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Abstract

A few years ago, flow equations were introduced as a technique for calculating the
ground-state energies of cold Bose gases with and without impurities [1,2]. In this paper,
we extend this approach to compute observables other than the energy. As an example,
we calculate the densities, and phase fluctuations of one-dimensional Bose gases with
one and two impurities.
For a single mobile impurity, we use flow equations to validate the mean-field results
obtained upon the Lee-Low-Pines transformation. We show that the mean-field approx-
imation is accurate for all values of the boson-impurity interaction strength as long as
the phase coherence length is much larger than the healing length of the condensate.
For two static impurities, we calculate impurity-impurity interactions induced by the
Bose gas. We find that leading order perturbation theory fails when boson-impurity in-
teractions are stronger than boson-boson interactions. The mean-field approximation
reproduces the flow equation results for all values of the boson-impurity interaction
strength as long as boson-boson interactions are weak.
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1 Introduction

The flow equation approach is an ab-initio method for solving many-body problems [3]. A
related method, the in-medium similarity renormalization group (IM-SRG), was recently de-
veloped and successfully used in nuclear physics (see, e.g., Refs. [4, 5])1. The main concept
behind both methods is the same. Therefore, we use ‘IM-SRG’ and ‘flow equations’ inter-
changeably in this paper.

IM-SRG was recently extended to cold Bose gases [1, 2]. It was tested by calculating the
ground-state energies of the Lieb-Liniger model and a one-dimensional (1D) Bose gas with an
impurity atom (‘Bose polaron’) [1,2]. Those works demonstrate that flow equations allow one
to go beyond mean-field approximation without relying on many-body perturbation theory. In
the present work, we use IM-SRG to calculate the density and phase fluctuations of the Bose
gas. Motivated by recent cold-atom experiments [9, 10], we focus on the 1D Bose-polaron
problem. This problem is of current theoretical interest, see Refs. [2, 11–25], which provide
us with data for benchmarking and interpreting some of our IM-SRG results.

It has been noticed that the mean-field approximation (MFA) in a frame co-moving with the
impurity can accurately describe the self-energy of the impurity in a weakly-interacting Bose
gas [2,17,19,22]. This observation is somewhat counter-intuitive, since strong phase fluctua-
tions in one spatial dimension require a beyond-mean-field treatment. A counterargument to
this point can be based on the observation that (when solving a Bose-polaron problem) one is

1Note that the word ‘in-medium’ in the name of the method is used to separate the IM-SRG from the standard
SRG approaches, which are used in nuclear physics to ‘soften’ nuclear forces before using them in ab initio methods
(see, e.g., Refs. [6–8]), such as a no-core shell model.
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usually interested only in what happens to a Bose gas in the vicinity of the impurity, and there-
fore, the absence of long-range order is not necessarily relevant. Therefore, the mean-field

approach can be useful (cf. [26]) as long as the phase coherence length, ξe
p
π2/γ, is larger

than the length scale associated with the polaron, which is of the order of ξ [2]. Here ξ is
the healing length of the condensate, and γ is the dimensionless Lieb-Liniger parameter which
characterizes the boson-boson interaction strength, see Sec. 3. This argument implies that as

long as e
p
π2/γ � 1 one can use the MFA to study the Bose-polaron problem. The discussion

above is based on perturbation theory, and further work is needed for its rigorous proof. Here,
we use the IM-SRG method to provide numerical evidence for its validity.

In this work, we benchmark mean-field results against those obtained with IM-SRG, and
find that the MFA can describe the density of a Bose gas with an impurity particle accurately. To
confirm the absence of boson-boson entanglement in the frame co-moving with the impurity,
we calculate the phase fluctuations. They turn out to be negligible for the considered sys-
tems. Finally, we use the Born-Oppenheimer approximation to estimate the potential between
impurities supported by a Bose gas. Our IM-SRG results show that the mean-field approxima-
tion is useful to study mesoscopic and large systems with two impurities. In particular, the
MFA allows one to calculate the induced impurity-impurity interaction potential beyond first-
order perturbation theory in a simple manner, i.e., without including any information about
beyond-mean-field boson-boson correlations.

The paper is organized as follows: In Sec. 2, we give a short review of the IM-SRG, and
explain how to calculate observables using this method. In Sec. 3, we discuss a Bose gas
with a single impurity assuming repulsive boson-impurity interactions. There, we benchmark
the IM-SRG results for the density against the exact Bethe-ansatz solution. Furthermore, we
calculate the density and phase fluctuations of the Bose gas for systems that do not allow for an
exact analytic treatment. In Sec. 4, we consider a Bose gas with two impurities, and calculate
induced impurity-impurity interactions. We show that two impurities attract each other for
repulsive impurity-boson interactions, whereas two impurities repel each other if one impurity
attracts and another repels bosons, in accord with Refs. [23, 27]. We summarize our results
and give an outlook in Sec. 5. Further details on the IM-SRG method in our implementation
are given in Appendix A. For convenience of the reader, we present some additional results for
a system with attractive boson-impurity interactions in Appendix B.

2 In-Medium Similarity Renormalization Group

For convenience of the reader, we shall present in this chapter the main ingredients of the
IM-SRG method for bosons, see also Ref. [1], Appendix A, and Fig. 1.

2.1 Flow equations

The IM-SRG is an extension of the SRG [3,28,29] based upon the flow equation

dH
ds
= [η, H] , (1)

which transforms the Hamiltonian matrix into a block-diagonal form, i.e., it decouples the
“ground-state” matrix element from all excitations (see Fig. 1). The flow equation is defined
once the initial condition, H(s = 0), and the generator of the transformation, η, are specified.
It is worth noting that Eq. (1) is equivalent to the unitary transformation H(s) = U(s)H(s = 0)
U†(s), assuming that the antihermitian operator η and the unitary operator U are connected
as

η(s) =
dU(s)

ds
U†(s) . (2)
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Figure 1: Illustration of the action of the flow equation (1) on the Hamiltonian. The
Hamiltonian matrix is unitarily transformed to a block-diagonal form, such that the
ground state (hatched green) becomes decoupled. The upper row illustrates the exact
transformation without a truncation. Note that many-body excitations appear during
the flow. The bottom row illustrates a truncation scheme adopted to circumvent this
problem. The induced three-body terms (checkered blue) can be estimated and used
to evaluate the accuracy of the truncation scheme. The excitations are defined with
respect to the adopted normal ordering, see Sec. 2.2.

We prefer to write the unitary transformation in the form of Eq. (1) because it allows us to
choose the operator η(s) during the flow, i.e., for every parameter s, and, hence, to steer
the flow in the desired direction. In our work, η(s) is chosen from the matrix elements that
describe the couplings between the ‘condensate’ and its excitations such that these couplings
become weaker as the flow progresses, see Fig. 1. A detailed construction of η(s) is presented
in Appendix A.

In practice, the following steps constitute the IM-SRG method: (i) find a one-body basis
to write a Hamiltonian matrix in second quantization (see Appendix A.2), (ii) find a reference
state to normal order the operators (see the next subsection), (iii) solve the flow equation (1)
(we use the explicit Runge-Kutta method 5(4)).

2.2 Normal ordering

In general, it is impossible to solve Eq. (1) for a many-particle system without approxima-
tions. The complexity is due to the commutator [η, H]: It leads to many-body terms, which
are not present in the initial Hamiltonian H(s = 0). To solve Eq. (1), the many-body terms
must be truncated at some order. To define a truncation hierarchy, we write the Hamiltonian
H in second quantization using normal ordering with respect to a reference function, Ψref,
which is a product state, see the next subsection. Upon normal ordering, we truncate three-
body excitations and beyond, see Fig. 1. To estimate the introduced truncation error, we use
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the three-body elements and second order perturbation theory for matrices, see Fig. 1 and
Appendix A.1.

To normal order a Hamiltonian with one- and two-body operators, we define the contrac-
tions2, following Ref. [1]

: a†
α1

aα2
:= a†

α1
aα2
− ICα1α2

, (3)

: a†
α1

a†
α2

aα3
aα4

:= a†
α1

a†
α2

aα3
aα4
− ICα1α2α3α4

−
N − 1
2N

(1+ Pα1α2
)(1+ Pα3α4

)Cα2α3
: a†
α1

aα4
: ,

(4)

where a†
α is a bosonic creation operator, Cα1α2

= 〈Ψref|a†
α1

aα2
|Ψref〉 and Cα1α2α3α4

=
〈Ψref|a†

α1
a†
α2

aα3
aα4
|Ψref〉. The parameter N is the number of bosons. I is the identity oper-

ator; the operator Pα1α2
swaps the indices α1 and α2.

A generic Hamiltonian with one- and two-body operators,

H =
∑

i, j

Ai ja
†
i a j +

1
2

∑

i, j,k,l

Bi jkl a
†
i a†

j akal , (5)

reads in the normal ordered prescription as

H = εN I +
∑

i, j

fi j : a†
i a j : +

1
2

∑

i, j,k,l

Γi jkl : a†
i a†

j akal : , (6)

with

εN =
∑

i, j

Ai jCi j +
1
2

∑

i, j,k,l

Bi jkl Ci jkl , (7)

fα1α2
= Aα1α2

+
N − 1

N

∑

i, j

Bα1 i jα2
Ci j , (8)

Γα1α2α3α4
= Bα1α2α3α4

. (9)

εN = E is the energy of the ground state, fα1α2
(Γα1α2α3α4

) describes one-particle (two-particle)
excitations.

2.3 Reference state

The reference state, Ψref, should approximate an eigenstate (here the ground state) of the
Hamiltonian well, otherwise the IM-SRG transformation cannot map Ψref onto the exact state.
Since we are interested in ground-state properties of a bosonic system, it is logical to use a
product state as a reference state, i.e.,

Ψref(x1, ..., xN ) =
N
∏

α=1

f (xα) , (10)

where xα is the coordinate of the αth boson, and f is some function whose form we discuss
below. The choice of a product-state ansatz is natural for cold Bose gases with macroscopic
population of a single mode, i.e., with a large condensate fraction. However, for an interacting
one-dimensional Bose gas, the reference state of Eq. (10) is in general not accurate. In the
thermodynamic limit, correlations in the 1D Bose gas decay algebraically, precluding conden-
sation [30–34]. However, as our analysis below shows, the product state is a useful starting
point for analyzing properties of Bose polarons.

2We use the notation : O : for the normal-ordered form of the operator O.
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In this work, we construct Ψref using either f1b or fGP . The function f1b is the ground-state
wave function of the one-boson Hamiltonian as in Refs. [1,2]. The second function is obtained
within a mean-field approximation, i.e., fGP is the solution of the Gross-Pitaevskii equation.
f1b and fGP are real functions in our work. This choice does not affect the generality of our
results, since the ground state of our problem can be described using a real wave function.

To distinguish the IM-SRG method with f1b from IM-SRG with fGP , we introduce the nota-
tion IM-SRG( f1b) and IM-SRG( fGP), respectively3. It is worth noting that one can rely on an
iterative procedure to find a good reference state, starting from any reasonable initial guess
f (0)a . Indeed, IM-SRG( f (0)a ) may provide a new reference state as f (1)a = pρ, where ρ is the
density obtained from IM-SRG( f (0)a ). The iterative procedure is continued until f (i+1)

a → f (i)a ,
which signals that the results are converged. In addition, this procedure can be used to validate
the convergence of our results. We have checked that the results within the zeroth-order itera-
tion (i.e., of IM-SRG( f (0)a ) with f (0)a = f1b, fGP) are already accurate for the systems discussed
here.

2.4 Observables

In nuclear physics, the IM-SRG method was used not only to calculate the energy, but also to
estimate other observables [5, 35]. One of the goals of the present paper is to develop (and
test the accuracy of) the IM-SRG method for calculating the density and phase fluctuations of
cold Bose gases.

In order to calculate observables other than the energy, the corresponding Hermitian op-
erator O should be transformed together with the Hamiltonian. To this end, we write O in
second quantization, normal order it with respect to the reference state Ψref, and solve the
flow equation

dO
ds
= [η, O] . (11)

Equations (1) and (11) are solved simultaneously since the generator η depends on H .
In this work, we focus on calculating one-body observables. The commutator in Eq. (11)

leads to two- and higher-order terms for such observables at s > 0, which should be truncated
according to our scheme. We cannot estimate the associated error using the strategy adopted
for the energy (see Appendix A.1), as in general the operators O and H do not commute.
Instead we define the “relative truncation error” as

∆=
δe
e

, (12)

where e is the energy calculated using flow equations and δe is our estimation of the truncation
error for the energy, (see Appendix A.1). We estimate the error due to truncation for O as

δO ≈∆ · 〈O〉 . (13)

By comparing to the exact density, we will show below that δO can estimate accurately the
error of the IM-SRG. However, we do not expect this always to be the case. In general, one
cannot infer the accuracy of an observable from the accuracy of the energy using a linear
approximation4, which means that δO is no more than a useful phenomenological estimate.

3Note that this differs from the convention in nuclear physics, where the notation IM-SRG(n) is used to specify
the order n of the truncation scheme for many-body forces.

4To illustrate this statement, let us assume that a numerical method produces the following approximation to
the ground state: ψ0 +α f , where ψ0 is the exact ground-state wave function, and f is an element of the Hilbert
space, which is orthogonal to ψ0, i.e., 〈ψ0| f 〉 = 0. If the numerical method is accurate, then α→ 0. In this case,
it is easy to see that the error produced by the numerical method is proportional to α2 for the expectation value of
the energy. However, the error for a general observable can be much larger, as it scales as α.
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3 A Bose Gas with a Single Impurity Atom

To illustrate calculations of observables based upon flow equations, we investigate a one-
dimensional system of N bosons and a single impurity atom. This system, which is often
referred to as the 1D Bose-polaron problem, is one of the simplest models where our approach
is useful. The corresponding Hamiltonian in first quantization reads as

H = −
ħh2

2m
∂ 2

∂ y2
−
ħh2

2M

N
∑

i=1

∂ 2

∂ x2
i

+ Vi b({x i}) + Vbb({x i}) , (14)

where y is the position of the impurity, x i is the position of the ith boson, m is the mass of
the impurity atom, and M is the mass of a boson. To model atom-atom interactions, we use
zero-range potentials [36]:

Vi b({x i}) = c
N
∑

i=1

δ(x i − y), Vbb({x i}) = g
∑

i, j

δ(x i − x j) , (15)

where c defines the strength of the boson-impurity interactions, and g determines the boson-
boson interactions. We consider periodic boundary conditions, i.e., particles are confined to a
ring of length L, see Fig. 2. The average density of the Bose gas is ρ = N/L. We introduce the
dimensionless set of parameters:

x̃ i := x iρ , ỹ := yρ , Ẽ :=
M

ħh2ρ2
E ,

m̃ :=
m
M

, c̃ :=
M

ħh2ρ2
c , γ :=

M

ħh2ρ2
g ,

where E is the energy of the system. The parameter γ is also known as the Lieb-Liniger pa-
rameter. In this new set of units the Hamiltonian H̃ reads as:

H̃ = −
1

2m̃
∂ 2

∂ ỹ2
−

1
2

N
∑

i=1

∂ 2

∂ x̃2
i

+ Vi b({ x̃ i}) + Vbb({ x̃ i}) ,

Vi b({ x̃ i}) = c̃
N
∑

i=1

δ( x̃ i − ỹ) , Vbb({ x̃ i}) = γ
∑

i, j

δ( x̃ i − x̃ j) .

(16)

In the following we will omit the tilde for better clarity.
We focus on weakly-interacting Bose gases (i.e., γ � 1) that are ‘large enough’ (i.e., the

healing length, ξ = 1/(pγρ), is smaller than L). Furthermore, we assume that the phase
coherence length is larger or comparable to L, so that the Bose gas is in a (quasi)-condensed
state and our reference state is accurate.

In this work, we mainly focus on repulsive boson-impurity interactions (c > 0). In Ap-
pendix B we present preliminary results for the Bose-gas density and phase fluctuations for
attractive interactions. However, further studies are needed for c < 0 and will be addressed
in a future publication [37]. The self-energy of the impurity for c > 0 was already calculated
with IM-SRG in Ref. [2]. We are now going to compute other observables using this numer-
ical method. To that end, we transform the Hamiltonian (14) to the system of coordinates
co-moving with the impurity, i.e., we introduce a new set of coordinates

zi = Nθ (y − x i) + x i − y , (17)
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Figure 2: Illustration of the one-dimensional Bose-polaron problem: N bosons and a
single impurity on a ring of length L. The mass of the impurity atom is m while the
mass of a boson is M . The coordinates of the impurity and the bosons are y and {x i},
respectively. For convenience, the problem is solved using the set of coordinates {zi},
which describe the relative distances between the impurity and the bosons.

where θ (x) is the Heaviside step function. The coordinates zi allow one to calculate mean-field
properties of the Bose-polaron problem in a simple manner, see Refs. [2,17]. The transforma-
tion {y, x i} → {zi} is related to the unitary Lee-Low-Pines transformation [38] performed in
coordinate space [19,22]. In the new coordinates, the Hamiltonian (14) is written as

HP = −
1
2

N
∑

i

∂ 2

∂ z2
i

−
1

2m

� N
∑

i

∂

∂ zi

�2

+
iP
m

N
∑

i

∂

∂ zi
+ γ

∑

i< j

δ(zi − z j) + c
N
∑

i=1

δ(zi) , (18)

where P is a quantum number – the total (angular) momentum of the system. We consider
the case P = 0, as it corresponds to the ground-state manifold. The Hamiltonian HP describes
a system of N bosons, and can be easily written in the language of second quantization using
the annihilation and creation operators, ai and a†

i , which are defined in the frame co-moving
with the impurity.

3.1 Reference state

In this section, we introduce the reference states, which are needed to solve the Bose-polaron
problem with flow equations. The first reference state is built upon the ground state, f1b, of
HP=0 for a single boson, i.e., N = 1. The corresponding Schrödinger equation reads as

−
1

2κ
d2

dz2
f1b(z) + cδ(z) f1b(z) =

k2

2κ
f1b(z) , (19)

where κ = m/(1 + m) is the reduced mass, and z ∈ [0, N] is the coordinate of a boson.
The ground-state solution that satisfies the boundary conditions [ f1b(0) = f1b(N)] is f1b =
N cos (k(z − N/2)), where k ∈ [π/N , 2π/N] is determined from the equation 2k tan(kN/2) =
2cκ. The parameter N is determined from the normalization condition

∫

| f1b(z)|2dz = 1:
N =

p

2k/(kN + sin(kN)).
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The second reference state, fGP , solves the Gross-Pitaevskii equation that corresponds
to H0:

−
1

2κ
d2 fGP

dz2
+ γ(N − 1) fGP(z)

3 + cδ(z) fGP(z) = µ fGP(z) , (20)

where µ is the chemical potential. The solution to this equation is given by

fGP(z) =

√

√ 4K(p)2p
κγδ2N2(N − 1)

sn
�

2K(p)
�

z
δN
+

1
2
−

1
2δ

�

, p
�

, (21)

where sn is the sn−Jacobi elliptic function, and K(p) is the complete elliptic integral of the
first kind [39]. The parameters p ∈ [0, 1) and δ are fixed by the boundary conditions due to
the delta-function potential cδ(z) [ f ′GP |+0 − f ′GP |−0 = 2κc fGP(0)], and by the normalization
condition [

∫

| fGP(z)|2dz = 1]. The corresponding chemical potential µ reads as:

µ= 2
p+ 1
κδ2N2

K(p)2 . (22)

The mean-field solution fGP is discussed in more detail in Ref. [2], see also Refs. [19, 22]
for the discussion of the thermodynamic limit, and Refs. [40,41] for the discussion of the limit
c→∞.

3.2 Density

In this section, we calculate the density, ρ(z) = 〈Φgr |ρ(z)|Φgr〉, of the Bose gas in the frame
co-moving with the impurity:

ρ(z) = 〈Φgr |
N
∑

i=1

δ(z − zi)|Φgr〉 , (23)

where Φgr is the ground state of H0. ρ(z) should not be confused with the density of the Bose
gas without the impurity, ρ = N/L. To use the density operator ρ(z) in the flow equation
approach (see Sec. 2.4), we write it in second quantization as

ρ(z) =
∑

i, j

φi(z)φ j(z)a
†
i a j , (24)

where φi(z) is the ith element of the one-body basis employed for writing the Hamiltonian in
second quantization. Note that in our implementation the basis {φi(z)} depends on the used
reference state, see Appendix A.2.

To test flow equations, we first calculate ρ(z) assuming equal masses (m = M) and equal
interactions (c = γ). For the ground state, these assumptions turn our system into the exactly
solvable Lieb-Liniger model for N+1 particles [43] in a ring, since we can no longer distinguish
between the impurity and a boson. To calculate the density of the bosons in the frame co-
moving with the impurity (see Eq. (23)), we relate it to the pair correlation function of the
Lieb-Liniger model, g(2)LL :

ρ(z) =
N + 1

N
g(2)LL (0, z) . (25)

To derive this relation, we have used the following definition of g(2)LL :

g(2)LL (0, z)≡ N2 N
N + 1

∫

|ΨLL(y = 0, x1 = z, x2, ..., xN )|2dx2...dxN , (26)
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Figure 3: Density of the Bose gas in the frame co-moving with the impurity. The dots
are calculated with the flow equations. Left [right] panel shows the results of the IM-
SRG( fGP) [IM-SRG( f1b)]method. The densities obtained directly from the reference
state fGP [ f1b] are given by the solid green curves. The exact pair-correlation function
from Ref. [42] is shown as a dashed orange curve. Our results are presented for N = 6
bosons plus a single impurity atom. The interaction strengths are c = γ= 1, and the
masses of impurity and bosons are equal.

where ΨLL is the ground-state wave function of the Lieb-Liniger model. For z > 0, we can
write that

ΨLL(y = 0, x1 = z, x2, ..., xN ) =

√

√ 1
N
Φgr(z, z2, ..., zN ) , (27)

which in combination with Eq. (23) leads to Eq. (25).
For certain parameter regimes, the function g(2)LL is known for few-body systems (see, e.g.,

Ref. [42]), and we use those results to benchmark our findings, see Fig. 3 for N = 6. The
density calculated using flow equations agrees well with the exact values for all values of z.
Near the impurity, the density of the bosons is suppressed, since the boson-impurity interaction
is repulsive. The presented error bars show the error due to the truncation of the Hilbert
space (see, Appendix A.3), and due to the truncation of many-body forces in flow equations,
see Eq. (13). For the considered parameters, the latter dominates. All in all, the comparison
to the exact results allows us to conclude that our error estimate is accurate.

Figure 3 shows that IM-SRG( f1b) and IM-SRG( fGP) agree, which means that both f1b and
fGP are suitable reference states for the considered parameters. In our studies, we noticed that
the reference state fGP is generally a better choice than f1b. In comparison to IM-SRG( f1b), the
scheme IM-SRG( fGP) allows us to obtain converged results for a larger range of parameters. In
particular, IM-SRG( fGP) is more reliable for large systems, and large boson-boson interactions.
Figure 3 explains this observation: The more complicated mean-field function fGP provides a
better approximation of the exact density, and, hence, it is easier for the flow equation method
to map this reference state onto the real ground state of the system. In what follows, we
present our results only for IM-SRG( fGP).

Finally, we calculate the density for parameters for which the system is no longer exactly
solvable. Our goal here is to test the mean-field treatment of H0. It is already known that
this treatment can produce accurate results for the energy of the impurity and the contact
parameter [2, 19, 22]. Here, we show that it can also be used to calculate the density, see
Fig. 4. As in Fig. 3, the density of the Bose gas is suppressed near the impurity. The length
scale that characterizes this suppression is given by ξ/

p
κ [2,22] (for γ= 0.02, ξρ ' 7.1 and

for γ= 0.1, ξρ ' 3.2). All in all, we observe that the mean-field approximation describes ρ(z)
accurately for all values of the boson-impurity interaction strength c, as long as the parameter
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Figure 4: (Upper row): The density of the Bose gas in the frame co-moving with the
impurity. Dots are calculated using the IM-SRG( fGP) method. Mean-field densities
are shown using solid, dashed and dot-dashed curves. The dotted vertical line indi-
cates the relevant healing length ξ/

p
κ. Results are presented for N = 50, m = 1

and different impurity-boson interactions c listed in the legend. (Bottom row): Phase
fluctuations for the Bose gas in the frame co-moving with the impurity. Dots with er-
ror bars are calculated using the IM-SRG( fGP) method. The dashed curves are added
to guide the eye. The parameters N and m are as in the upper row. The boson-boson
interaction strength in panels a) and c) is γ= 0.02, while in b) and d) it is γ= 0.1.

γ is small5.
We have checked that the mean-field approximation is accurate for up to γ ' 0.5 and

c → ∞ by comparing to the Monte-Carlo results presented in Ref. [14]. The comparison
of our IM-SRG results to the RG results6 of Ref. [14] suggests that it is more advantageous
to work with a real-space formulation of the Bose-polaron problem. Large values of c re-
quire beyond-Fröhlich-polaron treatment of the problem in momentum space, in particular,
one should include phonon-phonon interactions. In contrast, in our implementation, already
mean-field results are accurate. The accuracy of MFA is probably not surprising after we no-
tice that the (phase) coherence length is larger than the length scale we are interested in. For
instance, the phase coherence length for γ= 0.1 is about 20000ξ. We illustrate this statement
further by calculating phase fluctuations in the next subsection.

5We expect the mean-field approximation to break down when the boson-boson interaction is increased. With
the IM-SRG method we were not able to investigate this, since the truncation error also increases with the boson-
boson interaction, e.g., for N = 15, c = 1 and γ = 1 the truncation error is ≈ 5% but for γ = 2 it is already above
10%. These large error bars make it impossible to pinpoint parameters for which the mean-field description starts
to fail.

6Reference [14] studies large systems with impurities using the (Wilson-type) renormalization group technique
in momentum space [44,45].
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3.3 Phase fluctuations

Phase fluctuations are strong in the one-dimensional world [33,34,46,47], incapacitating the
mean-field treatment. However, as long as one is interested in the physics on the length scales
smaller than the coherence length, the mean-field approach can give accurate results. We
will now calculate phase fluctuations using flow equations, and explicitly justify the use of
the MFA7. Another way to validate the mean-field ansatz could be based on calculating the
condensate fraction in the considered mesoscopic ensembles. For example, the flow equation
approach predicts that the condensate fraction8 for systems with N = 50 and γ≤ 0.1 is always
large (∼ 95%), thus endorsing the use of the mean-field ansatz for these systems. In particular,
this large condensate fraction suggests that if fifty bosons can screen the impurity, then the
MFA should yield accurate results for the properties of the impurity in the thermodynamic
limit. However, the condensate fraction can only be used to provide a phenomenological
argument in support of the mean-field approach. In one spatial dimension, the condensate
fraction depends on the considered number of particles, and vanishes in the thermodynamic
limit. Therefore, we do not discuss it further.

To calculate phase fluctuations, we first compute the one-body density matrix

ρ(0, z)≡ 〈Φgr |ρ(0, z)|Φgr〉= 〈Φgr |
∑

i, j

φ∗i (0)φ j(z)a
†
i a j|Φgr〉 , (28)

and then extract the phase fluctuations δΦ0z using the expression [46]:

ρ(0, z) =
Æ

ρ(0)ρ(z)exp
§

−
δΦ0z

2

ª

. (29)

The result is shown in Fig. 4. For γ = 0.02, phase fluctuations are negligibly small9. For
γ = 0.1, phase fluctuations play a more important role, however even then they can be ne-
glected so that ρ(0, z)'

p

ρ(0)ρ(z). This implies that for these parameters the Bose gas can
be described using a mean-field ansatz. One could anticipate that phase fluctuations depend
noticeably on the value c, which determines the density of bosons and, hence, the effective
Lieb-Liniger parameter in the vicinity of the impurity. However, we observe that phase fluctu-
ations depend only weakly on the boson-impurity interaction strength, c. Note that in practice
it is difficult to extract phase fluctuations according to the definition (29) in systems with
c/γ� 1 for which ρ(0)→ 0. Therefore we do not compute phase fluctuations in this limit.

3.4 Contact parameter

This section focuses on repulsive boson-impurity interactions, and leaves a thorough IM-SRG
study of the attractive case for the future [37]. However, we must note that our conclusion
that the mean-field approximation describes accurately an impurity in a Bose gas should not
be straightforwardly extended to a Bose gas with an attractive impurity. There is an important
difference between the cases with c > 0 and c < 0: The latter supports a formation of tightly
bound states at large negative values of c. Many-body bound states are highly-correlated and
cannot be accurately described by the mean-field ansatz, unlike the opposite case with c→∞.
This implies that the region of applicability for c > 0 must be larger (see also the discussion on
the effective mass in Ref. [22]). To elaborate slightly more on this difference, we calculate the

7Phase fluctuations vanish in the MFA.
8By condensate fraction, we mean here the expectation value of the operator a†

0a0/N .
9Note that we expect that the exact curve for c = 0.5 in Fig. 4 c) is monotonous. Our calculations of this curve

have large error bars, which allow for an apparently non-monotonous behavior.
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Figure 5: Comparison of the mean-field contact parameter from Eq. (30) to the
Quantum Monte-Carlo result [12] for two different boson-boson interaction strengths
γ= 0.02 (blue circles) and γ= 2 (orange squares). The results are shown as a func-
tion of the impurity-boson interaction strength, c with c < 0 [c > 0] displayed in the
left [right] panels, respectively. The solid curves give the mean-field results, while
the circles/squares are from Ref. [12]. The masses of the impurity and the bosons
are equal (m= 1).

density of the Bose gas at the position of the impurity, i.e., the contact parameter, C = ρ(0)/ρ,
in the mean-field approximation in the thermodynamic limit:

CM F = tanh±2(D) , D =
1
2

asinh
�

2
c

s

γ

κ

�

, (30)

where the positive sign of the exponent is for c > 0 (see Ref. [2]) and the negative sign should
be taken for c < 0. We compare the parameter CM F to the contact parameter calculated using
Quantum Monte-Carlo [12] in Fig. 5. For c > 0, the agreement between Monte-Carlo and the
mean-field approximation is reasonable for all available data points. For attractive interactions,
the difference between the results is more noticeable, which implies that the MFA leads to less
accurate results for c < 0, see also Appendix B, where we present some additional data for
the case with attractive interactions. Note in particular Fig. 15, which indicates large phase
fluctuations for moderate impurity-boson interactions, in contrast to the repulsive case.

4 A Bose Gas with Two Impurity Atoms

In the previous section, we considered a single impurity in a Bose gas, which is the standard
starting point in the analysis of systems with impurities. However, the physics of systems with
many impurity atoms can be drastically different from that of a system with a single impurity
atom, in particular, because the Bose gas mediates interactions between impurities. Therefore,
the next step for a reliable description of a (quasispin-)polarized systems must be an assess-
ment of the strength of the induced impurity-impurity interaction potential. One possible way
to do this is to consider a Bose gas with two mobile impurities, see, e.g., Refs. [20,25,48,49].
We choose another approach. We estimate the induced impurity-impurity interaction using
the Born-Oppenheimer approximation [50–52] (see Refs. [53–57] for related studies in three
spatial dimensions), i.e., for m→∞. It is known that the Born-Oppenheimer approximation
captures short-range correlations, which define overall properties of impurity-impurity interac-
tions [50,58]. Long-range impurity-impurity correlations induced by quantum fluctuations are
beyond the range of applicability of the Born-Oppenheimer approximation, in particular, since
they can depend on the mass of the impurity [21, 27, 59]. These long-range correlations are
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Figure 6: Illustration of a system of N bosons and two static impurities confined to
a ring of length L. The ith boson has the coordinate x i . One impenetrable impurity
(c1→∞) is placed at y1 = 0, and another one with the interaction strength c2 is at
y2 = d.

not relevant for our discussion – they are weak for the considered parameters regimes, and
can be neglected. In particular, these correlations are relevant only at distances ' 5ξ (see,
e.g., [51]), i.e., they can be extracted only by considering systems that are larger than studied
here.

The dimensionless Hamiltonian for two static impurities is written in first quantization as:

H2 = −
1
2

N
∑

i=1

∂ 2

∂ x2
i

+ γ
∑

i, j

δ(x i − x j) + c1

N
∑

i=1

δ(x i − y1) + c2

N
∑

i=1

δ(x i − y2) , (31)

where c1 and c2 describe the strength of the impurity-boson interactions, and y1 and y2 are
the positions of the impurities. Without loss of generality, we place one impurity at y1 = 0
and the other at y2 = d, see Fig. 6. We assume that the impurity at y1 is impenetrable, i.e.,
1/c1 = 0. In other words we consider an impurity in a semi-infinite Bose gas [23, 24]. This
assumption allows us to simplify the presentation. We will show that for c2 > 0 the impurities
attract each other, whereas if c2 < 0 the impurities repel each other. In the former case, the
energy is minimized when two impurities are on top of each other, whereas in the latter case
the attractive impurity wants to be far from the repulsive one, see also Ref. [23]. We shall
consider these cases separately.

The goal of this section is to calculate induced impurity-impurity interactions in the Born-
Oppenheimer approximation using the flow equation approach. To this end, below, we com-
pute with IM-SRG the ground-state energy of the Hamiltonian H2. We also show that the
induced interactions can be accurately calculated using the mean-field approximation, at least
for weak boson-boson interactions. Finally, we estimate when first-order perturbation theory,
which is commonly used to estimate impurity-impurity interactions [24,51], fails.
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4.1 Repulsive case, c2 > 0

4.1.1 Reference state

To use the IM-SRG( fGP) scheme, we first find the reference state, fGP , by solving the Gross-
Pitaevskii equation:

−
1
2

d2 fGP

dx2
+ γ(N − 1) fGP(x)

3 + (c1δ(x) + c2δ(x − d)) fGP(x) = µ fGP(x) . (32)

The solution to this equation reads

fGP(x) =























√

√

√
4K(p1)2p1

γδ2
1N2(N − 1)

sn
�

2K(p1)
�

x
δ1N

�

+ a, p1

�

x ∈ [0, d]

√

√

√
4K(p2)2p2

γδ2
2N2(N − 1)

sn
�

2K(p2)
�

N − x
δ2N

�

+ a, p2

�

x ∈ [d, N]

, (33)

where the parameters p1, p2,δ1,δ2, a are determined by the conditions:

N
∫

0

f 2
GP d x = 1 , (34)

fGP(d
+) = fGP(d

−) , (35)
p1 + 1

δ2
1N2

K(p1) =
p2 + 1

δ2
2N2

K(p2) , (36)

d fGP

dx

�

�

�

�

d+

d−
= 2c2 fGP(d) , (37)

d fGP

dx

�

�

�

�

0+

N−
= 2c1 fGP(0) . (38)

The chemical potential is µ= 2 p1+1
δ2

1N2 K(p1). The mean-field solution presented here is valid

for all positive values of c1. For the special case 1/c1 = 0 that we consider in this section, one
should set the parameter a to 0, and solve only the boundary conditions (34)-(37). Once the
function fGP is obtained, the mean-field energy of the system is calculated as

EM F
2 = µN −

1
2
γN(N − 1)

∫ N

0

f 4
GP(x)dx . (39)

4.1.2 Results

We first calculate the induced interaction potential, ε2 = E2(c2, d)− E2(c2 = 0, d), where E2 is
the ground-state energy of H2. Our results for this quantity for N = 60 particles are presented
in Fig. 7. Note that E2(c2 = 0, d) = E2(c2, d = 0), hence ε2(d = 0) = 0. The potential ε2 is
attractive, because the boson-impurity repulsion is minimized when the two impurities are on
top of each other. The considered system is not yet in the thermodynamic limit (see the next
subsection), but it is large enough to see the saturation of the impurity-impurity interaction at
large values of d, i.e., far from the impenetrable impurity.
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Figure 7: The impurity-impurity interaction induced by the Bose gas for repulsive
boson-impurity interactions, c2 > 0. Dots with error bars represent the IM-SRG( fGP)
results. The solid (blue) curves are calculated using perturbation theory, and the
dashed (green) curves show the mean-field energy. The data are for N = 60,
γ = 0.02 and four different values of the boson-impurity interaction: a) c2 = 0.02,
b) c2 = 0.04, c) c2 = 0.06, and d) c2 = 0.1. For comparison, the dotted lines give
the self-energies of a single impurity, E2(c1 = 0, c2) − E2(c1 = 0, c2 = 0), for those
parameters.

In Fig. 7, we compare the results obtained via IM-SRG( fGP) and perturbation theory. The
latter assumes that the second impurity does not affect the density of the Bose gas, and there-
fore ε2 = c2n(d), where n(d) is the density of the Bose gas for c2 = 0. This is the common
assumption for estimating the induced interaction [23,24,51]. The perturbation theory leads
to the Yukawa-type potential when both impurities are weakly interacting [25, 50, 51, 58].
Hence, our results indicate the limits of applicability of that standard potential. The figure
also presents the mean-field approximation, which uses Eq. (39) to estimate ε2. We conclude
that perturbation theory can be used if c2 < γ. However, it fails already for c2 ¦ γ, and
more involved calculations are required to find the induced potential in this regime. Perturba-
tion theory implies much stronger impurity-impurity interactions. Its use will lead to wrong
predictions for a number of experimentally relevant observables, such as the limits of stabil-
ity of the polaronic gas [60]. For all considered parameters, the mean-field approximation
agrees with the IM-SRG( fGP) method. This implies that the MFA can be used to calculate the
induced potential beyond first order perturbation theory. Finally, we note that far from the
impenetrable impurity, the energy ε2 does not approach the self-energy of a single impurity,
E2(c1 = 0, c2) − E2(c1 = 0, c2 = 0), (dotted lines in Fig. 7)10. This is a finite-size effect. Far
from the impenetrable impurity, the density of the Bose gas in a finite system is larger than ρ,
see Fig. 4, which leads to the difference at d = 20 between the dotted lines and dots in Fig. 7.

We also employ the IM-SRG( fGP) to calculate the density and phase fluctuations of the Bose

10Note that by definition the self-energy of a single impurity does not depend on d.
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Figure 8: (Upper row): The density of the Bose gas for N = 60, γ = 0.02, c2 = 0.1
and two values of the distance between the impurities: a) d = 11 and b) d = 20.
Dots show the results of the IM-SRG( fGP). For comparison, the solid curve gives the
mean-field density. (Bottom row): Phase fluctuations of the Bose gas for N = 60,
γ= 0.02, c2 = 0.1 and two values of the distance between the impurities: c) d = 11
and d) d = 20. The dots are calculated using the IM-SRG( fGP).

gas for N = 60, γ = 0.02, c2 = 0.1 and d = 11,20. The results are presented in Fig. 8. The
density vanishes at x = 0 and x = 60 due to the impenetrable impurity and periodic boundary
conditions. The Bose gas is strongly affected by the second impurity, which is located at x = d.
This explains the discrepancy between perturbation theory and the flow equation approach in
Fig. 7. All in all, the IM-SRG( fGP) results for ρ(x) agree well with the mean-field prediction.

Figures 8 c) and d) show phase fluctuations. Here, we choose the position of the second
impurity, d, as the reference point. As for a single impurity in a ring, phase fluctuations in-
crease far from d where the impenetrable impurity is located11 (see the discussion at the end
of Sec. 3.3). Therefore, we do not show phase fluctuations in the vicinity of those points.
The maximum value of δΦd x is small (in agreement with the results of the previous section),
and does not depend strongly on d. A condensate fraction for the considered system is about
∼ 95%. Our findings presented in this subsection imply that the physics of two strongly in-
teracting impurities in a weakly-interacting Bose gas can be conveniently studied using the
mean-field approximation.

4.2 Approaching the thermodynamic limit

In this subsection, we study the transition to the thermodynamic limit, i.e., we increase N and
L, while keeping the density constant, ρ = N/L. The key question here is how many bosons
are needed to simulate the infinite system. For a single impurity in a weakly-interacting Bose
gas, this was briefly considered in Ref. [2]. Here, we discuss what happens for two impurities.
The IM-SRG results for c2 = 0.1 and c2 = 0.02, γ= 0.02 and different numbers of particles are

11Note, that the density vanishes at x = 0 and x = N .
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Figure 9: Interaction potential for two repulsive impurities induced by the Bose gas
for γ = 0.02: panel a) shows c2 = 0.02 and panel b) shows c2 = 0.1. The curves
display different values of N listed in the insets. We also show our prediction for the
induced interaction potential in the thermodynamic limit. No error bars are shown
for this case, since we cannot estimate them reliably, see text. In the lower panels,
we compare our prediction for the thermodynamic limit (orange squares) with the
corresponding result based upon perturbation theory, which includes quantum fluc-
tuations [23] (solid blue curve), and the mean-field result (green dots). Panels c)
and d) are for c2 = 0.02 and c2 = 0.1, respectively. The dotted lines in c) and d)
show the self-energies of a single impurity, E2(c1 = 0, c2)− E2(c1 = 0, c2 = 0) in the
thermodynamic limit while the dashed curves are added to guide the eye.

shown in Fig. 9 a) and b). For the considered values of N , the induced interaction is far from
the thermodynamic limit, i.e., it changes with the numbers of particles. The thermodynamic
limit is reached for system sizes which are beyond the flow equation approach. Still, we can
use IM-SRG to predict the induced potential in the thermodynamic limit by fitting the IM-SRG
energies to the function C1 +

C2
N C3

, where C1, C2 and C3 are fitting parameters. The parameter
C1 defines the potential in the thermodynamic limit. The fitting parameters C2 and C3 have no
direct physical interpretation12. In Figs. 9 a) and b), we present the value of C1. The truncation
error in the IM-SRG method grows rapidly with the number of particles. This rapid growth
rules out a reliable extrapolation of the error bars to the thermodynamic limit. Therefore, we
give no estimate for the accuracy of C1, which leads to an apparently oscillating character of
the potential in the thermodynamic limit. We expect that the exact potential is a monotonically
increasing function of the distance between the impurities, d, for the considered values of d.

In Figs. 9 c) and d), we compare our estimate for the potential in the thermodynamic limit
with the result based upon perturbation theory, which includes quantum fluctuations [23,24].
For weak boson-impurity interactions, c2 = γ, both curves agree well. For larger interactions,
however, the curves deviate. In this case, the density of bosons is strongly influenced by the

12The best fits to the data have the parameter C3 in between 1 and 2, depending on the value of d.
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second impurity (see Fig. 8), and, therefore, perturbation theory is not a valid approximation.
We draw two conclusions from Fig. 9. First, high compressibility of a weakly-interacting Bose
gas leads to a large number of particles needed to reach the thermodynamic limit. This should
be contrasted with systems of strongly interacting bosons or fermions, for which a handful
of particles can screen the impurity [61], for more detail, see Refs. [62, 63] and references
therein. Here we find that for γ = 0.02, one needs more than 100 particles to capture the
effective short-range interaction between two static impurities in the thermodynamic limit.
This implies that any study that aims to relate measurements in current cold-atom set-ups with
small number of particles to the thermodynamic limit must provide an estimation of finite-size
effects. This is especially important for any prospective experimental study of induced long-
range interactions. Second, calculations beyond first-order perturbation theory are required
to estimate induced impurity-impurity interactions also in the thermodynamic limit. As we
show here, these calculations can be based upon the mean-field approximation.

4.3 Attractive case, c2 < 0

In this section, we consider attractive boson-impurity interactions, c2 < 0. This case is more
complicated because all bosons are bound to the impurity if γN ® 2|c2| in the limit L →∞
(assuming that N is fixed), see [37,64]. Therefore, to obtain a meaningful estimation for the
induced interactions, we must consider N � 2|c2|/γ.

4.3.1 Reference state

For attractive interactions, we do not obtain the reference state fGP from the Gross-Pitaevskii
equation. Instead, we choose the reference state as

fGP(x) =N fone−rep(x) fone−at t r(x) , (40)

where fone−rep is the mean-field solution for a Bose gas with one repulsive impurity, and
fone−at t r is the mean-field solution for a Bose gas with a single attractive impurity. There-
fore, the function fGP in Eq. (40) is the full mean-field solution for two impurities in the limit
of large separation between the impurities, i.e., d � 1. Otherwise, the function fGP is an
approximation to the solution of the Gross-Pitaevskii equation. We observe that fGP is an ac-
curate approximation, see, in particular, Fig. 11, where fGP is plotted together with the density
of the bosons calculated using flow equations.

The function fone−rep is given by (see Sec. 3.1)

fone−rep(x) =

√

√

√
4K(p1)2p1

γδ2
1N2(N − 1)

sn
�

2K(p1)
�

x
δ1N

+
1
2
−

1
2δ1

�

, p1

�

, (41)

where δ1 = 1, since we work with an impenetrable impurity, c1→∞. The function fone−at t r
reads as [37]

fone−at t r(x) =

√

√

√
4K(p2)2

γδ2
2N2(N − 1)

ns
�

2K(p2)
�

x
δ2N

+
1
2
−

1
2δ2

�

, p2

�

. (42)

The parameter N is given by the normalization condition:
∫

fGP(x)
2dx = 1 . (43)
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Figure 10: Induced impurity-impurity interaction for a repulsive and an attractive
impurity, c2 < 0, N = 60, and γ = 0.02. The four panels are for different values of
c2: a) c2 = −0.02, b) c2 = −0.04, c) c2 = −0.06, and d) c2 = −0.1. The circles with
error bars show the result of the IM-SRG( fGP) calculation. The solid curve gives the
result of first-order perturbation theory. For comparison, we also show the IM-SRG
result for c2 > 0 (squares) times (-1). The dashed and dot-dashed curves are added
to guide the eye while the dotted lines show the self-energies of a single impurity,
E2(c1 = 0, c2)− E2(c1 = 0, c2 = 0).

4.3.2 Results

We compare the induced interaction potential obtained with the IM-SRG( fGP) to the one ob-
tained using first-order perturbation theory, see Fig. 10. In contrast to the case of c2 > 0, now
the induced impurity-impurity potential is repulsive. The attractive impurity maximizes its
energy by being far from the hole in the density of bosons created by the repulsive impurity.
In agreement with the case c2 > 0, perturbation theory fails to describe impurity-impurity in-
teractions when |c2| ¦ γ. The important difference is that now perturbation theory leads to a
weaker induced interaction in comparison to the IM-SRG result.

As in the previous case, perturbation theory fails because the density of the Bose gas is
strongly modified in the vicinity of the impurity for |c2|¦ γ. To illustrate a strong modification
of the density, we calculate ρ(x), and phase fluctuations of the Bose gas for N = 60, γ= 0.02,
c2 = −0.1 and d = 11,20 within the IM-SRG( fGP), see Fig. 11.

Figure 11 demonstrates that the reference state fGP gives an accurate approximation to
the exact density of the Bose gas. Phase fluctuations are small, and we have checked that
the condensate fraction for these parameters is above 95%. Therefore, our conclusion for
the considered parameters is similar to the case with c2 > 0: The mean-field approach can
be used to describe the impurity-impurity mediated interactions as long as the boson-boson
interaction is weak. Although, we do not demonstrate this here, we expect that fGP and the
mean-field approach in general to be less accurate for one attractive impurity in comparison to
one repulsive impurity when |c2| � γ. This expectation is based on our analysis of the contact
parameter, see Fig. 5, as well as on the results presented in Appendix B.
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Figure 11: (Upper Row): The density of the Bose gas for N = 60, γ= 0.02, c2 = −0.1
and two different separations of the impurities: a) d = 11 and b) d = 20. We show
the density calculated using flow equations (dots) together with the density calcu-
lated using the reference state, fGP (solid curve). (Bottom Row): Phase fluctuations
of the Bose gas for N = 60, γ = 0.02, c2 = −0.1 and the separations c) d = 11 and
d) d = 20. The dots show the IM-SRG( fGP) results. The dashed curves are added to
guide the eye.

4.4 Approaching the thermodynamic limit

Finally, we calculate the induced interactions for different values of N , in order to under-
stand the few- to many-body transition in this system. We illustrate our findings in Fig. 12
for γ = 0.02 and c2 = −0.02, c2 = −0.1. Like in the case with c2 > 0, we fit the energy to
estimate the induced impurity-impurity potential in the thermodynamic limit, and compare
the estimate to the result of Ref. [23]. Just like in the case with c2 > 0, we see that pertur-
bation theory is accurate for weak boson-impurity interactions but fails to describe stronger
interactions.

5 Summary and Outlook

The paper explores the possibility to calculate observables for degenerate Bose gases using the
flow equation approach. For illustration purposes, the focus is on a one-dimensional Bose gas
with one and two impurity atoms. The considered system allows us to benchmark the IM-SRG
results against the existing exact data based upon the Bethe ansatz, and to study in detail the
Bose-polaron problem and polaron-polaron interactions, topics of current theoretical interest.

In the single impurity case, we consider repulsive boson-impurity interactions (c > 0).
It turns out that the density of the Bose gas for the repulsive Bose-polaron problem can be
calculated accurately using the mean-field approximation in the coordinate frame, which is
‘co-moving’ with the impurity. To explain the validity of the mean-field approach, we show that
the condensate fraction is large and phase fluctuations are small for the considered mesoscopic
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Figure 12: Interaction potential between two impurities induced by the Bose gas for
γ= 0.02 in the attractive case, c2 < 0, with two different strengths a) c2 = −0.02 and
b) c2 = −0.1. The curves show different values of N listed in the insets. We also give
our prediction for the induced interaction potential in the thermodynamic limit. No
error bars are shown for this case, since we cannot estimate them reliably, see text.
In the lower panels, we display our prediction for the values in the thermodynamic
limit (orange dots) and the corresponding result based upon perturbation theory,
which includes quantum fluctuations [23] (solid blue curve). Panels c) and d) are for
c2 = −0.02 and c2 = −0.1, respectively. For comparison, we also show the negative
IM-SRG result for c2 > 0 (green squares). The dashed curves are plotted to guide
the eye while the dotted lines in c) and d) give the self-energy of a single impurity
E2(c1 = 0, c2)− E2(c1 = 0, c2 = 0), in the thermodynamic limit.

ensembles (N < 100), and weak boson-boson interactions. For attractive interactions (c < 0),
the possibility of deep impurity-boson bound states complicates the analysis. This issue will
be addressed in a future publication [37].

For two impurities, we calculate induced impurity-impurity interactions in the Born-Oppen-
heimer approximation. For simplicity, we assume that one impurity is impenetrable. The other
one either attracts or repels bosons. The former case leads to repulsive, and the latter one to
attractive induced interactions. We find that the mean-field approximation describes accu-
rately these interactions, and can be used in straightforward calculations based upon the well-
studied Gross-Pitaevskii equation. We also show that first order perturbation theory is valid
when boson-impurity interaction is smaller or equal to the boson-boson interaction, however,
fails otherwise. Finally, we discuss the few- to many-body transition, and show the importance
of finite-size effects for impurities in weakly-interacting Bose gases.

Our results show that the mean-field approach is a robust tool to study weakly-interacting
Bose gases with impurities. In the other limit of strongly interacting Bose gases, one can
study the self-energy and the density of an impurity using tools developed for Fermi gases,
e.g., based upon variational wave functions [65] or the Bethe ansatz [66]. In the future, it
might be interesting to investigate the transition between these two limits, and the evolution
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of the Bose polaron into the impurity in a Tonks-Girardeau gas. A modification of the flow
equation approach with two reference states might be useful to study this transition. One
could compare the obtained IM-SRG results to those calculated using beyond-Gross-Pitaevskii
effective theories (as, e.g., introduced in Ref. [67]).

The present work paves the way for IM-SRG studies of Bose gases in higher spatial dimen-
sions. A starting point for such an extension might be a study of dilute bosonic droplets, for
which a number of exciting analytical predictions exist [68, 69]. It should also be possible
to investigate two- and three-dimensional systems with impurities. The relevant mean-field
solutions can be found in the literature [70–73], giving reference states for flow equations. A
modification of the IM-SRG, which takes into account Hilbert space associated with an impurity
can allow one to study composite impurities in Bose gases, and corresponding quasiparticles,
in particular, angulons [74,75].

Note added after ArXiv submission: After submission of this manuscript, we learned of re-
cent works [76, 77], where the accuracy of the mean-field approximation to polaron-polaron
interactions is also discussed.

Acknowledgments and Funding information We thank Matthias Heinz and Volker Karle for
helpful comments on the manuscript; Zoran Ristivojevic for useful correspondence regarding
mean-field calculations of induced impurity-impurity interactions; Fabian Grusdt for sharing
with us the data for the densities presented in Ref. [14]. This work has received funding from
the DFG Project No. 413495248 [VO 2437/1-1] (F. B., H.-W. H., A. G. V.) and European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant
Agreement No. 754411 (A. G. V.). M. L. acknowledges support by the European Research
Council (ERC) Starting Grant No. 801770 (ANGULON). H.-W.H. thanks the ECT* for hospi-
tality during the workshop “Universal physics in Many-Body Quantum Systems – From Atoms
to Quarks". This infrastructure is part of a project that has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No
824093. H.-W.H. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - Project-ID 279384907 - SFB 1245.

A Details on the Method

Below, we explain the IM-SRG method in more detail. We start by presenting the form of
the flow equation (1) after our truncation of many-body terms, and discuss our estimate of
the truncation error. After that, we explain further technical details of our implementation
of the IM-SRG method. First, we discuss the one-body basis, which is used to represent the
Hamiltonian in second quantization. Then, we discuss the truncation of the Hilbert space.

In the Appendix, the Einstein summation rule is implied, when Latin indices are used.
There is no summation for Greek indices.

A.1 Flow equation

Our flow equation reads as
dH
ds
= [η, H] , (44)

where the generator η is written as

η(s) = ξi j(s) : a†
i a j : +

1
2
ηi jkl(s) : a†

i a†
j akal : . (45)
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The matrices ξi j and ηi jkl must be chosen such that the couplings to the ground state - the
matrix elements fi0 and Γi j00 - vanish (see Fig. 1). Note that the commutator in the right-
hand-side of Eq. (1) induces many-body terms:

[: a†
i a†

j akal :, : a†
aa†

bacad :] = a†
i a†

j a
†
bakacad + ... . (46)

This three-body operator induces a three-body operator in the Hamiltonian at s > 0. Since
all couplings from the ground state need to vanish, we would now need a three-body oper-
ator in the generator as well, which would in turn generate a four-body operator and so on.
It is therefore impossible to treat the flow equation exactly and we need to truncate many-
body terms. We choose to truncate at the two-body level, keeping only the terms from the
three-body operator that contain at least one a†

0a0 operator (see Ref. [1] for a more detailed
discussion). We neglect the remaining pieces (called W), see also Fig. 1, which illustrates the
used truncation scheme.

Upon truncation, we derive a closed system of coupled differential equations (note that
Ref. [1] has typos in this system of equation, which we correct here):

dε
ds
= S00 + (N − 1)

�

1
2

S00ii00 − S000000

�

, (47)

d fα1α2
(s)

ds
= −(N − 1)2(S0α100α20 + S0α1α2000 + S000α1α20) + (N − 1)Sα10ii0α2

+ (N − 1)S0α1α20 +
(N − 1)(N − 2)

2
(S00α2α100 + S0α100α20Dα2

Dα1
)

+
(N − 1)(N − 2)

2
(S0α1α2000Dα1

+ S000α1α20Dα2
) + Sα1α2

, (48)

dΓα1α2α3α4
(s)

ds
=
(1+ Pα1α2

)(1+ Pα3α4
)

2

�

Sα1α2α3α4

− (N − 1)(Sα1α2α300α4
+ Sα100α2α3α4

) +
1
2

Sα1α2 iiα3α4

+ (N − 2)Dα1
Dα4

S0α1α3α2α40 + (N − 2)Iα1α2
Dα4

Sα1α2α300α4

+ (N − 2)Dα1
Iα3α4

Sα100α2α3α4
+ (N − 2)Iα1α2

Iα3α4
Sα1α200α3α4

�

, (49)

with Dα1
= 2−δα10, Iα1α2

= 1+δα10δα20 − 2δα20, and

S(1)α1α2
= ξα1 i fiα2

− fα1 iξiα2
,

S(2)α1α2α3α4
= ξα1 iΓiα2α3α4

− Γα1α2α3 iξiα4
+ηα1α2α3 i fiα4

− fα1 iηiα2α3α4
,

Sα1α2α3α4α5α6
= ηα1α2α3 iΓiα4α5α6

− Γα1α2α3 iηiα4α5α6
. (50)

To estimate the truncation error for the ground-state energy we use second-order pertur-
bation theory [1]

δe '
1
N

∑

p

�

〈Φp|
∫∞

0 W(s)ds|Φref〉
�2

〈Φp|H |Φp〉 − 〈Φref|H |Φref〉
, (51)

where Φp is a state that contains three-body excitations.
The explicit choice of the generator can be justified a posteriori if the couplings to the

excited states vanish [3]. Our choice of the generator is

η= fi0 : a†
i a0 : +

1
2
Γi j00 : a†

i a†
j a

†
0a0 : −h.c. . (52)
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Figure 13: Illustration of a solution of the flow equations (47), (48), (49) as a func-
tion of s. The ground-state energy εN is shown using (blue) dots. The sum of the
couplings,
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|Γi j00|, is presented as (orange) squares. The dashed curves

are added to guide the eye.

For this generator, the couplings (the matrix elements fi0 and Γi j00) vanish, and the energy of
the ground state, εN , converges, see Fig. 13 for an illustration of a typical convergence pattern
in our study. We expect that other standard choices of the generator, see, e.g., Ref. [5], lead
to similar results, see also Ref. [1].

A.2 One-body basis

To write the Hamiltonian in second quantization, H = Ai ja
†
i a j +

1
2 Bi jkl a

†
i a†

j akal , we need
to calculate the matrix elements Ai j and Bi jkl using some one-body basis. In this section, we
discuss the one-body basis used in the present study.

First, we solve the single-boson problem whose eigenstates produce the basis set {φi}. This
set is used as a basis set when we work with the (single-body) reference state f1b = φ0, where
φ0 is the ground-state of the single-boson problem. The corresponding contractions enjoy the
simple form Cα1α2

= δα10δα20N and Cα1α2α3α4
= δα10δα20δα30δα40N(N − 1). To keep this

simple form of contractions also when we work with the state fGP , we construct another one-
body basis set: We take fGP as the zeroth element of our basis, and use the Gram-Schmidt
process to build an orthogonal basis set from fGP ,φ1,φ2, ....

A.3 Truncation of the Hilbert space

We truncate the one-body basis to solve the flow equations numerically. Let us denote the size
of the truncated basis by n. As argued in Ref. [1], to calculate the energy of the system in the
limit n→∞, one should compute ε for a few values of n, and then fit the obtained sequence
using the function

ε(n) = ε(n→∞) +
A
nδ

, (53)

where ε(n→∞), A, δ are fit parameters. ε(n→∞) is the value of the energy in the limit
n →∞. This value is presented in the figures of the main text. In our calculations, we fit
results for n= 13−23. We estimate the uncertainty by the standard deviation error of the fit.
We show convergence of other observables in Figs. 14 b), c), and d).
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Figure 14: Convergence of observables for a system with one repulsive impurity as a
function of the truncation parameter, n. The parameters of the system are N = 50,
γ = 0.02 and c = 0.5. Panel a) shows the energy of the system, panel b) presents
the density at z = 0, panel c) shows the density at z = N/2, and panel d) gives the
one-body density matrix at ρ(0, N/2). The dashed curves are added to guide the eye.

Observables that depend on the density of the bosons in the vicinity of the impurity [see
Figs. 14 b) and d)] approach the limit n→∞ in a similar fashion to the energy. Such behavior
is the result of a slow convergence of the wave function due to the delta-function potential. To
calculate such observables in the limit n→∞, we use the fitting procedure described above.

Observables that do not depend on the density of bosons in the vicinity of the impurity, e.g.,
the density of the Bose gas far away from the impurity [see Fig. 14 c)], are virtually converged
for n = 23. Therefore, to estimate the value of the observable in the limit n →∞, we take
the result for n = 23. To estimate the uncertainty of this value, we use the largest difference
between the results obtained with n= 13− 23.

B An Attractive Impurity in a Bose gas

We leave a rigorous study of a Bose gas with a single attractive impurity to a future publication
[37]. However, for the sake of completeness, we briefly discuss here properties of a system
defined in Sec. 3 with c < 0. In Fig. 15, we present the density of the Bose gas. The figure
shows that the mean-field approximation works well for c = −0.1, and c = −0.2. However,
there is a difference between the MFA and IM-SRG results for two largest values of |c|. The
difference is most noticeable for the density at z = 0, which defines the contact parameter (see
Sec. 3).

Finally, we calculate phase fluctuations, see Fig. 15 e). The figure demonstrated significant
phase fluctuations for c ' 0.25. This increase signals that the Bose gas and the impurity form
a many-body bound state. Large phase fluctuations also suggest that the mean-field ansatz is
no longer a valid approximation.
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Figure 15: Density of the Bose gas for a heavy attractive impurity (m→∞, c < 0).
Blue dots are calculated with the IM-SRG method. The mean-field density is shown
as a solid orange curve. The data are for N = 45, γ = 0.02 and a): c = −0.1, b):
c = −0.2, c): c = −0.25, d): c = −0.26. Panel e) shows the corresponding phase
fluctuations. Dots with error bars are calculated using the IM-SRG method. The
dashed curves are added to guide the eye.
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