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Abstract

We extend the study of the recently discovered Yangian symmetry of massive Feynman in-
tegrals and its relation to massive momentum space conformal symmetry. After proving
the symmetry statements in detail at one and two loop orders, we employ the conformal
and Yangian constraints to bootstrap various one-loop examples of massive Feynman in-
tegrals. In particular, we explore the interplay between Yangian symmetry and hyperge-
ometric expressions of the considered integrals. Based on these examples we conjecture
single series representations for all dual conformal one-loop integrals in D spacetime
dimensions with generic massive propagators.
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1 Introduction and Summary

Conformal symmetry plays an important role in theoretical physics. On the one hand it repre-
sents an (approximate) symmetry of many interesting models. On the other hand, it furnishes
a powerful tool that puts strong constraints on a theory’s observables and leads to intriguing
mathematical structures. In this paper we explore an extension of conformal symmetry into
two directions: its applicability to situations with masses as well as its embedding into an in-
finite dimensional Yangian symmetry. While there is a clear phenomenological motivation for
going beyond the realm of massless particles, the extension to a conformal Yangian brings us
to the theory of integrable models where one may expect that physical quantities of interest
are fixed completely by the underlying symmetry.

While conformal symmetry can be studied on different levels of a given model, here we
are interested in its impact on the elementary building blocks of quantum field theory, i.e. on
Feynman integrals. The focus of the present paper lies on the question of how to bootstrap
massive Feynman integrals by using conformal symmetry or its Yangian extension. In fact,
we will discuss two instances of conformal symmetry, i.e. an ‘ordinary’ conformal symmetry
that is here naturally formulated in momentum space and dual conformal symmetry acting on
dual region momenta. In both cases we will discuss representations of the symmetry that also
act on the particles’ masses, which can be interpreted as extra-dimensional components of the

2

https://scipost.org
https://scipost.org/SciPostPhys.11.1.010


SciPost Phys. 11, 010 (2021)

coordinate vectors. The Yangian algebra employed here is then understood as the closure of
these two conformal algebras, cf. [1–3].

The dual conformal symmetry of certain Feynman integrals has a long history in the mass-
less as well as in the massive situation, see e.g. [4–10], and it strongly reduces the number
of variables a function of interest depends on. Among the dual conformal Feynman integrals,
infinite classes of diagrams of fishnet structure feature an even larger Yangian symmetry as
was shown in [2, 11] for the massless case and a massive version was recently found in [3].
The Yangian algebra is well known to underly rational integrable models [12–15], and it in-
cludes the dual conformal symmetry at the zeroth level of its infinite set of generators. In the
case of two-dimensional field theories, this nonlocal symmetry typically fixes the scattering
matrix completely [16]. The distinguished role of fishnet-type Feynman integrals can be un-
derstood from the fact that their conformal Yangian symmetry is inherited from planar N = 4
super Yang–Mills (SYM) theory via a particular double scaling limit of its gamma-deformation.
This double scaling limit yields a massless fishnet theory [17], whose correlators or scatter-
ing amplitudes are in one-to-one correspondence with individual Feynman graphs of fishnet
structure. Similarly, a massive fishnet theory can be obtained from a double-scaling limit of
N = 4 SYM theory on the Coulomb branch, allowing to identify massive Feynman integrals
with Yangian invariant scattering amplitudes [18]. Also the massive version of the Yangian
can be understood as the closure of massive dual conformal symmetry and a novel massive
extension of ordinary conformal symmetry [3]. In this paper we will study the constraints of
the Yangian and its (dual) conformal sub-algebras.

The idea to bootstrap Feynman integrals using their Yangian symmetry was first discussed
in [19] for the examples of the massless box, hexagon and double box integrals. While the 2-
variable box integral was shown to be completely fixed by its symmetries, in this first approach
it was not possible to fix the linear combination of formal Yangian invariant building blocks
for the 9-variable hexagon and double box integrals. Here an important step was recently
made in [20], where this linear combination was determined using a multi-variable extension
of the Mellin–Barnes techniques, cf. [21, 22]. In order to refine the algorithmic approach to-
wards Feynman integrals from Yangian symmetry it would be desirable to study examples that
interpolate between the above 2- and 9-variable cases. Here the recent extension of Yangian
symmetry to Feynman integrals with massive propagators comes in handy, since switching on
individual masses allows us to slowly increase the number of variables. In fact, initial examples
of massive integrals were obtained from Yangian symmetry in [3].

In the present paper we expand on the details of the massive Yangian and conformal sym-
metry presented in [3]. First we prove the symmetry statements at one- and two-loop orders
in detail. We then elaborate on the relation between Yangian symmetry and the massive ex-
tension of momentum space conformal symmetry. We explicitly discuss the implications of
this momentum space symmetry on a few examples in Section 6. In the massless limit, the
resulting constraints are precisely those that have recently been studied in the context of the
momentum space conformal bootstrap (see e.g. [23–33]) with applications in cosmology or
condensed matter physics.

We then systematically apply the bootstrap approach to massive Feynman integrals with
generic propagator powers at one loop order. Since the treatment strongly depends on the
choice of variables, it is useful to discuss different examples in detail, even if simpler cases
can (in principle) be obtained as limits of more complex cases. In particular, we will discuss
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representations of the considered integrals in terms of different hypergeometric functions. The
results are summarized in the following table:

Points Dual Conf. Masses RatiosParameters Solution Basis Section

2 no/yes 00 03/02 rational/rational 7.2/—
2 no/yes m10 13/02 Gauß 2F1/rational 7.3/8.1
2 no/yes m1m2 23/12 Kampé de Fériet/Legendre 7.4/8.2

3 no/yes 000 24/03 Appell F4/rational 6.1/(6.2)
3 no/yes m100 34/13 Lauricella/Gauß 2F1 7.6/8.4
3 no/yes m1m2m3 54/33 —/Srivastava HC —/8.5

n no/yes m1 . . . mn see eq. (2.30) —/conjecture —/9

Based on the intuition gained with these examples, we finally conjecture two different series
representations for the most generic massive n-point integrals at one-loop order, with prop-
agator powers a j that obey the dual conformal constraint, i.e. they add up to the spacetime
dimension D =

∑

j a j:

∫

dD x0
∏n

j=1(x
2
0 j +m2

j )
a j
=

m1,a1

m2,a2

m3,a3 mn−1,an−1

mn,an

. . .

. (1.1)

The two conjectured series representations correspond to expressing the integral in terms of
two different sets of variables

Region A: ui j =
x2

i j + (mi −m j)2

−4mim j
, Region B: vi j =

x2
i j +m2

i +m2
j

2mim j
. (1.2)

The A-series represents an n-point generalization of Gauß’ hypergeometric function 2F1 and
Srivastava’s triple hypergeometric series HC for 2 and 3 points, respectively. The B-series
closely resembles a representation given by Aomoto [34].1 Moroever we note that the v-type
variables are distinguished since in the case of unit propagator powers a j = 1, elegant polylog-
arithmic expressions for this class of integrals are known up to five points [35]. Interestingly,
this family of all-mass n-gon integrals has been found to have beautiful relations to geometry,
see e.g. [35–40]. Our analysis suggests that this beauty is closely connected to the underlying
Yangian symmetry which essentially fixes these integrals completely. Note the hint at integra-
bility in the 1998 paper [36] by Davydychev and Delbourgo, where the simplification of the
integral representation for the constraint

∑

j a j = D was already called a “generalization of
the so-called uniqueness formula for massless triangle diagrams”.2 In the non-dual-conformal
case of unconstrained propagator powers, hypergeometric representations for these one-loop
integrals were obtained in [42].

Throughout this paper we use the following notation for non-dual-conformal and dual
conformal one-loop n-point integrals with propagator weights a j , respectively, which is also
reflected in the subsection titles (cf. the above table of contents):

Im1...mn
n [a1, . . . , an] , Im1...mn

n• [a1, . . . , an] . (1.3)

In the dual conformal case denoted by •, the propagator weights obey
∑

j a j = D. We close
the paper with an outlook in Section 10.

1We thank Christian Vergu for bringing this to our attentention.
2The uniqueness formula is also called the star-triangle relation which represents a characteristic feature of many

integrable models, cf. (6.2) and e.g. [41].
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2 Massive Dual Conformal Symmetry

In this section we discuss the massive dual conformal symmetry of Feynman integrals. Inte-
grals with this symmetry are particularly interesting in the context of the present paper since
only these are invariant under the whole tower of Yangian generators and thus maximally
constrained. The distinguished feature of these integrals is that the powers of propagators
entering into an integration vertex obey the dual conformal constraint

n
∑

j=1

a j = D . (2.1)

After having discussed the case of one-loop integrals in large detail, we will comment on
generalizations to higher loop orders.

One-Loop Integrals and Dual Conformal Transformations. We begin by discussing the
dual conformal symmetry of Feynman integrals with massive external legs. As a simple exam-
ple, we consider the one-loop n-gon integral with arbitrary propagator powers,

In =

∫

dD x0
∏n

j=1(x
2
0 j +m2

j )
a j
=

a1

a2

a3

an

an−1

. . .

. (2.2)

The above integral is immediately invariant under four-dimensional Poincaré transformations.
In order to have an object that is additionally scale and conformally invariant, we introduce a
prefactor Vn,

In = Vnφn . (2.3)

Any appropriate prefactor will lead to scale invariance of the combined object under simul-
taneous rescalings of the x-coordinates and the masses. If the propagator weights satisfy the
constraint (2.1), the function φn is also invariant under the (D+ 1)-dimensional inversion

I : x µ̂ 7→
x µ̂

x̂2
. (2.4)

Here, we note that the index µ̂ runs from 1 to D + 1 and the additional component of the
vectors x j is given by x D+1

j = m j . To denote an index running from 1 to D, we employ the
unhatted version µ. Moreover, we use the abbreviation

x̂2 = x2 +m2 . (2.5)

For the action of the inversion map, we note that

(x2
0 j +m2

j ) 7→
(x2

0 j +m2
j )

x2
0(x

2
j +m2

j )
, (2.6)

where we have applied the ordinary D-dimensional inversion to x0, which can be achieved by
using an appropriate substitution under the integral. Correspondingly, the integral transforms
as

In 7→
∫ dD x0(x2

0)
−D+

∑

a j
∏n

j=1(x
2
j +m2

j )
a j

∏n
j=1(x

2
0 j +m2

j )
a j

. (2.7)
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If the conformal constraint (2.1) is satisfied, the integral thus transforms by a factor. For the
function φn to be an invariant, we hence need to construct a prefactor which transforms as

Vn 7→ Vn

n
∏

j=1

(x2
j +m2

j )
a j . (2.8)

There are several possible choices for such a prefactor, in particular since we can obtain the
respective scalings from combinations of x̂2

i j or mi . A simple choice of prefactor satisfying the
above constraint is given by

Vn =
n
∏

j=1

m
−a j

j , (2.9)

however, other choices of prefactors can be more convenient and we will also employ different
ones below.

The combination of the above inversion with D-dimensional translations yields the special
conformal transformations in D+ 1 dimensions,

x µ̂ 7→
x µ̂ + cµ̂xν̂x ν̂

1+ 2cν̂x ν̂ + cρ̂cρ̂ xν̂x ν̂
, (2.10)

albeit with the extra-dimensional component cD+1 set to zero, since In is not invariant under
the respective translation. These transformations are generated by the conformal generator

K̃µ =
n
∑

j=1

K̃µj , K̃µj = −i
�

2xµj x ν̂j −η
µν̂ x̂2

j

�

∂ν̂ . (2.11)

Next we note that the invariance of φn under the above generator can be translated to an
invariance statement for In with an adapted generator,

0= K̃µφn = V−1
n Kµ In , Kµ = K̃µ + VnK̃µV−1

n = K̃µ − 2i
n
∑

j=1

a j x
µ
j , (2.12)

which is easy to see using the explicit prefactor given in (2.9) but holds for any prefactor
satisfying (2.8). The integral In is hence invariant under the dual conformal generators

Pµj = −i∂ µx j
, Lµνj = i xµj ∂

ν
x j
− i xνj ∂

µ
x j

,

Dj = −i x jµ̂∂
µ̂
x j
− i∆ j , Kµj = −i

�

2xµj x ν̂j −η
µν̂ x̂2

j

�

∂ν̂ − 2i∆ j x
µ
j , (2.13)

if we set the weights∆ j equal to the propagator powers a j . That is, for Ja denoting one of the
above generators we have

Ja In = 0 . (2.14)

We remind the reader that the index µ̂ runs from 1 to D + 1 while µ runs from 1 to D. The
generators can hence also be understood as massless generators in D + 1 dimensions. Note
however that in order to have invariance, we have to restrict to indices µ,ν, e.g. the integral
is not invariant under translations in the mass dimension. The generators given above satisfy
the conformal algebra

�

Dj , Pµ̂k
�

= iδ jkPµ̂k ,
�

Dj , Kµ̂k
�

= −iδ jkKµ̂k ,
�

Pµ̂j , Lν̂ρ̂k
�

= iδ jk

�

ηµ̂ν̂Pρ̂k −η
µ̂ρ̂Pν̂k

�

,
�

Kµ̂j , Lν̂ρ̂k
�

= iδ jk

�

ηµ̂ν̂Kρ̂k −η
µ̂ρ̂Kν̂k

�

,
�

Kµ̂j , Pν̂k
�

= 2iδ jk

�

ηµ̂ν̂Dk − Lµ̂ν̂k

�

,
�

Lµ̂ν̂j , Lρ̂σ̂k

�

= iδ jk

�

ηµ̂σ̂Lρ̂ν̂k + (3 more)
�

. (2.15)

On a massless leg j, the same representation applies with m j ≡ x D+1
j = 0.

Summing up, we have found that the one-loop graph (2.2) is invariant under the dual con-
formal generators (2.13) provided that the propagator weights satisfy the constraint

∑

a j = D.
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Higher Loop Integrals. The above invariance statement carries over to higher loop graphs
if we demand that at each vertex, the joining propagator weights sum up to the spacetime
dimension,

∑

vertex

a j +
∑

vertex

bk = D . (2.16)

Here, the variables a j denote the weights of external propagators whereas the bk correspond
to internal propagators. In order to see this, consider a multi-loop integral of the form

I = . . .

∫

dD yi

ρiσi
. . . , (2.17)

with

ρi =
∏

j∈Vi

�

(x j − yi)
2 +m2

j

�a j
, σi =

∏

k∈Ṽi

(yk − yi)
2bki , (2.18)

where Vi and Ṽi denote the set of external or internal points connected to yi . The internal
propagators need to be massless in order to have dual conformal symmetry, since we are not
integrating over the (D+1)-component of the internal points, i.e. the mass. After carrying out
the inversion given in (2.6), we pick up a factor of

�

y2
i

�

∑

j∈Vi
ai+

∑

k∈Vi
bki−D

.

Given the above constraint, this factor cancels at each vertex.

Conformal Variables. Due to its invariance, the function φn can be parametrized in terms of
conformally invariant variables, simplifying its functional form considerably. In the massless
case, the natural variables are the well-known conformal four-point cross ratios. In the massive
case, there are (at least) three natural kinds of massive conformal variables:

ui j =
mim j

x̂2
i j

, vk
i j =

m2
k x̂2

i j

x̂2
ik x̂2

jk

, wkl
i j =

x̂2
i j x̂

2
kl

x̂2
ik x̂2

jl

. (2.19)

Here we use the abbreviation

x̂2
i j = x2

i j + (mi −m j)
2 . (2.20)

Sometimes it is useful to multiply these variables by overall constants, to add constants to
them, or to consider the inverse of these variables, which may lead to a more natural form of
the resulting differential equations. Clearly, the vk

i j and the wkl
i j are not independent of the ui j ,

since

vk
i j =

uiku jk

ui j
, wkl

i j =
uiku jl

ui jukl
=

vk
i j

vk
l j

. (2.21)

Therefore, in the general n-point case with all masses non-vanishing, one would try to find an
independent set among the n(n− 1)/2 different ui j . However, the other cross ratios become
important as soon as we consider special cases where some of the masses are set to zero.
Setting k masses to zero reduces the number of degrees of freedom by k, but it leads to the
vanishing of

∑k
i=1(n−i) of the ui j . Therefore, one may need to extend the set of non-vanishing

ui j by an independent subset of the vk
i j and wkl

i j . We note that we can and will use the freedom
to select a set of independent cross ratios in order to simplify the form of the Yangian PDEs.
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Independent Variables. In the general case it can be difficult to make sure that a given
set of the above variables is indeed independent, and which combinations of values can be
reached by choosing appropriate x µ̂j . In order to answer such questions systematically, we can
employ the construction of the Dirac cone [43], which is also used in the construction of the
conformal compactification of Minkowski or Euclidean space. To this end, we map x µ̂ to a
(D+ 3)-dimensional lightlike vector with components

X 0 = 1+ x̂2 , X µ̂ = 2x µ̂ , X D+2 = 1− x̂2 . (2.22)

We can map X back to x via

x µ̂ =
X µ̂

X 0 + X D+2
. (2.23)

Note that the latter mapping is invariant under a rescaling of X and hence we consider equiv-
alence classes of lightlike vectors X or the light-cone in projective space.

The main advantage of this approach is that conformal transformations of x correspond
to linear mappings of X , which makes them much easier to treat. In our concrete case we act
with transformations belonging to SO(1, D + 1), embedded in such a way that it acts trivially
on the (D + 1)-component of X , which corresponds to the mass component of the spacetime
vector x .

In the following we consider a configuration of 4 points x µ̂i and successively exhaust our
freedom to employ SO(1, D+1) transformations in order to reach a set of fixed configurations.
This approach gives a different parametrization of the conformally invariant degrees of free-
dom of the configuration. It has the advantage that the variables we obtain are independent
by construction and their range is clear. We can then check if a given set of (generalized)
conformal cross ratios of the form (2.19) is indeed independent by expressing them in terms
of the new variables.

We employ the notation

[X ] =
�

X 0 : X D+2 : X µ̂
�

, (2.24)

such that the (massive) conformal symmetry SO(1, D+1) keeps the last element of the above
vector fixed. We consider the case of at least one of the external legs being massive and assume
without loss of generality that m1 6= 0. The case of all masses vanishing was discussed in detail
in [19]. Next, note that the vector

�

X 0
1 , X D+2

1 , Xµ1
�

is timelike (since we are leaving out a nonvanishing spatial component of a lightlike vector),
and we can hence find a transformation in SO(1, D+ 1), such that

[X1] = [1 : 0 : . . . : 0 : 1] . (2.25)

We note that this corresponds to

x1 = (0, . . . , 0, 1) (2.26)

and we have effectively used the freedom to scale our variables to set m1 = 1 and the remaining
masses are effectively measured in units of m1, which we make explicit in the following by
using the notation m̃i = mi/m1.
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Table 1: Number of degrees of freedom for n massive particles in D dimensions after exhaust-
ing dual conformal symmetry.

n D = 3 D = 4 D = 5 D = 6
2 1 1 1 1
3 3 3 3 3
4 6 6 6 6
5 10 10 10 10
6 14 15 15 15
7 18 20 21 21

The stabilizer of the above vector X1 in SO(1, D+1) is given by the obvious SO(D+1) and
fixing the following vectors is a straight-forward exercise leading to the configuration

[X2] =
�

1+ m̃2
2 : 1− m̃2

2 : 0 : 0 : 0 : 0 : 2m̃2

�

, (2.27)

[X3] =
�

1+ z2
1 + m̃2

3 : 1− z2
1 − m̃2

3 : 2z1 : 0 : 0 : 0 : 2m̃3

�

, (2.28)
�

X4

�

=
�

1+ z2
2 + z2

3 + m̃2
4 : 1− z2

2 − z2
3 − m̃2

4 : 2z2 : 2z3 : 0 : 0 : 2m̃4

�

. (2.29)

Clearly, after fixing n points, we have a stabilizer of SO(D+2−n), provided that n≤ D+1.
The number of independent, conformally invariant variables is thus given by

n(D+ 1)− dim(SO(1, D+ 1)) + θ (D+ 1− n)dim(SO(D+ 2− n))

=n(D+ 1)−
1
2
(D+ 1)(D+ 2) +

θ (D+ 1− n)
2

(D+ 1− n)(D+ 2− n) , (2.30)

see also Table 1 for the case of few particles. The above derivation assumes that at least one
of the masses is non-vanishing. We can conclude that, as long as one non-vanishing mass
remains, we only need to subtract one for every constraint such as masses being equal or
vanishing in order to find the corresponding number of degrees of freedom. In fact, for n≥ 3,
this procedure remains valid for the case of all masses vanishing, cf. Appendix A in [19].

Example: 3 Points, m1m2m3. As a simple example, we consider the case of three external
points and three distinct, non-zero masses. We take the generalized conformal cross ratios to
be

u= −
u−1

12

4
=

x̂2
12

−4m1m2
, v = −

u−1
13

4
=

x̂2
13

−4m1m3
, w= −

u−1
23

4
=

x̂2
23

−4m2m3
. (2.31)

From the configurations obtained above, we note (setting D = 4 for the moment),

x1 = (0,0, 0,0, 1) , x2 = (0,0, 0,0, m̃2) , x3 = (z1, 0, 0, 0, m̃3) . (2.32)

The cross ratios are thus given by

u= −
(1−m2)2

4m2
, v = −

(1−m3)2 + z2
1

4m3
, w= −

(m2 −m3)2 + z2
1

4m2m3
. (2.33)

These expressions can in principle be employed to find out what values the triple (u, v, w) can
take by solving for mi .
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3 Massive Yangian Symmetry

In this section, we show that one- and two-loop diagrams with massive external propagators
are Yangian invariant. The Yangian algebra extends an underlying Lie algebra symmetry to an
infinite tower of symmetry generators, grouped into levels n. For the levels zero (J) and one
(bJ), we note the commutation relations

�

Ja, Jb
�

= f ab
cJ

c ,
�

Ja,bJb
�

= f ab
cbJ

c . (3.1)

Higher level generators can be constructed by repeated commutations of level-one generators.
These commutators are constrained by the Serre relations, cf. e.g. [14].

In our case, the generators of the Yangian algebra are constructed from the generator
densities of massive, dual-conformal symmetry given in (2.13).3 These generators combine to
form level-zero and level-one generators on n-point functions

Ja =
n
∑

j=1

Ja
j , bJa = 1

2 f a
bc

∑

j<k

Jc
j J

b
k +

n
∑

j=1

s jJ
a
j . (3.2)

Here, f a
bc denote the dual structure constants of the above massive, dual-conformal algebra,

i.e. the spacetime indices are summed from 1 to D + 1. Introducing a free parameter y , the
level-one momentum generator reads

bPµ = i
2

∑

j<k

�

Pµj Dk + PjνL
µν

k − ( j↔ k)
�

+
n
∑

j=1

s jP
µ
j + ybPµextra , (3.3)

where
bPµextra =

i
2

∑

j<k

�

PjD+1LµD+1
k − ( j↔ k)

�

. (3.4)

The other Yangian level-one and extra generators are listed in (A.1) and (A.2). Setting y = 1
corresponds to the choice of considering the whole algebra so(1, D + 2) for the construction
of the level-one Yangian generators. Leaving out the contribution to the summation from
µ̂ = D + 1 corresponds to setting y = 0. It is interesting to note that at the one-loop level bPµ

is a symmetry for any value of y , as we will see below.
Let us pause here for a moment and introduce some additional notation. We denote a

generator acting on the sites l through r of an n-site object as

bJa
(l,r),n =

1
2 f a

bc

r
∑

k> j=l

Jc
j J

b
k +

r
∑

j=l

s(n)j Ja
j , Ja

(l,r),n =
r
∑

j=l

Ja
j . (3.5)

We will drop the subscripts if they are clear from context. For a 2-point Yangian level-one
generator acting on legs j and k, we introduce the notation

bJa
jk =

1
2 f a

bcJ
c
j J

b
k + s(2)j Ja

j + s(2)k Ja
k . (3.6)

3We have verified the Serre relations for the generators in (2.13) for D = 2,3, 4 [44]. Note that for our bootstrap
purposes below we have solely used the level-zero and level-one symmetries without an appeal to the infinite tower
of Yangian generators.
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3.1 The Symmetry at One Loop

We show that the above level-one generator is a symmetry of generic scalar n-point Feynman
integrals at one-loop order with massive propagators,

In =

∫

dD x0
∏n

j=1(x
2
0 j +m2

j )
a j
=

a1

a2

a3

an

an−1

. . .

. (3.7)

The propagator powers a j and the spacetime dimension D are arbitrary, and we use the nota-
tion xµjk = xµj − xµk . These integrals are invariant under all permutations of the external legs
which are accompanied by the respective permutations of the propagator weights a j and the
masses m j . It turns out that already the integrand is invariant, which implies that

bJa In = 0 . (3.8)

Before we go on to prove the above result, let us discuss the implications of the permutation
symmetry of the n-gon integral In. Concretely, we consider the Yangian level-one generator

bJa
(1,n),n =

1
2 f a

bc

n
∑

k> j=1

Jc
j J

b
k +

n
∑

j=1

s(n)j Ja
j , (3.9)

with the evaluation parameters s(n)j given by

s(n)j =
1
2 a( j+1,n) −

1
2 a(1, j−1) , a( j,k) =

k
∑

i= j

ai , (3.10)

for the one-loop integral we consider. We note that we can split up the generator as

bJa
(1,n),n = bJ

a
(1,n−2),n +

1
2 f a

bcJ
c
(1,n−2)J

b
(n−1,n) +bJ

a
(n−1,n),n

�

�

bi-local + s(n)n−1Ja
n−1 + s(n)n Ja

n . (3.11)

Here, the restriction to the bi-local part corresponds to leaving out the local contribution gov-
erned by the evaluation parameters. Next, we consider the permutation P = (n− 1, n), along
with the respective permutations of the weights a j , and note that

P−1
bJa
(1,n),nP = bJa

(1,n−2),n +
1
2 f a

bcJ
c
(1,n−2)J

b
(n−1,n) −bJ

a
(n−1,n),n

�

�

bi-local + s̃(n)n−1Ja
n + s̃(n)n Ja

n−1 , (3.12)

where

s(n)n−1 =
1
2 an −

1
2 a(1,n−2) , s(n)n = −1

2 an−1 −
1
2 a(1,n−2) , (3.13)

s̃(n)n−1 =
1
2 an−1 −

1
2 a(1,n−2) , s̃(n)n = −1

2 an −
1
2 a(1,n−2) . (3.14)

Due to the permutation symmetry of the integral In, the transformed generator is a symmetry
as well, and hence so is the difference of the generators

bJa
(1,n) − P−1

bJa
(1,n)P = f a

bcJ
c
n−1Jb

n − an−1Ja
n + anJa

n−1 = 2bJa
n−1,n . (3.15)

The n-point invariance thus implies a two-point invariance which, due to the full permu-
tation invariance of the integral, holds for any given pair of points. Conversely, it is easy to
see that the evaluation parameters are designed in such a way that

bJa
(1,n) =

n
∑

k> j=1

bJa
jk . (3.16)
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Two-Point Level-One Invariance. Finally, let us prove the two-point level-one invariance of
the integrand (3.7). We begin by considering the level-one momentum density at y = 0

bPµjk =
i
2

�

Pµj Dk + PjνL
µν

k − iakPµj − ( j↔ k)
�

. (3.17)

Plugging the level-zero densities (2.13) into the above expression yields

bPµjk =
i
2

�

Tνµρ∂x j ,ρ∂xk ,ν +
�

2a j +m j∂m j

�

∂ µxk
−
�

2ak +mk∂mk

�

∂ µx j

�

, (3.18)

where

Tνµρ = xνjkη
µρ + xρjkη

µν − xµjkη
νρ . (3.19)

Since the integrand of (3.7) is factorized and the level-one density (3.17) only contains deriva-
tives with respect to points j and k, it suffices to consider the action of generator density on a
product of two propagators. Using the abbreviation x̂2

0 j = x2
0 j +m2

j we find4

bPµjk( x̂
2
0 j)
−a j ( x̂2

0k)
−ak = 2ia jak( x̂

2
0 j)
−a j−1( x̂2

0k)
−ak−1

�

Tνµρ x0 j,ρ x0k,ν + xµ0k x2
0 j − xµ0 j x

2
0k

�

.

(3.20)

Carrying out the contractions yields

Tνµρ x0 j,ρ x0k,ν = xµ0 j x
2
0k − xµ0k x2

0 j (3.21)

and consequently

bPµjk( x̂
2
0 j)
−a j ( x̂2

0k)
−ak = 0 . (3.22)

Checking the two-point invariance of the integrand (3.7) under the remaining level-one and
level-one extra generators is a straightforward exercise. For y = 0 and a dual-conformal
integrand (2.1) there is of course no need for further checks as the algebra relations already
guarantee the invariance under the remaining level-one generators. However, let us stress that
level-one invariance as well as level-one extra invariance of the generic scalar n-point Feynman
integrals (3.7) hold no matter whether the conformal constraint (2.1) is satisfied or not. This
observation will later on allow us to also consider non-dual-conformal integrals which do not
have full level-zero symmetry.

In summary, we have found that one-loop integrals (and in fact already the integrands)
are invariant under Yangian level-one generators,

bJa In = 0 , (3.23)

irrespective of whether or not the conformal constraint (2.1) is satisfied. This finding also
holds if we allow the internal summation in the Yangian level-one generators to include the
mass dimension, i.e. we have

bJa
extra In = 0 . (3.24)

See (A.1) and (A.2) for explicit expressions of the generators.

4With regard to potential contact terms as they arise from the second order Laplace operator we note that bPµjk
is a product of first order differential operators each acting on a single leg j or k only. In the fully massive case,
the propagators are completely regular even at the contact point.
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Internal Mass. The last finding can be puzzling, since e.g. the generator bPµextra involves the
densities of the generator LµD+1, which mixes the mass with the other dimensions and is hence
itself not a symmetry of the Feynman integral. We can illustrate the significance of the contri-
bution bPµextra by allowing the internal mass m0 to be non-vanishing. We are thus considering
the Feynman integral

Ĩn =

∫

dD x0
∏n

j=1(x
2
0 j + (m j −m0)2)

a j
. (3.25)

Note that this integral arises from the one with vanishing m0 by shifting the external masses,

Ĩn = In({m j −m0}) = e−im0PD+1
In({m j}) . (3.26)

We thus find that the level-one generators act on the shifted Feynman integral as

bJa In({m j −m0}) = e−im0PD+1
�

eim0PD+1
bJae−im0PD+1

�

In({m j}) . (3.27)

The above conjugation is evaluated as

eim0PD+1
bJae−im0PD+1

=
∞
∑

n=0

inmn
0

n!

�

PD+1,bJa
�

(n) , (3.28)

where, [A, B](n) denotes the n-fold commutator

[A, B](n) =
�

A, [A, B](n−1)
�

, [A, B](0) = B . (3.29)

These commutators are easy to evaluate by employing the commutation relations (2.15) and
(3.1). Specifying to the level-one momentum generator, we note that bPµ only commutes with
PD+1 if we set y = 1 in (3.3) and thus include the contribution bPµextra summing over the mass
component as well. We conclude that for non-vanishing m0 the operator bP is only a symmetry
if y = 1.

3.2 The Symmetry at Two Loops

The invariance of two-loop graphs can be derived from the invariance of the constituting one-
loop graphs. Concretely, we consider a two-loop graph that arises from joining two one-loop
graphs with l + 1 and r + 1 legs, respectively, thus having n= l + r legs in total:

I (2)n =

l

l−1

2

1

l+2

l+1

l+r

l+r−1

..
.

..
. b0 =

∫

dD x0dD x0̄

x2b0

00̄

∏l
j=1(x

2
0 j +m2

j )
a j
∏n

k=l+1(x
2
0̄k
+m2

k)
ak

. (3.30)

We have noted in the above discussion that at one-loop order the diagram need not be invariant
under the underlying dual conformal symmetry in order to have level-one invariance. For the
two-loop discussion, however, level-zero invariance is more critical and we will set y = 0 in
the following, since the Lorentz generator LD+1µ is not a symmetry of the Feynman diagrams
we consider, and thus the extra generators bJextra will not generate separate symmetries at two
loops, cf. (3.24).
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Dual Conformal Case. We would like to show that there is a set of 2-loop evaluation pa-
rameters s(2,n)

j such that the above generator (3.9) becomes a symmetry of this diagram. Here

we denote the `-loop evaluation parameters by s(`,n)j . To this end, note that we can split up a
generic level-one generator as follows:

bJa
(1,n) = bJ

a
(1,l) +bJ

a
(l+1,n) +

1
2 f a

bcJ
c
(1,l)J

b
(l+1,n) +

l
∑

k=1

�

s(2,n)
k − s(1,l)

k

�

Ja
k +

n
∑

k=l+1

�

s(2,n)
k − s(1,r)

k

�

Ja
k .

(3.31)

The terms in the last line are due to the differences of the evaluation parameters for the genera-
tors acting on the diagrams containing 1 or 2 loops, respectively. When acting on the level-zero
invariant I (2)n , we note that

1
2 f a

bcJ
c
(1,l)J

b
(l+1,n) I

(2)
n = 1

2 f a
bcJ

c
(1,l)

�

Jb − Jb
(1,l)

�

I (2)n = −
c

2
Ja
(1,l) I

(2)
n , (3.32)

where the dual Coxeter number c arises from the contraction

f a
bc f cb

d = 2cδa
d . (3.33)

Consequently, we have

bJa
(1,n) I

(2)
n =

l
∑

k=1

�

s(2,n)
k − s(1,l)

k −
c

2

�

Ja
k I (2)n +

n
∑

k=l+1

�

s(2,n)
k − s(1,r)

k

�

Ja
k I (2)n . (3.34)

Here, we have used that I (2)n is invariant under the partial level-one generators acting on the
first l and last r legs, respectively, since already the integrands of the constituent one-loop
graphs are invariant.

We can then take the above equation as a definition of the evaluation parameters for the
Yangian level-one generators at the two-loop level. Concretely, this gives

s(2,n)
k = 1

2

�

a(k+1,l) − a(1,k−1) + c
�

, for k ≤ l , (3.35)

s(2,n)
k = 1

2

�

a(k+1,n) − a(l+1,k−1)
�

, for k ≥ l + 1 . (3.36)

The dual Coxeter number can be inferred by commuting the constituents of the level-one
momentum generator (3.4). This gives

2i([Pµ, D] + [Pν, L
µν]) = 2

�

Pµ +δννPµ −δµνPν
�

= 2DPµ , (3.37)

and consequently

c= D . (3.38)

Non-Dual-Conformal Case. At the one-loop level, we noticed that all level-one generators
are symmetries even if the conformal constraints (2.16) are not satisfied. This finding par-
tially persists at the two-loop level, where we restrict ourselves to the level-one momentum
generator, again setting y = 0. For this generator, many aspects of the above discussion are
still valid. The only difference is that I (2)n is no longer annihilated by the dilatation generator
D. Instead, we note that

DI (2)n = −i
�

D− a(1,l) − b0 + D− a(l+1,n) − b0

�

I (2)n = −iαI (2)n , (3.39)
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which only vanishes if the conformal constraints are satisfied. We can then modify (3.34) to
yield

bPµ I (2)n =
l
∑

k=1

�

s(2,n)
k − s(1,l)

k −
c

2
+
α

2

�

Pµk I (2)n +
n
∑

k=l+1

�

s(2,n)
k − s(1,r)

k

�

Pµk I (2)n , (3.40)

from which we read off the evaluation parameters

s(2,n)
k = 1

2

�

a(k+1,n) − a(1,k−1) − D+ a(1,l) + 2b0

�

, for k ≤ l , (3.41)

s(2,n)
k = 1

2

�

a(k+1,n) − a(l+1,k−1)
�

, for k ≥ l + 1 . (3.42)

We note that we can always adapt the evaluation parameters by employing a shift sk→ sk+C ,
which acts as

bPµ→ bPµ + CPµ (3.43)

on the level-one generator. Since Pµ is a symmetry generator itself, we can omit the last term
when discussing the respective level-one generator. In this way, we obtain the evaluation
parameters

s(2,n)
k = 1

2

�

a(k+1,n) − a(1,k−1)
�

, for k ≤ l , (3.44)

s(2,n)
k = 1

2

�

a(k+1,n) − a(1,k−1) + D− 2b0

�

, for k ≥ l + 1 . (3.45)

These evaluation parameters can be stated in terms of the following rule: Pick an arbitrary leg
as leg one and set

s(n)1 = 1
2 a(2,n) . (3.46)

Then move clockwise around the diagram and update the next parameter as

s(n)k+1 = s(n)k −
1
2(ak + ak+1) , (3.47)

if legs k and k+ 1 are attached to the same vertex, or as

s(n)k+1 = s(n)k −
1
2(ak + ak+1 − D) + b , (3.48)

if the vertices of legs k and k+1 are connected by an internal propagator with weight b. This
rule was also stated in [3]. We note that it applies to all cases we discussed above and we have
hence omitted the explicit reference to the loop number.

Summary and Higher Loops. The above findings at one- and two-loop orders are summa-
rized in Table 2. Here the statements at higher loop orders reflect the following conjecture
formulated in [3]: Feynman graphs cut along a closed contour from one of the three regu-
lar tilings of the plane with massless internal propagators have full Yangian symmetry in the
dual conformal case, or only bP symmetry in the non-dual-conformal case, respectively; exter-
nal propagators can be massive or massless. This conjecture is motivated by the fact that in
the massless limit, these are the classes of Feynman diagrams that are known to enjoy Yan-
gian symmetry [2]. It is further supported by numerical evidence obtained as follows. The
level-one momentum generator bP was applied to the Feynman parametrization of examples of
Feynman graphs in the respective categories. The resulting expression was then integrated nu-
merically in Mathematica and it was compared whether the given uncertainty neighborhood
of the result includes zero. It would certainly be desirable to find an analytic proof of this
conjecture on massive higher loop integrals similar to the one in the massless case [2], or to
extend the numerical tests with more advanced numerical techniques. Notably, all integrals
at higher loops that are expected to be Yangian invariant are related to planar diagrams. At
this point there is no evidence that the Yangian symmetry of single Feynman diagrams can be
generalized beyond planar integrals.
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Table 2: Symmetries at different loop orders.

Loops Graphs Dual Conformal Not Dual Conformal Status

1 n-gons all bJ and bJextra all bJ and bJextra proved

2 l-r-gons all bJ bP proved

> 2 tilings all bJ bP conjectural

3.3 Two-Point Yangian Invariants

Let us discuss some subtleties specific to two points. Consider a two-point invariant under the
level-one symmetry which obeys

bJa I2 = 0 , (3.49)

where at two points we have

bJa = bJa
12 =

1
2 f a

bcJ
c
1Jb

2 + s(2)1 Jc
1 + s(2)2 Jc

2 . (3.50)

The one-loop integrals

I2 =

∫

dD x0

(x2
01 +m2

1)
a1(x2

02 +m2
2)

a2
= a1 a2 , (3.51)

are actually invariant under the level-zero symmetry if the dual conformal constraint a1+a2 = D
holds, i.e. they obey (2.14)5

�

Jb
1 + Jb

2

�

I2 = 0 . (3.52)

This implies that we can write

0= bJa I2 =
�

−1
2 f a

bcJ
c
1Jb

1 + s(2)1 Ja
1 − s(2)2 Ja

1

�

I2 . (3.53)

Now we use that
−1

2 f a
bcJ

c
1Jb

1 = −
1
4 f a

bc

�

Jc
1, Jb

1

�

= −1
2cJ

a
1 , (3.54)

with the dual Coxeter number c defined in (3.33) via f a
bc f cb

d = 2cδa
d . Hence, we have

0= bJa I2 =
�

s(2)1 − s(2)2 −
1
2c
�

Ja
1 I2 . (3.55)

From (3.10) we can read off the one-loop evaluation parameters s(2)1 = a2/2 and s(2)2 = −a1/2,
which yields

0= bJa I2 =
1
2(a1 + a2 − c)Ja

1 I2 . (3.56)

Hence, for the dual Coxeter number c= D as given in (3.38) this equation is trivial if the dual
conformal constraint a1 + a2 = D holds and thus yields no non-trival constraints that could
help to determine the integral.

Nevertheless, there are two ways to obtain non-trivial constraints on a two-point invariant
from the Yangian level-one generators:

5The following statements can also be adapted to two-point integrals that are covariant under the level-zero
symmetry, cf. (3.39).
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• Firstly, at one loop order we can employ the extra symmetry bJextra, see (3.24) and the
two-point examples in Section 8.

• Secondly, we can give up on (parts of) the level-zero symmetry, e.g. the special confor-
mal symmetry Kµ, which amounts to relaxing the dual conformal condition

∑

j a j = D.
Examples of how the resulting constraints can be used are discussed in Section 7.

3.4 Recursions from PD+1

As seen above, there is an extra contribution to the level-one generators containing the D+1-
components of the generator densities, in particular the D+ 1 momentum density

PD+1
j = −i

∂

∂m j
. (3.57)

Recursions from PD+1. While these generator densities feature in the level-one symmetry
of one-loop diagrams, they do not combine to form level-zero symmetry generators. It is well
known that the resulting differential equations in the mass variables are very helpful in solving
Feynman integrals [45,46]. As an example, acting on the one-loop integral (2.2),

In =

∫

dD x0
∏n

j=1(x
2
0 j +m2

j )
a j

, (3.58)

results in

PD+1
j In[a1, ..., an] = 2ia jm j In[a1, ..., a j + 1, ..., an] , (3.59)

i.e. the set of all diagrams transforms covariantly under the action of the D + 1 momentum
generator density. Hence, after the kinematic dependence of a diagram has been reduced to
a linear combination of basis functions using the level-zero and level-one symmetries, these
covariance equations can be used to constrain the propagator weight dependence of the expan-
sion coefficients. Since there is an independent covariance equation for every mass m j , these
constraints are most powerful for integrals with all propagators massive, where the depen-
dence on all propagator powers ak is fixed. Otherwise, only the dependence on the propagator
powers of massive propagators are constrained.

Below, we use these identities to fix the propagator weight dependence of the non-dual-
conformal all-mass two-point one-loop integral, such that the only remaining freedom is given
by numerical prefactors. This information can then be transported to all other two-point cases
by taking massless and conformal limits.

From Conformal to Non-Conformal. Another important application of the D+1 momentum
densities is to generate non-dual-conformal integrals from dual-conformal ones. As we argued
in Section 2, Feynman diagrams are dual conformal if for any vertex the sum of all propagator
weights gives the spacetime dimension D. Acting on the respective Feynman integral with
a D + 1 momentum density raises the propagator weight of a leg and breaks the conformal
condition at the corresponding vertex. Repeated action allows to extract the integral at an
arbitrary integer distance to conformality from the knowledge of the dual-conformal integral.6

6This procedure should not be confused with another way to acquire a non-dual-conformal integral from a
dual-conformal one: sending one of the external points to infinity, the corresponding propagators drop out of the
adequately normalized integral, turning a conformal vertex into a non-conformal one.
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As an example, consider the case of the two-point one-loop integral with one non-vanishing
mass. In section 8.1 and section 7.3 we calculate both the conformal as well as the non-
conformal version of this integral respectively. They are given by

Ia1,a2,D=a1+a2
2 = πD/2

Γa1/2−a2/2

Γa1

ma2−a1
1

(x2
12 +m2

1)
a2

, (3.60)

and

Ia1,a2,D
2 = πD/2

Γa1+a2−D/2ΓD/2−a2

Γa1
ΓD/2

mD−2(a1+a2)
1 2F1

�

a2,a1+a2−D/2
D/2 ;−

x2
12

m2
1

�

, (3.61)

respectively. Here Gauß’ hypergeometric function is defined as

2F1

�

α,β
γ ; u

�

=
∞
∑

k=0

(α)k(β)k
(γk)

uk

k!
, (3.62)

with the Pochhammer symbol (a)k = Γα+k/Γα. The precise relation between the two above
results is given by

�

−
1

2a1m1

∂

∂m1

�n

Ia1,a2,D=a1+a2
2 = Ia1+n,a2,D=a1+a2

2 . (3.63)

From the non-dual-conformal result, we find

Ia1+n,a2,D=a1+a2
2 = πD/2

Γ1/2(a1−a2)Γn+1/2(a1+a2)

Γa1+nΓ1/2(a1+a2)
m−(a1+a2+2n)

1 2F1

�

a2,n+1/2(a1+a2)
1/2(a1+a2)

;−
x2

12

m2
1

�

.

(3.64)

To be concrete, taking n= 1, we have

Ia1+1,a2,D=a1+a2
2 = πD/2

Γ1/2(a1−a2)

2Γ1+a1

ma2−a1−2
1

(a1 − a2)x2
12 + (a1 + a2)m2

1
�

x2
12 +m2

1

�a2+1 , (3.65)

in agreement with the derivative of the conformal integral.
Hence, knowledge of the dual-conformal case is actually enough to derive the results of

many non-dual-conformal cases, at least the ones with integer deviations from conformality.
These cases are also the ones important for phenomenological applications. Still, having the
results of arbitrarily many non-dual-conformal integrals does not necessarily allow to derive
the continuous dependence on propagator weights and spacetime-dimension.

4 Yangian Bootstrap in a Nutshell

In this section we discuss the Yangian bootstrap algorithm introduced in [19] and extend it to
the massive situation. After a brief explanation of how to extract the Yangian PDEs from the
invariance equations, we illustrate the algorithm by means of a simple example. Similar steps
can be taken for the integrals discussed in the subsequent sections, but below we will refrain
from giving all details and rather highlight some key elements.
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4.1 Extracting Yangian PDEs

Above we have argued that certain classes of (massive) Feynman integrals are invariant under
the Yangian algebra. In order to evaluate the constraints from Yangian symmetry on a given
integral, it is useful to translate the Yangian invariance equations into differential equations
for the function φn that depends only on a reduced set of variables which takes into account
Poincaré, scaling or full (dual) conformal symmetry. Doing this requires two steps: First, we
bring the PDEs to a canonical form, e.g. for the level-one momentum generator we have

bPµ In =
n
∑

j<k=1

aµjk PDE jkφn . (4.1)

Here the form of the vectors aµjk depends on the particular choice variables. As a second step,
we may exploit the spacetime symmetry (e.g. conformal symmetry) of the integral to argue that
the vectors aµjk are in fact independent,7 which implies the following set of partial differential
equations:

PDE jkφn = 0 , 1≤ j < k ≤ n . (4.2)

Similarly we can obtain a separate set of one-loop PDEs, which follow from the extra symme-
tries, see (3.24). Determining the respective integral then boils down to solving the resulting
set of PDEs and to using additional input (e.g. permutation symmetry in the external legs) to
identify a unique invariant that corresponds to the integral under study. It is instructive to
discuss an example.

Example: 3 Points, m1m2m3 (Dual Conformal). As an example consider the conformal
three-point integral

Im1m2m3
3• =

∫

dD x0

(x2
01 +m2

1)
a1(x2

02 +m2
2)

a2(x2
03 +m2

3)
a3
=

2

1

3

a1

a2

a3

, (4.3)

with three non-vanishing masses and the kinematic variables given in (2.31),

u=
x̂2

12

−4m1m2
, v =

x̂2
13

−4m1m3
, w=

x̂2
23

−4m2m3
. (4.4)

This integral is fully bootstrapped in Section 8.5. We set I3 = V3φ3(u, v, w) and choose the
prefactor V3 that carries the scaling weight according to

V3 = m−a1
1 m−a2

2 m−a3
3 . (4.5)

Now we would like to evaluate the level-one momentum invariance which takes the form

0= bPµ Im1m2m3
3• =

3
∑

j<k=1

xµjk
m jmk

PDE jkφ3(u, v, w) . (4.6)

Here the symbols PDE jk represent differential operators in the conformal varibles u, v and w.
In the following we will argue that the vectors

aµjk =
xµjk

m jmk
(4.7)

7Whether this is possible depends on the considered example, in particular on the number of external points.
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are independent such that we can read off three partial differential equations in the cross
ratios:8

PDE12φ3 = 0 , PDE13φ3 = 0 , PDE23φ3 = 0 . (4.8)

In order to see the independence of the above vectors, we employ the configurations derived
in Section 2,

[X1] = [1 : 0 : . . . : 0 : 1] ,

[X2] =
�

1+ m̃2
2 : 1− m̃2

2 : 0 : 0 : 0 : 0 : 2m̃2

�

, (4.9)

[X3] =
�

1+ z2
1 + m̃2

3 : 1− z2
1 − m̃2

3 : 2z1 : 0 : 0 : 0 : 2m̃3

�

.

Since for the case of equal masses the number of variables is reduced, we assume that the
masses are different and ordered according to

m1 = 1< m2 < m3 . (4.10)

Now we can investigate, whether the vectors aµjk given in (4.7) are independent after conformal
transformations. In the three-variable case, the invariance equation (4.6) takes the form

bPµ Im1m2m3
3• = aµ12 PDE12φ3 + aµ13 PDE13φ3 + aµ23 PDE23φ3 . (4.11)

Setting the parameter cµ of the special conformal transformation to zero, yields

PDE13φ3 +m−1
2 PDE23φ3 = 0 . (4.12)

On the other hand, taking the c1, c4-derivative and then setting cµ to zero gives

PDE13φ3 +m2PDE23φ3 = 0 . (4.13)

Hence, for m2 > 1, we can conclude that PDE13 and PDE23 independently annihilate φ3.
Finally, taking the c4-derivative and then setting cµ to 0 yields (after using that PDE13 and
PDE23 annihilate φ3)

�

m2 −m−1
2

�

PDE12φ3 = 0 . (4.14)

Hence, also the differential operator PDE12 annihilates φ3.

4.2 Algorithmic Solution of PDEs

In [19] an algorithmic solution of the Yangian PDEs for massless Feynman integrals was pre-
sented. The same steps can also be applied to massive Feynman integrals:

1. Translate the symmetry PDEs (4.2) into recurrence equations.

2. Find a fundamental solution of the recurrence equations.

3. Find all zeros of the fundamental solution yielding a solution basis.

4. Classify these zeros by their kinematic region.

5. In a given kinematic region, use further constraints to fix the linear combination of basis
functions. These constraints can come from e.g. permutation symmetry or kinematic
limits that simplify the form of the integral, such as sending a mass to zero or an external
point to infinity.

For conciseness we will not go through all these steps for all of the examples discussed in the
subsequent sections. We explicitly illustrate the above algorithm on the following pedagogical
example.

8For explicit PDEs for the considered integral see Section 8.5.
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4.3 2 Points, m10: Gauß 2F1 (Non-Dual-Conformal Example)

Consider the two-point integral

Im10
2 =

∫

dD x0

(x2
01 +m2

1)
a1(x2

02)
a2
= a1 a2 , (4.15)

where we do not impose any (dual conformal) constraint on the parameters a1, a2 and D. We
choose to write

Im10
2 = (x2

12)
D/2−a1−a2φ(u) , u= −

m2
1

x2
12

. (4.16)

The integral is trivially annihilated by bP and bL but not by bK and bD since we do not have level-
zero symmetry under K and D, cf. Section 3.3 . Hence, bP and bPextra do not yield any non-trivial
PDEs. However, invariance under bK and bD give rise to the same equation, namely to Euler’s
hypergeometric differential equation

u(1− u)φ′′ + [γ− (α+ β + 1)u]φ′ −αβφ = 0 , (4.17)

where we have introduced the parameters

α= 1+ a1 + a2 − D , β = a1 + a2 −
D
2 , γ= 1− D

2 + a1 . (4.18)

To convert this Yangian PDE into a recurrence equation we make the series ansatz

φ(u) =
∑

n∈x+Z
gn un . (4.19)

Here, a priori the sum runs over all integer numbers and we even allow for a non-integer shift
x ∈ [0,1) of the (here one-dimensional) summation lattice. Then the hypergeometric PDE
translates into the following recurrence equation for the coefficient functions gn:

0= (n+α)(n+ β)gn − (n+ 1)(n+ γ)gn+1 . (4.20)

Modulo an overall constant this equation has a unique fundamental solution

gαβγn =
(α)n(β)n
Γn+1(γ)n

, (4.21)

where we make use of the Pochhammer symbol

(a)k =
Γa+k

Γa
. (4.22)

While the above representation gαβγn of the fundamental solution in terms of Pochhammer
symbols may be better behaved in certain limits, we can alternatively express the above series
via

f αβγn =
1

Γn+1Γ1−n−αΓ1−n−βΓn+γ
, (4.23)

where for integer n we can write

f αβγn+x = C(α,β ,γ, x) gαβγn+x , C(α,β ,γ, x) =
ΓαΓβ sinπ(α+ x) sinπ(β + x)

π2Γγ
. (4.24)
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Here the overall constant C depends on the parameters α, β , γ and the base point x . Hence,
for every x ∈ [0,1) the following series represents a formal solution of the hypergeometric
PDE:9

Gαβγx (u) =
∑

n∈x+Z
un f αβγn = ux

∑

n∈Z
un f αβγn+x . (4.25)

The above series Gαβγx (u) terminates for the following four choices of x , which we take as a
condition for convergence:

Region I Region II
1 0 −α
2 1− γ −β

(4.26)

These four choices for x correspond to the zeros of the fundamental solution (4.23), and an-
ticipating their interpretation we have classified them according to two different kinematic
regions. Moreover, the fundamental solution (4.23), which is symmetric in the first two pa-
rameters, obeys the following shift identities (plus the identities with α and β exchanged):

f αβγn+1−γ = f α−γ+1,β−γ+1,2−γ
+n , (4.27)

f αβγn−α = f α,α−γ+1,α−β+1
−n . (4.28)

Note that these identities and similar identities for the more complicated functions considered
in the rest of the paper get additional prefactors when formulated in terms of the gαβγn of
(4.23).

Evaluating the series defined by (4.25) explicitly we find the following expressions in terms
of Gauß’ hypergeometric function 2F1:

GI ,1 ≡ Gαβγ0 (u) =
1

Γ1−αΓ1−βΓγ
2F1

�

α,β
γ ; u

�

, (4.29)

GI ,2 ≡ Gαβγ1−γ (u) = u1−γ 1
Γγ−αΓγ−βΓ2−γ

2F1

�

α−γ+1,β−γ+1
2−γ ; u

�

, (4.30)

GI I ,1 ≡ Gαβγ−α (u) = u−α
1

Γ1−αΓα−β+1Γγ−α
2F1

�

α,α−γ+1
α−β+1 ; 1

u

�

, (4.31)

GI I ,2 ≡ Gαβγ−β (u) = u−β
1

Γ1−βΓβ−α+1Γγ−β
2F1

�

β ,β−γ+1
β−α+1 ; 1

u

�

. (4.32)

The above algorithmic procedure generalizes to the more involved examples discussed in the
subsequent sections. In this simple case, however, the two functions GI ,1 and GI ,2 in Region I
are also found when solving the Yangian PDE (4.17) directly in Mathematica:

φ(u) =+ c1 2F1

�

α,β
γ ; u

�

+ c2 u1−γ
2F1

�

1+α−γ,1+β−γ
2−γ ; u

�

. (4.33)

Finally, we can use the PD+1 recursion from Section 3.4 to determine the a1-dependence of the
prefactors c j . Here, (3.59) reads

1
a1
φ′(u) = φ(u)|a1→a1+1 . (4.34)

In this particular case, this constraint could be solved using identities of 2F1, but in anticipation
of the more complicated cases in the following sections, we instead expand both sides of (4.34)

9Note that we could alternatively define the series by summing over gαβγn in (4.25). This, however, leads to
divergent factors in the expressions (4.31,4.32) that we would have to regulate, cf. (4.24) for basepoints x = −α
or x = −β .
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in a series and compare term by term,

0=
�

αβ c1(a1)
a1γ

− c1(a1 + 1) +O(u2)
�

+ u−γ
�

(1− γ)c2(a1)
a1

− c2(a1 + 1) +O(u2)
�

. (4.35)

Solving the resulting difference equations for c1 and c2, we find

c1 = e1

ΓβΓ1−γ

Γ1−αΓβ−α+γ
, c2 = e2(−1)1+γ

Γγ−1

Γβ−α+γ
, (4.36)

where e1 and e2 are constant in a1 but may still depend on a2 and D.
To fix the full dependence of the prefactors, one needs to start from the more symmetric

two-mass integral given in (7.45), which we bootstrap in Section 7.5. Taking the m2→ 0 limit,
the answer agrees with the a1 dependence we derived here and the full result given in [47]
modulo a conventional overall factor:

c1 = π
D/2

ΓβΓγ−αΓ1−γ

Γ1−αΓ1+β−γΓβ−α+γ
, c2 = π

D/2(−1)1+γ
Γγ−1

Γβ−α+γ
. (4.37)

Conformal Limit. Due to distinguished role of integrals with dual conformal symmetry, let
us now consider the dual conformal limit in which we expect to find the below result (8.2).
Setting D = a1 + a2 + 2ε, we have

α= 1− 2ε, β =
a1 + a2

2
− ε, γ= 1+

a1 − a2

2
− ε . (4.38)

Accordingly, in the limit ε→ 0 (4.33) takes the form

φ(u) = +c1 2F1

�

1,A+−1
A−

; u
�

+ c2 u1−A−
2F1

�

A+,a2
A+

; u
�

, (4.39)

where A± = (a1 ± a2)/2+ 1. Since c1 given in (4.37) is of order ε, we conclude

lim
D→a1+a2

Im10
2 = πD/2

Γa1/2−a2/2

Γa1

ma2−a1
1

(x2
12 +m2

1)
a2

, (4.40)

in agreement with (8.2).

5 A Change of Perspective: Massive Conformal Symmetry in Mo-
mentum Space

In this section we look at Yangian symmetry in region momentum space from the momentum
space point of view. We begin by deriving the momentum space representation of the dual
level-one momentum generator, thereby introducing a novel massive generalization of mo-
mentum space conformal symmetry, cf. [3]. After verifying the algebraic consistency of this
representation, we explore the idea to bootstrap Feynman integrals in momentum space by
utilizing the newly gained insights.

Translating Generators. A natural question is whether the massive dual conformal Yangian
symmetry can be understood as the closure of the massive dual conformal Lie algebra sym-
metry and an ordinary (massive) conformal symmetry, similar to the situation in the massless
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case [1]. To address this question, we focus on the level-one momentum generator in dual
space

bPµ = i
2

n
∑

i=2

i−1
∑

j=1

�

(Lµνi +η
µνDi)Pj,ν − (i↔ j)

�

+
n
∑

i=1

siP
µ
i + ybPµextra , (5.1)

where

bPµextra =
i
2

n
∑

i=2

i−1
∑

j=1

�

LµD+1
i Pj,D+1 − (i↔ j)

�

, (5.2)

and rewrite it in terms of momentum variables. The latter are related to the dual variables in
the following way:

pµi = xµi − xµi+1 . (5.3)

The mass variables, on the contrary, stay untouched. Note that momentum conservation im-
plies the identification xµn+1 = xµ1 which will be implicitly assumed henceforth. Inverting the
above relation yields

xµi = xµ1 −
∑

j<i

pµj , (5.4)

which shows that the dual variables are in fact region momenta, thus explaining the arbitrary
reference point. In order to rewrite the generator (5.1) as a generator in momentum space,
we furthermore need to express the derivatives in equation (5.1) in terms of derivatives in
momentum space. To this end, we apply the chain rule and obtain

∂ µx i
= ∂ µpi

− ∂ µpi−1
. (5.5)

Substituting the expressions (5.4) and (5.5) into equation (5.1) and simplifying the result
yields

bPµy=0 =
i
2

� n
∑

i=1

�

K̄µ
i,∆̄=0

− (∆i +∆i+1 + 2si − 2si+1)∂
µ
pi
− (mi∂mi

+mi+1∂mi+1
)∂ µpi

�

+ 2
n
∑

i=1

��

D̄i,∆̄=0 +mi∂mi
+∆i

�

ηµν − L̄µνi

�

∂pn,ν

�

,

bPµextra = −
i
2

� n
∑

i=2

i−1
∑

j=1

�

(pµj + . . .+ pµi−1)∂mi
∂m j
+ (mi −mi+1)∂m j

∂ µpi
− (m j −m j+1)∂mi

∂ µp j

�

−
n
∑

i=1

mi+1(∂mi
+ ∂mi+1

)∂ µpi
+

n
∑

i=1

m1(∂mi
+ ∂mi+1

)∂ µpn

�

, (5.6)

where

P̄µi = pµi , K̄µi = pµi ∂pi
· ∂pi
− 2 pi · ∂pi

∂ µpi
− 2∆̄i∂

µ
pi

,

D̄i = pi · ∂pi
+ ∆̄i , L̄µνi = pµi ∂

ν
pi
− pνi ∂

µ
pi

. (5.7)

Note that momentum conservation always allows us to eliminate one momentum in favor of
the remaining n− 1 momenta. The massive n-gon integrals for example can be expressed as

In =

∫

dDk
∏n

i=1((k−
∑

j<i p j)2 +m2
i )

ai
, (5.8)
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so that the n-th momentum does not appear. This choice turns out to be very convenient since
it allows us to drop all terms containing a derivative with respect to pn in equation (5.6).
Finally, we recall that level-one momentum invariance requires the scaling dimensions ∆i to
be equal to ai while the evaluation parameters s j have to be chosen according to (3.10). For
the combination appearing in equation (5.6) this implies

∆i +∆i+1 + 2si − 2si+1 = 2(ai + ai+1) . (5.9)

Algebra. With the above results at our disposal, we can now define the massive representa-
tion of the conformal algebra in momentum space as

P̄µm,i = pµi , L̄µνm,i = pµi ∂
ν
pi
− pνi ∂

µ
pi

, D̄m,i = pi · ∂pi
+ 1

2(mi∂mi
+mi+1∂mi+1

) + ∆̄i ,

K̄µm,i = pµi ∂pi
· ∂pi
− 2 pi · ∂pi

∂ µpi
− (mi∂mi

+mi+1∂mi+1
)∂ µpi
− 2∆̄i∂

µ
pi

. (5.10)

A straightforward computation of the commutation relations yields that these generators in-
deed satisfy the same algebra relations as the massless generators, i.e.

[L̄µνm , L̄ρσm ] = η
µσL̄νρm +η

νρL̄µσm −η
µρL̄νσm −η

νσL̄µρm ,

[L̄µνm , P̄ρm] = η
νρP̄µm −η

µρP̄νm , [D̄m, K̄µm] = −K̄µm ,

[P̄µm, K̄νm] = 2ηµνD̄m + 2L̄µνm , [D̄m, P̄µm] = P̄µm ,

[L̄µνm , K̄ρm] = η
νρK̄µm −η

µρK̄νm , (5.11)

where the action on an n-fold tensor product space reads

J̄m =
n
∑

i=1

J̄m,i . (5.12)

This confirms the statement that (5.10) is merely a different representation.

Consistency Check: One Loop Invariance. In order to check the consistency of equation
(5.6), let us verify that the right-hand side indeed annihilates the massive n-gons (5.8). For
simplicity, we set y = 0. Denoting the integrand of (5.8) as in we find

K̄µm in = K̄µ
k,∆̄=0

in − ∂k(D+ 2a1 +m1∂m1
) in , (5.13)

where

K̄µm =
n−1
∑

i=1

�

K̄µ
i,∆̄=0

− 2(ai + ai+1)∂
µ
pi
− (mi∂mi

+mi+1∂mi+1
)∂ µpi

�

, (5.14)

with K̄µk denoting the massless special conformal generator acting on the loop momentum. Due
to the fact that K̄µk is itself a total derivative, the above expression vanishes when integrated
over.

6 Momentum Space Conformal Bootstrap

In this section we explore the idea to bootstrap Feynman integrals in momentum space rather
than in dual space. The motivation to do so is twofold. First, this idea seems natural as the
ubiquitous (dual) level-one momentum generator has been identified as the special conformal
generator in momentum space which is local and thus easier to handle. Second, such an
analysis bridges the gap between the Yangian bootstrap approach and the study of conformal
constraints in momentum space pursued e.g. in [24,25,29].
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6.1 3 Points, 000: Appell F4

In order to start with an example that is in fact completely fixed by momentum space conformal
symmetry, we begin by considering the non-dual-conformal massless star integral with three
external points

I000
3 =

∫

dD x0

x2a1
10 x2a2

20 x2a3
30

=

2

1

3

a1

a2

a3

. (6.1)

While its dual conformal cousin with a1 + a2 + a3 = D is uniquely fixed by the star-triangle
relation, see e.g. [48],

I000
3• =

∫

dD x0

x2a1
10 x2a2

20 x2a3
30

=
Γa′1
Γa′2
Γa′3

Γa1
Γa2
Γa3

πD/2

x
2a′3
12 x

2a′1
23 x

2a′2
31

, a′i = D/2− ai , (6.2)

no such statement holds for the non-dual-conformal version of the integral. We therefore
employ the conformal momentum space symmetry from above to constrain the function. To
do so, we first express the star integral in terms of momenta by using equation (5.3) and obtain

∫

dDk
k2a1 (k− p1)2a2 (k− p1 − p2)2a3

. (6.3)

Next, we employ the scaling equation

D̄∆̄=0 I000
3 = (D− 2a1 − 2a2 − 2a3) I

000
3 , (6.4)

to justify the following ansatz:

I000
3 = (p2

3)
D/2−a1−a2−a3φ(u, v) , where u=

p2
1

p2
3

, v =
p2

2

p2
3

. (6.5)

Eliminating p3 from the ansatz by using momentum conservation and acting on it with K̄µm=0
and ∆̄i as specified in (5.9),i.e. ∆̄i = ai + ai+1, yields

K̄µ I000
3 = 4 (p2

3)
D/2−a1−a2−a3−1

�

pµ1 PDEp1
+ pµ2 PDEp2

�

φ , (6.6)

where

PDEp1
=
�

αβ + (α+ β + 1)v∂v + ((α+ β + 1)u− γ)∂u + v2∂ 2
v + (u− 1)u∂ 2

u + 2vu∂v∂u

�

,

PDEp2
=
�

αβ + (α+ β + 1)u∂u +
�

(α+ β + 1)v − γ′
�

∂v + u2∂ 2
u + (v − 1)v∂ 2

v + 2vu∂u∂v

�

.
(6.7)

Here, the Greek parameters are related to the propagator powers and dimension in the fol-
lowing way:

α= a2 , β = a1 + a2 + a3 −
D
2 , γ= 1+ a1 + a2 −

D
2 , γ′ = 1+ a2 + a3 −

D
2 . (6.8)

Since p1 and p2 can be freely varied, both equations have to be fulfilled independently. We
recognize these partial differential equations as the system defining the Appell function F4,
see also [24, 25, 29] for similar discussions of the conformal momentum space constraints.
This comes as no surprise since the triangle integral has been shown to evaluate to a linear
combination of four F4 functions more than 30 years ago [47]. Furthermore, the triangle can
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be obained from the box integral by sending one of the external points to infinity [6]. The
latter was recently computed in [19] by utilizing the Yangian bootstrap approach and we can
use the exact same techniques to reproduce the result stated in [47]. Here, we only give a
brief summary of the necessary steps. For more details the reader is referred to [19].

In order to solve the partial differential equations from above, we make a power series
ansatz

Gαβγγ
′

x y (u, v) =
∑

k∈x+Z
n∈y+Z

f αβγγ
′

kn umvn . (6.9)

Acting with the PDEs (6.6) on this ansatz yields recurrence relations for the coefficients f αβγγ
′

kn
which can straightforwardly be solved, for example, by using Mathematica

f αβγγ
′

kn =
1

Γk+1Γn+1Γk+γΓn+γ′Γ1−k−n−αΓ1−k−n−β
. (6.10)

Note that this expression leads to a (formal) solution of the PDEs for any value of x and y in
(6.9). However, for generic values the series will most likely be divergent for any value of u
and v because the sum extends over a shifted Z-lattice. Only if x and y are chosen in such
a way that the series terminates at a lower or upper bound for both k and n the series has
a chance of being convergent. A careful investigation of the zeros of fundamental solution
(6.10) shows that there are 12 choices for (x , y) for which the power series terminates and
converges. However, only four of them converge in a region around the origin in the u-v-plane
which is the region that we want to focus on here. These are

Gαβγγ
′

00 ,

Gαβγγ
′

1−γ,0 = u1−γGα+1−γ,β+1−γ,2−γ,γ′

00 ,

Gαβγγ
′

0,1−γ′ = v1−γ′Gα+1−γ′,β+1−γ′,γ,2−γ′
00 ,

Gαβγγ
′

1−γ,1−γ′ = u1−γv1−γ′Gα+2−γ−γ′,β+2−γ−γ′,2−γ,2−γ′
00 , (6.11)

where

Gαβγγ
′

00 (u, v) =
F4

�

α,β
γ,γ′ ; u, v

�

Γ1−αΓ1−βΓγΓγ′
. (6.12)

Here the Appell hypergeometric function F4 is defined as

F4

�

α,β
γ,γ′ ; u, v

�

=
∞
∑

j,k=0

(α) j+k(β) j+k

(γ) j(γ′)k

u j

j!
vk

k!
. (6.13)

In the final step, we employ the permutation symmetries of the triangle integral to completely
fix the solution up to an overall constant N4:

φ(u, v) = N4

�

ΓαΓβΓ1−γ′Γ1−γ F4

�

α,β
γ,γ′ ; u, v

�

(6.14)

+ Γ1+α−γΓ1+β−γΓγ−1Γ1−γ′ u
1−γF4

�

α+1−γ,β+1−γ
2−γ,γ′ ; u, v

�

+ Γ1+α−γ′Γ1+β−γ′Γ1−γΓγ′−1 v1−γ′F4

�

α+1−γ′,β+1−γ′
γ,2−γ′ ; u, v

�

+ Γ2+β−γ−γ′Γ2+α−γ−γ′Γγ′−1Γγ−1 u1−γv1−γ′F4

�

α+2−γ−γ′,β+2−γ−γ′
2−γ,2−γ′ ; u, v

��

.
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The overall constant can be fixed by comparison with the star-triangle integral relation (6.2):

N4 =
π2+α+β−γ−γ′

ΓαΓ1+β−γΓ1+β−γ′Γ2+α−γ−γ′
. (6.15)

The result (6.14) can also be shown to be in full agreement with the Feynman parametrization
of the function φ(u, v) reading

φ(u, v) =
πD/2

Γa1
Γa2
Γa3

∞
∫

0

dα2 dα3α
a2−1
2 α

a3−1
3 Γa1+a2+a3−D/2

(1+α2 +α3)D−a1−a2−a3(α3 +α2u+α2α3v)a1−a2−a3−D/2
. (6.16)

6.2 3 Points, m100

Let us now consider the same integral with one massive leg:

Im100
3 =

∫

dD x0

(x2
10 +m2

1)
a1 x2a2

20 x2a3
30

=

∫

dDk
(k2 +m2

1)
a1 (k− p1)2a2 (k− p1 − p2)2a3

=

2

1

3

a1

a2

a3

. (6.17)

Again, we utilize the scaling equation to justify an ansatz of the following form:

Im100
3 = mD−2a1−2a2−2a3

1 φ (u, v, w) , (6.18)

where

u= −
p2

1

m2
1

, v = −
p2

3

m2
1

, w= +
p2

2

m2
1

. (6.19)

Here, the signs have been chosen for later convenience. Eliminating p3 from the ansatz using
momentum conservation and acting on the integral with K̄µm for ∆̄i = ai + ai+1 yields

K̄µm Im100
3 = −4 mD−2a1−2a2−2a3−2

1

�

pµ1 PDEp1
+ pµ2 PDEp2

�

φ , (6.20)

where

PDEp1
= (a3∂u − a2∂v +w∂u∂w −w∂v∂w + (v − u)∂u∂v) ,

PDEp2
=
�

(1+ a2 + a3 −
D
2 )∂w − a2∂v +w∂w∂w − u∂u∂v −w∂v∂w

�

.

Since the number of independent momenta has not increased compared to the massless case,
we again find two partial differential equations which need to be satisfied independently. How-
ever, as the mass introduces an additional degree of freedom, the function (6.18) now depends
on three scale invariant variables instead of two. Hence, the number of PDEs is not sufficient
to fully constrain the function. To make matters worse, the bPµ̂extra symmetry equation is trivially
fulfilled and does therefore not yield any additional constraints.

To be more explicit, we make the series ansatz

Gx yz(u, v, w) =
∑

k,l,n

fkln
uk

k!
v l

l!
wn

n!
. (6.21)
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The function Gx yz(u, v, w) solves the above differential equations for

fkln = ck+l+n
(a2)k+n(a3)l+n

(a2 + a3 −
D
2 + 1)n

, (6.22)

with an unfixed function ck+l+n that depends on the sum of the three summation indices. This
function is not fixed by momentum space conformal symmetry only.

A natural course of action to generate further PDEs is to consider the full set of level-one
generators in dual region momentum space instead of only the level-one momentum genera-
tor, cf. Table 2. In fact, since the level-zero algebra in dual space is partially broken, it is clear
that considering just the level-one momentum generator is no longer sufficient. Considering
the full set of dual Yangian level-one generators can of course also be done in momentum
space. However, since the level-one generators are scattered among different levels in mo-
mentum space, for example, the generator bKµ in x-space corresponds to the trilocal level-two
momentum generator in p-space, we prefer to work in region momentum space which puts all
generators on an equal footing. We will come back to the above integral Im100

3 in Section 7.6
where the function ck+l+n is constrained using the remaining Yangian level-one generators, cf.
(7.69):

ck+l+n =
(a1 + a2 + a3 − D/2)k+l+n

(D/2)k+l+n
. (6.23)

6.3 3 Points, 2 Loops, m100

Consider now the two-loop integral

I (2)m100
3 =

∫

dD x0dD x0̄

(x2
10 +m2

1)
a1 x2b0

00̄
x2a2

20̄
x2a3

30̄

=

∫

dDq dDk

(q2 +m2
1)

a1 (k+ q+ p1 + p2)2b0(k+ p2)2a2 k2a3
=

2

3

1

a3

a2

a1

b0 . (6.24)

We write this integral as

I (2)m100
3 = m2D−2b0−2a1−2a2−2a3

1 φ (u, v, w) , (6.25)

where

u= −
x2

12

m2
1

, v = −
x2

13

m2
1

, w= +
x2

23

m2
1

. (6.26)

Acting on the above ansatz with K̄µm and

∆̄1 = a1 + a2 + b0 − D/2 , (6.27)

∆̄2 = a2 + a3 , (6.28)

∆̄3 = D/2− a2 − b0 , (6.29)

as follows from the general rule ∆̄i =∆i +∆i+1+2si −2si+1, we find exactly the same system
of partial differential equations as in the one-loop case (6.20). In fact, as in the one-loop
case, those equations do only depend on a2, a3 and D and not on a1. The K̄µm equations are
solved by the fundamental solution (6.22), with the yet to be determined function ck+l+n. For
the one-loop integral this function is fixed by the bK equations. Hence, the one- and two-loop
integrals (6.17) and (6.24) only differ in the function ck+l+n.

29

https://scipost.org
https://scipost.org/SciPostPhys.11.1.010


SciPost Phys. 11, 010 (2021)

7 Changing Back: Non-Dual-Conformal Integrals

While we will study dual conformal integrals in the following Section 8, here we consider
integrals without imposing any constraints on the propagator powers a j . In particular, this
means that these integrals are not invariant under the dual conformal generator Kµ at level
zero. Despite the absence of dual conformal symmetry, we will see that in comparison with the
momentum space conformal symmetry discussed in the previous Section 6, the Yangian level-
one generators yield additional constraints for one-loop integrals as discussed in Section 3.1.
In particular, we focus on the interplay between the Yangian differential equations and their
solutions via hypergeometric functions. We also discuss relations between different cases.
Even if integrals with more masses and parameters can in principle be reduced to simpler
examples, it is instructive to explicitly discuss different cases with increasing complexity. A
useful variable in a more complex example with two masses may be given by u = x2

12/m1m2
which in the limit m2 → 0 diverges, thus obscuring the reduction of the integral to a simpler
case.

7.1 1 Point, m1: Rational

As the simplest example consider the tadpole integral

Im1
1 =

∫

dD x01

(x2
01 −m2

1)
a1
= a1 . (7.1)

Using a single spacetime point one cannot form a translationally and scaling invariant variable.
Hence, the integral is pure weight, i.e.

Im1
1 = ca1

mD−2a1
1 . (7.2)

To fix the propagator weight dependence of the constant ca1
, we act with PD+1 as described in

3.4, implying

ca1
= c
Γa1−D/2

Γa1

. (7.3)

Finally, we evaluate the integral numerically at a single point to fix the overall constant and
find

Im1
1 = πD/2mD−2a1

1

Γa1−D/2

Γa1

. (7.4)

7.2 2 Points, 00: Rational

Also for two points and two vanishing masses there is no scaling-invariant variable and the
one-loop integral collapses into a trivial propagator. This is also known as the group relation,
see e.g. [49]:

I00
2 =

∫

dD x0

x2a1
01 x2a2

02

= 1 2a1 a2
= B 1 2

a1 + a2 − D
2

= B
1

x2(a1+a2−D/2)
12

, (7.5)

with the constant

B =
πD/2Γa1+a2−D/2ΓD/2−a1

ΓD/2−a2

Γa1
Γa2
ΓD−a1−a2

. (7.6)

In Section 8.1 we discuss a similar situation in the dual conformal case with a1+a2 = D, where
a massless and a massive propagator are fused into a massive propagator.
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7.3 2 Points, m10: Gauß 2F1

Note that the two-point integral with one mass was explicitly discussed in Section 4.3 for the
variable −m2

1/x2
12 as an example to illustrate the bootstrap algorithm. When comparing to

limiting cases of other integrals, it can be useful to consider different choices of variables, e.g.
we can invert the variable used in Section 4.3 and write

Im10
2 = mD−2a1−2a2

1 φ(u) = a1 a2 , u= −
x2

12

m2
1

. (7.7)

Setting
α= a2 , β = a1 + a2 −

D
2 , γ= D

2 , (7.8)

the Yangian PDE obtained from invariance under the level-one special conformal generator bK
reads

u(1− u)φ′′ + [γ− (1+α+ β)u]φ′ −αβφ = 0 , (7.9)

and is solved by
φ = c1 2F1

�

α,β
γ ; u

�

+ c2u1−γ
2F1

�

1+α−γ,1+β−γ
2−γ ; u

�

. (7.10)

This result can be compared to the below three-point result (7.75) in the coincidence limit of
points 2 and 3 in Section 4.3 which yields

c1 = π
D/2
Γa1+a2−D/2ΓD/2−a2

Γa1
ΓD/2

, c2 = 0 . (7.11)

7.4 2 Points, m1m2: Kampé de Fériet

Also for two non-vanishing masses different choices of variables lead to different types of
functions in which the considered two-point integral can be expressed. For a nice solution in
terms of a single Appell F1 series see [50].10

As a first example we choose our variabels to be

u= −
x2

12

m2
1

, v = 1−
m2

2

m2
1

, (7.12)

such that we can write

Im1m2
2 = mD−2a1−2a2

1 φ (u, v) = a1 a2 . (7.13)

For convenience we set

α= a1 , β = a2 , γ= a1 + a2 −
D
2

. (7.14)

Making the series ansatz

Gx y(u, v) =
∑

k∈x+Z
n∈y+Z

gkn ukvn = ux v y
∑

k∈Z
n∈Z

gk+x ,n+y ukvn , (7.15)

we can solve the level-one bPextra and bK y=0 equations to find the fundamental solution

gkn =
(α)k(β)k+n(γ)k+n

Γk+1Γn+1(α+ β)2k+n
. (7.16)

10This solution requires an inspired choice of variables including square roots.
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We can alternatively express the above series via

fkn =
(−1)k

Γk+1Γn+1Γ1−k−αΓ1−k−n−βΓ1−k−n−γΓ2k+n+α+β
, (7.17)

where for a certain constant C = C(α,β ,γ, x , y) and for integer k and n we have

fk+x ,n+y = C gk+x ,n+y . (7.18)

We find 13 doublets (x , y) that correspond to zeros of the fundamental solution fkn in k and
n, which make the above series terminate at an upper or lower bound. Only the following two
of these doublets give rise to effective variables u and v:

(x , y) = (0,0) , (x , y) = (0,−α− β) . (7.19)

In terms of the two basis functions

G00 =
∑

k∈Z
n∈Z

gkn ukvn , G0,−α−β = v−α−β
∑

k∈Z
n∈Z

gk,n−α−β ukvn , (7.20)

we can thus make the ansatz
φ = c1 G00 + c2 G0,−α−β . (7.21)

Using the covariance under the action of PD+1, see Section 3.4, the prefactors are determined
to be

c1 = e1

Γγ

Γα+β
, c2 = e2

Γγ

Γα+β
, (7.22)

where e1 and e2 are fixed by two random numerical configurations to

e1 = π
D/2 e2 = 0 . (7.23)

This reproduces the generalized Kampé de Fériet hypergeometric function in [42] (modulo
conventions).

Equal-Mass Limit. Consider the limit m2 → m1 where v → 0. Hence, for limv→0 vn = δ0n
and assuming α+ β < 0, we find

lim
m2→m1

φ = c1 G00|v→0 = c1 3F2

�

α,β ,γ
α/2+β/2,α/2+β/2+1/2 ; u

4

�

. (7.24)

The coefficient c1 is fixed by the below limit

c1 = π
D/2

Γγ

Γα+β
. (7.25)

The given result agrees with the expression of [47] for the equal-mass two-point integral.

One-Point, One-Mass Limit. Consider now the combined limit m2 → m1, x2 → x1 where
u, v→ 0. Here for α+ β < 0 we find

lim
x2→x1,m2→m1

φ = c1 G00|u,v→0 = c1 . (7.26)

Comparing to the tadpole result of Section 7.1 for a1→ a1 + a2 which reads

Im1
1 |a1→a1+a2

∫

dD x0

(x2
0 −m2

1)
a1
= πD/2mD−2a1−2a2

1

Γa1+a2−D/2

Γa1+a2

, (7.27)

we can read off (7.25).
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7.5 2 Points, m1m2: Appell F4

Let us discuss a second choice of kinematic variables which is more symmetric than (7.12),
and which will lead to a solution expressed in terms of Appell hypergeometric functions F4.
This result will be useful to compare to various limiting cases that were expressed in terms of
Gauß’ 2F1. In fact, this example will show that more symmetry in the choice of variables does
not necessarily lead to a simpler solution in the sense that the resulting expression will be a
linear combination of hypergeometric functions rather than a single hypergeometric series as
in the previous Section 7.4. We now write

Im1m2
2 =

�

x2
12

�D/2−a1−a2 φ (u, v) = a1 a2 , (7.28)

where we choose the symmetric variables

u= −
m2

1

x2
12

, v = −
m2

2

x2
12

. (7.29)

Moreover, we define the following abbreviations

α= a1 + a2 + 1− D , γ= a1 + 1− D
2 , (7.30)

β = a1 + a2 −
D
2 , γ′ = a2 + 1− D

2 . (7.31)

Linear combinations of the Yangian PDEs obtained from bP and bK invariance yield the system
of two differential equations defining the Appell hypergeometric function F4, cf. (6.7):

0=
�

αβ + (α+ β + 1)u∂u +
�

(α+ β + 1)v − γ′
�

∂v + u2∂ 2
u + (v − 1)v∂ 2

v + 2vu∂u∂v

�

φ(u, v) ,

0=
�

αβ + (α+ β + 1)v∂v + ((α+ β + 1)u− γ)∂u + v2∂ 2
v + (u− 1)u∂ 2

u + 2vu∂v∂u

�

φ(u, v) .
(7.32)

Hence, for small u, v the solution is a linear combination, cf. (6.11),

φ(u, v) = cαβγγ
′

1 g1 + cαβγγ
′

2 g2 + cαβγγ
′

3 g3 + cαβγγ
′

4 g4 , (7.33)

of the four functions

g1 = F4

�

α,β
γ,γ′ ; u, v

�

, (7.34)

g2 = u1−γF4

�

α+1−γ,β+1−γ
2−γ,γ′ ; u, v

�

, (7.35)

g3 = v1−γ′F4

�

α+1−γ′,β+1−γ′
γ,2−γ′ ; u, v

�

, (7.36)

g4 = u1−γv1−γ′F4

�

α+2−γ−γ′,β+2−γ−γ′
2−γ,2−γ′ ; u, v

�

. (7.37)

Permutation Symmetry. Let us now use further input to constrain the coefficients cαβγγ
′

j . We
note that the considered two-point integral is invariant under the permutation (x1, m1, a1)↔
(x2, m2, a2), which translates into (u,γ)↔ (v,γ′). Under this map we have

g1↔ g1 , g2↔ g3 , g4↔ g4 , (7.38)

such that we conclude that permutation symmetry implies the following constraints

cαβγγ
′

1 = cαβγ
′γ

1 , cαβγγ
′

2 = cαβγ
′γ

3 , cαβγγ
′

4 = cαβγ
′γ

4 . (7.39)
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Recursions from PD+1. As a further input we can employ the shift-covariance discussed in
Section 3.4. The coefficients are functions of the space-time dimension and the propagator
weights according to

cαβγγ
′

i = ci(a1, a2, D) . (7.40)

Acting with PD+1 on the general solution (7.33) and using the linear independence of the gi
leads to a set of recurrence relations for the ci in the propagator weights which are solved by

c1(a1, a2, D) = e1

ΓD/2−a1
ΓD/2−a2

Γa1+a2−D/2

Γa1
Γa2
ΓD−a1−a2

,

c2(a1, a2, D) = e2(−1)a1
Γa1−D/2

Γa1

,

c3(a1, a2, D) = e3(−1)a2
Γa2−D/2

Γa2

,

c4(a1, a2, D) = e4(−1)a1+a2
Γa1−D/2Γa2−D/2

Γa1
Γa2

. (7.41)

Here the ei are constant complex numbers independent of a1, a2 and D and the above con-
traints (7.39) from permutation invariance imply e2 = e3. Using random points of numerical
data we finally fix

e1 = π
D/2 , e2 = e3 = (−1)−D/2πD/2 , e4 = 0 . (7.42)

Hence, in total we obtain the full expression for the two-mass integral

Im1m2
2 = πD/2

�

x2
12

�D/2−a1−a2

�ΓD/2−a1
ΓD/2−a2

Γa1+a2−D/2

Γa1
Γa2
ΓD−a1−a2

F4

�

α,β
γ,γ′ ; u, v

�

+ (−1)a1−D/2u1−γΓa1−D/2

Γa1

F4

�

α+1−γ,β+1−γ
2−γ,γ′ ; u, v

�

+ (−1)a2−D/2v1−γ′ Γa2−D/2

Γa2

F4

�

α+1−γ′,β+1−γ′
γ,2−γ′ ; u, v

�

�

. (7.43)

Indeed, the result given in [47] agrees with the above expression obtained from bootstrap
(modulo phases due to a different sign convention in the propagator).

One-Mass Limit. For m2→ 0 we have v→ 0, such that due to the reduction formula

F4

�

α,β
γ,γ′ ; u, 0

�

= 2F1

�

α,β
γ ; u

�

, (7.44)

we end up with a linear combination of two Gauß hypergeometric functions (see also Sec-
tion 4.3 and Section 7.3):

Im10
2 = πD/2

�

x2
12

�D/2−a1−a2

�ΓD/2−a1
ΓD/2−a2

Γa1+a2−D/2

Γa1
Γa2
ΓD−a1−a2

2F1

�

α,β
γ ; u

�

+ (−1)a1−D/2uD/2−a1
Γa1−D/2

Γa1

2F1

�

α+1−γ,β+1−γ
2−γ ; u

�

�

. (7.45)

Taking in addition the conformal limit D→ a1 + a2 of this expression we have c1→ 0 and

Im10
2• = π

D/2
Γa1/2−a2/2

Γa1

ma2−a1
1

(m2
1 + x2

12)
a2

. (7.46)

This agrees with the below expression (8.2).
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Conformal Limit. We would like to take the limit D → a1 + a2 of the above full two-mass
expression in order to arrive at the dual conformal case presented in terms of associated Leg-
endre functions in (8.12) or in terms of hypergeometric functions in (8.31). In this limit we
have

α→ 1 , γ→ 1+
a1

2
−

a2

2
= 1+ a−, (7.47)

β →
a1 + a2

2
= a+ , γ′→ 1−

a1

2
+

a2

2
= 1− a− , (7.48)

where we define a± =
1
2(a1 ± a2). The four basis solutions become

g1 = F4

�

1,a+
1+a−,1−a−

; u, v
�

, g2 = u−a−F4

�

1−a−,a+−a−
1−a−,1−a−

; u, v
�

,

g3 = va−F4

�

1+a−,a++a−
1+a−,1+a−

; u, v
�

, g4 = u−a− va−F4

�

1,a+
1−a−,1+a−

; u, v
�

, (7.49)

whereas the coefficients turn into

c1 = 0 , c2 = (−1)a++a−e2

Γa−

Γa++a−

,

c4 = 0, c3 = (−1)a+−a−e3

Γ−a−

Γa+−a−

. (7.50)

Numerically, we find the interesting relation11

F4

�

a++a−,1+a−
1+a−,1+a−

; u, v
�

=
1

[1+ (
p
−u−

p
−v)2]a++a−

2F1

�

a−+1/2,a−+a+
2a−+1 ; −4

p
uv

1+(
p
−u−
p
−v)2

�

, (7.51)

which implies that the conformal two-point function becomes

Im1m2
2• = πD/2 1

ma1
1 ma2

2

�

Γa2/2−a1/2

Γa2

� ũ
−4

�a1
2F1

�

a1/2−a2/2+1/2,a1
a1−a2+1 ; ũ

�

+ (a1↔ a2)

�

, (7.52)

with

ũ=
−4m1m2

x2
12 + (m1 −m2)2

. (7.53)

To convert this result into the expression (8.13) in terms of associated Legendre functions P
and Q that we obtain from bootstrap in the subsequent Section 8, we use the identities [51]

2F1

�1+ν,1+µ+ν
2+2ν ; u

�

=4ν+1/2e−
1
2 iπ(µ−1) sin(πµ)(1− u)−µ/2(−u)−1−ν Γ (−µ− ν)

p
πΓ (−1/2− ν)

× (1+ cot(πµ) tan(πν))
�

πPµν
�

1− 2
u

�

− 2iQµν
�

1− 2
u

��

, (7.54)

as well as

2F1

�−ν,µ−ν
−2ν ; u

�

= 4−ν−
1
2 (−1+

1
u
)−µ(−1+ u)

µ
2 (−u)−µ+ν

Γ (1−µ+ ν)
p
πΓ (1/2+ ν)

(1+ cot(πµ) tan(πν))

×
�

− 2 sin(πµ)Qµν
�

1− 2
u

�

+π(cos(πµ) + (−1)1+µ csc(π(µ+ ν)) sin(π(ν−µ)))Pµν
�

1− 2
u

�

�

,

(7.55)

which are valid for u < 0 only. Remarkably, these identities imply that the expression (7.52)
for the dual conformal two-point integral finally collapses to (see (8.13)):

Im1m2
2• = πD/2+1/2 (1− ṽ2)1/4−a1/4−a2/4

ma1
1 ma2

2

P1/2−a1/2−a2/2
a1/2−a2/2−1/2 (ṽ) , ṽ =

m2
1 +m2

2 + x2
12

2m1m2
. (7.56)

11Different representations of the same Feynman integrals have led to other relationships for hypergeometric
functions [50].
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7.6 3 Points, m100: Generalized Lauricella

Next we study the one-mass triangle integral

Im100
3 =

∫

dD x0

(x2
01 −m2

1)
a1(x2

02)
a2(x2

03)
a3
=

2

1

3

a1

a2

a3

. (7.57)

We write the three-point integral in terms of a scale invariant function of three arguments:

Im100
3 = mD−2a1−2a2−2a3

1 φ (u, v, w) , u= −
x2

12

m2
1

, v = −
x2

13

m2
1

, w= +
x2

23

m2
1

. (7.58)

This integral has the full level-one symmetry but no special conformal level-zero symmetry
since we do not impose the dual conformal constraint on the propagator powers. Imposing
level-one momentum and special conformal symmetry on the above ansatz, we can read off the
coefficients of the vectors xµj . Note that in the case of the special conformal level-one generator
bK, in order to turn these coeffients into functions of u, v, w modulo overall coefficients, we need
to impose the bP equations which makes the coefficients of x2

j with j = 1,2, 3 vanish.
The resulting PDEs can be turned into recurrence equations for the coefficients gkln in the

series ansatz

Gα1α2α3γ1γ2
x yz =

∑

k∈x+Z
l∈y+Z
n∈z+Z

gkln ukv l wn = ux v y wz
∑

k∈Z
l∈Z
n∈Z

gk+x ,l+y,n+z ukv l wn . (7.59)

For convenience we introduce the parameters

α1 = a1 + a2 + a3 −
D
2 , α2 = a2 , α3 = a3 , γ1 =

D
2 , (7.60)

as well as the depend parameter

γ2 = 1− γ1 +α2 +α3 = a2 + a3 + 1− D/2 . (7.61)

Modulo an unconstrained overall constant, the recurrence equations are solved by the unique
fundamental solution

gkln =
(α1)k+l+n(α2)k+n(α3)l+n

Γk+1Γl+1Γn+1(γ1)k+l+n(γ2)n
. (7.62)

For a fixed constant C = C(α1,α2,α3,γ1,γ2, x , y, z) we can alternatively express the series
(7.59) in terms of

fk+x ,l+y,n+z = C gk+x ,l+y,n+z , (7.63)

where

fkln =
(−1)n

Γk+1Γl+1Γn+1Γ1−k−l−n−α1
Γ1−k−n−α2

Γ1−l−n−α3
Γk+l+n+γ1

Γn+γ2

. (7.64)

Hence, for any triplet (x , y, z) the series (7.59) furnishes a formal solution of the Yangian
PDEs. We find 36 zeros of the fundamental solutions, i.e. combinations of x , y, z for which
the series terminates. However, only for 2 of these 36 possibilities, u, v and w are the effective
variables of the series:

(x , y, z) = (0, 0,0) , (x , y, z) = (0, 0,1− γ2) . (7.65)
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We note the shift identity

f α1α2α3γ1γ2
kl,n+1−γ2

= (−1)γ2−1 f α1−γ2+1,α2−γ2+1,α3−γ2+1,γ1−γ2+1,2−γ2
kln , (7.66)

which alternatively can be expressed as

gα1α2α3γ1γ2
kl,n+1−γ2

=
Γγ1
Γγ2
Γ1+α1−γ2

Γ1+α2−γ2
Γ1+α3−γ2

Γα1
Γα2
Γα3
Γ2−γ2

Γ1+γ1−γ2

gα1−γ2+1,α2−γ2+1,α3−γ2+1,γ1−γ2+1,2−γ2
kln . (7.67)

Hence, we may relate the second series solution specified by (7.65) to a shifted version of the
first:

Gα1α2α3γ1γ2
001−γ2

= w1−γ2
Γγ1
Γγ2
Γ1+α1−γ2

Γ1+α2−γ2
Γ1+α3−γ2

Γα1
Γα2
Γα3
Γ2−γ2

Γ1+γ1−γ2

Gα1−γ2+1,α2−γ2+1,α3−γ2+1,γ1−γ2+1,2−γ2
000 .

(7.68)

Making the ansatz

φ = c1 Gα1α2α3γ1γ2
000 + c̃2 Gα1α2α3γ1γ2

001−γ2

= c1 Gα1α2α3γ1γ2
000 + c2 w1−γ2 Gα1−γ2+1,α2−γ2+1,α3−γ2+1,γ1−γ2+1,2−γ2

000 , (7.69)

we can fix the coefficients c1 and c2 by the two limits discussed in the following:

c1 = π
D/2

Γα1
Γ1−γ2

Γα1−γ2+1Γγ1

, c2 = π
D/2
Γγ1−α2

Γγ1−α3
Γγ2−1

Γα2
Γα3
Γγ1−γ2+1

, (7.70)

or alternatively

c̃2 = π
D/2

Γα1
Γγ1−α2

Γγ1−α3
Γγ2−1Γ2−γ2

Γγ1
Γγ2
Γ1+α1−γ2

Γ1+α2−γ2
Γ1+α3−γ2

. (7.71)

This result agrees with the expression given in [47].

Two-Point One-Mass Limit. Consider the coincindence limit x3→ x2 which implies

v→ u , w→ 0 , (7.72)

and thus with limw→0 wn = δn0 yields

lim
3→2

Gα1α2α3γ1γ2
000 (u, v, w) =

∞
∑

k,l=0

fkl0 uk+l = 2F1

�

α1,α2+α3
γ1

; u
�

, (7.73)

lim
3→2

Gα1α2α3γ1γ2
00,1−γ2

(u, v, w)
γ2<1
= 0 . (7.74)

We may thus conclude

φ|3→2 =c1mD−2a1−2a2−2a3
1 2F1

�

α1,α2+α3
γ1

; u
�

=π
D
2 mD−2a1−2a2−2a3

1

Γa1+a2+a3−D/2ΓD/2−a2−a3

Γa1
ΓD/2

2F1

�

a1+a2+a3−D/2,a2+a3
D/2 ; u

�

. (7.75)

This can be compared with the two-point integral (7.10) for a2 + a3→ a2:

φ|a2+a3→a2
3→2 = π

D
2 mD−2a1−2a2

1

Γa1+a2−D/2ΓD/2−a2

Γa1
ΓD/2

2F1

�

a1+a2−D/2,a2
D/2 ; u

�

, (7.76)

which fixes

c1 = π
D/2

Γα1
Γ1−γ2

Γα1−γ2+1Γγ1

. (7.77)
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Two-Point Zero-Mass Limit. Note that in the limit of a vanishing propagator power a1→ 0,
we have c1 = 0 and the c2 term yields the expected propagator type contribution with an
overall factor of Gamma functions given in (7.5):

Im100
3 |a1→0 = π

D/2(x2
23)

D−2a2−2a3
ΓD/2−a2

ΓD/2−a3
Γa2+a3−D/2

Γa2
Γa3
ΓD−a2−a3

. (7.78)

This fixes the coefficient c2 for a1 = 0 to

c2|a1→0 = π
D/2
Γγ1−α2

Γγ1−α3
Γγ2−1

Γα2
Γα3
Γγ1−γ2+1

. (7.79)

Note that using the recursions from acting with PD+1 as discussed in Section 3.4 fixes the a1
dependence of the two coefficients to be

c1 = f1(a2, a3)
Γα1

Γα1−γ2+1
, c2 = f2(a2, a3). (7.80)

This shows that in fact even for a1 6= 0 we have

c2 = π
D/2
Γγ1−α2

Γγ1−α3
Γγ2−1

Γα2
Γα3
Γγ1−γ2+1

. (7.81)

8 Dual Conformal Integrals

In this section we systematically apply the Yangian symmetry discussed above to constrain
one-loop Feynman integrals with massless and massive propagators. In order to have the full
Yangian symmetry, we consider the case of dual conformal integrals, i.e. the Yangian con-
straints on integrals for which the condition

D =
n
∑

j=1

a j , (8.1)

is satisfied by the propagator powers a j entering an n-point vertex in the (region momentum)
Feynman graph. Again we start from the simplest examples and increase the complexity step
by step. For the non-dual-conformal examples we considered in the previous section we could
in principle simply take the dual conformal limit to obtain the solution. However, since the
dual conformal integrals are invariant under the whole Yangian and depend on less variables,
the resulting constraints allow us to bootstrap more examples than above. Moreover, in the
dual conformal case it is natural to employ a different set of (constrained) variables.

8.1 2 Points, m10: Rational

For a single massive propagator, the two-point integral has no independent variable. Confor-
mal symmetry fixes it to take the form

Im10
2• = c1

ma2−a1
1

(x2
12 +m2

1)
a2
= a1 a2 , (8.2)

with an undetermined constant c1. This combination is also invariant under the level-one
generators. To fix the normalization we can e.g. straightforwardly compute the integral in the
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incident point limit (or compare with the result given in [52]). From the conformal case we
can then read off the coefficient in (8.2) to be

c1 = π
D/2
Γa1/2−a2/2

Γa1

. (8.3)

We can understand this solution as a fusion rule for a massless and a massive propagator in
the dual conformal case a1 + a2 = D:

Im10
2• =

∫

dD x0

(x2
01 +m2

1)
a1(x2

02)
a2
= 1 2m1, a1 a2

= A 1 2m1, a2
= A

1

(x2
12 +m2

1)
a2

. (8.4)

Here we have defined

A=
πD/2ma2−a1

1 Γa1/2−a2/2

Γa1

. (8.5)

This rule is similar to the so-called group relation for two massless propagators in the non-
conformal situation, cf. Section 7.2. These relations imply that chains of propagators con-
nected by dual conformal vertices can be reduced according to

1 . . . 2 ' 1 2 . (8.6)

8.2 2 Points, m1m2: Associated Legendre P

For the two-point integral with m1 6= 0, m2 6= 0 there is a single conformal variable and one can
consider different choices for this variable that lead to different types of well known differential
equations. In this subsection we consider a choice that results in two-parameter Legendre
functions. This choice is natural since the number of parameters of the class of functions
matches the number of free propagator weights of the integral. We choose the conformal
variable to be (cf. [3])

v =
x2

12 + (m1 −m2)2

2m1m2
+ 1=

x2
12 +m2

1 +m2
2

2m1m2
. (8.7)

Direct Solution of PDEs. For compactness we set

α= 1
2(a1 − a2 − 1) , β = 1

2(−a1 − a2 + 1) , (8.8)

and make the conformal ansatz

Im1m2
2• = m−a1

1 m−a2
2 (1− v2)β/2φ(v) = a1 a2 . (8.9)

Note that while it may seem unatural at first sight, pulling out the factor (1− v2)β/2 leads to
the canonical form of the below PDE. The systematics behind this prefactor is understood by
writing

1− v2 = det v jk , (8.10)

for the matrix v with elements v jk = (x2
jk +m2

j +m2
k)/2m jmk, see also Section 8.5. Acting on

this function with the level-one momentum generator bPextra leads to the following associated
Legendre differential equation:

�

α(α+ 1) + β2

v2−1

�

φ − 2vφ′ + (1− v2)φ′′ = 0 . (8.11)
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This equation is solved by
φ(v) = c1Pβα (v) + c2Qβα(v) , (8.12)

with Pβα and Qβα being the associated Legendre function of the first and second kind, respec-
tively. The coefficients can be fixed using numerical data points to find

φ(v) = 2βπ1−β Pβα (v) . (8.13)

Solution of Recurrence Relations. As an alternative to the above solution, we can apply the
steps of the formal boostrap outlined in Section 4.2. We define a function φ̄ by

Im1m2
2• = m−a1

1 m−a2
2 φ̄(v) , (8.14)

and we make the series ansatz
φ̄(v) =

∑

k

fk vk , (8.15)

such that the level-one momentum constraints turn into the recurrence relation

(k+ a1)(k+ a2) fk − (k+ 1)(k+ 2) fk+2 = 0 . (8.16)

This relation is straightforwardly solved and yields the two fundamental solutions

f P
k =

(−2)k(â1)k̂(â2)k̂
Γk+1

, f Q
k =

2k(â1)k̂(â2)k̂
Γk+1

, (8.17)

where we abbreviate â = a/2. Indeed, numerically we find the interesting identity

(1− v2)β/2φ(v) = π(D+2)/2 21−a1−a2

Γâ1+1/2Γâ2+1/2

∞
∑

k=0

vk (−2)k(â1)k̂(â2)k̂
Γk+1

=
πD/2

2

∞
∑

k=0

vk(−2)k
Γa1/2+k/2Γa2/2+k/2

Γk+1Γa1
Γa2

. (8.18)

From Legendre to Gauß. We note the relation for v > 1,

Pβα (v) =
1
Γ1−β

(1+ v)β/2(1− v)−β/2 2F1

�

−α,α+1
1−β ; 1−v

2

�

, (8.19)

which implies the alternative representation in terms the Gauß hypergeometric function 2F1:

Im1m2
2• =

2βπ1−β

Γ1−β
(1+ v)βm−a1

1 m−a2
2 2F1

�

−α,α+1
1−β ; 1−v

2

�

. (8.20)

This suggests to introduce the variable

u=
x2

12 + (m1 −m2)2

−4m1m2
=

1− v
2

. (8.21)

Numerically we find for v > 1 that

2βπ1−β

Γ1−β
(1+ v)β 2F1

�

−α,α+1
1−β ; 1−v

2

�

= π1/2−β Γ1/2−β

Γ1−2β
2F1

�

−α−β ,α+1−β
1−β ; 1−v

2

�

, (8.22)

which implies the representation

Im1m2
2• =

π1/2−βΓ1/2−β

Γ1−2βma1
1 ma2

2
2F1

�

−α−β ,α+1−β
1−β ; u

�

=
πD/2ΓD/2

ΓDma1
1 ma2

2
2F1

�

a1,a2
(D+1)/2 ; u

�

. (8.23)

In Section 9 we conjecture a generalization of this expression in u-type variables to higher point
integrals. In the subsequent Section 8.3 we will bootstrap the same integral in the variable
w= 1/u.
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Unit Propagator Powers. In order to compare with the discussion in [35] we can take the
limit a j → 1 or α,β →−1/2 in D = 2 which implies

φ(v) = 2π(1− v2)−1/4 arcsin
�Æ

(1− v)/2
�

. (8.24)

Alternatively, we can solve the above PDE (8.11) directly for a j = 1 which yields

φ(v) = (1− v2)−1/4
�

c1 + c2 log
�p

v2 − 1+ v
��

. (8.25)

Comparing to (8.24) for v > 1, the constants are fixed to

c1 = 0 , c2 = πi . (8.26)

8.3 2 Points, m1m2: Gauß 2F1

As another alternative variable to the above we set

w=
−4m1m2

x2
12 + (m1 −m2)2

=
2

1− v
=

1
u

, (8.27)

and we define the conformal function φ via

Im1m2
2• = m−a1

1 m−a2
2 ua1φ(w) . (8.28)

Here it is convenient to introduce three shorthands

α= 1
2(a1 − a2 + 1) , β = a1 , γ= 2α . (8.29)

Then acting on the above function with the level-one momentum generator produces the Gauß
hypergeometric differential equation

w(1−w)φ′′ + [γ− (α+ β + 1)w]φ′ −αβφ = 0 , (8.30)

which is solved by

φ(w) = c1 2F1

�

α,β
γ ; w

�

+ c2w1−γ
2F1

�

1−α,1−2α+β
2−γ ; w

�

. (8.31)

The coefficients for this dual conformal integral can be fixed from a limit of the non-dual-
conformal two-point integral (see (7.52)) to find

Im1m2
2• = πD/2m−a1

1 m−a2
2

�

Γa2/2−a1/2

Γa2

� w
−4

�a1
2F1

�

α,β
γ ; w

�

+ (a1↔ a2)

�

. (8.32)

Unit Propagator Powers. It is interesting to evaluate the limit a1, a2 → 1 for D = 2, which
corresponds to α→ 1/2 and β → 1 and yields

Im1m2
2• |a1=1,a2=1 =

πw arccsc(
p

w)
m1m2

p
w− 1

. (8.33)

One-mass Limit. In the limit where m2 → 0 we have w → 0 such that 2F1 → 1. We are
therefore left with

lim
m2→0

Im1m2
2• = lim

m2→0

�

c1
ma1−a2

2

(x2
12 + (m1 −m2)2)a1

+ c2
ma2−a1

1

(x2
12 + (m1 −m2)2)a2

�

= c2
ma2−a1

1

(x2
12 +m2

1)
a2

,

(8.34)
where we assumed a1 > a2. This matches the result from Section 8.1 for

c2 = π
D/2
Γa1/2−a2/2

Γa1

. (8.35)
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8.4 3 Points, m100: Gauß 2F1

In the case of the three-point integral with two vanishing masses and evaluated at the dual
conformal point D = a1 + a2 + a3, the integral depends on a single variable which we choose
as

u=
m2

1 x2
23

(x2
12 +m2

1)(x
2
13 +m2

1)
. (8.36)

Taking the scaling weight of the integral into account, we write

Im100
3• =

(m2
1)
γ−1

(x2
12 +m2

1)α(x
2
13 +m2

1)
β
φ(u) =

2

1

3

a1

a2

a3

, (8.37)

where we abbreviate

α= a2 , β = a3 , γ= 1+ 1
2(−a1 + a2 + a3) . (8.38)

Then level-one momentum invariance of the integral directly implies Gauß’ hypergeometric
differential equation

u(1− u)φ′′ + [γ− (α+ β + 1)u]φ′ −αβφ = 0 , (8.39)

which is solved by

φ(u) = c1 2F1

�

α,β
γ ; u

�

+ c2u1−γ
2F1

�

1+α−γ,1+β−γ
2−γ ; u

�

. (8.40)

The coefficients are fixed by the below limits to read

c1 = π
D/2
Γa1/2−a2/2−a3/2

Γa1

, c2 = π
D/2
ΓD/2−a1

ΓD/2−a2
ΓD/2−a3

Γa1
Γa2
Γa3

. (8.41)

Coefficients from Star-Triangle Relation. To determine the coefficients c1 and c2, we take
the limit m1→ 0 which implies u→ 0 and thus 2F1→ 1. Hence, for γ > 1 we have

lim
m1→0

Im100
3• = c2

1

x2(1+α−γ)
12 x2(1+β−γ)

13 x2(γ−1)
23

= c2
1

x D−2a3
12 x D−2a1

23 x D−2a2
13

. (8.42)

This should be compared with the star-triangle relation for the massless three-point integral
given in (6.2):

I000
3• =

∫

dD x0

x2a1
10 x2a2

20 x2a3
30

=
Γa′1
Γa′2
Γa′3

Γa1
Γa2
Γa3

πD/2

x
2a′3
12 x

2a′1
23 x

2a′2
31

, a′i = D/2− ai . (8.43)

We conclude that

c2 = π
D/2
ΓD/2−a1

ΓD/2−a2
ΓD/2−a3

Γa1
Γa2
Γa3

. (8.44)
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Two-point limit Another way to relate this integral to a simpler object is the two-point limit
in which x3 → x2. In this case, the integral should be given by the conformal one-mass two-
point integral from Section 8.1, i.e. we expect

lim
x3→x2

Im100
3•

!
= πD/2

Γa1/2−a2/2−a3/2

Γa1

ma2+a3−a1
1

(x2
12 +m2

1)
a2+a3

. (8.45)

On the other hand, performing this limit using the general solution (8.40), we find for γ < 1
that

lim
x3→x2

Im100
3• = c1

ma2+a3−a1
1

(x2
12 +m2

1)
a2+a3

. (8.46)

This allows us to immediately fix

c1 = π
D/2
Γa1/2−a2/2−a3/2

Γa1

. (8.47)

8.5 3 Points, m1m2m3: Srivastava HC , Region A

We introduce the conformal variables

u=
x2

12 + (m1 −m2)2

−4m1m2
, v =

x2
13 + (m1 −m3)2

−4m1m3
, w=

x2
23 + (m2 −m3)2

−4m2m3
, (8.48)

and write the integral as

Im1m2m3
3• =

φ(u, v, w)
ma1

1 ma2
2 ma3

3

=

2

1

3

a1

a2

a3

. (8.49)

In Section 4.1 this integral was discussed as an example for how to extract the explicit PDEs in
the conformal variables. The bP-equations split into two contributions coming from bPy=0 and
bPextra that annihilate the integral separately. We will show that we can find the fundamental
solution for the integral by working only with the constraints arising from bPy=0. Reading off
the coefficients of xµjk/m jmk with j, k = 1,2, 3 yields the following three differential operators
that annihilate φ(u, v, w):

PDE
bPy=0

12 = 2a3∂u − ∂v∂w + (2w− 1)∂u∂w + (2v − 1)∂u∂v , (8.50)

PDE
bPy=0

13 = 2a2∂v − ∂u∂w + (2w− 1)∂v∂w + (2u− 1)∂u∂v , (8.51)

PDE
bPy=0

23 = 2a1∂w − ∂u∂v + (2v − 1)∂v∂w + (2u− 1)∂u∂w . (8.52)

We make the series ansatz
φ(u, v, w) =

∑

k,l,n

gkln ukv l wn, (8.53)

such that (8.50,8.51,8.52) translate into three recurrence equations for the coefficients gkln,
e.g. from (8.50) we obtain

0=2a3(k+ 1)gk+1,l,n + 2(k+ 1)l gk+1,ln + 2(k+ 1)ngk+1,ln

− (l + 1)(n+ 1)gk,l+1,n+1 − (k+ 1)(n+ 1)gk+1,l,n+1 − (k+ 1)(l + 1)gk+1,l+1,n . (8.54)
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These reccurence equations can be solved in Mathematica, which yields the following funda-
mental solution that is unique up to overall constants:

gkln =
(a1)k+l(a2)k+n(a3)l+n

Γk+1Γl+1Γn+1(γ)k+l+n
, γ=

D+ 1
2

. (8.55)

Remember that here we have D = a1 + a2 + a3. For a fixed constant C and for integer k, l, n
the fundamental solution gkln can be written as

fk+x ,l+y,n+z = C(a1, a2, a3, x , y, z) gk+x ,l+y,n+z , (8.56)

where

fkln =
1

Γ1+kΓ1+lΓ1+nΓk+l+n+D/2+1/2Γ1−k−l−a1
Γ1−k−n−a2

Γ1−l−n−a3

. (8.57)

The transpositions of the three external legs of the integral translate into (a1 ↔ a2 , l ↔ n),
(a2 ↔ a3 , k ↔ l) , and (a1 ↔ a3, k ↔ n), which are manifest symmetries of the above
fundamental solution. The fundamental solution fkln has 29 zeros which corresponds to 29
possible choices for the set (x , y, z) such that the following series terminates at an upper or
lower bound

Gx yz(u, v, w) =
∑

k∈x+Z
l∈y+Z
n∈z+Z

gkln ukv l wn. (8.58)

Numerical analysis shows that only the choice (x , y, z) = (0,0, 0) of the 29 possible zeros
(x , y, z) of the fundamental solution leads to a series Gx yz with effective variables u, v, w. This
leads us to an ansatz

φ = c1 G000(u, v, w) , (8.59)

in terms of Srivastava’s triple hypergeometric function HC , cf. e.g. [53,54]:

G000(u, v, w) = HC

�

a1,a2,a3
γ ; u, v, w

�

=
∞
∑

k,l,n=0

(a1)k+l(a2)k+n(a3)l+n

(γ)k+l+n

uk

k!
v l

l!
wn

n!
. (8.60)

This series is known to converge for

|u|+ |v|+ |w| − 2
Æ

(1− |u|)(1− |v|)(1− |w|)< 2 . (8.61)

Comparing the above ansatz to numerical data from the Feynman parametrization of the in-
tegral Im1m2m3

3• we can fix the overall coefficient to find (for D = a1 + a2 + a3):

Im1m2m3
3• =

πD/2ΓD/2

ΓDma1
1 ma2

2 ma3
3

HC

�

a1,a2,a3
D+1

2
; u, v, w

�

. (8.62)

In Section 9.3 we compare this series to a result for unit propagator powers in D = 3 and in
Section 9.1 we conjecture an n-point generalization of this representation.

8.6 3 Points, m1m2m3: Region B

Consider now the alternative conformal variables (these generalize the single variable for the
two-point Legendre solution (8.7))

u=
x2

12 +m2
1 +m2

2

2m1m2
, v =

x2
13 +m2

1 +m2
3

2m1m3
, w=

x2
23 +m2

2 +m2
3

2m2m3
. (8.63)
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We refer to the kinematic region covered by a series representation in these variabels as region
B. We note that for Euclidean x2

jk and m j these variables are never small (as opposed to (8.48)),
while at the same time we expect the corresponding series solution to converge only for small
u, v, w.

We define the function φ according to

Im1m2m3
3• =

φ(u, v, w)
ma1

1 ma2
2 ma3

3

=

2

1

3

a1

a2

a3

. (8.64)

For the series ansatz
Gx yz(u, v, w) =

∑

k∈x+Z
l∈y+Z
n∈z+Z

gkln ukv l wn, (8.65)

the recurrence equations arising from bP(y=0) read

0= (l + 1)(n+ 1)gk,l+1,n+1 + (k+ 1)(l + n+ a3)gk+1,l,n , (8.66)

0= (k+ 1)(n+ 1)gk+1,l,n+1 + (l + 1)(k+ n+ a2)gk,l+1,n , (8.67)

0= (k+ 1)(l + 1)gk+1,l+1,n + (n+ 1)(k+ l + a1)gkl,n+1 . (8.68)

On the support of these equations, the recurrences following from the invariance under bPextra
take the form

0= (k+ l + a1)(k+ n+ a2)gkln − (k+ 1)(k+ 2)gk+2,l,n , (8.69)

0= (k+ l + a1)(l + n+ a3)gkln − (l + 1)(l + 2)gk,l+2,n , (8.70)

0= (k+ n+ a2)(l + b+ a3)gkln − (n+ 1)(n+ 2)gkl,n+2 . (8.71)

While we have not determined the general solution to these equations, we note that they are
solved by

gkln =
(−2)k+l+n(â1)k̂+l̂(â2)k̂+n̂(â3)l̂+n̂

Γk+1Γl+1Γn+1
, (8.72)

with the shorthand k̂ = k/2. To motivate this expression we note that in (8.18) we have found
that the two-point two-mass integral can be expressed as

Im1m2
2• =

π(D+2)/2

ma1
1 ma2

2

21−D

Γâ1+1/2Γâ2+1/2

∞
∑

k=0

vk (−2)k(â1)k̂(â2)k̂
Γk+1

, (8.73)

which shows that (8.72) is the natural three-point generalization of the two-point summand
in (8.73).

Based on (8.72) we can now investigate the possible basis series for our ansatz. For a
constant C = C(a1, a2, a3, x , y, z) we can write

fk+x ,l+y,n+z = C gk+x ,l+y,n+z , (8.74)

where

fkln =
2k+l+n

Γ1−â1−k̂−l̂Γ1−â2−k̂−n̂Γ1−â3−l̂−n̂Γk+1Γl+1Γn+1
. (8.75)

This function has 17 zeros (x , y, z) in k, l, n but only the triplet (x , y, z) = (0,0, 0) leads to a
series in the effective variables u, v and w. We thus conclude that for small u, v, w the correct
Yangian invariant is proportional to this series:

φ(u, v, w) = c1 G000 . (8.76)
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The coefficient can be fixed using numerical data points such that we find

Im1m2m3
3• =

π(D+3)/2

ma1
1 ma2

2 ma3
3

21−D

Γâ1+1/2Γâ2+1/2Γâ3+1/2

∞
∑

k,l,n=0

(−2)k+l+n(â1)k̂+l̂(â2)k̂+n̂(â3)l̂+n̂
uk

k!
v l

l!
wn

n!
.

(8.77)

In the following section we will conjecture an n-point generalization of this expression.

9 All-Mass Yangian Invariant n-Gon Integrals

Based on the evidence from the previous Section 8, we propose the below conjectural series
representations for the dual conformal, i.e. Yangian invariant n-point one-loop integrals with
all propagators massive:

Im1...mn
n• =

∫

dD x0
∏n

j=1(x
2
0 j +m2

j )
a j
=

a1

a2

a3

an

an−1

. . .

,
n
∑

j=1

a j = D . (9.1)

Here the masses m j take generic non-zero values.

9.1 n Points, m1 . . . mn: Conjecture in Region A

We first choose the kinematic variables uα according to

ui j =
x2

i j + (mi −m j)2

−4mim j
. (9.2)

Note that these variables can become small for real Euclidean x i j and m j , e.g. for large masses.
This is relevant since we believe that the below series merely converges for small ui j . We refer
to this series representation as the series in region A as opposed to the B-series presented in
the following subsection.

When expressed in the above variables we conjecture the dual conformal n-point all-mass
integral to be given by the expression

Im1...mn
n• =

πD/2ΓD/2

ΓD
∏n

j=1 m
a j

j

∞
∑

k12,k13,...,kn−1,n=0

∏n
j=1(a j)∑α∈Bn| j

kα

( D+1
2 )

∑

α∈Bn
kα

∏

α∈Bn

ukα
α

kα!
, (9.3)

where Bn = {12,13, 23, ..., (n−1, n)} is the set of all ordered pairs of distinct numbers between
1 and n, whereas Bn| j is the subset of Bn which is comprised of pairs containing j.

We note that the Feynman parametrization of the corresponding dual conformal all-mass
n-point integrals in terms of the variables (9.2) is given by

Im1...mn
n• = π

D
2 ΓD/2





n
∏

i=2

∞
∫

0

dαi





� n
∏

i=1

α
ai−1
i

Γai
mai

i

�

 

n
∑

i< j=1

2αiα j(1− 2ui j) +
n
∑

i=1

α2
i

!−D/2
�

�

�

�

α1=1

.

(9.4)

Let us present our evidence for the correctness of the above series representation at lower
points.
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Evidence for the Conjecture

n= 1. For n= 1, the entire sum collapses, leaving only

Im1
1• =

πD/2ΓD/2

ΓDma1
1

, (9.5)

in agreement with (7.4).

n= 2. In the two-point case, the expression reads

Im1m2
2• =

πD/2ΓD/2

ΓDma1
1 ma2

2

∞
∑

k12=0

(a1)k12
(a2)k12

( D+1
2 )k12

uk12
12

k12!
=
πD/2ΓD/2

ΓDma1
1 ma2

2
2F1

�

a1,a2
(D+1)/2 ; u12

�

, (9.6)

which agrees with (8.23).

n= 3. At three points, the proposed formula coincides with the expression using Srivastava’s
triple hypergeometric function HC given in (8.62):

Im1m2m3
3• =

πD/2ΓD/2

ΓDma1
1 ma2

2 ma3
3

∞
∑

k12,k13,k23=0

(a1)k12+k13
(a2)k12+k23

(a3)k13+k23

( D+1
2 )k12+k13+k23

uk12
12 uk13

13 uk23
23

k12!k13!k23!

=
πD/2ΓD/2

ΓDma1
1 ma2

2 ma3
3

HC

�

a1,a2,a3
D/2 ; u12, u13, u23

�

. (9.7)

n = 4. At four points the series representation is supported by numerical comparison with
the Feynman parametrization. We have also checked that the conjecture provides a solution
to the bP Yangian PDEs, cf. Appendix B.

n = 5. The conjectured series agrees with the numerical evaluation of the above Feynman
parametrization.

9.2 n Points, m1 . . . mn: Conjecture in Region B

The above results suggest a second series representation, which is closely related to a repre-
sentation given in [34]. This series does not converge in the Euclidean region of the Feynman
integrals that we have been focussing on so far, but its analytical continuation is conjectured
to agree with the integral. The B-series is expressed in terms of the variables

vi j =
x2

i j +m2
i +m2

j

2mim j
. (9.8)

For Euclidean choices of x i j and m j , these variables do not become small, which would corre-
spond to the kinematic region where we expect the below series to converge. The conjectured
series reprensentation reads

Im1...mn
n• =

πD/2

2n−1

∞
∑

k12,k13,...,kn−1,n=0

n
∏

j=1

Γ 1
2(a j+

∑

α∈Bn| j
kα)

m
a j

j Γa j

∏

α∈Bn

(−2)kα
vkα
α

kα!
. (9.9)

Here again Bn = {12, 13,23, ..., (n − 1, n)} represents the set of all ordered pairs of distinct
numbers between 1 and n and Bn| j is the subset of Bn which contains all pairs containing j.
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Again we note that the Feynman parameter representation of the conformal massive n-gon
integrals in terms of the variables (9.8) takes the form12

Im1...mn
n• = πD/2ΓD/2





n
∏

i=2

∞
∫

0

dαi





� n
∏

i=1

α
ai−1
i

Γai
mai

i

�

 

n
∑

i< j=1

2αiα j vi j +
n
∑

i=1

α2
i

!−D/2
�

�

�

�

α1=1

. (9.10)

For the series (9.9) this Feynman representation is particularly useful to numerically verify
examples of the conjectured representation, since for real values of the m j and x jk the variables
vi j in the Euclidean signature do not become small and the series does not converge.

Evidence for the Conjecture

n= 1. As in the case of the series representation in region A, for n= 1 the sum collapses and
agrees with (7.4).

n = 2. The result agrees with(8.18) that we found from Yangian symmetry and with the
numerical Feynman parameter integration.

n = 3. The result agrees with (8.76) that we found from Yangian symmetry and with the
numerical Feynman parameter integration.

n = 4. The conjectured series agrees with the numerical evaluation of the above Feynman
parametrization. Moreover, it provides a solution to the bP Yangian PDEs, cf. Appendix B.

n = 5. The conjectured series agrees with the numerical evaluation of the above Feynman
parametrization.

9.3 Unit Propagator Powers for 2,3 and 4 Points

In this section we compare the above A- and B-series to some lower point expressions for the
Yangian invariant all-mass integrals with unit propagator powers.

A-Series for 2 Points. The unit propagator power limit of the result in Section 8.2 in D = 2
reads

Im1m2
2• =

2π

m−a1
1 m−a2

2

(1− v2
12)
−1/2 arcsin

�
Æ

(1− v12)/2
�

. (9.11)

On the other hand, we can evaluate the A-series for a1 = a2 = 1 with D = 2 and using
v12 = −2u12 + 1. This yields the relation

2F1

�

1,1
3/2 ; 1−v12

2

�

= 2(1− v2
12)
−1/2 arcsin

�
Æ

(1− v12)/2
�

. (9.12)

B-Series for 2 Points. For the B-series the relation in (8.18) implies that

1
2

∞
∑

k=0

(−2)kΓ 2
k/2+1/2

vk
12

k!
= 2(1− v2

12)
−1/2 arcsin

�
Æ

(1− v12)/2
�

. (9.13)

12The representation in terms of the variables ui j given in (9.2) is obtained by replacing vi j = 1− 2ui j .
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A-Series for 3 Points: Comparison with Nickel. In [55] Nickel has computed the all-mass
three-point integral in the v-type variables for propagator powers a j = 1 in D = 3 dimensions
and found

Im1m2m3
3•a j=1 = π

2φN(v12, v13, v23)
ma1

1 ma2
2 ma3

3

, (9.14)

where13

φN(v12, v13, v23) =
1

p

detG
arctan

� p

detG
1+ v12 + v13 + v23

�

. (9.15)

Here the matrix G is defined to have matrix elements G jk = v jk. We can compare this result to
the above 3-point result in u-type variables (9.7). Here we note that v jk = −2u jk + 1. and for
the prefactor of the series expression in D = 3 have Γ3/2/Γ3 =

p
π/4. We thus conclude that

in the region of convergence (8.61) for HC we have

φN(v12, v13, v23) =
1
4 HC

�1,1,1
2 ; u12, u13, u23

�

. (9.16)

Expanding the left hand side in Mathematica assuming 0< u jk < 1 indeed shows that at least
up to and including order 8 in the variables u12, u13, u23, the expansions of both sides of this
equation coincide.

B-Series for 3 Points: Comparison with Nickel. Similarly, we can compare the above result
(9.15) by Nickel with the B-series (9.10), which is actually formulated in the same v-type
variables. Also here we find agreement at leading orders when expanding the two expressions,
i.e.

φN(v12, v13, v23) =
1
p
π

∞
∑

k,l,n=0

(−2)k+l+nΓk/2+l/2+1/2Γk/2+n/2+1/2Γl/2+n/2+1/2
vk

12

k!

v l
13

l!

vn
23

n!
.

(9.17)

B-Series at 4 Points: Comparison with Murakami–Yano. In [35] the Murakami–Yano for-
mula [57, 58], which gives a compact expression for the volume of a hyperbolic/spherical
tetrahedron, has been leveraged to give a concise dilogarithmic expression for the all-mass
box integral in four dimensions with unit propagator powers. This result provides a valuable
cross check of our series representation (9.9), which we deem worth detailing.

The volume of a spherical tetrahedron is most elegantly phrased in terms of its dihedral
angles. We therefore begin by making explicit the relation between these angles and our
variables vi j . Let G be the matrix whose elements are given by the variables vi j , i.e.

Gi j = vi j . (9.18)

The matrix G encodes the distances between all pairs of points forming the tetrahedron. The
dihedral angles are readily obtained by employing the formula

θi j = arccos

�

−
(G−1)i j

p

(G−1)ii
Æ

(G−1) j j

�

, (9.19)

see [35] for a detailed discussion of the underlying geometry. Given these angular variables,
we define

c1 = eiθ12 , c2 = eiθ13 , c3 = eiθ23 , c4 = eiθ34 , c5 = eiθ24 , c6 = eiθ14 . (9.20)

13For general D and propagator powers 1, the integral can be written in terms of Appell functions F1 and arctan’s
[56].
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The expression for the volume of a spherical tetrahedron makes use of the positive root

z+ =
−q1 +

q

q2
1 − 4q0q2

2q2
, (9.21)

of the quadratic equation q2z2 + q1z + q0 = 0, where

q0 = c1c2c3c4c5c6 + c1c2c6 + c1c3c5 + c2c3c4 + c4c5c6 +
3
∑

i=1
cici+3 , (9.22)

q1 = −
3
∑

i=1

�

ci − c−1
i

� �

ci+3 − c−1
i+3

�

,

q1 = (c1c2c3c4c5c6)
−1 + (c1c2c6)

−1 + (c1c3c5)
−1 + (c2c3c4)

−1 + (c4c5c6)
−1 +

3
∑

i=1
(cici+3)

−1 .

Furthermore, we require the function

L(z) =
1
2

�

Li2(z) + Li2
� z

c1c2c4c5

�

+ Li2
� z

c1c3c4c6

�

+ Li2
� z

c2c3c5c6

�

− Li2
�

−
z

c1c2c3

�

− Li2
�

−
z

c1c5c6

�

− Li2
�

−
z

c2c4c6

�

− Li2
�

−
z

c3c4c5

�

+
3
∑

i=1

log(ci) log(ci+3)
�

. (9.23)

In terms of the function L(z+), the volume of the tetrahedron described by the matrix G is
given by

V4(G) = −Re(L(z+)) +π
�

arg(−q2) +
1
2

∑

i< j

θi j

�

−
3π2

2
(mod 2π2) . (9.24)

Utilizing this expression, the all-mass box integral can be expressed as

Im1m2m3m4
4•a j=1 =

π2 V4(G)
p

detG0
, (9.25)

where G0
i j = Gi jmim j . We find this expression to be in perfect numerical agreement with the

series representation (9.9) in the Euclidean domain.

10 Outlook

The results presented in this paper suggest plenty of different directions for further investiga-
tion. Let us detail a few.

In the case of one-loop Feynman integrals we have demonstrated that Yangian symmetry
is in fact highly constraining. For the simple examples studied in Section 7 and Section 8, this
results in a small basis of hypergeometric series whose linear combination yields the integral
under study. Here the number of basis elements depends on the chosen variables as can for
instance be seen in Section 7.4 and Section 7.5, where the same integral is studied for two
different choices of variables. In particular, the solution basis is generically expected to grow
with the number of variables, as becomes apparent in the case of the 9-variable massless
double box and hexagon integrals considered in [19]. Here the close connection to the Mellin–
Barnes approach deserves further study. In particular, it would be desirable to find a symmetry
principle that selects the specific subsets of formal Yangian invariants that span the solution, see
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[20]. Eventually it seems plausible that to fix these linear combinations using only conformal
Yangian symmetry, kinematical configurations with on-shell external particles have to be taken
into account. These may result in deformations of the symmetry generators similar to the case
of scattering amplitudes in N = 4 SYM and ABJM theory and thus in additional relations,
cf. [59–64].

In certain cases and for particular choices of the conformal variables, the Yangian bootstrap
selects a single series solution to the symmetry constraints. In these cases merely an overall
coefficient remains to be fixed in order to determine a representation of the integral. In par-
ticular, this is the case for the all-mass n-gon integrals subject of Section 9 and allowed us
to conjecture two different single series representations (9.3) and (9.9) for generic one-loop
integrals in D spacetime dimensions. While the outstanding properties of these integrals have
been studied in the past for unit propagator powers (cf. e.g. [35]), the novel Yangian symme-
try sheds new light on their distinguished role. It would be very interesting to further explore
the space of Yangian invariant integrals in order to identify families with similarly beautiful
properties. Here the next step is to proceed to two loops. While the analysis of the massless
double box in [19] shows the increase of complexity for a higher number of external points,
the present paper suggests that it may be beneficial to first consider situations with massive
propagators. With regard to the one-loop integrals, it would be interesting to better under-
stand the mathematical properties of the two series representations (9.3) and (9.9). While
we have not found a name for the B-series that closely resembles that given in [34], at least
for n = 2 and n = 3 points the A-series coincides with Gauß’ hypergeometric function 2F1
and Srivastava’s triple hypergeometric function HC , respectively, and thus can be assumed to
represent a useful generalization.

When proceeding to more complicated examples, we note that at loop orders beyond two,
the statements about level-one Yangian symmetry are still conjectural, cf. Table 2 and [3].
It would be important to make progress on understanding these cases in detail. Ideally one
could find an analytic proof similar to the one in the massless case using the Lax operator
formalism [2]. Alternatively, it would be interesting to systematically map out the space of
higher loop integrals using advanced numerical integration techniques. Into this direction
it would also be interesting to study massive Feynman integrals with particles different from
scalars which appear in non-scalar fishnet theories [65–67]. In fact, in the massless case certain
brick wall Feynman graphs including fermionic lines were found to be Yangian invariant [11]
and thus represent a natural starting point.

Physical application of our results asks for an extension into two further directions. Firstly,
while Feynman integrals with generic propagator powers are clearly of interest, it would be
desirable to better understand the considered Yangian approach for integer (in particular for
unit) propagator powers, which at one loop order results in polylogarithmic expressions. Here
the situation of the massless box integral was explicitly discussed in [19], which underlines
the importance of the choice of kinematic variables. Secondly, while we have focussed on the
case of Euclidean spacetime signature, there is an obvious demand to explicitly discuss the
results in Minkowski signature. Though this step should not modify the Yangian constraints
(and thus the solution basis), identifying the correct linear combination needs more care. For
the case of the massless box integral, the results of [68] indeed show that also in Minkowski
spacetime the integral is spanned by the Yangian invariant building blocks given in [19].

The four-point Basso–Dixon diagrams of [69] represent another example of Feynman in-
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tegrals with an intriguing connection to integrability, see also [70–72]. Using sophisticated
integrability techniques from AdS/CFT and the Steinmann relations, a conjecture for the poly-
logarithmic result for these integrals was given at generic loop order. While a Yangian sym-
metry has not been formulated in this case, these integrals can be understood as coincident
point limits of the more generic Yangian invariant fishnet integrals discussed in [2,11]. If one
assumes a connection between this Yangian symmetry and the simplicity of the expressions
given by Basso and Dixon, one may wonder whether massive propagators can be introduced
into their formula.

As mentioned in the introduction, the conformal Yangian and its massive generalization
studied here can be considered as the closure of two distinct conformal algebras. As such,
it would be very interesting to identify its place within the large landscape of results on the
conformal and momentum space conformal bootstrap. Clearly, the Yangian constraints can be
studied independently of Feynman integrals and it would be interesting to search for further
applications. These might correspond to lifting a conformal setup to an integrable one. Even if
one does not consider the full Yangian, it seems natural to generalize the various applications
of the momentum space conformal bootstrap (see e.g. [31] and references therein) to the
massive extension of the algebra given in (5.10).
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A Yangian Level-One Generators

We provide the expressions for all Yangian level-one generators over the (dual) conformal
algebra:

bPµ = i
2

∑

j<k

�

Pµj Dk + PjνL
µν

k − ( j↔ k)
�

+
n
∑

j=1

s jP
µ
j ,

bLµν = i
2

∑

j<k

�

1
2(P

µ
j Kνk − Pνj Kµk ) + Lµρk L jρ

ν − ( j↔ k)
�

+
n
∑

j=1

s jL
µν
j ,

bD= i
4

∑

j<k

�

PjµKµk − ( j↔ k)
�

+
n
∑

j=1

s jDj ,

bKµ = i
2

n
∑

j,k=1

�

DjK
µ

k + K jνL
µν

k − ( j↔ k)
�

+
n
∑

j=1

s jK
µ
j . (A.1)
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The extra generators are given by

bPµextra =
i
2

∑

j<k

�

PjD+1LµD+1
k − ( j↔ k)

�

, bLµνextra =
i
2

∑

j<k

�

LµD+1
k L jD+1

ν − ( j↔ k)
�

,

bKµextra =
i
2

n
∑

j,k=1

�

K jD+1LµD+1
k − ( j↔ k)

�

, bDextra =
i
4

∑

j<k

�

PjD+1KD+1
k − ( j↔ k)

�

. (A.2)

B All-Mass Yangian PDEs for 4 Points

Here we give some details on the all-mass Yangian constraints for four points.

Region A. We write the conformal four-point integral as

Im1m2m3m4
4• =

φ(u12, u13, u23, u14, u24, u34)

ma1
1 ma2

2 ma3
3 ma4

4

, (B.1)

with u jk as defined in (9.2). From the bP invariance equation we can read off the coefficients
of the vectors xµjk/m jmk to find the annihilators of the function φ, e.g.

PDE
bP(y=0)

12 =∂u14
∂u24
+ ∂u13

∂u23
− 2(a3 + a4)∂u12

+ (2− 4u34)∂u13
∂u24

+ (1− 2u24)∂u12
∂u24
+ (1− 2u14)∂u12

∂u14
+ (1− 2u23)∂u12

∂u23

+ (1− 2u13)∂u12
∂u13

. (B.2)

When applied to the series ansatz

φ =
∑

{ki j}

fk12k13k23k14k24k34
uk12

12 uk13
13 uk23

23 uk14
14 uk24

24 uk34
34 , (B.3)

the partial differential equations PDE jkφ = 0 translate into recurrence equations, e.g. for

PDE
bP(y=0)

12

0=− 2(k12 + 1)(a3 + a4 + k13 + k14 + k23 + k24) fk12+1,k13k23k14k24,k34
(B.4)

− 2(k13 + 1)(k24 + 1)[2 fk12,k13+1,k23,k14,k24+1,k34−1 − fk12,k13+1,k23,k14,k24+1,k34
]

+ (k13 + 1)(k23 + 1) fk12,k13+1,k23+1,k14k24,k34
+ (k14 + 1)(k24 + 1) fk12,k13,k23,k14+1,k24+1,k34

+ (k12 + 1)(k24 + 1) fk12+1,k13k23k14,k24+1,k34
+ (k12 + 1)(k14 + 1) fk12+1,k13k23,k14+1,k24,k34

+ (k12 + 1)(k23 + 1) fk12+1,k13,k23+1,k14k24k34
+ (k12 + 1)(k13 + 1) fk12+1,k13+1,k23k14k24k34

.

It seems not straightforward to solve these recurrences directly, but based on the previous
experience we find that they are solved by the fundmantal solution corresponding to our con-
jectural A-series for n= 4:

fk12k13k23k14k24k34
=
(a1)k12+k13+k14

(a2)k̂12+k23+k24
(a3)k13+k23+k34

(a4)k14+k24+k34

Γk12+1Γk13+1Γk23+1Γk14+1Γk24+1Γk34+1(γ)Σk

. (B.5)

Here we abbreviate γ= (D+ 1)/2 and Σk = k12 + k13 + k14 + k24 + k34.

53

https://scipost.org
https://scipost.org/SciPostPhys.11.1.010


SciPost Phys. 11, 010 (2021)

Region B. We write

Im1m2m3m4
4• =

φ(v12, v13, v23, v14, v24, v34)

ma1
1 ma2

2 ma3
3 ma4

4

, (B.6)

with the v jk as given in (9.8). Acting with the level-one momentum generator, we can read
off the annihilators PDE jk of the function φ as the coefficients of the vectors xµjk/m jmk to find
for instance

PDE
bP(y=0)

12 =(a3 + a4)∂u12
+ ∂u14

∂u24
+ ∂u13

∂u23
+ 2u34∂u13

∂u24

+ u24∂u12
∂u24
+ u14∂u12

∂u14
+ u23∂u12

∂u23
+ u23∂u12

∂u13
. (B.7)

Making the series ansatz

φ =
∑

{ki j}

fk12k13k23k14k24k34
uk12

12 uk13
13 uk23

23 uk14
14 uk24

24 uk34
34 , (B.8)

the invariance equation PDE
bP(y=0)

12 φ = 0 for instance is transformed into the recurrence equa-
tion

0=+ (k12 + 1)(a3 + a4 + k13 + k14 + k23 + k24) fk12+1,k13k23k14k24k34

+ (k14 + 1)(k24 + 1) fk12k13k23,k14+1,k24+1,k34
+ 2(k13 + 1)(k24 + 1) fk12,k13+1,k23k14,k24+1,k34−1

+ (k13 + 1)(k23 + 1) fk12,k13+1,k23+1,k14k24k34
. (B.9)

This is relation is indeed solved by the four-point version of (9.9) given by

fk12k13k23k14k24k34
= (−2)Σk

(â1)k̂12+k̂13+k̂14
(â2)k̂12+k̂23+k̂24

(â3)k̂13+k̂23+k̂34
(â4)k̂14+k̂24+k̂34

Γk12+1Γk13+1Γk23+1Γk14+1Γk24+1Γk34+1
, (B.10)

where we abbreviate k̂ = k/2 and Σk = k12 + k13 + k14 + k24 + k34.
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