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Abstract

We present a deep machine learning algorithm to extract crystal field (CF) Stevens pa-
rameters from thermodynamic data of rare-earth magnetic materials. The algorithm
employs a two-dimensional convolutional neural network (CNN) that is trained on mag-
netization, magnetic susceptibility and specific heat data that is calculated theoretically
within the single-ion approximation and further processed using a standard wavelet
transformation. We apply the method to crystal fields of cubic, hexagonal and tetrag-
onal symmetry and for both integer and half-integer total angular momentum values J
of the ground state multiplet. We evaluate its performance on both theoretically gen-
erated synthetic and previously published experimental data on CeAgSb2, PrAgSb2 and
PrMg2Cu9, and find that it can reliably and accurately extract the CF parameters for all
site symmetries and values of J considered. This demonstrates that CNNs provide an un-
biased approach to extracting CF parameters that avoids tedious multi-parameter fitting
procedures.
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1 Introduction

Rare-earth magnets often exhibit rich magnetic behaviors as a result of various competing en-
ergy scales that include spin-orbit coupling, crystal field (CF) and Zeeman energies as well
as magnetic exchange interactions [1–4]. CFs play an important role as they cause magne-
tocrystalline anisotropies and in many cases determine the level degeneracies of the local-
ized f electron states [5–9]. This strongly influences thermodynamic observables such as the
magnetization, magnetic susceptibility, and specific heat [10], but it can also have important
ramifications for the nature of the Kondo effect in the system [4,11–22].

CFs arise from time-reversal-even interactions between electrons (in f orbitals for rare-
earth elements) and charges in their crystalline environment and are conveniently described by
an effective electrostatic potential. The form of the CF potential is dictated by the point symme-
try at the rare-earth site and contains a variable number of independent parameters [6,9,23].
For example, while the CF potential for f electrons is fully described by only two independent
parameters for the cubic point groups G = m3̄m, 432, 4̄3m, there are 26 independent param-
eters for the lowest symmetry groups 1 and 1̄ [24, 25]. These CF parameters are notoriously
difficult to determine in first-principle calculations [26], and are therefore best regarded as
phenomenological parameters that are found from comparison to experimental results. While
most accurate values of CF parameters are obtained from analyzing inelastic neutron scattering
results [27,28], much insight can already be gained by much more straightforward measure-
ments of thermodynamic observables such as the (magnetic part of the) specific heat cM (T )
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as a function of temperature T , the magnetic susceptibility χa(T ) along direction a, and the
magnetization µa(B, T ) in a finite magnetic field B. This approach allows investigating whole
series of rare-earth compounds, which often provides a more complete understanding of a
material class, as was demonstrated, for example, in Refs. [29–31].

Here, we focus on the method of extracting CF parameters from thermodynamic measure-
ments that are performed in a regime above possible Kondo and magnetic ordering tempera-
tures, where the rare-earth ion can be treated within the single-ion approximation [8,9]. We
will also assume that the Russell-Saunders approximation is valid and spin-orbit coupling is
stronger than CF, Zeeman and magnetic exchange energy scales: ECoulomb� ESOC� ECF,
EZeeman, Eex. Note that we will further focus on the case where the CF and Zeeman energies
are larger than the exchange energy: ECF, EZeeman� Eex. Here, ECoulomb and ESOC refer to the
isotropic Coulomb and spin-orbit interaction between N electrons within the 4 f N electronic
configuration of a single rare-earth ion, and EZeeman = −µB(L+ 2S) · B with total orbital and
spin angular momentum operators L and S. Under these assumptions, one can restrict the at-
tention to the ground state J multiplet of the 4 f N configuration that is derived from the three
Hund’s rules [10]. Its 2J+1 sub-levels are only degenerate for spherical symmetry and split in
a crystalline environment into a sequence of lower order multiplets. While their multiplicity
is fully determined by site symmetry, the energies of the different levels as well as their wave
functions depend in general on the values of the CF parameters.

To obtain the CF parameters from measurements of thermodynamic observables, one tra-
ditionally proceeds as follows. Starting from an initial guess of the CF parameters, one deter-
mines the energy levels and wave functions by diagonalizing the CF Hamiltonian HCF =
∑

q,k B
q
k
eC (k)q (J). Here, the summation runs over a symmetry-allowed set of quantum numbers

k and q with 0 ≤ k ≤ 2`,−k ≤ q ≤ k for a single-ion with orbital quantum number ` (` = 3
for f -electrons). The coefficients Bq

k are CF Stevens parameters and the CF operator “equiv-
alents” eC (k)q are expressed in terms of angular momentum operators J acting on the ground
state J multiplet of the ion [5,8,9,32,33]. Various forms for the operators, which differ in their
normalization convention, have been used in the literature and will be discussed below. Once
the energies and wave functions are known, it is straightforward to calculate thermodynamic
observables such as cM ,χa and µa from the partition function in finite magnetic field (details
are shown below). The theoretical result is then compared to experiment and the complete
procedure is iterated with updated CF parameters until sufficient agreement is reached.

While this iterative process is straightforward in principle, it can be tedious and time con-
suming in practice, in particular for lower than cubic symmetries, where several fit parameters
need to be optimized simultaneously. This is complicated by the fact that the impact on the
thermodynamic response that is caused by modifying the CF parameters {Bq

k} is in most cases
unknown and not straightforward to derive. This is a typical example of an “inverse prob-
lem” [34] that often occurs in science, where one wants to estimate parameters p characteriz-
ing the system (here the CF parameters) based on observations O (in our case thermodynamic
observables). Given a model P (for us, the crystal-field Hamiltonian), it is straightforward to
derive observables O = FP(p), but the inverse mapping p = F−1

P (O) is difficult to perform,
in particular when the relation is non-linear as in our case; often, the inverse mapping is ill-
conditioned or unstable and, thus, requires regularization.

Motivated by the multitude of recent explorations of machine-learning (ML) techniques
in physics [35–37], in general, and the success of artificial neural networks and other ML
approaches to attack complex inverse problems of physics [38–42], in particular, we here study
how ML can be used to extract Stevens CF parameters from thermodynamic measurements.
This data-driven approach to inverse problems is based on first computing a large set of training
data {(p j , FP(p j))| j = 1, 2, . . . }, which requires solving the (simple) forward problem for many
values of p = p j . With this data set, a non-linear function is trained to reconstruct p j from
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Oj = FP(p j); the key challenge is to find a model that generalizes well for feasible training data
sizes, i.e., that works on physically relevant samples that are not part of the original training
set.

More specifically, we here employ a convolutional neural network (CNN) to parametrize
the non-linear function performing the inverse operation: it relates thermodynamic observ-
ables, O = {cM (T ),χa(T ),µa(B, T )}, to a set of CF parameters p = {Bq

k}. We train the CNN
on thermodynamic data for different site symmetries (cubic m3̄m, hexagonal 6̄m2, tetragonal
4mm) and different values of angular momentum J = 4 and J = 15/2. This corresponds to
the rare-earth ions Pr3+ (J = 4) and Er3+ (J = 15/2) in different crystalline environments.
The training data is obtained within the single-ion approximation, and further processed using
a standard wavelet transformation before being fed into the CNN. We test the performance of
the CNN on both calculated and previously published experimental data on CeAgSb2 [29,43],
PrAgSb2 [29] and PrMg2Cu9 [31]. We find that our CNN architecture generalizes well for
moderately large training data sets and for all site symmetries and values of J considered. It
also provides good estimates of the Stevens parameters from experimental data.

The remainder of the paper is organized as follows. In Sec. 2, we review the single-ion ap-
proximation, define our notation of the Stevens CF parameters, and explain how the relevant
thermodynamic observables are computed. Readers already familiar with this, can proceed
directly to Sec. 3, where we detail our proposed ML framework to estimate Stevens parame-
ters from thermodynamic quantities. In Sec. 4 and Sec. 5, we demonstrate and test our ML
approach on synthetic and experimental data, respectively, and Sec. 6 provides a summary.

2 Crystal field thermodynamics in rare-earths

In this section, we provide the necessary background to perform a quantitative analysis of
CF effects on thermodynamic observables in rare-earth materials. We begin by describing
the single-ion approximation, which assumes that interactions between different rare-earth
ions are negligible. This approximation is often justified by the hierarchy of interactions that
exist in rare-earth intermetallics [9]. Focusing on the ground state multiplet of a single-ion
with a definite total angular momentum J , we show how to expand the CF Hamiltonian for a
given J and point symmetry group G in terms of operator equivalents, as first introduced by
Stevens [5].

Straightforward diagonalization of the Hamiltonian matrix together with elementary sta-
tistical mechanics calculations, then yield the thermodynamic observables, (i) specific heat cM ,
(ii) magnetic susceptibilty χa (along direction a), and (iii) magnetization µa in finite applied
magnetic field Ba. This calculation explicitly shows the (forward) mapping from a set of CF
parameters to thermodynamic observables. These thermodynamic observables are then fed
into the input nodes of a CNN that “learns” the inverse mapping from the observables to the
CF parameters as output.

2.1 Single-ion approximation

In the single-ion approximation one neglects the interaction between different rare-earth ions,
which is often justified because the 4 f electrons are strongly localized. This leads to a relative
weakness of 4 f -4 f exchange interactions compared to 3d-3d and 3d-4 f interactions [9], and
an often weak hybridization between the localized 4 f electrons and delocalized conduction
electrons. The single-ion description breaks down, for example, when Kondo or Rudermann-
Kittel-Kasuya-Yosida (RKKY) interactions play an important role in the magnetism of the sys-
tem. Our analysis in the following is therefore restricted to parameter regimes, where both
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Kondo and RKKY interactions are weak effects, which is typically the case at not too low tem-
peratures T � TK, TRKKY, where TK (TRKKY) refer to Kondo and RKKY temperatures scales.

In the single-ion approximation, one describes the 4 f electronic part of the system by a
non-interacting collection of Hamiltonians for single rare-earth ions in a 4 f N configuration
which each take the form [8,9]

H4 f = HCoulomb +HSOC −µB(L+ 2S) · B+
N
∑

i=1

VCF(ri ,θi ,φi) . (1)

Here, HCoulomb and HSOC describe the isotropic Coulomb and spin-orbit interactions among the
N 4 f electrons, which are the dominant energy scales. They enforce the three Hund’s rules in
the 4 f N configuration of the rare-earth ion, S = 1

2(2`+ 1− |2`+ 1− N |), L = S(2`+ 1− 2S),
and J = L±S. The resulting ground state is then a 2J +1 degenerate multiplet. Here, `= 3 is
the orbital angular momentum of a single f electron, S (L) are the total spin (orbital) angular
momentum quantum numbers and J is the total angular momentum quantum number. The
third Hund’s rule enforces J = L + S for more than half-filled 4 f shells, N ≥ 2`+ 1 [8,10].

The third term in Eq. (1) describes the Zeeman coupling to an external magnetic field B,
where µB is the Bohr magneton and L =

∑N
i=1 l i and S =

∑N
i=1 s i denote total orbital and

spin angular momenta of the N electrons in the 4 f N configuration. In the following, we will
assume that spin-orbit coupling dominates over Zeeman energy and use the Russell-Saunders
LS-coupling scheme to express the Zeeman Hamiltonian using the total angular momentum
J = L+ S as

HZeeman = −µB gJ LS J · B . (2)

Here, we have introduced the g-factor

gJ LS = 1+
J(J + 1) + S(S + 1)− L(L + 1)

2J(J + 1)
, (3)

with angular momentum quantum numbers J , L, S corresponding to the magnitude of the
operators J , L,S, respectively.

Finally, the last term in Eq. (1) denotes the CF potential, which can be expanded in a series
of (single-particle) irreducible tensor operators as [8]

VCF(r,θ ,φ) =
∑

k=2,4,6

k
∑

q=−k

Bq
k(r)C

(k)
q (θ ,φ) . (4)

Here, the functions Bq
k(r) depend on the radial coordinate only, and C (k)q (θ ,φ) =

q

4π
2k+1 Y q

k (θ ,φ)

are related to the spherical harmonics. Both sets of operators, Bq
k(r) and C (k)q (θ ,φ), act on

the coordinates r i of individual electrons in the f -shell. Note that the summation of k is
restricted to k = 2, 4,6, as we anticipate to evaluate matrix elements of VCF only within a single
4 f N configuration. This excludes odd values of k by parity considerations. Higher values of
k > 6 are excluded from the triangular condition k ≤ 2` of the Clebsch-Gordon coefficients
(or Wigner 3 j symbols), which arise when performing an integration over products of three
spherical harmonics [44]. Finally, we have also excluded the k = 0 term as it amounts to an
unimportant constant energy shift.

2.2 Operator equivalents in crystal field Hamiltonians

The evaluation of matrix elements of the CF Hamiltonian

HCF =
N
∑

i=1

∑

k=2,4,6

k
∑

q=−k

Bq
k(ri)C

(k)
q (θi ,φi) (5)
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in the limited subspace of a 4 f N electronic configuration of a single rare-earth ion, is made
easier by the method of operator equivalents introduced by Stevens [5]. First, within a fixed
4 f N manifold, the radial operators can be replaced by their expectation values in the 4 f states,
which defines the (single-particle) Stevens coefficients Bq

k ≡ 〈B
q
k(ri)〉4 f . Since the precise

form of the wavefunction is difficult to determine, a theoretical calculation of the Stevens
coefficients from first-principles is notoriously challenging [26]. The Bq

k are therefore best
regarded as phenomenological coefficients that are obtained from a comparison of calculated
physical observables to experimental data.

The method of operator equivalents [5,7,45–47] relates matrix elements of (the sum over)
irreducible tensor operators within a 4 f N configuration to matrix elements of expressions that
depend on angular momentum operators l i:

〈{li , mi}|
N
∑

i=1

C (k)q (θi ,φi)|{li , m′i}〉= ak 〈{li , mi}|
N
∑

i=1

eC (k)q (l i)|{li , m′i}〉 . (6)

Here, ak is a k (and li) dependent coefficient. The operator expressions on both sides trans-
form under rotation according to the same irreducible representation of the continuous rota-
tion group. This condition in fact defines the “operator equivalent” of the irreducible tensor
operator on the left-hand side. The operator equivalents eC (k)q (l i) can be obtained by converting

the functions C (k)q (θ ,φ) into Cartesian coordinates, (x , y, z) = (sinθ sinφ, sinθ cosφ, cosθ ),
symmetrizing monomials (e.g., x y → (x y + y x)/2), and replacing (x i/ri , yi/ri , zi/ri)→
(lx , l y , lz)i . The proportionality of the matrix elements in Eq. (6) relies on the fact that the ro-
tation group is continuous and, loosely speaking, matrix elements for any point on the sphere
can thus be obtained from those at a single, fixed point via rotation. The proportionality fac-
tors ak essentially account for the difference of the matrix elements at the single reference
point. The ak are independent of q due to the Wigner-Eckart theorem [44]. In the literature,
the proportionality coefficients are typically denoted as a2 = αl , a4 = βl , and a6 = γl . For
li = 3 corresponding to 4 f rare-earth ions, one finds the values a2 = −2/45, a4 = 2/495, and
a6 = −4/3861 [6,9,33].

Here, we restrict our analysis to the (2J+1)-dimensional ground state multiplet of the 4 f N

configuration that obeys the three Hund’s rules. Combining individual angular momenta to
the total orbital angular momentum L=

∑N
i=1 l i and considering spin-orbit coupling within a

fixed LS term, leading to total angular momentum J = L+S, one can derive a similar “operator
equivalent” relation as Eq. (6) for matrix elements taken within a particular J multiplet

〈L, S, J , MJ |
N
∑

i=1

C (k)q (θi ,φi)|L, S, J , M ′J 〉= bk 〈L, S, J , MJ |eC (k)q (J)|L, S, J , M ′J 〉 . (7)

Here, the coefficients bk depend on k as well as on the quantum numbers li , L, S, J . Like the
ak, they are independent of q due to the Wigner-Eckart theorem. The values of the bk for the
ground state multiplets of the R3+ rare-earth ions can be found in the literature, where they
are commonly denoted as b2 = αJ = θ2, b4 = βJ = θ4 and b6 = γJ = θ6 [8,9].

Using the operator equivalence in Eq. (7), one can thus express the CF Hamiltonian acting
within the (2J + 1)-dimensional ground state multiplet as

HCF =
∑

k=2,4,6

k
∑

q=−k

Bq
k
eC (k)q (J) . (8)

Here, we have introduced the Stevens coefficients Bq
k = bkBq

k that depend on the radial expec-
tation values through Bq

k ≡ 〈B
q
k(ri)〉4f (see Eq. (4)). We regard both Bq

k and Bq
k as phenomeno-

logical parameters that are determined by comparing theoretical calculations of physical ob-
servables to experimental results.
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In the following, we will use the CF Hamiltonian of the form in Eq. (8). We note that
in the literature it is common to use the so-called Stevens operator equivalents Oq

k (J) [9, 24,
33,48], which are based on the tesseral harmonics (real and imaginary parts of the spherical
harmonics). We denote the corresponding Stevens coefficients multiplying Oq

k as Bq
k,Stevens

in the following. The Stevens operators employ a different normalization convention than
the irreducible tensor operator equivalents eC (k)q (J). This requires using k and q dependent

factors Kq
k relating the eC (k)q and Oq

k operators: Oq
k =

1
Kq

k

2k+1
4π

1p
2

�

eC (k)−q +(−1)q eC (k)q

�

for q 6= 0 and

O0
k =

1
K0

k

2k+1
4π

eC (k)q [48]. The factors Kq
k can be found, for example, in Ref. [48], but can also be

easily derived by direct comparison of the operator matrices [32,33]. The main disadvantage
of the Stevens operators Oq

k (J) is that they do not obey the Wigner-Eckart theorem. Their
matrix elements are explicitly tabulated [33,46,49].

2.3 Stevens crystal field parameters

In this section, we describe the convention of Stevens parameters that we use in the following
and their relation to other common definitions. Following Lea, Leask, Wolf [24] and Wal-
ter [25], it is convenient to perform a transformation from the NSt Stevens parameters {Bq

k}
in Eq. (8) to a set of Stevens coefficients {x0, . . . , xNSt−1}. Here, x0 describes the overall en-
ergy scale of the CF splitting (note that x0 can be negative). The dimensionless parameters
{x1, . . . , xNSt−1} fulfill |x i| ≤ 1 and describe the relative weight of the different Stevens param-
eters Bq

k.

2.3.1 Cubic symmetry

Let us explicitly describe the transformation from {Bq
k} → {x i} for cubic symmetry. The deriva-

tion easily generalizes to arbitrary point groups G. For the cubic point groups G = {m3̄m,432,
4̄3m}, the CF Hamiltonian contains two independent Stevens parameters, NSt = 2, and reads

HCF = B4
4

�

eC (4)4 + eC (4)−4 +

√

√14
5
eC (4)0

�

+B4
6

�

eC (6)4 + eC (6)−4 −

√

√2
7
eC (6)0

�

. (9)

Let us first normalize each operator that multiplies a particular Stevens coefficient

eO(4) = eC (4)4 + eC (4)−4 +

√

√14
5
eC (4)0 (10)

eO(6) = eC (6)4 + eC (6)−4 −

√

√2
7
eC (6)0 . (11)

Normalization of eO(4) and eO(6) can be achieved by dividing by the sum of squared eigenvalues

Λ(k) =
Ç

∑2J+1
i=1 |λ

(k)
i |

2, where λ(k)i are the eigenvalues of the operator eO(k). Specifically, we
define the scaled operators

O(k) = 2J + 1
Λ(k)

eO(k) (12)

and express the CF Hamiltonian as

HCF = B4
4
eO(4) +B4

6
eO(6) = x0

�

x1O(4) + (|x1| − 1)O(6)
�

. (13)

As anticipated above, the scale parameter x0, which can be positive or negative, sets the overall
energy scale of the CF splitting. The dimensionless weight parameter x1 describes the ratio of
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Stevens coefficients

B4
4

B4
6

∝
x1

|x1| − 1
, (14)

and lies in the interval −1 ≤ x1 ≤ 1. The ratio B4
4/B

4
6 = 0 corresponds to x1 = 0, whereas

B4
4/B

4
6 → ±∞ corresponds to x1 = ±1. The exact relation between the two sets of Stevens

parameters {Bq
k} and {x i} depends on the value of J and can be easily rederived from Eq. (13).

2.3.2 Hexagonal symmetry

For hexagonal site symmetry with point symmetry groups G = {6̄m2, 6/mmm, 6mm,622}, the
CF Hamiltonian contains four independent Stevens parameters, NSt = 4, and reads

HCF = B0
2
eC (2)0 +B0

4
eC (4)0 +B0

6
eC (6)0 +B6

6

�

eC (6)6 + eC (6)−6

�

. (15)

Defining eO(k)q = eC (k)q for q = 0 and eO(6)6 = eC (6)6 + eC (6)−6 for q 6= 0, we again normalize the eO(k)q
via

O(k)q =
2J + 1

Λ
(k)
q

eO(k)q . (16a)

Here,

Λ(k)q =

√

√

√

√

2J+1
∑

i=1

|λ(k)q,i |2 , (16b)

where λ(k)q,i are the eigenvalues of eO(k)q . Finally, we express the CF Hamiltonian in terms of the
normalized operators as

HCF = |x0|
�

x1O
(2)
0 + x2O

(4)
0 + x3O

(6)
6 + sign(x4)

�

�

�1− |x1| − |x2| − |x3|
�

�

�O(6)0

�

. (17)

As before, x0 describes the overall energy scale, whereas the weight parameters −1≤ x1, . . .
x3 ≤ 1 describe the relative weight of the four Stevens parameters Bq

k. Note that we have split
off the sign of x0. This turns out to be advantageous in the ML calculation described below as
it makes the overall scale prefactor |x0| strictly positive. This comes at the cost of introducing
an additional parameter, x4, defined as sign(x4) := sign(x0). Only the sign of x4 enters the
Hamiltonian.

2.3.3 Tetragonal symmetry

For tetragonal site symmetry with point symmetry groups G = {4mm,4/mmm}, the CF Hamil-
tonian contains five independent Stevens parameters, NSt = 5, and reads

HCF = B0
2
eC (2)0 +B0

4
eC (4)0 +B4

4

�

eC (4)4 + eC (4)−4

�

+B0
6
eC (6)0 +B4

6

�

eC (6)4 + eC (6)−4

�

= B0
2
eO(2)0 +B0

4
eO(4)0 +B4

4
eO(4)4 +B0

6
eO(6)0 +B4

6
eO(6)4 . (18)

We have defined the operators eO(k)q in the second line, which we then normalize as in Eq. (16).
Finally, the CF Hamiltonian is expressed in terms of the normalized operators as

HCF = |x0|
�

x1O
(2)
0 + x2O

(4)
4 + x3O

(4)
0 + x4O

(6)
4 + sign(x5)

�

�

�1− |x1| − |x2| − |x3| − |x4|
�

�

�O(6)0

�

.

(19)

In addition to the scale parameter x0, the Hamiltonian contains four bounded Stevens param-
eters −1≤ x1, . . . , x4 ≤ 1. Like in the hexagonal case, we have split off the sign of x0 explicitly
and introduced an additional parameter, x5, as sign(x5) := sign(x0). The Hamiltonian only
depends on the sign of x5.
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Figure 1: (a) Energy levels En/x0 of a J = 4 rare-earth ion (Pr3+) in cubic CF with
point symmetry G = m3̄m as a function of Stevens parameter x1. The degeneracy
of the levels in the absence of a magnetic field is indicated in the figure, and splits
in applied magnetic field B along the z axis. The g-factor is set to gJ LS = 4/5. The
vertical yellow line indicates the parameter choice, x1 = 0.5, for panels (b, c), where
we further set x0 = 20 K as absolute energy scale. (b) Magnetization per rare-earth
ion µz/µB as a function of applied magnetic field B along the z-axis for different tem-
peratures. The Stevens parameters are x0 = 20 K and x1 = 0.5. The fully saturated
moment is reduced from the value in the ground multiplet at x1 = 0.5 is µz/µB = 5/2
due to field-induced mixing into other states. (c) Magnetic susceptibility along z-axis
(per rare-earth ion) χz/µB = µz/(µBB) (blue, left y-axis) and specific heat cM/kB
(green, right y-axis) as a function of temperature T . The magnetic field is fixed to
B = 10−4 T when computing χz . The Stevens parameters are identical to panel (b).
The inset shows the inverse susceptibility χ−1

z = µBB/µz , highlighting the Curie-like
behavior that occurs over the full temperature range due to the triplet ground state.
The specific heat cM/kB shows a Schottky-like peak at a position proportional to the
level splitting between the ground multiplet and the excited states ∆ = 40 K. Note
that here the first excited state is a singlet and the contribution of the next higher
triplet level (at about 80 K) is significant.

2.4 Thermodynamic observables

In this section, we describe how to obtain the thermodynamic observables of interest: mag-
netization (per rare-earth ion), µ(T, B), in finite magnetic field, magnetic susceptibility χa(T )
along direction a, and specific heat cM (T ). We calculate these quantities starting from the
Hamiltonian (1) of a single rare-earth ion in a magnetic field B and exposed to a CF with point
symmetry G. From our discussion above, we know that the Hamiltonian projected onto the
ground state multiplet with total angular momentum J reads

HJ = −µB gJ LS J · B+
∑

k=2,4,6

k
∑

q=−k

Bq
k
eC (k)q (J) . (20)

Here, J = (Jx , Jy , Jz) denotes the total angular momentum operator, the g-factor gJ LS is ex-
plicitly given in Eq. (3), and the form of the CF Hamiltonian is constrained by the point group
G. The method we describe in the following can be used for any point group G, but we will fo-
cus on the experimentally common cases of cubic, hexagonal and tetragonal crystal symmetry
with point groups G that were discussed in Sec. 2.3.

In the basis of Jz eigenstates, Jz |mJ 〉= mJ |mJ 〉, the Hamiltonian HJ is a (2J+1)×(2J+1)
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dimensional matrix that can be easily diagonalized,

HJ |n〉= En |n〉 , (21)

with field-dependent energies En and eigenstates

|n〉=
J
∑

mJ=−J

amJ
|mJ 〉 . (22)

In Fig. 1(a), we show the resulting energy spectrum for J = 4 and cubic CF (G = m3̄m) as
a function of the dimensionless Stevens parameter x1, see Eq. (13). The level spectrum is
presented both at zero magnetic field and at a finite field of Bz = 1 T. In zero field, we observe
that for x0 > 0, the ground state is a singlet (triplet) for x1 < 0.34 (x1 > 0.34). For x0 < 0,
the ground state is a triplet for x1 < −0.57, a doublet for −0.57 < x1 < 0.74 and a singlet
for x1 > 0.74. The level degeneracy is split in an applied magnetic field and one observes
the emergence of several (avoided) level crossings. A similar behavior is observed for other
integer values of the angular momentum quantum number J with lower degeneracies in the
case of lower-symmetry CFs. For half-integer J , the levels are at least doubly degenerate in
the absence of an external magnetic field due to Kramers theorem.

2.4.1 Magnetization and magnetic susceptibility

The magnetization per single rare-earth ion along direction a is given by

µa(T, B) =
µB gJ LS

Z

∑

n

〈n|Ja|n〉 e−En/kB T , (23)

with partition function Z = Tre−HJ/kB T and magnetic field along direction a. In Fig. 1(b), we
show the magnetization µz as a function of B = (0,0, B)T for different temperatures T in a
cubic CF (G = m3̄m) and J = 4. The Stevens parameters are chosen to be x0 = 20 K and
x1 = 0.5 such that the ground state is a triplet with 〈Jz〉 = ±

5
2 , 0. The magnetization µz thus

increases linearly at low fields with a slope that increases Curie-like as 1/T . The magnetization
saturates at a saturation magnetic field value Bsat that increases with temperature. At the
lowest temperature, T = 1 K, the saturation occurs at Bsat(1 K)' 2 T. The saturation value of
the magnetization is given by µsat

z = µB gJ LS 〈0|Jz|0〉, where |0〉 is the ground state in magnetic
field. Here, we have chosen L = 5 and S = 1 such that gJ LS = 4/5, which corresponds to the
rare-earth ion Pr3+. Note that µsat

z deviates slightly from the expected value of 5/2×4/5= 2,
where 5/2 is the expectation value of Jz in the triplet ground state in small fields, due to field
induced mixing in of higher levels.

The magnetic susceptibility is obtained at small magnetic fields from the slope

χa(T ) = µa(T, Ba)/Ba . (24)

Its behavior at low temperatures is determined by the ground state degeneracy [10]. If the

ground state is a singlet, it is of van-Vleck type, χa ∝
∑

i 6=0
|〈i|Ja|0〉|2

Ei−E0
, and becomes tempera-

ture independent at temperatures much smaller than the energy gap to the first excited state,

kB T � E1−E0. In contrast, χa is Curie-like χa∝
g2

J LSµ
2
B〈0|J

2|0〉
T , if the ground state degeneracy is

larger than one. In Fig. 1(c), we show the susceptibility χz as a function of temperature for the
case of a triplet ground state, where it follows a characteristic Curie-like behavior χa ∝ 1/T
[see inset of Fig. 1(c)].
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2.4.2 Specific heat

The specific heat in zero magnetic field is calculated from

cM (T ) =
1

kB T2

�

〈H2
CF〉 − 〈HCF〉2

�

, (25)

where the average is performed with respect to the CF eigenstates HCF |n(0)〉= E(0)n |n
(0)〉:

〈O〉= 1
ZCF

∑

n

〈n(0)|O|n(0)〉e−E(0)n /kB T , (26)

with ZCF = Tre−HCF/kB T =
∑

n e−E(0)n /kB T . The specific heat vanishes exponentially, cM ∝
�

∆
kB T

�2

e−∆/kB T , at temperatures below the gap to the first excited state, kB T � ∆. As shown in
Fig. 1(c) for J = 4 and G =m3̄m, it exhibits a Schottky anomaly peak at higher temperatures,
whose position and weight yields direct information about the size of the gap to the excited
states and the relative degeneracies of the ground and excited state levels. Note that if excited
state levels higher than the first one occur nearby in energy, they contribute to the specific heat
as well.

3 CNN approach for finding crystal field parameters

In this section, we describe the method of using a two-dimensional CNN to determine the
Stevens parameters {x i} for a given angular momentum J and CF symmetry group G from
thermodynamic observables. Our goal is to build a ML model that can be fed with experimen-
tal data and accurately predict the underlying Stevens coefficients that characterize the ma-
terial, thereby circumventing a time-consuming data fitting procedure. One therefore places
thermodynamic data on the input nodes of the network and obtains the set of Stevens co-
efficients as output. We choose the input data of the network to be from observables that
are experimentally readily available: magnetization µa(T, Ba), magnetic susceptibility χa(T ),
and magnetic specific heat cM (T ). To train the network, we require a sufficiently large dataset
that we generate by calculating the thermodynamic observables for random choices of Stevens
parameters within the single-ion approximation as described in Sec. 2. Comparing different
network architectures, we found it to be advantageous to perform a wavelet transformation
on the data before feeding it into the network. In the following, we describe the details of the
training data generation and the network architecture and parameters.

3.1 Training data generation

3.1.1 Thermodyamic data generation

A training data set contains the following three types of observables, which are calculated for
a fixed choice of angular momentum J and point group G, and randomly sampled Stevens
coefficients {x i}, using the approach detailed in Sec. 2.

(i) Magnetization per single rare-earth ion, µa, along direction a as a function of exter-
nal magnetic field Ba for fixed temperature T . We choose a magnetic field range between
Bmin = 0 T and Bmax = 10 T, and three temperatures T j = 1,17, 300 K to represent the behav-
ior in typical field and temperature ranges which are easily accessible experimentally. We use
N B

steps = 64 equally spaced magnetic field points

Ba = Bmin +
Bmax − Bmin

N B
steps − 1

ba , (27)
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Figure 2: Continuous wavelet scaleograms of the data of Fig. 1(b,c) for which J = 4,
G = m3̄m, x0 = 20 K, and x1 = 0.5. The plots show the CWT coefficients, using
the real Morlet mother wavelet (30), as a function of scale s and physical index b
(or t). We choose linearly spaced scales from smin = 1 to smax = 64, and also use 64
equally spaced points along the “physical” dimension, corresponding to the magnetic
field, b (see Eq. (27)), and the temperature, t (see Eq. (28)). In addition to these
four scaleograms we also provide µ̃z,T=300 K to the CNN, resulting in a total of five
scaleograms to be layered into one training sample. For the lower symmetry point
groups, we provide magnetization and susceptibility along both [100] and [001]
directions, resulting in a total of nine scaleograms in one training sample.

with ba ∈ {0, . . . , N B
steps − 1}. Depending on the CF point symmetry group G, we choose

different high-symmetry directions—only one high-symmetry direction a = [001] ≡ z (two
high-symmetry directions, a = {[100], [001]}) for cubic (tetragonal and hexagonal) symme-
try. Combined with the three temperature values T j , this corresponds to three (six) sets of
magnetization data: µa(Ba, T j). Other choices of directions are of course possible, but we
wanted to keep the size of the input data set as small as possible to keep the experimental
work necessary to obtain it at a minimum.

(ii) Magnetic susceptibility χa(T ) along direction a as a function of temperature T . We
choose a temperature range between Tmin = 1 K and Tmax = 300 K using N T

steps = 64 equally
spaced temperature points

T = Tmin +
Tmax − Tmin

N T
steps − 1

t . (28)

with t ∈ {0, . . . , N T
steps−1}. We use the same directions a for the susceptibility and the magne-

tization, corresponding to one (or two) sets of susceptibility data.
(iii) Magnetic specific heat cM (T ) as a function of temperature T . We use the same temper-

ature range and step size as for the susceptibility, see Eq. (28).
One training sample therefore consists of five (nine) different sets of thermodynamic data.

A complete training sample for J = 4, G =m3̄m and x0 = 20 K, x1 = 0.5 is shown in Fig. 1(b,
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Figure 3: Schematic architecture of the 2D CNN that is used in this work. The
multi-channel input image comprises five (nine) stacked CWT scaleograms of ther-
modynamic observables. The image first passes through three convolution and max-
pooling layers. This allows the network to extract features from the images. The
two following fully connected layers then predict the NP + 1 Stevens coefficients,
{x0, x1, ..., xNP

} in the output nodes. Here, NP = NSt − 1 (NP = NSt) for the cubic
(hexagonal, tetragonal) case.

c). To obtain the training data set, we draw the Stevens parameters randomly from a uniform
distribution and, for each of these sampled values, compute the aforementioned observables.
To generate sufficient training data for the network, the process takes 2-3 hours. The wavelet
transform described in the next subsection is included in this time frame. Note that within our
convention of using {x i} there exist NSt CF parameters for the cubic and NSt+1 CF parameters
for the hexagonal and tetragonal cases. While x0 can take either sign in the cubic case, it is
strictly positive for hexagonal and tetragonal systems. In the latter cases, only the sign of the
last Stevens parameter sign(xNSt

) enters the Hamiltonian.

3.1.2 Continuous wavelet transform

After comparing different network architectures (see more details below in Sec. 3.2), we have
found it to be advantageous to first perform a continuous wavelet transformation (CWT) of
the “raw” thermodynamic data before feeding it into a two-dimensional (2D) CNN. The rea-
son is that CNNs are well suited to model data with an image-like structure like the wavelet
scaleograms that are produced by the CWT. Similar to a Fourier transform, a CWT is used to
perform a harmonic analysis and decompose a signal into its fundamental frequencies. The
advantage of a CWT is that it produces a sparse representation of the data by providing local-
ization in both frequency and “time” domain, with the main features of the data appearing in
only a (small) subset of all CWT coefficients. This property is key for applications in data com-
pression and denoising [50]. We find that it also enables superior performance of a 2D CNN
compared to placing a “raw” data vector of linear size 5× 64 = 320 (or 9× 64 = 576) on the
network input nodes. Here, 5(9) corresponds to the number of thermodynamic observables
and 64 to number N B

steps = N T
steps of values of Ba and T , respectively.

A CWT of a discrete and equally spaced 1D data set of size N f ,

{ f0, f1, . . . fN f −1} ≡ { f (tmin), f (tmin +∆), . . . , f (tmax)} ,

corresponds to performing the following transformation

f̃ (t, s) =
1
p

s

N f −1
∑

i=0

fiψ
�(i − t)∆

s

�

. (29)

Here, ψ(t) is the so-called mother wavelet function, which is translated by parameter t and
scaled by the scale parameter s. The scale s can be regarded as a period or inverse frequency.
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We choose a mother wavelet function of the real Morlet form [51]

ψ(t) = e−
t2
2 cos(5t) . (30)

We use a linearly spaced set of scales, 1 ≤ s ≤ 64, which emphasizes the low frequency
behavior of the data in comparison to using a geometric spacing. We have explicitly checked
for a few cases that the CNN performs equally well if we use geometrically spaced scales. By
calculating the convolution of this family of translated and scaled wavelets with our original
data, we perform a frequency analysis that provides additional insight into the changes over
the “time” domain, which corresponds to temperature or magnetic field in our data.

We apply a CWT to each of five (or nine) 1D observable data sets, {µa(T, bi),χa(t i), cM (t i)},
to produce a total of five (or nine) 2D wavelet scaleograms of size 64×64. In Fig. 2, we show
four of the five scaleograms corresponding to the “raw” data in Fig. 1(b,c), which depict the
associated (real) CWT coefficients f̃ defined in Eq. (29). It clearly distinguishes regions with
small and large wavelet coefficients, which is a characteristic of the underlying “raw” data set.
The peak position and some broad characteristics of the original data, for example, whether
a function approaches zero or a finite value at the boundary (minimal and maximal T and B
values) can also be recognized in the scaleograms. Specifically, the peak position corresponds
to a region with large wavelet coefficients at small scales s (i.e. large frequencies), because
the underlying function varies most rapidly close to the peak (see c̃M in Fig. 2, for example).
Nonzero data values at boundaries (minimal and maximal T or B values) lead to pronounced
peaks in the scaleogram at small s. The origin of this phenomenon is that zeros are padded
to the dataset at both edges, which results in discontinuities at the boundary that show up as
scaleogram peaks at small s. In Fig. 2, we can thus clearly distinguish observables that peak
at low temperatures χz ∝ 1/T (left boundary) from those that peak at the right boundary
µz,T=17 K. All five (nine) scaleograms are stacked into a multi-channel image and then placed
on the input nodes of a 2D CNN, whose architecture is described in the next subsection.

3.2 Convolutional neural network

We employ a CNN architecture that is based off the LeNet-5 architecture [52], which we scale
up to be appropriate for the form of our training dataset. Initial experimentation with alterna-
tive architectures, such as simple feed-forward networks and 1D CNNs, yielded significantly
worse results. To make a fair comparison, we created architectures that had approximately
the same number of parameters as the 2D CNN and were trained on the same data. Applying
to the cubic case with two Stevens parameters, x0 and x1, we find the 1D CNN to perform a
factor of 2 worse for x0 and a factor of 7 worse for x1 than the 2D CNN. The feed-forward deep
neural network performed a factor of 1.25 worse for x0 and a factor of 9 worse for x1 than
the 2D CNN. It is expected that the performance difference is enhanced in the lower symmetry
cases with more Stevens parameters to predict, which is why we chose to use the 2D CNN. As
illustrated in Fig. 3, the input of the network is a five (nine) channel image containing the five
(nine) scaleograms created using the CWT. We center the input data by subtracting the mean
of each channel so that the distribution of the input “pixel” values has zero mean. We simi-
larly normalize the target data {x i}, as the coefficients x0 and x i with i 6= 0 have significant
size differences and different dimensions. Typically, |x0| ∈ [0.5,50] (in units of K), while the
dimensionless x i ∈ [−1,1] for i > 0.

The centered input CWT scaleograms are fed into three sets of convolution and max-
pooling layers. Each convolution layer has two identical 2D convolution layers with a kernel
size of 3×3 and a stride of 1×1. This increases the number of channels and allows extracting
data features. The max-pooling layers have a pool-size and stride of 2× 2, which essentially
corresponds to a down-sampling of the image by a factor of two. Each convolution layer uses
the ReLU activation function [53] and has batch normalization.
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The final max-pooling layer is flattened and fed into two fully-connected layers, each with
the ReLU activation function and 30% dropout. These layers feed into a fully-connected output
layer whose width corresponds to the number of independent Stevens parameters NP + 1.
Here, NP = NSt−1 (NP = NSt) for the cubic (hexagonal, tetragonal) case due to the procedure
of splitting off the sign of x0 into an additional parameter. The output layer uses a linear
activation function. The NP + 1 output values are the prediction of the CNN for the Stevens
coefficients {x0, . . . , xNP

},
The total number of trainable parameters in the network is 13, 702,818' 1.3×107. This is

substantially larger than the number of trainable parameters in the original LeNet-5 architec-
ture [52]. This is due to the high dimensionality of the fully-connected layers in our version of
the network. A larger number of parameters means that the network will be able to form more
complex relationships between the features and the targets. However, we run the risk of over-
parameterizing the network, resulting in a model that overfits—that is, it performs very well on
the training data but poorly on unseen data. By applying normalization and dropout through-
out the network we mitigate this issue. We build the network using Keras [54] and train it on
a Nvidia Volta V100S graphic processing unit (GPU). We use the Adam optimizer [55] with
the recommended parameters to minimize the mean squared error (MSE) loss function,

C(x̂,x) =
1

(NP + 1)Nbatch

Nbatch
∑

j=1

NP
∑

i=0

�

x̂ i( j)− x i( j)
�2

, (31)

where x̂ i is the network’s prediction for x i . We choose the stochastic gradient descent opti-
mization algorithm Adam to avoid as much as possible the trapping in local minima of the cost
function. As shown below, the behavior of the quality of the CNN predictions (as described by
MSE) across different input parameters can be largely understood on physical grounds such
as arising from energy level crossings, from the smallness of certain CF parameters or from
the ratio of the energy bandwidth to the maximal temperature scale. This indicates that the
CNN is not trapped in local minima. In general, the inverse problem that the CNN addresses
may be ill-defined and allow for multiple solutions. This issue can be (partially) addressed in
practice by providing more data to the CNN such as enlarging the field and temperature range
and/or by including magnetization and susceptibility data along different field directions.

Let us finally describe the resource cost of training the network. Using 105 training exam-
ples and 1.5× 104 validation and 1.5× 104 testing examples with a batch size of Nbatch = 64,
the network converged after around 100 epochs. With the available GPU (Nvidia Volta V100S,
32 GB), training the network took around 70 seconds per epoch. Fully training the network
thus takes around 1-2 hours.

4 CNN results

In this section, we present results and measure the performance of CNNs predicting Stevens
coefficients for three different point groups. We choose groups in cubic, hexagonal and tetrag-
onal crystal classes that are of experimental relevance: m3̄m, 6̄m2 and 4mm. These groups al-
low for NSt = 2,4, 5 independent Stevens parameters, respectively. The complexity of the task
to find Stevens parameters from thermodynamic data increases when lowering the symmetry.
We consider both integer and half-integer values of the total angular momentum quantum
number J , and find that our method works equally well in both cases. For concreteness, we
investigate J = 4 and J = 15/2, which correspond to the ground state values of the rare-earth
ions Pr3+ (J = 4) and Er3+ (J = 15/2).

For a given point group G and value of J , we train a CNN using the training data described
in Sec. 3.1. The input thus corresponds to five (nine) thermodynamic observables for cubic
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(hexagonal and tetragonal) point groups, and the output of the network are the NP+1 Stevens
parameters, {x0, . . . , xNP

}. We use two performance measures: (i) the mean absolute error
(MAE) of the network’s prediction of the Stevens coefficients

MAE(i) =
1

Ntest

Ntest
∑

j=1

| x̂ i( j)− x i( j)| . (32)

Here, x̂ i is the prediction of the network, x i is the true Stevens coefficient that is used to
generate the data placed on the input nodes, and Ntest is the size of the testing dataset. The
MAE is related to the loss function (31) used to train the network. (ii) The mean squared error
(MSE) of two thermodynamic data sets {µa,χa, cM} generated by x̂ i and x i , respectively:

MSE({x i}) =
1
M

M
∑

ν=1

�

Ōν({ x̂ i})− Ōν({x i})
�2

. (33)

Here, M = 5 × 64 = 320 (9 × 64 = 576) for cubic (hexagonal, tetragonal) point groups
is the length of the thermodynamic dataset and Ōν runs over the five (nine) experimental
observables {µa,Tα(bi),χa(t i), cM (t i)} as a function of temperature t i and magnetic field bi
(see Sec. 3.1) that are obtained for a given choice of Stevens parameters. To account for the
differences in size and units between observables, we first normalize each dataset by their
mean and perform Eq. 33 on the resulting dimensionless quantities.

The MSE measures the performance of the CNN in reproducing the desired (input) ther-
modynamic data set that was generated using {x i}. We include this metric as the sensitivity of
the error in the observables (MSE) with respect to the error in the Stevens parameters (MAE)
depends on the values of the {x i}, and the MSE thus contains additional information about
the networks performance. Unless otherwise noted, both MAE and MSE are evaluated on a
testing data of size Ntest = 4× 103 that was not shown to the network during training.

In the following, we separately discuss the performance of the CNNs for the cubic, hexag-
onal and tetragonal point groups.

4.1 Cubic point group symmetry

We consider the case of cubic point group G = m3̄m and J = 4, which is applicable to cubic
Pr rare-earth compounds. The energy level diagram for this case is shown in Fig. 1(a) and
exhibits singlet, doublet and triplet ground states, depending on the sign of x0 and the value
of x1. As shown in Fig. 4, the CNN accurately predicts the two independent Stevens coefficients
{x0, x1} with error values of MAE(0) = 0.321 K and MAE(1) = 0.012. Note that we choose
the energy range of 0.5 K ≤ |x0| ≤ 50 K. The color code and the inset show the MSE, which
lies at 〈MSE〉= 0.053 on average. The results in Fig. 4 show the predictions of two networks:
one is trained with strictly positive x0 ∈ [0.5, 50], and a second one is trained with strictly
negative x0 ∈ [−50,−0.5]. When applied to a given testing example, which has a definite but
unknown sign of x0, the performance of the network that was trained on data with the same
sign of x0 as the testing example is typically much better and can be easily identified. Here,
we show results for testing examples that have a known sign for simplicity, i.e., the positive
(negative) network is tested on samples with positive (negative) x0.

In Fig. 5, we visualize the distribution of MSE as a function of the two Stevens parame-
ters x0 and x1. We clearly observe that the MSE is larger in regions where x0 is small. This
occurs as the energy level spectrum collapses in this limit, with all levels being smaller than
(or comparable to) the minimal thermal energy ' kB Tmin at Tmin = 1 K. In this regime, ther-
modynamic data cannot resolve the order of the levels. We also find an increased MSE along
the lines x1 ' 0.35 for positive x0 > 0 and x1 = −0.6 and x1 = 0.75 for negative x0 < 0. This
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Figure 4: True Stevens coefficients x i versus predicted coefficients x̂ i for cubic point
group m3̄m and J = 4. The network was trained with the five thermodynamic data
sets {µz,Tα(bi),χz(t i), cM (t i)} for Tα = {1,17, 300} K. We choose the high-symmetry
direction z = [001]. The Stevens coefficients are predicted with MAEs given by
MAE(0) = 0.321 K and MAE(1) = 0.012. The inset and color coding show the MSE
of each data point, which lies at 〈MSE〉= 0.053 on average.

follows from the fact that the ground state energy exhibits level crossings in these parameter
regions, as shown in Fig. 1(a). This makes the thermodynamic observables quite sensitive
to small errors in the Stevens parameters as the nature of the ground state changes between
singlet, doublet and triplet states. As a result, the MSE is enhanced even though the MAE is
still small and the Stevens coefficients are predicted with high accuracy.

4.2 Hexagonal point group symmetry

We also consider the case of hexagonal point group G = 6̄m2 and J = 15/2, which is applicable
to hexagonal Er rare-earth compounds. Being a half-integer value of J , the energy level exhibits
Kramers degeneracy in the absence of a magnetic field. The number of independent Stevens
coefficients for this point group is NSt = 4 (see Eq. (15)). We split off the sign of x0 into a
separate parameter x4 such that sign(x4) = sign(x0). This allows us to consider the parameter
x0 ≡ |x0| to be strictly positive. The training data sets thus contains the five coefficients,
{x0, . . . , x4}, with strictly positive x0 > 0 and only the sign of x4 entering the Hamiltonian. We
consider the scale parameter to be in the region 0.5 K≤ x0 ≤ 50 K and −1≤ x i ≤ 1 for i ≥ 1.

As described in Sec. 3.1, the training data contains in addition to the specific heat cM , the
magnetization µa and susceptibility χa along both a = [100] and a = [001] directions. This
provides information about the anisotropy between the ab plane and the c axis in the system,
and is necessary for the CNN to be able to predict the parameter x3. A training data set thus
consists of the nine observables {µa,Tα(Ba),χa(T ), cM (T )}. Here, we set Tα = 1, 17,300 K and
consider the magnetic field range 0 ≤ Ba ≤ 10 T and temperature range 1 K ≤ T ≤ 300 K as
described in Sec. 3.1.

As shown in Fig. 6, the CNN can accurately predict the Stevens parameters with {MAE(0),
. . . ,MAE(3)}= {1.325 K,0.024, 0.031,0.073}. The sign of the fifth parameter x4 was correctly
found in 96% of the cases (see inset in the left panel in Fig. 6). The color corresponds to the
MSE of each testing data set. A histogram of the MSE values is included in the right most
panel. The average MSE over all testing data sets is 〈MSE〉 = 0.280. In general, the MAE
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Figure 5: Heat map showing the MSE as a function of the true Stevens coefficients
x0 and x1 for G = m3̄m and J = 4. The heat map shows a total number of
Ntesting = 4 × 103 data points. Regions with larger MSE occur when x0 becomes
comparable to the temperature probed (x0 ® Tmin = 1 K) and when there is an
energy level crossing involving the ground state [see Fig. 1(a)]. While it becomes
impossible to predict the coefficients if x0 ® Tmin as the spectrum collapses, the in-
creased MSE at the position of level crossings rather indicate an enhanced sensitivity
of the observables with respect to small errors in the { x̂ i}, which are still accurately
predicted by the network (see Fig. 4).

increases slightly with larger values of x0, which can be understood from the fact that the
thermal energy is not sufficient to probe higher lying levels. This could likely be improved
by enlarging the temperature range by increasing Tmax. The CNN performs worst for the x3
coefficient, in particular when this parameter is small. This parameter contains information
about the anisotropy between ab and c axis directions as well as between directions within the
ab-plane. The CNN predictions of x3 could thus likely be improved by providing additional
magnetization data along a second, inequivalent direction in the ab plane. Finally, we note
that quantitatively similar results were obtained for the integer case of J = 4, showing that
the method works equally well for integer and half-integer values of J .

4.3 Tetragonal point group symmetry

We study the performance of the CNN for the tetragonal point group G = 4mm and half-
integer J = 15/2, which corresponds to tetragonal Er rare-earth systems. In this case, the CF
allows for NSt = 5 independent Stevens parameters. Since we split off the sign of x0, the CNN
actually predicts six parameters {x0, . . . , x5}, where 0.5≤ x0 ≤ 50 (in units of K), −1≤ x i ≤ 1
for i ≥ 1 and the training data depend only on the sign of x5. A training data set contains
nine scaleograms obtained from specific heat cM , magnetization µa and susceptibility χa along
a = [100], [001] directions: {µa,Tα(Ba),χa(T ), cM (T )}. The temperature and field ranges are
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Figure 6: True Stevens coefficients x i versus predicted coefficients x̂ i for hexag-
onal 6̄m2 point group and J = 15/2 for Ntesting = 4000 data sets. The
color denotes the MSE and the inset histogram in the right most panel shows
the distribution of the MSE. This network was trained using nine 1D observable
data sets, {µa(T, bi),χa(t i), cM (t i)}. The MAEs of the Stevens coefficients are
{MAE(0), . . . ,MAE(3)} = {1.325 K,0.024, 0.031,0.073}. The sign of x4 was cor-
rectly predicted in 96% of the cases (see inset in left most panel). The average MSE
is 〈MSE〉= 0.280.

Figure 7: True Stevens coefficients x i versus predicted coefficients x̂ i for tetrag-
onal 4mm point group and J = 15/2 for Ntesting = 4000 data sets. The
color denotes the MSE and the inset histogram in the right most panel shows
the distribution of the MSE. This network was trained using nine 1D observable
data sets, {µa(T, bi),χa(t i), cM (t i)}. The MAEs of the Stevens coefficients are
{MAE(0), . . . ,MAE(4)} = {1.380 K, 0.022,0.038, 0.031,0.059}. The sign of x5 was
correctly predicted correctly in 93% of the cases (see inset in left most panel). The
average MSE is 〈MSE〉= 0.248.

1 K≤ T ≤ 300 K and 0≤ Ba ≤ 10 T. Providing information about the anisotropy between the
ab plane and the c axis is necessary for the CNN to be able to learn the dependence on the
parameters x2 and x4.

As shown in Fig. 7, the CNN can accurately predict the Stevens parameters for the ma-
jority of the data points that it was tested on. The MAEs of the Stevens coefficients read
{MAE(0), . . . ,MAE(4)} = {1.380 K,0.022, 0.038,0.031, 0.059}. The sign of x5 was correctly
predicted by the network in 93% of the cases. The average MSE is given by 〈MSE〉 = 0.248.
The overall performance is comparable to the hexagonal case of 6̄m2, even though the tetrag-
onal case exhibits one more Stevens parameter. Similar to the hexagonal case, the error is
larger for larger values of x0, which likely stems from the fact that the bandwidth of the spec-
trum becomes larger than the maximal thermal energy kB Tmax. This suggests increasing the
temperature range in the training data. The MAE of different coefficients is comparable. The
largest MAE occurs for the parameter x4, which measures the anisotropy of the system, both
between ab and c directions as well as within the ab plane. It could likely be better pre-
dicted by adding magnetization data along another inequivalent direction in the ab plane to
the training sets. Finally, we note that we have applied the algorithm to the case of J = 4 and
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obtained quantitatively similar results.

5 Application to experimental data

The ultimate application of the presented CNN algorithm is to extract CF parameters from real
experimental data. We provide all required programs as open-source software [56]. In this
section, we demonstrate this by applying the algorithm to three published experimental data
sets: one Cerium and two Praseodymium-based rare-earth intermetallics: (i) CeAgSb2 [29,43]
and (ii) PrAgSb2 [29], where the rare-earth ions Ce3+ (J = 5/2) and Pr3+ (J = 4) experience
4mm site symmetry, and (iii) PrMg2Cu9 [31], where Pr3+ exhibits 6̄m2 site symmetry. Impor-
tantly, published data of magnetization, magnetic susceptibility and magnetic specific heat on
the same single crystal are available for these systems [29,31,43]. Since experimental circum-
stances and parameters are different for each material, it is required to train a custom CNN
for each case.

When applying the CNN algorithm to experimental data, one must first select the set of
thermodynamic observables that are given to the network. In general, it is best to include as
much data as possible, for example, magnetization along different directions, which informs
the network about the anisotropy in the material. In addition, one must choose the temper-
ature and magnetic field ranges. These will in general be different for each observable to
ensure that the assumptions of the modeling, in particular the single-ion approximation, are
valid. Once the set of experimental input data is determined (together with J and G), one
generates a customized training data set using the same observables and parameter ranges.
Finally, to use the experimental data as input data for the CNN, one first needs to transform
from the experimental units to the units used in the training data. This is described in detail
in Appendix A.

When selecting a suitable temperature window, one must ensure to avoid the occurrence
of many-body phenomena such as the development of Kondo screening (by choosing T > TK),
magnetic order (T > TM ), or significant magnetic exchange interaction effects (T > TRKKY),
which are currently neglected in the modeling that generates the training data. We thus choose
to apply our algorithm to the Praseodymium members of the RAgSb2 and RMg2Cu9 series,
because they do not exhibit magnetic order down to 2 K (even though magnetic exchange
effects may become noticeable at T ® 5−10 K already). On the other hand, they may exhibit
some degree of J mixing [9,58], which is currently neglected in the training data generation.
As this is avoided in the Ce member of the series, because Ce3+ only contains a single f
electron, we also investigate CeAgSb2 within our approach.

When including specific heat data, it is also important to realize that the magnetic part
of cM is typically experimentally approximated by subtracting off the specific heat of a corre-
sponding nonmagnetic compound. A nonmagnetic analogue material can often be obtained
by replacing the magnetic rare-earth ion by a nonmagnetic one such as La, Y or Lu. The sub-
traction procedure is only valid when all other (i.e., the phonon and electronic) contributions
to the specific heat in the two materials are identical. In practice, this restricts the tempera-
ture regime that can be used for (magnetic) cM in the algorithm. Similarly, one may need to
subtract an enhanced Pauli susceptibility contribution, which arise from conduction electrons,
from the magnetic susceptibility data.

We emphasize that these caveats are related to the physical modeling of the forward prob-
lem of computing (or experimentally extracting) observables. Our CNN-based approach of
solving the inverse problem, however, is more generally valid and can, in principle, also be
used in conjunction with more advanced and realistic physical models (that might, e.g., be
able to capture magnetism or phonons). Magnetic exchange interactions could be incorpo-

20

https://scipost.org
https://scipost.org/SciPostPhys.11.1.011


SciPost Phys. 11, 011 (2021)

rated rather straightforwardly within a molecular mean-field approach [57,59].
Based on these general considerations, we select Ce and Pr members of the RAgSb2 series

and PrMg2Cu9 as suitable experimental systems to apply and test our deep learning algorithm
in practical situations. The material CeAgSb2 develops magnetic order at T = 9.7 K [43] and
we thus restrict the temperature regime for which we generate training data to be between
10 K ≤ T ≤ 300 K. In contrast, both Pr compounds that we investigate remain paramagnetic
down to T = 2 K and can be well described within the single-ion approximation over the
complete temperature range from Tmin = 2 K to Tmax = 300 K.

For all three compounds, published data exists for magnetic specific heat cM as well as
magnetization and susceptibility along the [001] axis (and also along the [100] axis in case
of CeAgSb2). We note that while there exists data for the Pr compounds in Refs. [29,31] with
magnetic fields applied in the ab plane, these will not be included, because the exact in-plane
direction was not experimentally determined. This implies that the Stevens coefficients that
describe the anisotropy in the ab plane cannot be determined for the Pr compounds.

5.1 CeAgSb2

The thermodynamic properties of tetragonal material CeAgSb2 were studied in detail in Refs.
[29, 43, 57]. This Ce-based Kondo lattice system orders ferromagnetically below TC = 9.6 K
with moments aligned parallel to the c axis. Crystal fields were previously shown to play an
important role in the material, leading to a peculiar magnetization behavior with moments
ordering along the magnetically hard (c) axis, and saturation moments that are larger for
fields lying in the easy (ab) plane (versus the c axis) [29,43,60,61].

We use experimental results reported in Ref. [43] as input data for the CNN. In Fig. 8,
we show the complete experimental data set provided to the CNN (after unit conversion and
wavelet transformation as described in Secs. A and 3). It contains the magnetic specific heat
cM between 13 K and 80 K, and magnetic susceptibility (versus T) and magnetization (versus B
at T = 20 K) with fields applied along the x ≡ [100] and z ≡ [001] axes. The figure compares
the experimental data to the theoretical results obtained within the single-ion approximation
that uses the values of Stevens coefficients { x̂ i} predicted by the CNN (red) and reported by
Takeuchi et al. in Ref. [43] (black dashed).

Overall, we find that the CNN predictions match the experimental data very well with a
MSE = 0.17. The results obtained with values from Ref. [43] are characterized by the same
MSE. While the values from Ref. [43] provide a slightly better fit to (the noisy data of) cM , the
CNN predictions lead to a slightly improved fit of µx(B) (see Fig. 8(d)). Ultimately, a better
fit may require including effects of spin exchange, as done in Ref. [57] via a molecular field

Table 1: Stevens parameters for CeAgSb2 obtained from CNN using input experi-
mental data from Ref. [43] of observables {µα,T=20 K,χα(T ), cM (T )} for directions
α = {x ≡ [100], z ≡ [001]}. The coefficients x i , B

q
k and Bq

k,Stevens are defined in
Sec. 2. Note that Takeuchi et al. in Ref. [43] report the Stevens coefficient values
B0

2,St. = 7.55 K, B4
4,St. = −0.64 K and B0

4,St. = −0.02 K. Another set of values (closer to
our findings) is reported by Jobiliong et al. in Ref. [57]: B0

2,St. = 6.60 K, B4
4,St. = 1.14 K

and B0
4,St. = −0.09 K.

x i (k, q) Bq
k Bq

k,Stevens
x0 29 K – – –
x1 0.61 (2, 0) 18.4 K 5.8 K
x2 0.80 (4, 4) 2.9 K 2.6 K

sign(x3) −1 (4, 0) 2.1 K 0.22 K
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Figure 8: CNN application to CeAgSb2. Comparison of experimental target data
and CNN predictions for CeAgSb2. Experimental target data is shown in blue. The
theoretical results are obtained within the single-ion approximation using the CF
parameters in Tab. 1 obtained from CNN (red) and from Takeuchi et al. [43] (black
dashed). Both fits are characterized by MSE= 0.17.

approach. Such an approach could be straightforwardly included in our algorithm, which is
left for future work. Table 1 contains the values of the Stevens coefficients from the CNN,
and compares them to two sets reported in the literature [43, 57]. The values obtained from
our CNN approach are closer to those reported in Ref. [57]. In all three sets, the coefficient
B0

2,Stevens ≡ B0
2,St. is the dominant CF coefficient, followed by B4

4,St.. We note that B0
2,Stevens is

proportional to the difference in Curie-Weiss temperatures along different axes [62], which
provides another useful validation check of the CNN results.

5.2 PrAgSb2 and PrMg2Cu9

We apply our CNN algorithm to two Pr based materials: tetragonal PrAgSb2 and hexagonal
PrMg2Cu9. Both materials remain paramagnetic down to T = 2 K, and are modelled within
the single-ion approximation over the full temperature range from T = 2 to T = 300 K.

In Fig. 9, we show results of our CNN algorithm together with the experimental data for
PrAgSb2 (a-c) and PrMg2Cu9 (d-f). The experimental data is taken from Refs. [29] (PrAgSb2)
and [31] (PrMg2Cu9), respectively. The figures contain the complete experimental data that is
provided as input to the CNNs (after unit conversion and wavelet transformation). The input
thus consists of a three-channel scaleogram image obtained from {µz,T=2K,χz(T ), cM (T )} in
the magnetic field and temperature ranges shown in the figure, where z ≡ [001] direction. The
experimental data is compared to theoretical results within the single-ion approximation using
the values { x̂ i} predicted by the CNN. The numerical values of the Stevens coefficients obtained
from the CNN are given in Table 2 and 3. Ref. [29] reports a value of B0

2,St. = 1.8 ± 0.3 K,
which is close to the value 1.3 K predicted by the CNN. Values for the other coefficients were
not reported in Refs. [29,31].

To validate the CNN predictions, we use the coefficients { x̂ i} to calculate the thermody-
namic observables (within the single-ion approximation). As shown in Fig. 9, we observe an
overall very good agreement between the experimental data and the theoretical results for
both compounds. The MSEs are 0.074 for PrAgSb2 and 0.085 for PrMg2Cu9, respectively. We
note that due to the lack of data containing information about the magnetic anisotropy, the
parameters x2, x4 (in tetragonal case) and x3 (in hexagonal case) cannot be properly learned
by the CNN. Its predictions are thus close to zero. As shown in Secs. 4 and 5.1 this is not a
limitation of our CNN approach and could be remedied by providing experimental magneti-
zation and/or susceptibility data for a second direction, e.g., in the ab plane. We note that
Refs. [29,31] contain results for in-plane directions, but do not determine the precise in-plane
direction.

This excellent overall agreement between data and theory justifies our approach to employ
the single-ion approximation to describe the material properties, and demonstrates that the
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Figure 9: CNN application to PrAgSb2 (a-c) and PrMg2Cu9 (d-f). Panels show experi-
mental data (blue) and CNN predictions (red) for input data {µz,T=2 K,χz(T ), cM (T )}.
Experimental data is from Refs. [29,31]. Theory results are calculations (within the
single-ion approximation ) using the CF parameter values { x̂ i} predicted by the CNN
(see Tab. 2 and 3). We find good agreement between experimental data and CNN
predictions with a MSE = 0.074 (PrAgSb2) and MSE = 0.085 (PrMg2Cu9). Note
that due to the lack of experimental data containing information about the magnetic
anisotropy, the parameters x2, x4 (for PrAgSb2) and x3 (for PrMg2Cu9) cannot be
properly learned by the CNN. Also note the small y axis scale in panel (d) due to a
strong ab easy-plane anisotropy.

CNN has converged to a physically viable solution. In both cases, the network captures the
initial slope of the magnetization [note the small y axis scale in panel (d)]. It also correctly
predicts both the Curie-Weiss slope of the inverse susceptibility at higher temperatures and
the location of the Schottky peak in the specific heat. The latter is a direct indication that the
energy level splitting between the ground and excited state has been successfully extracted
from the data.

6 Summary and Outlook

To summarize, we present a deep ML algorithm for extracting CF Stevens parameters from
thermodynamic observables of local-moment materials that can be treated within the single-
ion approximation. We focus on rare-earth intermetallics and train a CNN on input data of

23

https://scipost.org
https://scipost.org/SciPostPhys.11.1.011


SciPost Phys. 11, 011 (2021)

Table 2: Stevens parameters for PrAgSb2 obtained from CNN using
{µz,T=2K,χz(T ), cM (T )} from Ref. [29] as input data. The coefficients x i , Bq

k,
and Bq

k,Stevens are defined in Sec. 2. Note that the CNN is unable to learn the
coefficients {x2, x4} since the experimental data set (and thus also the training
data sets) only include susceptibility and magnetization along the z direction and
thus does not include sufficient information about the magnetic anisotropy. This is
a limitation of the experimental data set, and not of our deep learning approach,
as shown in Sec. 4, where data along a second axis is included and {x2, x4} are
predicted well. Finally, we note that Myers et al. report B0

2,Stevens = 1.8± 0.3 K [29],
close to what we find.

x i (k, q) Bq
k Bq

k,Stevens
x0 39 K – – –
x1 0.19 (2, 0) 4.1 K 1.3 K
x2 – (4, 4) – –
x3 −0.32 (4, 0) −0.39 K −0.041 K
x4 – (6, 4) – –

sign(x5) −1 (6, 0) −0.038 K −2.4× 10−3 K

Table 3: Stevens parameters for PrMg2Cu9 obtained from CNN using
{µz,T=2K,χz(T ), cM (T )} from Ref. [31] as input data. Note that the CNN is
unable to learn the coefficient x3 since the experimental data set (and thus also
the training data sets) does not include sufficient information about the magnetic
anisotropy.

x i (k, q) Bq
k Bq

k,Stevens
x0 57.9 K – – –
x1 0.575 (2,0) 18.0 K 5.7 K
x2 0.269 (4,0) 0.49 K 0.05 K
x3 – (6,6) – –

sign(x4) −1 (6,0) 0.021 K 1.3× 10−3 K

magnetization, susceptibility, and specific heat. The training data is obtained from straightfor-
ward statistical mechanics calculations for different, randomly sampled, values of the Stevens
parameters. To exploit the ability of CNNs in image recognition, we process the raw ther-
modynamic data using a wavelet transform and feed the resulting multi-channel scaleogram
image to the network. The presented algorithm provides a convenient and powerful tool for
extracting CF parameters from experimental data that avoids a tedious multiple parameter
fitting procedure. We provide all programs necessary to run the algorithm and apply it to
experimental situations as open source software [56].

The CNN provides an unbiased solution to the inverse problem of finding the Stevens pa-
rameters for a given set of thermodynamic observables. Depending on the type and amount of
input data, this inverse problem can be ill-defined and allow for multiple solutions. Our study
is an explicit test on the performance of CNNs on this well-known inverse physics problem of
wide interest. We systematically investigate the performance of the algorithm for different site
symmetries in the cubic, hexagonal and tetragonal crystal classes. The point groups we con-
sider are experimentally relevant and allow for 2, 4 and 5 independent Stevens parameters,
thus testing the CNN in cases of increasing complexity. We find that the CNN can accurately
predict all Stevens coefficients if one provides magnetization data both along the easy-axis as
well as within the easy-plane. The network performs equally well for integer and half-integer
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values of the total angular momentum J . Finally, we demonstrate that the algorithm also
works well when applied to real experimental data of one Cerium system, CeAgSb2 [43], and
two Praseodymium compounds, PrAgSb2 [29] and PrMg2Cu9 [31]., which we obtain from the
literature.

One promising future direction is to include correlation effects such as magnetic exchange
interactions between different local moments within the modeling approach used to generate
the training data. Magnetic exchange could, for example, be rather straightforwardly included
via a molecular mean-field approach [57,59,63] (at the small cost of introducing an additional
fit parameter describing the molecular field). Other interesting future directions are to apply
more advanced ML techniques (generative adversarial networks [64], autoencoders) to lower
symmetry CFs, to systematically investigate the stability of the algorithm with respect to in-
put data noise, and to explore other choices of input observables, including low-symmetry
magnetic field directions and direction averaged quantities. The latter would extend the ap-
plicability of the algorithm to polycrystalline materials.
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A Transformation between units used in experiment and training
data

In this section, we describe how to transform from the commonly used experimental units in
Refs. [29,31] to the units used in the training data generation. It is important to first perform
a transformation of units in the experimental data set before giving it to the CNN.

A.1 Specific heat

The SI units for the (magnetic) specific heat are [cM ] = J/(kg K). One often also uses units of
[cM ] = J/(mol K). The training data contains cM/kB per rare-earth ion, which is a dimension-
less quantity that we denote by ctrain ≡ cM/kB per rare-earth ion. To transform experimental
data cexp given in units of J/(mol K) into the training data units, we need to perform

cexp

NAkB
=

cexp

8.31445973
Ò= ctrain , (34)

where NA is Avogadro’s constant and kB is the Boltzmann constant. In other words, we di-
vide the numerical values obtained from experimental plots by a factor of 8.31445973 before
feeding them into the CNN.

A.2 Magnetization

The training data uses the dimensionless quantity µα/µB, which is the magnetic moment per
rare-earth ion. This is identical to the units used in the experimental plots, which we can thus
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directly input into the CNN. We note that we transform from Oersted (auxiliary field units) to
Tesla (magnetic field units) via µ0 × 1 Oe= 10−4 T.

A.3 Susceptibility

The magnetic susceptibility (or volume susceptibility) is experimentally obtained as χ = M/H,
where M is the magnetization and H is the auxiliary field. Its SI and cgs units are [χ] = 4π(1) =
1emu/cm3. Note that it is dimensionless in SI units. It is distinguished from the molar sus-
ceptibility χmol with units [χmol] = 4π× 10−6m3/mol = 1emu/mol. The two are related by
χ = 4π× 10−6 ρ

Mχmol, where ρ is the mass density, M is the molar mass.
The training data reads χtrain = µα/(µBB), which is the ratio of the induced magnetic

moment per rare-earth ion µa divided by the Bohr magneton µB and a small magnetic field
B = 10−4 T. Note that the result is independent of the value of B as we ensure that we are in the
linear regime of µa(B). This is related to the experimentally measured (volume) susceptibility
via χtrain =

Vuc
NRµBµ0

χ, where χ is the magnetic susceptibility in SI units and Vuc/NR is an effective
volume per rare-earth ion such that the magnetization Ma = µa/(Vuc/NR). Here, Vuc is the unit
cell volume and NR is the number of rare-earth ions per unit cell.

Combining the two transformations discussed above leads to

χtrainÒ=4π× 10−6 ρ

M
Vuc

NR

χmol

µ0µB
= 1.79053

Nf.u.

NR
χmol , (35)

where Nf.u. is the number of formula units per unit cell. One thus needs to multiply the ex-
perimental data for M/H (in emu/mol) by a factor of 1.79053 Nf.u.

NR
, before feeding it into the

CNN.
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