complex parameters satisfying 0 < |p| ≤ |q| < 1. These are precisely the
complex structure moduli of the Hopf surface.

We now show that for our background the complex structure moduli are given by

p = e−ω1 , q = e−ω2 (6.14)

with

ω1 =
β

`
(b+ ik1) , ω2 =

β

`
(b−1 + ik2) . (6.15)

We introduce complex coordinates in our S1×S3 space so that (6.13) is manifest. We take

z1 =
cosθ

1+ b
p

b2 cos2 θ + b−2 sin2 θ
eb
p

b2 cos2 θ+b−2 sin2 θ e−iϕ1−(b+ik1)τ/` ,

z2 =
sinθ

1+ b−1
p

b2 cos2 θ + b−2 sin2 θ
eb−1
p

b2 cos2 θ+b−2 sin2 θ e−iϕ2−(b−1+ik2)τ/` . (6.16)

These coordinates are chosen so that eJµ
ν∂νz1 = i∂µz1, eJµ

ν∂νz2 = i∂µz2, namely they are holo-
morphic with respect to the complex structure eJ .20 One can see that when τ is not compactified
they parameterize C2−(0,0). Indeed, for fixed θ ,τ we see that ϕ1,ϕ2 are polar angles for the
two complex planes in C2; moreover, for fixed |z2|, one has that |z1| covers the positive real
numbers, and vice-versa. The important point for us is that making the identification τ∼ τ+β
corresponds to identifying

(z1, z2) ∼ (e−
β
` (b+ik1)z1, e−

β
` (b

−1+ik2)z2) . (6.17)

Comparing with (6.13), this shows that

p = e−
β
` (b+ik1) = e−ω1 , q = e−

β
` (b

−1+ik2) = e−ω2 (6.18)

are the complex structure parameters of our Hopf surface. Notice that the condition
0 < |p| ≤ |q| < 1 is satisfied by taking 0 < Reω2 ≤ Reω1, that is b ≥ 1. ω1,ω2 are oth-
erwise arbitrary complex parameters. Although the background under study is not unique
(see e.g. [9] for more general choices including arbitrary functions), the one considered here
encodes the most general complex structure and is still simple enough to allow for a completely
explicit treatment.

Before continuing with the reduction to 3d it may be useful to pause and make a few com-
ments. We emphasize that even if the complex-structure parametersω1,ω2 take complex val-
ues, our background metric (6.2) is real. Some other descriptions leading to complex ω1,ω2
have considered a background metric with complex components, arising as the boundary met-
ric of a complexified section of a black hole solution to five-dimensional supergravity [27,91].
It would be interesting to understand if there is a geometric relation between these two de-
scriptions.

Notice that the Killing spinors (6.10) are independent of the S1 coordinate. These satisfy
the usual supersymmetric boundary conditions imposing that all (dynamical and background)
fields are periodic around S1, as well as our twisted boundary conditions (1.6). So we have a
good supersymmetric background in both cases. Of course, the path integral depends on the
background as well as on the boundary conditions, hence it is not the same in the two cases.

If we start with the background above and periodic boundary conditions around S1, the
twisted boundary conditions (1.6) corresponding to the index on the second sheet can be
obtained as follows. From (6.2), (6.6) we see that the imaginary shift ω1→ω1+2πi (that is

20We thank P. Bomans for pointing out a choice of coordinates adapted to our complex structure.
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k1→ k1 +
2π`
β ) can be reabsorbed by the change of coordinate ϕ1→ ϕ1 −

2π
β τ, accompanied

by an R-symmetry transformation A→ A+ π
β dτ. The combination of these transformations

leaves the background invariant but alters the boundary conditions of all fields around S1 as
in (1.6).

Alternatively, we could have implemented the shift ω1 → ω1 + 2πi leading to the sec-
ond sheet by maintaining periodic boundary conditions for all fields and allowing the back-
ground fields (6.2), (6.6) to simply transform according to k1→ k1+

2π`
β . Yet another descrip-

tion is obtained by partially untwisting the boundary conditions (1.6) via the transformation
A → A− π

β dτ, which would leave us with periodic bosons and anti-periodic fermions. The
latter configuration is closely related to the one derived in [27] by studying the asymptotics of
the supersymmetric black hole in AdS5. However in this picture a supersymmetry-preserving
KK reduction to 3d is less straightforward, as the supercharges depend on the S1 coordinate,
so we do not discuss it any further.

Of course, these alternative descriptions are based on the equivalence (up to anoma-
lies) in representing a chemical potential as twisted boundary conditions or as the holon-
omy for a background gauge field. Indeed, any chemical potential µ for a charge Q, appear-
ing in the partition function as Z = Tre−β(H−µQ), corresponds to the twisted identifications
χ(τ + β) = (−1)F e−βµqχ(τ). These twisted identifications can be undone by a large gauge
transformation χ → eiλqχ with parameter λ= −iµτ. After the transformation, the fields obey
standard identifications χ(τ+ β) = (−1)Fχ(τ), however the background field A gauging the
symmetry generated by Q has shifted as A → A− iµdτ, and has thus a different holonomy
around S1.

6.2 Kaluza-Klein reduction to 3d supergravity

We now reduce the background above along the S1, and match it to 3d supergravity. We
consider the Kaluza-Klein ansatz for the metric and the other background fields,

ds2 = ds2
3 + e2Φ(dτ+ c)2 ,

A = A+ Aτ(dτ+ c) ,

V = V + Vτ(dτ+ c) . (6.19)

This gives the 3d metric ds2
3, the KK photon gauge field c, the 3d gauge field A, the well-defined

3d one-form V , and the scalar fields Aτ, Vτ,Φ, all independent of the τ coordinate.
On general grounds, the dimensional reduction of the 4d new-minimal gravity multiplet

should give the 3d new-minimal gravity multiplet together with the KK photon multiplet,
whose bosonic components have been introduced in (2.2), (2.3). In Appendix A we work
out the general identification of these 3d supergravity fields with the KK fields (6.19) with-
out assuming that the supersymmetry conditions (6.1) are satisfied. Here instead we exploit
the fact that the background of interest does solve the equations (6.1) to simplify the analysis
slightly and make contact with the dimensional reduction discussed in the Appendix D of [70].
The 4d background considered in that reference is such that

eΦ = 1 and Aτ = Vτ . (6.20)

We can arrange for these conditions by making a suitable choice of the arbitrary functions
Ω(θ ) and κ(θ ) that appear in our 4d background (6.2), (6.6). In order to ensure eΦ = 1 we
choose

Ω =
1

q

1+ b−2k2
1 cos2 θ + b2k2

2 sin2 θ
, (6.21)
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while Aτ = Vτ is obtained by setting

κ =
2 (b−1k1 + bk2)

�

i + b−1k1 cos2 θ + bk2 sin2 θ
�

`
p

b2 cos2 θ + b−2 sin2 θ
. (6.22)

We will assume these two choices henceforth. These are not expected to affect the final result,
which should depend on the complex structure parameters only. In particular, a change in Ω
does not affect the partition function of a superconformal theory as the super-Weyl anomaly
vanishes in the background considered [92].

We find that the KK fields coming from the 4d metric read

ds2
3 = `

2Ω2
�

�

b2 cos2 θ + b−2 sin2 θ
�

dθ2 + b−2 cos2 θ dϕ2
1 + b2 sin2 θ dϕ2

2

�

− `2Ω4
�

b−2k1 cos2 θ dϕ1 + b2k2 sin2 θ dϕ2

�2
,

eΦ = 1 ,

c = `Ω2
�

b−2k1 cos2 θ dϕ1 + b2k2 sin2 θ dϕ2

�

, (6.23)

while those descending from the 4d auxiliary fields are

A = 1

2
p

b2 cos2 θ + b−2 sin2 θ

�

− 2Ω2(i + b−1k1 + bk2)(b
−2k1 cos2 θdϕ1 + b2k2 sin2 θdϕ2)

+ 3Ω2(b−1k1 + bk2)(i + b−1k1 cos2 θ + bk2 sin2 θ )(b−1 cos2 θ dϕ1 + b sin2 θ dϕ2)

+ 3Ω2(b−2k2
1 − b2k2

2) sin
2 θ cos2 θ (b−1dϕ1 − bdϕ2)− b−1dϕ1 − bdϕ2

�

+
1
2
(dϕ1 + dϕ2),

V =
iΩ2

�

k2 cos2 θ dϕ1 + k1 sin2 θ dϕ2

�

p

b2 cos2 θ + b−2 sin2 θ
,

Aτ = Vτ =
i + b−1k1 + bk2

`
p

b2 cos2 θ + b−2 sin2 θ
. (6.24)

The orientation is specified by the volume form

vol3 = `
3Ω4 sinθ cosθ

p

b2 cos2 θ + b−2 sin2 θ dθ ∧ dϕ1 ∧ dϕ2 . (6.25)

One can check that [70]

V = − i
2
∗ dc , (6.26)

where the Hodge star is computed with the 3d metric and volume form above. This relation
is a consequence of supersymmetry of the 4d background (see Appendix A for a proof).

Next we use the dictionary developed in [70, App. D] to identify the auxiliary fields Ǎ, V̌ , H
in the 3d new-minimal supergravity multiplet. These are given by

V̌ = 2V ,

Ǎ = A+V ,

H = Aτ = Vτ . (6.27)

We also find that the KK photon multiplet is given by

KK photon multiplet : (σkk = −1 , ci , Dkk = Vτ) . (6.28)
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In a general S1 reduction, the fields in the KK photon multiplet would not be linked to those in
the gravity multiplet, however in a supersymmetric background satisfying the extra conditions
(6.20) this is the case. See Appendix A for more details.

We have thus obtained a supersymmetric 3d background with U(1)× U(1) symmetry, de-
pending on the three parameters b, k1, k2. The supersymmetric Killing vector

Ǩ =
1
2`

�

(b+ ik1)
∂

∂ ϕ1
+ (b−1 + ik2)

∂

∂ ϕ2

�

, (6.29)

is generically complex; as such, the background falls out of the analysis of [70].
Specializing to k1 = k2 = 0 we obtain the elliptically squashed three-sphere of [73]. Taking

b = 1, k1 = ±k2 ≡ k leads us to more symmetric backgrounds made of a squashed sphere with
SU(2)×U(1) invariance and squashing parameter 1p

1+k2 . The choice b = 1, k1 = k2 gives the
SU(2)× U(1) invariant background of [73], while the choice b = 1, k1 = −k2 corresponds to
the background of [76]. Our background should also be related to (and possibly incorporate)
the two-parameter background of [93], which leads to a 3d partition function depending on
one complex parameter.

6.3 Evaluating the 3d supergravity terms

We now evaluate the supersymmetric contact terms I1,2,3,4 listed in Section 2 in the background
defined above.

Before coming to that, let us briefly summarize how these contact terms are obtained in
3d new-minimal supergravity. Using the fields in the supergravity multiplet one can define a
gauge vector multiplet, dubbed the R-symmetry vector multiplet, whose bosonic components
are (see e.g. [72])

R-symmetry multiplet=
�

σ = H , ai = Ǎi −
1
2

V̌i , D =
1
4

�

Ř+ 2V̌i V̌
i + 2H2

�

�

. (6.30)

As discussed in [70], from any gauge vector multiplet of 3d new-minimal supergravity with
bosinic components (σ, ai , D), one can write down a supersymmetric Chern-Simons action,
whose bosonic part reads

ICS =

∫

M3

(i a ∧ da− 2σD vol3) . (6.31)

Applying this to the KK photon multiplet and the R-symmetry vector multiplet, we obtain
the Chern-Simons terms I1, I2, I3 given in (2.4)–(2.6). The I4 term is the N = 2 conformal
supergravity action in three dimensions [94].

Evaluating the integrals I1,2,3,4 in our background with generic parameters b, k1, k2 is com-
plicated and requires the aid of a computer, therefore we will just provide the results. For the
first three integrals we obtain

I1 =
4π3i
ω1ω2

,

I2 = 2π2 ω1 +ω2

ω1ω2
,

I3 = −
πi (ω1 +ω2)2

4ω1ω2
. (6.32)

These are precisely the expressions expected from the analytic continuation of the result ob-
tained before for realω1,ω2. From the 3d point of view, it is non-trivial that each of these terms
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is a holomorphic function of the parameters (6.15) describing the 4d complex structure. This
is however nicely consistent with the fact that we are effectively evaluating a supersymmetric
4d partition function, which is a holomorphic function of such complex structure parameters.

For the gravitational Chern-Simons term we did not succeed in obtaining the expected
formula

I4 =
πi
48
(ω1 −ω2)

2

ω1ω2
(6.33)

in general, however we did obtain it, for instance, for the case where ω1 is real and ω2 is
complex (with 0< Reω2 ≤ω1 so as to satisfy the condition |p| ≤ |q|< 1). We hope to clarify
this puzzling aspect of our analysis in the future. Given that the partition function should be a
holomorphic function of ω1,ω2, we continue using (6.33) in spite of the above shortcoming.

It may be useful to summarize our strategy. In the previous sections we analyzed the
physics of the KK modes in the small β expansion and showed that

logI = −n0
TrR3 − TrR

24
I1 −

3TrR3 − TrR
24

I2 − n0
6TrR3 − TrR

12
I3 − n0TrR I4

+ log |G|+O(β) . (6.34)

This result holds for n0 = ±1. We explicitly derived it for the second sheet n0 = +1, the
derivation for n0 = −1 being completely analogous.21 We then used known expressions for
the integrals I1,2,3,4 on the direct product background S1×S3

b, with k1 = k2 = 0, and extended
the result to complex values of the chemical potentials by analiticity. In the present section,
we have instead explicitly evaluated the contact terms I1,2,3,4 for the case where S3

b is twisted
over S1, proving that the analytic extension used before is correct for I1,2,3, and in part for I4.
Plugging (6.32), (6.33) in (6.34) we get

logI = 1
48ω1ω2

�

− 8π3in0(TrR3 − TrR)− 4π2(ω1 +ω2)(3 TrR3 − TrR)

+ 6πin0(ω1 +ω2)
2 TrR3 − 2πin0 (ω

2
1 +ω

2
2)TrR

�

+ log |G|+O(β) , (6.35)

which specializing to n0 = 1 yields the result in Eq. (1.7).22

If the argument given in Section 1 about the contribution of the Casimir energy at O(β) and
the further subleading terms in the small-β expansion is correct, our final result for n0 = ±1
can be nicely expressed as

logI =
(ω1 +ω2 + 2πin0)3

48ω1ω2
TrR3 −

(ω1 +ω2 + 2πin0)(ω2
1 +ω

2
2 − 4π2)

48ω1ω2
TrR

+ log |G|+O(e−`/β) , (6.36)

which for n0 = 1 is the expression given in Eq. (1.8).
As a side remark, we note that our evaluation of I2 also provides a check of the asymptotic

formula (1.3) of [20] for the index on the first sheet (n0 = 0) in the case of a general back-
ground with S1×S3 topology and two independent complex structure parametersω1,ω2, that
had not been explicitly done so far.

21One just has to repeat the sum over the KK towers discussed in Sections 3, 4, this time using the Fourier

expansion χ(τ) =
∑

n∈Z χn e
2πi
β (n− R+F

2 )τ .
22In order to check agreement of the divergent terms in this formula with [33, 34], one should notice that our

parameters ω1,ω2 agree with those in [33]. On the other hand, they are related with the σ,τ parameters used
in [34] as ω1 = −2πiσ, ω2 = −2πiτ (so they differ by a sign from the parameters ωthere

1 ,ωthere
2 that appear e.g. in

Eq. (2.30) there).
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In order to evaluate the integrals I1,2,3,4 for the general (possibly twisted) S1 ×M3 back-
ground, where M3 is an appropriate Seifert manifold, one just has to put the 4d background
in the KK form (6.19) and identify the 3d supergravity fields using the dictionary (6.27). As
conjectured at the end of Section 1, this would provide an effective field theory prediction for
the asymptotics of the supersymmetric index on the second sheet.
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A KK reduction of 4d supergravity variations

In this appendix we show that the circle reduction of the 4d new-minimal supergravity multi-
plet yields the 3d new-minimal supergravity multiplet together with the KK photon multiplet.
We work out the dictionary relating the 4d and 3d multiplets. This revisits Appendix F of [9]
and similar reductions in [70, App. D] as well as in [90, Sect. 5]. While these references
exploited part of the conditions satisfied in a supersymmetric background to simplify the anal-
ysis, here we discuss a general KK reduction of the 4d theory, independently of whether the
supersymmetry equations are satisfied or not.

In the main text we used the conditions eΦ = 1 and Aτ = Vτ, that were imposed in the
reduction discussed in [70, App. D]. Our scope here is to show that these restrictions can in
principle be relaxed, without changing the essence of the story.

3d conventions. Our Riemannian geometry and 4d spinor conventions are as in [9, App. A],
in particular the Ricci scalar of a round sphere is positive. Our 3d conventions are the same
as in [9, App. F] and we repeat them here for convenience. We denote by i, j, k the 3d curved
indices, and aˇdenotes 3d quantities. For any 3d spinor ε, its Lorentz covariant derivative is
defined as

∇̌iε =
�

∂i +
i
4
ω̌iǎ b̌ε

ǎ b̌čγč

�

ε , (A.1)

where ω̌iǎ b̌ is the 3d spin connection, and ǎ, b̌, č = 1, 2,3 are 3d flat indices. Our 3d gamma
matrices are identified with the Pauli matrices, (γǎ)αβ = (σǎ

Pauli)α
β . These are related to the

4d sigma matrices σa
αα̇, eσa α̇α, a = 1,2, 3,4, as

σǎ
αα̇ = i (γǎ)α

βσ4
ββ̇

, eσǎ α̇α = −i eσ4 α̇β(γǎ)β
α . (A.2)

It follows that

σǎ4 = −
i
2
γǎ , σǎ b̌ = −

i
2
εǎ b̌č γ

č ,

eσǎ4 = −
i
2
eσ4γǎσ4 , eσǎ b̌ = +

i
2
εǎ b̌č eσ4γ

čσ4 . (A.3)

A 4d left-handed spinor ζα directly reduces to a 3d spinor, while a 4d right-handed spinor eζα̇

is mapped to a 3d spinor via iσ4
αα̇
eζα̇ , or eζα̇(ieσ4)α̇α.
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The KK ansatz. Given a Killing vector ∂
∂ τ , we put the 4d metric in the KK form

ds2 = e−2Φ ǧi jdx idx j + e2Φ (dτ+ c)2 , (A.4)

where we are splitting the 4d coordinates as xµ = (x i ,τ), and ǧi j , c = cidx i , Φ are the 3d
metric, the KK photon and the dilaton, depending on the 3d coordinates x i . The Weyl rescaling
of the 3d metric ensures that a dimensional reduction of the 4d Einstein-Hilbert term yields a
3d term where the metric is in the Einstein frame. For the form fields we take the same ansatz
as in (6.19), that is

Ai = Ai − ciAτ , Vi = Vi − ciVτ . (A.5)

The 4d vielbein and its inverse can be chosen as

ea
µ =

�

e−Φ ěǎ
i 0

eΦci eΦ

�

, eµa =

�

eΦ ěi
ǎ 0

−eΦc j ě
j
ǎ e−Φ

�

, (A.6)

where ěǎ
i is a vielbein for ǧi j , and ěi

ǎ is its inverse. The 4d spin connection ωcab decomposes
as

ωč ǎ b̌ = eΦ
�

ěi
č ω̌iǎ b̌ − 2δč[ǎ ěi

b̌] ∂iΦ
�

, ω4ǎ b̌ = −e3Φ ∂[ic j] ě
i
ǎ ě j

b̌ ,

ωč4b̌ = e3Φ∂[ic j] ě
i
b̌ ě j

č , ω44b̌ = eΦ ěi
b̌ ∂iΦ . (A.7)

Reduction of the gravitino variation. We consider new-minimal supergravity [68, 69], in
its Euclidean version (see e.g. [51]). The gravity multiplet is made of the vielbein ea

µ, the

gravitino ψµ, eψµ and the auxiliary fields Aµ, Vµ.
We study the reduction along ∂

∂ τ of the gravitino supersymmetry variation. At the lin-
earized level in the fermion fields this is

δψµ = 2
�

∇µ − iAµ + iVµ + iV νσµν
�

ζ , (A.8)

δ eψµ = 2
�

∇µ + iAµ − iVµ − iV νeσµν
�

eζ . (A.9)

We assume that ψµ, eψµ,ζ, eζ are independent of τ. Importantly, this condition is satisfied by
the boundary conditions considered in the main text. Reducing δψµ we obtain the following
3d variations

δ(ψi − ciψτ) =
�

2(∇̌i − iAi + iVi) + εi jk

�

−i∂ jΦ+ 1
2e2Φv j +V j

�

γk + e−2ΦVτγi

�

ζ , (A.10)

δψτ =
�

e2Φ
�1

2 e2Φvi − i ∂iΦ−Vi

�

γi − 2i (Aτ − Vτ)
�

ζ , (A.11)

where we introduced
v i = −i εi jk∂ jck . (A.12)

The 3d indices i, j are always lowered/raised using the 3d metric ǧi j and its inverse ǧ i j . The

reduction of δ eψµ works in a similar way and yields

iσ4δ( eψi − ci
eψτ) =

�

2(∇̌i + iAi − iVi) + εi jk

�

−i∂ jΦ− 1
2e2Φv j −V j

�

γk + e−2ΦVτγi

�

iσ4
eζ,

(A.13)

iσ4δ eψτ =
�

e2Φ
�1

2 e2Φvi + i ∂iΦ−Vi

�

γi + 2i (Aτ − Vτ)
�

iσ4
eζ . (A.14)
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Identification of the 3d supergravity fields. We want to interpret the variations above as
supersymmetry variations in three-dimensional new-minimal supergravity. The new-minimal
supergravity multiplet is

supergravity multiplet =
�

ǧi j , ψ̌i , f̌ψi , Ǎi , V̌i , H
�

, (A.15)

while the KK photon vector multiplet is

KK photon multiplet =
�

ςkk , ci , λkk , eλkk , Dkk

�

. (A.16)

We identify the 3d gravitino and gaugino as

ψ̌i = e
Φ
2
�

ψi − ciψτ + i e−2Φγiψτ
�

, f̌ψi = e
Φ
2 iσ4( eψi − ci

eψτ − i e−2Φγi
eψτ) , (A.17)

λkk = 2e−
7
2Φψτ , eλkk = 2 e−

7
2Φiσ4

eψτ , (A.18)

while the 3d N = 2 spinor parameters are given by

ε = e
Φ
2 ζ , eε = e

Φ
2 iσ4

eζ . (A.19)

The bosonic fields in the three-dimensional supergravity multiplet are identified as

V̌i = 2Vi , Ǎi =Ai +
3
2
Vi +

i
4

e2Φεi jk∂
jck , H = e−2Φ(2Aτ − Vτ) , (A.20)

while the bosonic fields in the KK photon vector multiplet besides ci itself are given by

ςkk = −e−2Φ , Dkk = −e−4Φ(2Aτ − 3Vτ) . (A.21)

One can check that
∇̌i V̌

i = 0 , (A.22)

where ∇̌ is the Levi-Civita connection of the 3d metric dš2. This allows to identify V̌ i as the
one-form dual to the a gauge field strength, as required by 3d new-minimal supergravity.

Using these identifications, the 3d gravitino variations take the form

δψ̌i = 2
�

∇̌i − iǍi + iV̌i

�

ε +H γiε + εi jk V̌ jγkε , (A.23)

δf̌ψi = 2
�

∇̌i + iǍi − iV̌i

�

eε +H γieε − εi jk V̌ jγk
eε , (A.24)

while the 3d gaugino variation reads

δλkk =
�

−i εi jk∂
jck − i ∂iςkk + ςkkV̌i

�

γi ε + i (Dkk + ςkkH)ε ,

δeλkk =
�

−i εi jk∂
jck + i ∂iςkk + ςkkV̌i

�

γi
eε − i (Dkk + ςkkH) eε . (A.25)

These match the fermionic variations in three-dimensional new-minimal supergravity at the
linear level in the fermions [70].

If we impose ψτ = eψτ = 0 together with δψτ = 0, δ eψτ = 0, corresponding to part of the
supersymmetry conditions for a bosonic background, and in addition require eΦ = 1, Aτ = Vτ,
then from (A.11), (A.14) we infer that Vi = −

i
2 εi jk∂

jck. It follows that the identifications
(A.20) for the fields in the 3d new-minimal supergravity multiplet reduce to those given in
Appendix D of [70], that we reported in (6.27). Using the present more general identifications,
we could have avoided imposing eΦ = 1 and Aτ = Vτ in Section 6.2, and thus we could have
avoided fixing the 4d conformal factor Ω and the function κ as specified there. For instance,
we could have taken Ω= 1 and κ= 0 instead. We have performed a preliminary evaluation of
the supersymmetric integrals I1,2,3,4 using this alternative choice with some restricted choice
of the parameters b, k1, k2, and, at least for this restricted choice, we have obtained the same
results.
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