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Abstract

We apply cluster dynamical mean field theory with an exact-diagonalization impurity
solver to a Hubbard model for magic-angle twisted bilayer graphene, built on the tight-
binding model proposed by Kang and Vafek [1], which applies to the magic angle 1.30◦.
We find that triplet superconductivity with p + ip symmetry is stabilized by CDMFT, as
well as a subdominant singlet d + id state. A minimum of the order parameter exists
close to quarter-filling and three-quarter filling, as observed in experiments.
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1 Introduction

Twisted bilayer graphene (TBG) consists of two layers of graphene deposited on top of each
other with a slight rotation, or twist. At commensurate twist angles, the bilayer forms a moiré
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pattern with a period that depends closely on the twist angle. It has been predicted that for
some “magic angles”, the resulting band structure has a few relatively flat bands at low energy,
separated from the rest, thus forming an effective strongly interacting electronic system [2–4].
The physical realization of this occurred in 2018 when Cao et al. observed Mott behavior in
quarter-filled TBG (filling is understood here in terms of the four low-energy bands) at some
magic angles [5] and detected superconductivity just away from that filling [6]. Supercon-
ductivity was also found at larger twist angles by applying pressure [7]. These discoveries
have renewed theoretical research on this system, with the goal of understanding the ori-
gin of superconductivity in TBG [8–17]. Some authors have found triplet superconductiv-
ity to be dominant [9, 13], others predict singlet superconductivity, specifically of the d + id
type [8, 14, 16, 17]. The great variety of effective models and methods used complicates the
comparison between these works.

The difficulty here is two-fold: (i) to construct a model Hamiltonian that can reasonably
represent this very complex system and (ii) to predict correctly, within that model, whether
superconductivity arises, and if so, with what characteristics: singlet or triplet, order parameter
symmetry, etc.

Since magic angle TBG is a strongly correlated system, the natural course of study is to set
up an effective low-energy Hamiltonian in the Wannier basis, as opposed to the Bloch basis [1,
18–20]. Since the moiré pattern of TBG forms a triangular lattice, it was initially thought that
the effective Hamiltonian would be defined on that lattice, and indeed it was shown that the
electron density associated with the low-energy bands is peaked around its sites. However, it
was then shown that no Wannier basis satisfying the minimal symmetry requirements could
be constructed on a triangular lattice; on the contrary, the Wannier states have to be defined
on the plaquettes of a triangular lattice, which form a graphene-like (hexagonal) lattice.

We adopt as a starting point the model proposed by Kang and Vafek [1], itself based on
the microscopic analysis of Moon and Koshino [19]. We then simply add a Hubbard U , local
to each of the four Wannier states per unit cell, and apply cluster dynamical mean field theory
(CDMFT) to this interacting model in order to probe specific superconducting states. We find
that a superconducting state indeed exists around quarter filling and three-quarter filling and
that it is a triplet state with p+ ip symmetry, while a subdominant, singlet d+ id solution also
exists. This is the main conclusion of this work.

2 Low-energy model

There have been a few proposals for an effective tight-binding Hamiltonian describing the
low-energy bands of TBG [1, 18–20]. We adopt in this work the model described in Ref. [1]
and inspired by Ref. [19]. It is based on four Wannier orbitals per unit cell, with maximal
symmetry, on an effective honeycomb lattice and is appropriate for a twist angle θ = 1.30◦.

It is customary to derive effective models for TBG directly from continuum models. In that
framework a valley symmetry emerges and the model is endowed with a fragile topology. It
can be shown that in a model with nontrivial topology, time-reversal symmetry (TRS) cannot
be represented simply by a set of localized Wannier states: its action is not strictly local [21].
However, as shown in [22], the error committed by using a localized Wannier basis is exponen-
tially small. Since we are going to truncate the hopping matrix to a few terms and introduce
strong interactions that would likely destroy any existing topology, this issue should not be of
concern here.

Fig. 1 offers a schematic view of the orbitals w1 and w3. Orbitals w2 = w∗1 and w4 = w∗3
are not shown. Ref. [1] computes a large number of hopping integrals, of which we will only
retain the largest, as listed in Table 1. The notation used is that of Ref. [1].
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Figure 1: Schematic representation of the Wannier functions w1 = w∗2 (orange) and
w3 = w∗4 (green) on which our model Hamiltonian is built. The charge is maximal at
the AA superposition points (blue circles) forming a triangular lattice. The Wannier
functions are centered on the triangular plaquettes that form a graphene-like lattice
(black dots), whose unit cell is shaded in red. The underlying moiré pattern illus-
trated corresponds to (m, n) = (9, 8), but the functions used in this work correspond
to (m, n) = (26,25). The basis vectors E1,2 of the moiré lattice are shown (they are
also basis vectors of the graphene-like lattice of Wannier functions), as well as the
elementary nearest-neighbor vectors a1,2,3.

Remarkably, the most important hopping terms are between w1 and w4 (and between w2
and w3), i.e., between graphene sublattices. It therefore makes sense physically to picture the
system as made of two layers and to assign w1 and w4 to the first layer, whereas w2 and w3
are assigned to the second layer. The rather small t13[0,0] hopping (and its equivalents) is
the only term that couples the two layers. The concept of layer is useful when visualizing the
model in space and when arranging local clusters of sites in CDMFT, since it is preferable to
have the more important hopping terms within a cluster; it is merely a book-keeping device.
The drawing next to Table 1 illustrates the range and multiplicity of the intra-layer hopping
terms retained.

To this tight-binding model we will add a local interaction term U . This is a rather ap-
proximate description of the interactions in this system, but has the merit of simplicity and
tractability in the context of dynamical mean field theory. A more refined description of the in-
teractions would not only contain extended interactions (see, e.g., [23,24]) but would include
terms not of the density-density form [25]. We will defer the study of extended interactions
to future work. The values of U in our calculations range from 0.5 meV to 5 meV. Fig. 3d of
Ref. [5] leads us to expect a wide range of values of U depending on twist angle, and a rather
large U ∼ 20 meV at an angle of 1.30◦. However, Ref. [11] predicts a value U ∼ 5 meV for
this angle and the range of U values predicted in Fig. 9 of Ref. [26] is largely compatible with
the range we have selected.

The model is invariant under a rotation C3 by 2π/3 about the AA site, and under a π-
rotation C ′2 about an axis in the plane of the bilayer (the vertical axis on Fig. 1). These trans-
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Table 1: Hopping amplitudes used in this work. They are the most important am-
plitudes computed in Ref. [1]. Here ω = e2πi/3 and the vector [a, b] following the
symbol represents the bond vectors in the (E1,E2) basis shown on Fig. 1. Note that
t23 = t∗14 and t24 = t∗13. On the right: schematic view of the hopping terms t14 within
a given layer (the unit cell is the blue shaded area). Lines 2, 3, and 4 of the table
correspond to the red, blue and green links, respectively. Dashed and full lines are
for t14 and t23, respectively.

symbol value (meV)

• t13[0, 0] =ωt13[1,−1] =ω∗ t13[1,0] −0.011

• t14[0, 0] = t14[1,0] = t14[1,−1] 0.0177+ 0.291i

• t14[2,−1] = t14[0, 1] = t14[0,−1] −0.1141− 0.3479i

• t14[−1,0] = t14[−1,1] = t14[1,−2]

= t14[1,1] = t14[2,−2] = t14[2, 0] 0.0464− 0.0831i

formations generate the point group D3 and affect the Wannier orbitals as follows [1]:

C3 : w1(r)→ωw1(C3r) , C3 : w4(r)→ωw4(C3r) ,

C3 : w2(r)→ ω̄w2(C3r) , C3 : w3(r)→ ω̄w3(C3r) ,

C ′2 : w1(r)→ w3(C
′
2r) , C ′2 : w2(r)→ w4(C

′
2r) ,

where ω= e2πi/3 and ω̄= e−2πi/3. In other words, the orbitals w1 and w3 transform between
themselves, and so do w2 and w4. The model also has time-reversal symmetry (TRS), under
which w1↔ w2 and w3↔ w4.

Possible superconducting pairings are either singlet or triplet (there is no spin orbit cou-
pling). It is reasonable to assume that pairing will be more important between sites that also
correspond to the most important hopping integrals. Let us therefore concentrate on pairing
states involving nearest neighbors on a given layer, i.e., between orbitals w1 and w4 (or w2
and w3). Because of the strong local repulsion in our model, we ignore on-site pairing. Let us
then define the pairing operators

Si,r = cr,↑cr+ai ,↓ − cr,↓cr+ai ,↑ , (singlet)

Ti,r = cr,↑cr+ai ,↓ + cr,↓cr+ai ,↑ , (triplet)
(1)

where cr,σ annihilates an electron at graphene site r of the first layer (in orbital w1 or w4 de-
pending on the sublattice). The elementary vectors ai are defined on Fig. 1, but apply to the
layer in the current context. Likewise, we define operators S′i,r and T ′i,r on the second layer,
in terms of orbitals w2 and w3). Under the transformations C3 and C ′2, the six singlet (triplet)
pairing operators transform amongst themselves and may be organized into irreducible rep-
resentations of D3, as listed on Table 2. To make this table more concise, we have defined the
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Table 2: Irreducible representations (irreps) of D3 associated with the six pairing
operators defined on nearest-neighbor sites, as defined in Eqs (2). (Un)primed op-
erators belong to the second (first) layer.

Irrep singlet pairing triplet pairing

A1 (d + id) + (d ′ − id ′) (p+ ip)− (p′ − ip′)

A2 (d + id)− (d ′ − id ′) (p+ ip) + (p′ − ip′)

E [d − id , d ′ + id ′] [p− ip , p′ + ip′]

[s, s′] [ f , f ′]

following combinations:

s =
∑

r

�

S1,r + S2,r + S3,r

�

(2a)

d + id =
∑

r

�

S1,r +ωS2,r + ω̄S3,r

�

(2b)

d − id =
∑

r

�

S1,r + ω̄S2,r +ωS3,r

�

(2c)

f =
∑

r

�

T1,r + T2,r + T3,r

�

(2d)

p+ ip =
∑

r

�

T1,r +ωT2,r + ω̄T3,r

�

(2e)

p− ip =
∑

r

�

T1,r + ω̄T2,r +ωT3,r

�

(2f)

and likewise for the combinations s′, d ′± id ′, etc. for the second layer. A similar analysis could
be carried out with longer-range pairing, with the same classification: This would simply add
harmonics to the basic pairing functions.

This organization into representations of D3 is contingent on the importance of the inter-
layer hopping t13, which is an order of magnitude smaller than the intra-layer hopping. If
t13 were zero, the two layers would be independent, the symmetry would be upgraded to C6v
and the classification of pairing states would be the same as in Ref. [27], with representations
A1 (s), A2 ( f ), E1 (p ± ip) and E2 (d ± id). Since t13 is small, we expect that the different
pairing states of Table 2 (for a given total spin) will be nearly impossible to differentiate from
an energetics point of view, except for the difference between s and d ± id (or between f and
p± ip).

3 Cluster dynamical mean field theory

In order to probe the possible existence of superconductivity in this model, we use cluster
dynamical mean-field theory (CDMFT) [28–30] with an exact diagonalization solver at zero
temperature (or ED-CDMFT). Let us summarize this method.

3.1 General description

The infinite lattice is tiled into identical, repeated units; this defines a superlattice, and an as-
sociated reduced Brillouin zone, smaller than the original Brillouin zone. In the present study
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the unit cell of the superlattice (or supercell) is made of four clusters of four sites each: Two
clusters tile each of the two layers (Fig. 2c). Ref. [31] explains the particulars of CDMFT when
the supercell contains more than one cluster. Each cluster is coupled to a bath of uncorrelated,
auxiliary orbitals, and is governed by an Anderson impurity model (AIM):

Himp = Hc +
∑

i,r

θir

�

c†
i ar +H.c.

�

+
∑

r

εr a†
r ar , (3)

where Hc is the infinite-lattice Hamiltonian, but restricted to the cluster, ci annihilates an
electron on orbital i of the cluster (i labels both site and spin) and ar annihilates an electron
on orbital r of the bath. The bath parameters (εr , θir) are found by imposing a self-consistency
condition, as explained below.

Hamiltonian (3) is solved by exact diagonalization. Without taking into account any sym-
metry of the Hamiltonian, the dimension of the Hilbert space for an impurity of 4 cluster sites
and 6 bath sites would be d = 44+6 ∼ 106. Because we are investigating a broken symmetry
state where the number of particles is not conserved, the only Abelian symmetry that can be
used is the conservation of the z-component of the spin (we cannot use point group symme-
tries in general). Assuming a Sz = 0 state (singlet or triplet), this reduces the dimension of
the Hilbert space to 184,756.

The electron Green function on the cluster, Gc(ω), is needed by CDMFT. We use the band
Lanczos method to compute it; for details, please see Refs [32, 33]. This method provides a
Lehmann representation for the Green function. This is a Lc × Lc matrix, Lc being the number
of orbitals on the cluster (including spin). It may be expressed in terms of the electron self-
energy on cluster c, Σc(ω), and the associated hybridization function Γ c(ω):

Gc(ω)
−1 =ω− tc − Γ c(ω)−Σc(ω) , (4)

where

Γc,i j(ω) =
∑

r

θirθ
∗
jr

ω− εr
(5)

and tc is the matrix of one-body terms of Hc (including the chemical potential µ).
The fundamental approximation of CDMFT is to replace the exact electron self-energy by

the self-energy obtained by assembling the various cluster self-energies:

Σ(ω) =
⊕

c
Σc(ω) , (6)

where the direct sum is carried over the various clusters forming the supercell. The Green
function on the infinite lattice is then approximated by

G(k̃,ω) =
�

ω− t(k̃)−Σ(ω)
�−1

, (7)

where k̃ is a wave vector in the reduced Brillouin zone and t(k̃) is the noninteracting dispersion
relation expressed in real space within the supercell and in reciprocal space within the reduced
Brillouin zone. If Ltot =

∑

c Lc is the total number of orbitals in the supercell, then G(k̃,ω),
t(k̃) and Σ(ω) are Ltot × Ltot matrices. We further define the projected Green function

Ḡ(ω) =

∫

d2k̃
(2π)2

G(k̃,ω) . (8)

This is the Fourier transform of the infinite-lattice Green function (7) to a single supercell
around the origin. The CDMFT self-consistency condition requires that the Lc × Lc diagonal
blocks of Ḡ(ω) (noted Ḡc(ω)) should coincide with the corresponding cluster Green functions
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Gc(ω). This cannot be satisfied exactly with a finite number of bath orbitals, because it should
hold for all frequencies and only a finite number of bath parameters are at hand. Therefore
this condition is replaced by the optimization of a distance function:

d(ε,θ ) =
∑

c,iωn

W (iωn)
�

Gc(iωn)
−1 − Ḡc(iωn)

−1
�

, (9)

where the weights W (iωn) are chosen in some appropriate way along a grid a Matsubara
frequencies associated with some fictitious temperature β−1. This is where some arbitrariness
arises in the method, as will be commented below.

Let us then quickly summarize the actual CDMFT algorithm:

1. A trial value of the bath parameters (εr , θir) is chosen. When looping over an external
parameter, the previous converged value or an extrapolation thereof is chosen.

2. The cluster Green functions Gc(ω) are computed, with the help of an impurity solver
(here an exact diagonalization method).

3. The projected Green functions Ḡc(ω) are computed from Eqs (4), (7) and (8).

4. A new set of bath parameters is found by minimizing the distance function (9) with
respect to the bath parameters entering Gc(ω) through Eqs (4,5) for a fixed value of Σc .

5. We go back to step 2 until the bath parameters or the hybridization functions Γ c converge.

Once the converged solution is found, various quantities may be computed either from the
impurity model ground state (averages, etc.) or from the associated lattice Green function
G(k̃,ω).

3.2 Cluster-bath system

The cluster-bath system for the current problem is illustrated on Fig. 2. The supercell contains
four 4-site clusters; one layer is illustrated on Panel (c). Note that the only hopping term
included in the impurity model is t14[0, 0] and its equivalents, represented by red lines on
Fig. 1. The other hopping terms have an effect through the self-consistent CDMFT procedure.

Each cluster contains four sites and six bath orbitals and the various bath parameters are
illustrated on panels (a) and (b). The four black, numbered circles are the cluster sites per se.
The six red squares are the bath orbitals. Even though their positions have no meaning, they
are, on this diagram, assigned a virtual position that makes them look as if they were physical
sites on neighboring clusters. They are then given “nearest-neighbor” hybridizations θ1,2 and
“second-neighbor” hybridizations η1,2. In order to probe superconductivity, we add pairing
amplitudes within the bath itself, as shown on Fig. 2b: Two pairing amplitudes d1,2 between
consecutive bath orbitals, and two others p1,2 between “second neighbor” bath orbitals. In
the context of Eq. (3), these pairing amplitudes must be understood in the restricted Nambu
formalism, in which a particle-hole transformation is applied to the spin-down orbitals, giving
the pairing operators the looks of hopping amplitudes. Specifically, in terms of the multiplet
(C↑, C†

↓ , A↑, A†
↓), where Cσ = (c1,σ, c2,σ, c3,σ, c4,σ) and Aσ = (a1,σ, · · · , a6,σ) (σ =↑,↓), the non-

interacting part of the impurity Hamiltonian takes the form

H0
imp =

�

C†
↑ C↓ A†

↑ A↓

�





T Θ

Θ† E



















C↑

C†
↓

A↑

A†
↓















, (10)
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Figure 2: Schematic representation of the impurity model used in this work. Each
cluster is made of four lattice sites (numbered black dots) and six bath orbitals (red
squares). The normal-state bath parameters are shown on Panel (a): Two differ-
ent bath energies ε1,2, four different hybridizations θ1,2 and η1,2. The anomalous
bath parameters are shown on Panel (b). As shown, they are optimized for study-
ing the p + ip state: Two complex-valued triplet pairings d1,2 between “nearest-
neighbor” bath orbitals, and two other complex-valued triplet pairings p1,2 between
“second-neighbor” bath orbitals, all modulated by powers of the complex amplitude
ω= e2πi/3 as one goes around (ω̄=ω2 =ω−1). The unit cell of the impurity model
contains four copies of this cluster: Two on the bottom level (w1,3), two on the top
level (w2,4). On each level, they are arranged as shown on Panel (c) (the 4-site clus-
ter on the right is the inversion of the one on the left, and the bath parameters are
the same on the two clusters, except for the sign of the triplet pairings, which are
inverted).

where

T=





tc 0

0 −tc



 , Θ =





θ 0

0 −θ ∗



 , E=





ε ∆†

∆ −ε



 . (11)

Here tc is the hopping matrix restricted to the cluster, θ is a 4 × 4 matrix containing the
parameters θ1,2 and η1,2, ε is a diagonal matrix containing the bath energies ε1,2 and ∆ is a
6× 6 matrix containing the parameters d1,2 and p1,2.

In total, the AIM contains 10 bath parameters, some real, some complex. The impurity
Hamiltonian does not contain pairing operators on the cluster sites themselves. However, the
operators defined in Eqs (1) may develop a nonzero expectation value on the impurity through
the self-consistent bath.

The hybridization pattern shown in the figure is appropriate for triplet pairing (it is direc-
tional, as indicated by the arrows) in a p + ip state (because of the phases ω and ω2 = ω̄
appearing in the bath pairing amplitudes as one circles around). This may be readily adapted
to probing a p− ip state (by replacingω↔ ω̄) or a f state (by replacingω, ω̄→ 1). Likewise,
singlet states are probed by introducing singlet pairing between bath sites. In principle, we
could leave all pairings free, at the price of tripling the number of bath parameters, but CDMFT
convergence has proven problematic when this was tested. It is easier, and no less general, to
separately probe the p± ip and f states (and likewise for the singlet states).

One could also treat the bath parameters of all four clusters of the supercell as indepen-
dent. In practice, this is not necessary as they are related. The two clusters belonging to the
same layer have identical bath parameters by symmetry, except for the triplet pairings which
must change sign between the two clusters because the second cluster is obtained from the first

8

https://scipost.org
https://scipost.org/SciPostPhys.11.1.017


SciPost Phys. 11, 017 (2021)

by a spatial inversion. According to Table 2, we expect the complex-valued bath parameters
of the second layer to be the complex conjugates of those of the first layer. These constraints
effectively reduce the total number of variational parameters to the equivalent of 13 real pa-
rameters.

Minimizing the distance function (9) is done by the Nelder-Mead or the conjugate-gradient
method as implemented in SciPy. These methods do not guarantee a global minimum, but
only a local one. Because of this, jumps in the bath parameters might occur as a function of
an external (control) parameter like the chemical potential µ, and we would expect that this
manifests itself as a hysteresis when cycling over µ. We have observed no such hysteresis in the
present study. This being said, the CDMFT algorithm summarized above contains an iteration
over impurity models that defines a very complex nonlinear system that rather complicates
this simple expectation. Failure to converge often manifests itself by oscillations between two
or more sets of bath parameters and experience shows that increasing the parameter set does
not necessarily alleviate this problem.

4 Results and discussion

We have probed the different states listed in Table 2 using the above CDMFT setup. In order
to reach a solution from scratch, we have used the following staged approach: (i) Owing
to the small value of t13, a one-layer model was first studied. (ii) An external field of each
of types (2) was then applied to the cluster in order to induce a nonzero average pairing
forcefully. This external field was then reduced to zero in a few steps, each time starting from
the previous solution. (iii) Once a nontrivial solution was found in this way at zero external
field, the second-layer was added (with a complex conjugated bath system, e.g., p− ip instead
of p+ ip). (iv) the solution found was then scanned as a function of chemical potential within
the two-layer model. The most delicate step is to find a first solution; scanning over parameters
of the model (such as the chemical potential or the interaction) is easier since the solution at
a given set of model parameters provides an initial trial solution for the next parameter set.
Computing time varies depending on convergence rate, but is typically of the order of 10
minutes per parameter set once the scan is in motion, with code highly optimized for speed;
memory needs are relatively modest at 3-4 gigabytes.1

We found a nonzero solution for p ± ip pairing extending over a wide range of doping.
Fig. 3 shows the average p + ip order parameter on a cluster of the first layer, as a function
of electron density on the cluster, for a local repulsion U = 2 meV. The order parameter is the
ground-state expectation value of operator (2e) restricted to the cluster within the impurity
model. Several variants of the CDMFT procedure are illustrated, which we must now explain.
The distance function (9) depend on a set of weights W (iωn) and a fictitious temperature
β−1. The values of β (in meV−1) are indicated in the legend of Fig. 3. The grid of Matsubara
frequencies then stops at some cutoff value taken to be ωc = 2 meV in this work. The curve
labeled β = 50 (blue dots) is obtained by setting all weights to the same value. The other
curves (with a Σ label) are obtained by setting the weights proportional to the self-energy
|Σ(iωn)| (the norm of the matrix). This is justified if one considers DMFT from the point of
view of the Potthoff functional [34, 35]. In particular, it gives more importance to very low
frequencies in an insulating state, as the self-energy then grows as ω → 0. We expect the
superconducting order parameter to be minimum, if not zero, at quarter (n = 0.5) or three-
quarter (n = 1.5) filling, as observed in experiments. Indeed, this commensurate filling leads

1Adding just a few orbitals to the impurity problem would dramatically increase the resources needed: Going
from 6 to 9 bath orbitals, for a total of 13 orbitals in the impurity model, would increase the Hilbert space dimension
50-fold, with a corresponding increase in memory usage and an even sharper increase in computing time.
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Figure 3: p+ ip order parameter found by CDMFT, as a function of electron density
n, for U = 2 meV and several variants of the CDMFT procedure explained in the text.
Only the electron-doped results (n> 1) are shown for clarity.
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Figure 4: p+ ip order parameter found by CDMFT, as a function of electron density
n, for several values of Hubbard U (in meV). The order parameter is the ground state
average of the operator (2e), restricted to the cluster. The density n is the ground-
state average occupation of the cluster. One of the clusters of the first layer was used
for these averages. Clusters on the second layer would show the opposite chirality
(p− ip).

to an insulating state at the magic angle 1.08◦ [5] and superconductivity occurs on either side
of this filling value. We see that this is not exactly the case in the data sets of Fig. 3, although
using a higher β and, to a lesser extent, a self-energy modulated set of weights, greatly helps.
We will stick to the value β = 150 and use a self-energy modulated set of weights in what
follows.

Figure 4 shows the p + ip order parameter as a function of electron density for the full
range of solutions obtained, and five values of the one-site repulsion U (in meV). We note that
the system is almost (but not exactly) particle-hole symmetric. Superconductivity is strongly
suppressed near half-filling (CDMFT ceases to converge to a superconducting solution when
|n− 1| ® 0.2). Superconductivity is partially suppressed at quarter- and three-quarter filling
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Figure 5: Left panel: d + id order parameter found by CDMFT (filled circles), as
a function of electron density n, compared with the p + ip order parameter (open
circles), for U = 2 meV and U = 5 meV. The d + id order parameter is the ground
state average of the operator (2b), restricted to the cluster. Again, clusters on the
second layer would show the opposite chirality (d− id). Right panel: For U = 2 and
as a function of chemical potential µ, the same chiral order parameters as in the left
panel, as well as the value of the Potthoff functional Ω for each solution. The p+ ip
solution (dashed curve) has a lower energy than the d + id solution (full curve). A
multiple of µ was added to Ω to rectify the curves and improve clarity.

(n = 0.5,1.5) and this suppression increases with U . Despite a strong suppression of super-
conductivity at n = 0.5 and n = 1.5, a Mott state is not fully obtained there for the range of
U studied. This is likely caused by our neglect of extended interactions. Note the gap in the
solutions in the vicinity of n = 0.3 and n = 1.7; the solutions exist for all values of chemi-
cal potential µ around these values, but a discontinuity leads to the forbidden regions when
plotted as a function of density.

We also found a weaker singlet solution with d + id symmetry, as illustrated on Fig. 5a for
U = 2 meV and U = 5 meV. The singlet solution has a smaller order parameter than the triplet
solution, especially in the vicinity of n = 0.5 and n = 1.5, where it is strongly suppressed and
suffers from a discontinuity (we only show the hole-doped case for clarity). A possible way
to discriminate between the triplet and singlet solutions is to compare the energies of each.
An optimal way to estimate the energy in CDMFT is to borrow the expression of the Potthoff
self-energy functional from the variational cluster approximation [36, 37], as explained in
Ref. [38]. The expression of the Potthoff functional is

Ω= E0 + Tr ln[−(G−1
0 −Σ)

−1]− Tr ln(−Gc) , (12)

where E0 is the ground state energy per site of the impurity model (including the chemical
potential contribution), and the functional trace Tr represents an integral over frequencies
and wave vector. It is an approximation to the grand potential Ω = E − µN of the system at
zero temperature, given that the CDMFT is not far from the solution to Potthoff’s variational
principle [36]. Figure Fig. 5b shows the Potthoff functional of the two solutions (p + ip and
d + id) at the same time as the corresponding order parameters, as a function of chemical po-
tential µ. The grand potential of the triplet is consistently lower than that of the singlet, except
for an isolated point near a discontinuity. We have also compared directly the ground state
energies E0 of the corresponding two impurity models, and the same conclusion holds: the
singlet d+id solution has a higher energy, a smaller order parameter, and is thus subdominant.

We were not able to resolve the different representations of D3, as listed on Table 2. In
other words, the energy difference between the A1, A2 and E representations is likely too small
to have an effect on the CDMFT convergence procedure. This is due to the small value of the
inter-layer hopping t13. It is however important to assign opposite chiralities to the two layers.
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The effective model used was based on the parameters of Ref. [1], appropriate for a
twist angle θ = 1.30◦. Would our conclusions change for different, small twist angles, such
as the ones found in Ref. [6] (θ = 1.05◦, 1.16◦)? Maybe. But a similar CDMFT of the
nearest-neighbor Hubbard model on the graphene lattice has shown triplet pairing to be domi-
nant [27]; so did a RPA study of bi-layer silicene [39], which is likewise based on the graphene
lattice.

Let us compare our conclusions with some other works having found superconductiv-
ity in effective models for twisted bilyaer graphene. Ref. [9] finds triplet superconductivity
as a Kohn-Luttinger instability, but is essentially a weak-coupling analysis, contrary to ours.
Ref. [13] finds triplet superconductivity near n= 0.5, but with f symmetry, using a numerical
renormalization group approach expected to be valid from weak to moderate coupling. Our
strong-coupling calculations could not stabilize f -wave superconductivity. Kennes et al. [8]
find d + id superconductivity near n= 1 using a renormalization-group approach followed by
an mean-field analysis. Zhang et al. [14] arrive at the same conclusion, using constrained path
Monte Carlo, and so do Chen et al [17]. These three works do not contradict ours, since our
prediction concerns mostly regions around n= 0.5 and n= 1.5, not n= 1.

A possible improvement to the present study would be to include extended interactions, for
example derived from an on-site Coulomb interaction at the AA sites [23,24]. We expect that
including such interactions would hinder pairing at quarter filling. This would require adding
inter-orbital interactions U1,2 (U3,4) between orbitals w1 and w2 (w3 and w4). Unfortunately,
since orbitals w1 and w2 belong to different clusters in our CDMFT setup, this cannot be imple-
mented as is. The effect could be studied within a different quantum cluster approach, such
as the variational cluster approximation [27, 34, 40], which in practice allows larger clusters.
Alternately, inter-cluster interaction terms could be treated at the mean field level, as done,
for instance, in Refs. [27,41]. Interactions that do not have a density-density form (and thus
not diagonal in the Wannier basis) would, naturally, complicate matters.

A legitimate question is whether other broken symmetries could compete with supercon-
ductivity in the phase diagram. We expect charge order to be a serious contender at commen-
surate filling (in particular n = 0.5 and n = 1.5), provided extended interactions are taken
into account. It is possible that the superconducting order that we found would disappear pre-
cisely at these fillings, either because of the extended interactions or out of competition with
charge order. Likewise, antiferromagnetism is likely to appear at half-filling (n = 1), where
superconductivity is suppressed, because of a suppression of the density of states related to
Mott physics. Again we leave this question for future work.
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