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Abstract

Protection of topological surface states by reflection symmetry breaks down when the
boundary of the sample is misaligned with one of the high symmetry planes of the crys-
tal. We demonstrate that this limitation is removed in amorphous topological materials,
where the Hamiltonian is invariant on average under reflection over any axis due to con-
tinuous rotation symmetry. We show that the edge remains protected from localization in
the topological phase, and the local disorder caused by the amorphous structure results
in critical scaling of the transport in the system. In order to classify such phases we per-
form a systematic search over all the possible symmetry classes in two dimensions and
construct the example models realizing each of the proposed topological phases. Finally,
we compute the topological invariant of these phases as an integral along a meridian of
the spherical Brillouin zone of an amorphous Hamiltonian.
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1 Introduction

Materials with a quasiparticle band gap in the bulk host protected edge states if they have a
nontrivial topology. To determine whether an insulator or a superconductor is topological, one
first determines the symmetry class of the quasiparticle Hamiltonian in this material, and then
evaluates the topological invariant of the Hamiltonian’s symmetry class [1,2]. The topologi-
cal invariant stays constant as long as the symmetry is preserved and the bulk stays gapped.
While the specific properties of the surface states depend on details of the edge, they may
not be removed by any symmetry-preserving surface perturbation due to the bulk-boundary
correspondence.

The classification of topological phases started with the Altland-Zirnbauer classes, based
on discrete onsite symmetries: particle-hole, time-reversal, and chiral symmetry [3,4]. Topo-
logical crystalline phases were also classified [5-8], protected by crystal symmetries. The
bulk-boundary correspondence, however, does not apply to all edges in this case: spatial sym-
metries such as reflection are broken by certain edge orientations [9] and the edge states may
become gapped, as seen in the top panels of Fig. 1.

When perturbations are introduced to a system with nontrivial topology, the topological
phases may be destroyed if the symmetries are affected. Perturbed symmetries present on av-
erage are able to provide topological protection [10]. Disordered systems that support topo-
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Figure 1: The zero-energy local density of propagating modes of the class D 8-band
model in crystal and amorphous systems; darker site color indicates higher density.
Insets: dispersion relation (top) and momentum-resolved spectral function (bottom)
corresponding to straight and tilted edge terminations. The effective lattice constant
of the amorphous system a is given by a = 1/,/p, where p is the density of sites in
the system. Plot details in App. A.

logical insulating phases with one exact symmetry and one or more average symmetries are
called statistical topological insulators [11]. The surfaces of statistical topological insulators
are delocalized and pinned to the midpoint of a topological phase transition, or critical point.
A crystal surface that respects a crystalline symmetry on average is still able to host crystalline
topological phases.

Unlike crystals, which break continuous rotation symmetry even on average, amorphous
systems lack long-range order and are therefore on average compatible with continuous ro-
tations. Strong topological, metallic and insulating phases as well as topological supercon-
ductivity have been studied in amorphous systems both theoretically [ 12-18] and experimen-
tally [19-21].

In this work, we devise topological insulator (TI) phases in amorphous systems that rely
on the presence of two average spatial symmetries: reflection symmetry and continuous ro-
tation symmetry. The presence of both reflection symmetry and average continuous rotation
symmetry promotes the protection of a crystalline topological phase to every edge orientation.
We thus demonstrate that even though the topological phases presented here have crystalline
or quasi-crystalline counterparts, only amorphous systems have guaranteed protection for all
edge terminations. This study exposes the potential for realizing topological phases protected
by average spatial symmetries that don’t rely on macroscopic edge details.
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The structure of the manuscript is as follows. In Sec. 2 we define the basic premise of
spatial symmetries in amorphous systems. In Sec. 3 we study isotropic continuum systems and
identify the symmetry groups containing reflection symmetry that protect gapless edge states.
In Sec. 4 we construct amorphous tight-binding models, numerically demonstrate critical edge
transport, and compare with a similar system on a regular square lattice. Finally, we formulate
bulk topological invariants of our systems in Sec. 5. We conclude in Sec. 6 that amorphous
models relying on spatial symmetries as well as one or more exact onsite symmetry to protect a
topological phase are statistical topological insulators, provided the disorder of the amorphous
system does not close the bulk gap.

2 Spatial symmetries in amorphous matter

Despite locally breaking all spatial symmetries, amorphous matter is generated by a highly
symmetric ensemble of Hamiltonians. Specifically, the occurrence probability of any config-
uration is invariant under the action of any element of the Euclidean group. Furthermore,
all structural correlations must decay sufficiently fast with distance. These conditions require
care to satisfy and cannot be fulfilled by gradually moving sites from their crystalline positions.
While there are several ways to simulate amorphous matter, we focus on tight-binding models
defined on random graphs. The simplest way to create an amorphous array of site positions is
choosing a sample of uncorrelated points in space. In order to reduce the fluctuations of the
coordination number, we use a sphere-packing algorithm described in App. B instead.

The physics of amorphous systems obeys locality and homogeneity in the sense that the
bulk Hamiltonian is generated by a local rule [22,23]. We require that the onsite and hopping
terms only depend on the local environment: the configuration of atoms within a finite radius
of the site or bond in question. For our toy models we take an even simpler case, where terms
in the Hamiltonian only depend on the relative spatial positions of the orbitals:

<I',H|H|I‘/, m) =Hpp (I‘—I‘/) > (D

where |r,n) is the n’th orbital on the site at position r. While this restriction is not essential, it
makes defining the models easier. Onsite terms have r —t’ = d = 0, meaning all onsite terms
in the bulk are identical. More generally, we allow H (d) to be a random matrix whose distri-
bution only depends on the hopping vector d to account for sources of disorder not captured
by the underlying random graph or the simplified local rule. In this case we demand that the
disordered ensemble is invariant under each spatial symmetry, whereas the onsite symmetries
are obeyed exactly by each ensemble element.

An isotropic amorphous system has average continuous rotation symmetry under simulta-
neous rotation in spin and real space, meaning that terms in the Hamiltonian with a rotated
local environment are related as:

U(P)H(AU(p) ' = HR(¢)-d), 2)

with U(¢) = e)%p(i¢S.z), S, the onsite spinjz opergtor, R(¢p) = gxp(ifl)LZ), L,=o, th.e gen-
erator of two-dimensional real space rotations. Simultaneous invariance under continuous
rotation and one reflection symmetry implies reflection invariance with any normal vector.
The symmetry constraint imposed by a reflection operator with normal f is:

U, H()Uy,! = HRyy, - ), 3)

where Ry, = 1— 2fnT is the real space orthogonal action reversing the component in the fi
direction. Commutation relations of S,, U, and onsite symmetries are listed in App. C.
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All previous considerations of this section apply to homogeneous and isotropic systems
deep in the bulk. The vicinity of the edges of the system are, however, distinguishable from
the bulk through the local environment, and have lower symmetry. Hence we allow the Hamil-
tonian to depend on the distance from the edge and the orientation of the edge. For example,
near an infinite edge along the y direction such that the system terminates for x < 0 we let

. r+r
(r,n|H|r',m) =H§fnge (r—r’,fc- 7 ), 4)
such that lim,_,, H®%¢(d, x) = H(d). This local rule preserves average translation invari-
ance along the edge, but may break the continuous rotation symmetry (2) of the bulk. A
straight edge still preserves average reflection symmetry with normal parallel to the edge, so
we demand that H®%¢ satisfies (3) with fixed x and fi = .

3 Continuum systems

In the long wavelength limit an amorphous system is homogeneous and isotropic, resembling
a continuum. We therefore start our analysis by studying continuum models with reflection
and continuous rotation invariance. First we study the 1D edge theory to identify symmetry
groups capable of protecting gapless edge modes. Next we construct 2D bulk models in these
symmetry classes, and finally we demonstrate that straight domain walls host gapless modes
as expected.

3.1 Symmetry groups protecting gapless edges

In order to find continuum models with gapless edges protected by reflection symmetry, we
perform a systematic search of the Altland-Zirnbauer symmetry classes. For each class, we
start with a minimal 1D Dirac Hamiltonian that respects the onsite symmetries. If mass terms
are allowed in this Hamiltonian, i.e. it is trivial with only the onsite symmetries, we add a
reflection symmetry. The Hamiltonian is a candidate model if the reflection symmetry protects
the gapless edge by removing all mass terms.

Consider for example the edge of a class D system, the minimal two-band edge theory can
always be written as Heqge(k) = kT, + m7, with particle-hole symmetry acting as complex
conjugation, P = KC. In the absence of additional symmetries this model describes the edge
of a trivial system because it is gapped for any nonzero m. Choosing a unitary reflection
symmetry with Uy, = T, the symmetry constraint UMHedge(k)U;\r/[ = Hegge(—k) forces m = 0.
Hence this choice of reflection symmetry protects a single pair of counterpropagating gapless
edge modes, and serves as a candidate for the edge theory of a topologically nontrivial bulk
protected by reflection.

We perform the search of the Altland-Zirnbauer classes using the software package Qsymm
[24]. In classes AII, DIII, CII and C the minimal model of a gappable edge is 4 x 4, in the rest
of the classes it is 2 x 2. We fix a canonical form of the onsite symmetries, then vary the
reflection-like symmetry using different products of Pauli matrices o and 7 for its unitary part,
also allowing it to act as an antiunitarity (with complex conjugation) and as antisymmetry
(reversing the sign of the Hamiltonian). This approach tests every possible reflection-like
symmetry up to basis transformations. In this basis, we have UJ%,[ = +1. The conventional
fermionic reflection operator that obeys UAZ/I = —1 is recovered by multiplying U,,; with i. This
change of the overall phase does not affect the symmetry constraints on the Hamiltonian and
only reverses commutation and anticommutation of Uy, with the antiunitary symmetries. For
each choice of the symmetry group, we generate the most general k-linear Hamiltonian. If it
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Table 1: Symmetry representations of 1D models where a unitary reflection symmetry
U,; protects gapless edges. o and 7 are Pauli matrices. Only unitary-inequivalent
symmetry representations are listed.

Symmetry class Uy Up Ur Ue
ATlI Ty - - Ty
BDI Ty To Ty Ty
D Ty To - -
DIII OyT .
DIIIi U:Tj O0Tx 0,7, O,Ty
ClI 0,7y, 10,7y 10T, o,Ty

does not contain k-independent mass terms capable of opening a gap at half-filling, we note it
as a candidate. When presenting the results in Table 1 we only list one representative of various
reflection operators related by unitary basis transformations. In the rest of the manuscript we
focus on the more natural symmetry groups with unitary reflection symmetry, see App. D for
symmetry groups with reflection antisymmetries.

Because we are searching for phases whose surfaces are driven to a critical point by spa-
tial disorder, we expect to find protected gapless phases in the presence of strong disorder
in symmetry classes that host nontrivial topological phases in 1D. This requires the disorder
to respect all non-spatial symmetries in a given class exactly, and the spatial symmetries on
average [11]. In this case the additional reflection symmetry forces the edge to the critical
point of a topological phase transition. The result of our search confirms this expectation, we
find unitary reflection symmetries in classes AIIl, BDI, CII, D and DIII. We observe that in all
the chiral classes [Uy;,C] = 0, and in all cases [Uy;, P] = [Uy, T ] = 0 except for one of the
choices for class DIII where {Uy;, P} = {Uy;, T} = 0. We denote the case with commuting
reflection DIII, and the case with anticommuting reflection DIIL_ in the following.

When attempting to extend these symmetries to the 2D bulk, we find that these symmetry
representations do not admit a consistent continuous rotation symmetry with S, = +1/2 (see
App. C) in a way that allows a gapped bulk, so we double the Hilbert-space. We perform
a systematic search for symmetry representations by taking the tensor product of each edge
symmetry operator with a Pauli matrix, taking S, as 1/2 times the product of Pauli matrices
and ensuring that the appropriate commutation relations are maintained. While this search is
not exhaustive, it produces gapped bulk models realizing all the edge symmetry classes. The
exact forms of the onsite and spatial symmetries in the bulk are listed in App. D.

3.2 Bulk models

We use Qsymm to obtain continuum models in reciprocal space (k-space) compatible with the
bulk symmetry representations found in the previous subsection. The symmetry constraints
have the following form in k-space:

U(¢)HK)U($) " = H(R($)-K), (5)
UyHK)U,,' = H(Ry, -k), (6)
UcH(KU, ' =—H(K), (7)
UpH*(K)U5' = —H(—k), (8)
UrH* (U7 = H(-K). 9

We generate all symmetry allowed terms up to linear order in k in 4-band models for classes
Alll, BDI and D, and 8-band models in classes DIII and CII. We also include one k? term to
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ensure proper regularization in the large k limit (see Sec. 5.1). We split the Hamiltonian into k-
independent onsite (or mass) terms and k-dependent hopping terms as H(k) = H* + HPP(k),
see the explicit enumeration of all the terms in App. E.1.

For classes AIIlL, BDI and D, while the minimal 4-band models have gapped bulk, we find
that these systems are non-generic for the prescribed symmetries. The minimal class BDI
model consists of two decoupled blocks resulting in an additional onsite unitary symmetry,
the class AIIl model has an additional time-reversal symmetry, and the class D model remains
decoupled at k = 0 resulting in extra protection for the edge modes. To get rid of the additional
symmetries, we consider a doubled Hamiltonian:

_( HK) HK)
H8><8(k) - (Hc(k)'\ H/(k)) )

(10)

where H is topological, H' is trivial, and H® is weak. The forms of the coupling between the two
copies, H¢, are listed in App. E.1. We then confirm that the resulting doubled model remains
topological, and the additional symmetries are removed. The 8-band CII and DIII models have
no unwanted symmetries, so they are not doubled.

3.3 Gapless domain wall modes

To show that the bulk models have the expected edge physics, we obtain the continuum edge
spectra of our models by considering an infinite 2D system with a domain wall. We assign a
spatial dependence to the chemical potential, such that at x = 0 its sign is flipped, making the
system topological for x > 0 and trivial for x < 0. Topological edge modes are confined to the
interface and decay exponentially into the bulk.

The continuum model H,(k) is obtained from (10) by replacing k, with a free param-
eter k and k, with its real-space form —id,. We cast the eigenvalue problem H,,,¥ = EW¥
into the form of a system of linear differential equations A(k)Jd, ¥ + B(k, x, E)¥ = 0. We find
all the solutions on the left and right side of the domain wall separately, using the ansatz

D Cll DIII_
2
= 2
g
SE 3
S =
I

without reflection

—-0.25 0 0.25 —0.25 0 0.25 —0.25 0 0.25
k-a k-a k-a

Figure 2: Domain wall spectra of the continuum models in classes D, CII and class
DIII obtained numerically. For class DIII, the anticommuting case DIII_ is repre-
sented. With reflection symmetry the boundary spectrum is gapless (top row), while
reflection-breaking terms open a gap (bottom row).
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W r(x) = p/r €xp(—Ay rlx]) to obtain (A— Ay gB)y1/r = 0. We solve this generalized eigen-
value problem and concatenate the solutions for ¢ R into a single matrix W. A global solution
needs to be continuous at x = 0, and it exists if there is a nonzero linear combination of the
left mode vectors 1/)}; that is also a linear combination of right mode vectors 1/);'{. We there-
fore obtain the edge spectrum by numerically finding points in the (E, k) plane where W is
singular [25].

This analysis shows that all the continuum models we consider have gapless modes at the
boundary between topologically trivial and non-trivial regions protected by mirror symmetry,
as shown in Fig. 2. Any perturbation that breaks the reflection symmetry opens a gap, even if
it preserves all the onsite symmetries. The class D spectrum is representative of the AIIl and
BDI spectra. The edge modes of the CII model are doubly degenerate due to the combination
of its reflection and time-reversal symmetries.

4 Amorphous systems

In this section we demote the exact spatial symmetries of the continuum models to average
symmetries by using tight-binding Hamiltonians on an amorphous graph, and demonstrate
that the topological protection by reflection and continuous rotation symmetry persists.

4.1 Amorphous tight-binding Hamiltonians

In order to extract the scaling behaviour of the edges of an amorphous system, we construct
real space tight-binding models using the symmetry considerations outlined in Sec. 2. While
the problem formally looks very similar to the k-space case replacing k with d, onsite symme-
tries behave differently in real space:

UcH(dU;' =-H(d), an
UpH*(A)U,' =-H(d), (12)
UrH*(@US  =H(d). (13)

Hermitian adjoint reverses hoppings, so H(d) is generally nonhermitian, but obeys a modified
hermiticity condition:
H(—d)=H(d)". (14)

With these modifications, we use Qsymm to generate all _symmetry- -allowed hopping terms
H"P(d) as first order polynomials of the components of d. The hopping terms obtained in
this way have a sufficiently general dependence on the bond direction for our purposes. The
onsite terms obey the same symmetry conditions as in k-space, so we use the same H® as
in the previous section. In order to make the Hamiltonian short-ranged without changing its
symmetries, we make the hoppings decay exponentially with bond length, see App. F. Again
we consider doubled models in classes AIIl, BDI and D, the results are listed in App. E.2.

4.2 Transport properties of the amorphous edge

To demonstrate that our amorphous systems are statistical topological insulators, we show that
their transport signatures match those of 1D disordered systems at the critical point of a topo-
logical phase transition. The transmission amplitudes t; are random variables that depend on
the disorder configuration of the system and the conductivity is given by g = > |t;:]? [26]. At
the critical point the transmission amplitude distribution universally obeys a = arccosh(1/|t|)
such that a has half-normal distribution with scale parameter o that grows with the edge
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Figure 3: Critical transport scaling for the 8-band class D amorphous system with
onsite disorder. a) histogram of a for various system sizes L from 93 different amor-
phous system realizations. In red: maximum likelihood estimate fit of a half-normal
distribution to the data. b) length dependence of o, the scale parameter of the half-
normal fits. Inset: average conductance g as a function of system size. The dashed
lines are the L*/2 fit to the scaling data.

length L as o o< +/L [27,28]. The resulting disorder-averaged conductance has power-law
decay g oc L71/2,

We fit the a; obtained from numerical transport calculations on edges of the class D amor-
phous model with various edge lengths for several random realizations of the amorphous sys-
tem to half-normal distributions (see App. B). The top panel of Fig. 3 shows the histograms of
a, and the bottom panel shows that we recover the relation o o< +/L for the standard devia-
tion of & and g oc L™/2 for the conductance. Here we use a model with Gaussian distributed
onsite disorder only respecting particle-hole symmetry to show the critical scaling of the con-
ductance g. We expect that allowing the onsite terms to depend on the local environment, as
is the case for more detailed models of amorphous matter, would have a similar effect. While
we recover the scaling of o without onsite disorder, we find that the intrinsic disorder from
the underlying random graph is too weak to detect the conductance scaling at numerically
feasible system sizes, see App. G.

4.3 Analogous model on the square lattice

The way we defined our hopping Hamiltonians allows us to use them on any graph, including
regular crystal lattices. This lets us demonstrate that breaking the rotation and reflection sym-
metries to a discrete subgroup opens a gap on reflection asymmetric edges. We calculate the
band structures of periodic crystal strips whose edges are terminated along different directions
and inspect the dispersion of the edge modes spanning the bulk gap.

Using a sufficiently general model on the square lattice that breaks all additional symme-
tries beyond the onsite and spatial symmetries we prescribe (see App. F) we find that reflection-
breaking edges on the square lattice are gapped. Fig. 4 compares edges oriented along [1, 0]
and [2,1], in the first case reflection symmetry of the edge protects gapless modes, while in
the second case it does not.
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with reflection without reflection

Figure 4: Band structures of the class D model on periodic crystal strips for differ-
ent edge terminations and distance dependences. The left panel shows bands along
the reflection symmetric [1 0] edge, and the right panel shows bands along the [2
1] edge, that breaks reflection symmetry. Transparency of the dispersion bands is
directly proportional to their participation ratio. Plot details in App. A and App. F.

5 Bulk invariant

We have demonstrated the robustness of gapless edge modes protected by reflection symme-
try in both continuum and amorphous systems. In this section we give an explicit invariant
characterizing the topological phase without referring to edge properties.

5.1 Continuum models

We construct the 2D bulk invariants of the rotation symmetric continuum Hamiltonians from
the 1D invariants of the same symmetry class. This is motivated by the fact that the Hamilto-
nian on any 1D line in k-space specifies the Hamiltonian everywhere in the 2D k-space through
rotation symmetry. To relate to 1D invariants defined on a finite Brillouin zone, we require
the Hamiltonian to be sufficiently regularized: the eigenvectors of H(k) must become inde-
pendent of the direction of k for the limit |k| — co. For example, the quadratic terms of (29)
dominate the k-space Hamiltonian in this limit, making it insensitive to the signs of k, and k,,.
This allows compactification of the R? momentum space of the continuum to a sphere S? by
identifying all infinitely far points to a single point, which we denote k = co. We use a stere-
ographic projection to construct this mapping from R? to S2. The Hamiltonian at k = 0, oo
is invariant under continuous rotations [29, 30] as well as under all reflection symmetries.
Furthermore, the Hamiltonian on any line connecting these two points determines the Hamil-
tonian everywhere on the k-space sphere. Therefore it is natural to think of the momentum
space of an amorphous material as a spherical Brillouin zone with North and South poles at
k =0, o0, an axis of rotation along the 2 axis, and mirror lines on every meridian.

The invariant in 1D class D is vp; = sign[pfH(k = 0) - pfH(k = 7)] where pf denotes the
Pfaffian and H(k) = —H (k)* is the class D Hamiltonian in the Majorana basis. This generalizes
to the 2D continuum as vp, = sign[pfH(0) - pfH(oo)]. This invariant, however, is only non-
trivial if the system has nonzero Chern number, because exp(inC) = vp, [23], which is not
possible with mirror symmetry. To define a new invariant in the presence of a unitary mirror
symmetry whose eigenvalues are invariant under particle-hole conjugation (U,;P = PU,, for

10
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Table 2: Classification of topological phases in continuum and amorphous systems
protected by continuous rotation and unitary reflection symmetry. The classification
does not include the strong 2D invariant that is an independent Z, invariant in class
DIII_. In all other classes reflection symmetry enforces a trivial strong invariant. For
details on how disorder leads to the distinction between the continuum and amor-
phous classification, see App. H.

Symmetry class continuum amorphous
Al z Z,
BDI Z Z,
D Z, Z
DIII, Z, Z,
DIIT_ 27 0
clI 27 27+

U ]\2/1 = +1, as is the case for the model studied in the manuscript) we apply the above formula
to the two reflection sectors separately:

vy = sign[pfH.(0) - pfH.(00)], (15)

where H, is the Hamiltonian restricted to the £1 eigensubspace of Uy;. The choice of the re-
flection sector is arbitrary, as the product of the invariants for the two sectors equals vp, = +1.

To prove that a nontrivial bulk invariant corresponds to gapless edge states, we consider
a system with a straight edge in the y direction preserving M,. Restricting to zero momen-
tum along the edge (k, = 0) we get a half-infinite 1D system, whose bulk is described by
H(k,,0) that is invariant under M, for every k,. The bulk invariant derived above is exactly
the reflection-resolved strong invariant of the 1D system, indicating zero modes at a real space
boundary for each mirror sector in the nontrivial phase. These zero modes correspond to the
crossing of the edge modes at k,, = 0.

To construct the topological invariant in other symmetry classes, we follow a similar proce-
dure. The topological invariants of odd-dimensional systems with chiral symmetry are wind-
ing numbers [5]. Therefore, the bulk invariants of the AIll, BDI, and CII classes is the winding
number of a single reflection sector modulo 2. In class DIII, we construct a reflection-resolved
Z,, invariant analogous to the class DIII Pfaffian invariant. We summarize the resulting classifi-
cation of topological phases protected by unitary reflection and continuous rotation symmetry
in continuum and amorphous systems in Table 2. Because the topological invariant is an in-
tegral along a high-symmetry line in k-space, these expressions coincide with the topological
invariants of reflection-protected phases in crystalline materials [31-33].

5.2 Effective Hamiltonian of amorphous models

Without translation invariance it is still possible to detect the bulk gap closings that accompany
topological phase transitions through the density of states p(E) = N~ tr §(H — E) of a large
finite system with N sites. Fig. 5 (a) shows the density of states of the class D amorphous
model as the chemical potential u is tuned across two phase transitions. We observe two bulk
gap closings, and a small constant density of states in the bulk gap due to edge states in the
topological phase. To gain even more insight, we introduce the momentum-resolved spectral
function

Ak, E) = Z (k,n| 5(ﬁ — E) |k, n), with (r, n|k, m) = N~V exp(ikr)5,,,, (16)

n

11
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so that |k, n) is a plane-wave state localized in the n’th orbital. We use the spectral function
with momentum parallel to the edge to detect edge states in finite samples, as shown in Fig. 1.
It is also well defined in the k — oo limit: because our amorphous samples are isotropic and
the sites are always separated by a finite distance (see App. B), the relative phase on each bond
in the plane wave converges to a uniform independent random phase. Fig. 5 (b) and (c) show
that the two gap closings observed earlier are different: one occurs at k = 0 and the other at
k= o0.

In order to apply the construction of bulk invariants to amorphous systems, we introduce
the effective k-space Hamiltonian [17,23] Hg(k) = Geg(k)™* through the projection of the
single-particle Green’s function onto plane-wave states:

Gegt(K)mn = (k,m| G [k, n) , a7

where G = limn_ﬂ,(ﬁ +in)~! is the Green’s function of the full real space Hamiltonian H.
Fig. 5 shows the relation to A(k, E). The spectrum of H.g(k) closely follows the peaks of the
spectral function, especially near the gap closing points. The key properties of H.g are that
it transforms the same way under symmetries as continuum Hamiltonians discussed before,
its gap only closes when the gap in the bulk H closes [23], and it is properly regularized
in the k —» oo limit [17]. Hence, the bulk invariants defined for continuum systems are
directly applicable to detecting topological phase transitions in amorphous systems. We show
in Fig. 5 (d) for the class D amorphous model that the bulk invariant is non-trivial (v;; = —1)
for intermediate values of the chemical potential.

6 Conclusions and Discussion

We introduced statistical topological insulator phases in two-dimensional amorphous systems
that rely on average spatial symmetries for protection. We demonstrated that in the non-
trivial phase the edge behaves as a 1D critical system of the same symmetry class by observing
power-law scaling of the transport properties. We found topological invariants characterizing
the bulk, and showed that the critical edge physics is not a result of fine-tuning, but is protected
by the average reflection symmetry that is present on all straight edges of amorphous samples.

Comparing our results to similar work on higher-order topological insulators in quasicrys-
tals protected by eight and twelvefold rotation symmetry [23,34,35] raises a natural question:
can the amorphous phases protected by continuous rotation symmetry be described as a limit
of systems with increasingly fine discrete rotation symmetry? It also remains an open question
how to extend the topological classification to materials with multiple atom species.

Superconductivity is known to exist in amorphous thin films [36]. In the cases where we
found new amorphous topological phases, however, the reflection symmetry commutes with
time-reversal and particle-hole symmetry, while the physical reflection symmetry of s-wave
superconductors anticommutes with onsite unitary symmetries. Hence condensed matter re-
alizations of these symmetry classes are only feasible in the presence of reflection-odd (e.g.
p-wave) pairing. It is possible that favourable energetics can result in an effective chiral sym-
metry, but such materials would be highly fine-tuned. Shiba glass systems consisting of atoms
randomly deposited on surfaces have also been proposed as a platform for two-dimensional
amorphous topological superconductivity [14]. Engineered systems, so called “topological
simulators”, can serve as an experimental demonstration of the phenomena studied in this
work: the amorphous class BDI model could be naturally realized in disordered acoustic and
mechanical meta-materials [37-39], while the other symmetry classes may be realized in a
variety of systems including ultracold atoms [40], photonic crystals [41,42], or coupled elec-
tronic circuit elements [43].
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Figure 5: Topological phase transitions of the amorphous class D model as a function
of the chemical potential. (a) Density of states of a finite amorphous sample. Darker
color indicates higher density. (b) Spectral function at k = 0 of a finite amorphous
sample. The spectrum of the effective Hamiltonian is overlaid in red. (c) Same as
(b) but at k = 00. (d) Topological invariant v,; (solid line). The dashed and dotted
lines correspond to sign[priff(O)] and sign[priff(oo)] respectively, offset along
the vertical axis for visual clarity.

Our findings pave the way for a new classification of amorphous systems. Because the
symmetry groups generated by continuous rotations are non-abelian in dimensions d > 2, we
expect even richer topological classification in higher dimensions.

Data availability

The data shown in the figures, as well as the code generating all of the data is available at [44].
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A Model and plotting parameters

In this section additional details of the plots are listed, if any, in order of appearance.

For Fig. 1, f from (45) is set to 0.2 for 0; and o4 of (42). The data was obtained for systems
containing 2500 sites.

The bottom panels of Fig. 2 are obtained by adding mirror-breaking terms to the continuum
Hamiltonian models.

Fig. 3 is obtained from the class D model with added Gaussian noise terms that conserve
particle-hole symmetry exactly. The amplitude of the noise terms y; is % =0.3xx; with x; a
random number from a normal distribution with mean 0 and standard deviation 1, and u the
chemical potential of the topological sector of the model. The number of sites in the system
vary from 5000 to 50000.

The data presented in Fig. 4 and 6 is obtained with f = 0.2 or f = 1 (as indicated) for
the hopping terms o0; and o4 of (42). The periodic strips all have a width of 100 sites in the
non-periodic direction.

Fig. 5 was obtained from a system with 40000 sites.

Fig. 7 is obtained with f = 1.5 for the hopping terms t and d of (37) of the non-trivial and
trivial sectors of the AIIl model respectively, and o4 of (38). The class BDI data is obtained
with f = 0.7 for t of (39) of the non-trivial sector, and o, from (40). The class CII data is
obtained with f = 0.7 for t; and t, of (43). The class DIII data is obtained with f = 2 for o,
and o4 of (44). The periodic strips all have a width of 100 sites in the non-periodic direction.

Fig. 8 was obtained from the class D model by setting f = 0.7 for hopping terms t;, d, and
04 of (41) and (42). The number of sites in the system vary from 5000 to 50000.

Fig. 9 was obtained from systems with 100 sites and Fig. 10 was obtained from systems
with 2500 sites.

B Numerical methods

In the numerical calculations we use hard-disk amorphous structures [21]. To generate a
structure, we randomly add atomic sites in a fixed volume from an uncorrelated uniform dis-
tribution. Treating atoms as hard disks, we reject new sites closer than a fixed distance to
existing sites, and this procedure is performed until the goal density is reached. This proce-
dure reduces density fluctuations and avoids sites that are very close to each other, matching
the distance distribution function of a realistic amorphous system more closely than indepen-
dent uniformly distributed points. We include hopping terms in the Hamiltonian for bonds
connecting each site to a maximum number of N neighbours falling within a maximum bond
length R. The values of N and R are chosen such that the exponentially decaying hopping
amplitudes to further neighbours can be safely neglected, resulting in a sparse Hamiltonian.
We use the software package Kwant [45] to generate the lattice Hamiltonians and for
transport calculations. The transmission eigenvalues are obtained via the calculation of the
scattering matrix using Kwant. The transmission amplitudes t; are given by the singular values
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Table 3: Symmetry representations of 1D models where a reflection antisymmetry
(that anticommutes with the Hamiltonian) with unitary part U,; protects gapless
edges. o and 7 are Pauli matrices. Only unitary-inequivalent symmetry representa-
tions are listed.

Symmetry class Uy Up Ur
A To - -
Al To - Ty
D To To -
All O0To - 00Ty
C 0070 OgTy 0

of the transmission block of the scattering matrix. Pfaffians are calculated using Pfapack [46].
The numerical density of states, momentum-resolved spectral function, and effective Hamil-
tonian calculations are performed using the kernel polynomial method [17,23,47,48].

C Commutation relations of the symmetry operators
In real space, conjugating a rotation with a mirror results in a rotation in the opposite direction:

MR(¢)M~ ! =R(—¢). (18)

Demanding that there are no nontrivial onsite unitary symmetries, this implies for the unitary
parts that
UMe’d’SZ UA_/[leld’SZ = ela(®) (19)

Differentiating with respect to ¢ and setting ¢ = 0 yields
UyS, Uy ==S, +a'l, (20)

where o' = da/ d¢|y—o- As the spectra of the two sides need to be equal, and the spec-
trum of S, consists of only integer or half-integer values, we find that a’ € Z. Redefining
S, — S, —(a’/2)1 the symmetry constraint on the Hamiltonian does not change, and we
find that S, and Uy, anticommute. This also implies that the spectrum of S, is symmetric
and trS, = 0, which is also a sufficient condition for the anticommutation with U,;, hence
we assume trS, = 0 in the rest of the manuscript without loss of generality. Similar calcula-
tion shows that discrete onsite antiunitary (anti)symmetries (particle-hole and time-reversal)
anticommute with S,, and chiral symmetry commutes with S, in the absence of unitary sym-
metries.

D Details of symmetry representations

Besides the unitary mirror symmetries listed in the main text, we find several cases where a
reflection antisymmetry (an operator that reverses k and the energy) protects gapless edge
states in continuum models. Since combinations of the reflection-like symmetry with any of
the onsite symmetries is also a reflection-like symmetry providing the same protection, we
omit such repetitions when listing the results in Table 3. We consider the results in classes
A, Al and AII an artefact of using continuum models with perfect translation invariance, and
expect that these are not viable for an amorphous system since they localize in the presence
of disorder that makes the reflection antisymmetry only an average symmetry [49].
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Symmetry class Uu Up Ur Ue S,
ATII OxTy - - O,To %GOTZ
BDI Oy Ty 00Ty OyTy O,To %O‘OTZ
. . 1
cI PyOyTy 1p;0,Tg 1pz00Ty P00y Ty 5Pz00Ty
D Oy Ty 0Ty - - 5007y
. 1
DIIL Pz0x Ty PxT0T, LPxO 3T PoTzTx 3P0y Ty

The result of the search for 2D symmetry representations compatible with the edge symme-
tries is not unique: we pick one of several unitary equivalent choices for each Altland-Zirnbauer
symmetry class. The specific forms of the symmetry representations that define the models in
App. E are listed in Table 4.

For the 4-band models, we define the basis space of the unitary parts of the symmetry
operators as the direct product o ® 7, with o and 7 as Pauli matrices in sublattice and spin
space respectively, such that the chemical potential terms of the models are uo,7,. For the
8-band models, the basis space is extended to p ® o ® T, where p is also a Pauli matrix. For
the doubled AIIl, BDI and D models we extend the symmetries by multiplying with py = 1,.

E Model Hamiltonians

E.1 Continuum Hamiltonians

The onsite Hamiltonians in both the continuum and amorphous bulk models are given by:

HQjy = Mo, T, + A0, T, (21
HXH =A0,7T,+ ikzay'rz (22)
Hgpy = 00,7, (23)
Hppl = A10,T, +14,0, 7T, (24)

HY = po,7, (25)
Hp> = 2110,7, + 14,0070 (26)
Hep = Upz05To + A1P:0xTo+ Px00 - (A2T; + A3Ty) (27)
Hpj = upz00T; + 410, 0, To+ A0 05 Ty 28)

+A30;0,T, + AP0, To+ Asp, 0Ty,

where the Pauli matrices o and 7 act on the electron-hole and the angular momentum degrees
of freedom respectively. In the doubled models we assign different parameter values in the
two diagonal blocks.

The doubled k-space models have the following hopping terms:

HAP(K) = t,0,7,(k> + K2)+(t10, — t50, )7k, + (610, + t0, )Ty k,y (29)
/};?Il:[)c(k)_(ﬁlo- +/520-y)T k +([510- +/52 y)T_yky (30)
Hypb(K) = t,0,7,(k2 + k2) + to, (v, ky + 0,7, k,) (31)
ggﬁ” (k) = 010,(7yky + Ty ky) +i0,0,(Tiky + T, k) (32)
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Hy®(K) = t,0,7,(k2 + k2) + t0,(7ky + 7, k)
+t200(—Ty ks + Tiky) +doy(Tok, + T, ky)
HEOP’C(k) =010 (T ke + T, k) + 020, (T, ky +7,k))
+ 030, (=T ky + T ky) +0400(—7 ky + T, ky).

The k-space CII and DIII models have hopping terms of the form:

HEP () = tp 0, o(K2 +K2)
+ t1(0;0, Tk, + P00 Txky) + t2(P,00Tky — P00 T k)
+63(0x00Toky + Py 0. Tyky ) + t4(Px O Toky + P, 01Ty ky)

Hpgh (k) = t,0,007, (k2 + k2)
+d(pe0y Tk + po00Tyky) + t(—pooy Toky + PO, T;ky)
01(py 0, T,k +p,00Toky) + 02(pr 00Ty ke + POy Toky)

+ 03(prszkx + pxaxTOky) + 04(py0-07ykx - pyGyTxky)-

E.2 Real space Hamiltonians

(33)

(34)

(35)

(36)

For the real-space models the onsite Hamiltonian are identical to the onsite terms found in the

previous section.
The double model hopping Hamiltonians have the form:

hop
AIII

hoPc(d)—ola (it dy +iT,dy) +0y00(iTyd, +iT,d))

Hyiy
+030,(Tydy +7,d,) + 040, (—i7,d, +iT,d,)

(d)—t 0,7, tito,(t,de +7,d,)+ido,(7,d, +7,d,)

EBI{(d)— O, T, +ito,(T,d, +7,d,)

h
Hy? C(d) =1010,(Tydy + 7,d,)+i0y0, (T, d, —7T,d,)
ot .
DOP(d) =t,0,T, +it10,(T,d, —Tyd)) +ityoo(Tdy +7,d))
+ido,(7,dy +7,d,)
hOP C(&) =1010,(Tydy + 7,d, ) +i050,(T,d, +7,d,)
+i030,(7T,dy +7,dy) +i0400(Tydy — Tydy).
The 8-band CII and DIII models have hopping terms:
hop

+lt3(pxUzT0dx+psz y y)+lt4(pxo-x’r0dx+pyo-x y y)
hop

+ lol(prszdx + prOTOdy) + ioz(pxUOTydx + pnyTOdy)
+ iOB(pxo-szdx + pxo-xTOdy) + i04(pyo-OTydx _pyo-yfxdy)-

17

Hey (d) = taP;0;To +1t1(0;00T:dx + P00 Txd)) +1ta(P,00Tdy — PoO(T:dy)

DIII(d) thPz00T; + id(pOGyTxdx + pOGOTydy) + it(_pOGxTde + pOGZTzd

(37)
(38)

(39)
(40)

(41)

(42)

(43)

(44)
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Figure 6: Band structures of the class D model on periodic crystal strips for differ-
ent edge terminations and distance dependences. Top panels are bands along the
reflection symmetric [1 0] edge, and bottom panels are bands along the reflection
asymmetric [2 1] edge. Transparency of the dispersion bands is directly proportional
to their participation ratio ), lp;|*, where 1; is the real space wavefunction of site
i of the system. Plot details in App. A.

F Removing additional symmetries of square lattice models

We find that because the nearest-neighbour square lattice is bipartite, it has inherent sublattice
(chiral) symmetry that stabilizes an additional pair of counter-propagating edge modes at
k = m. When studying models on the square lattice, we include second and third nearest-
neighbour bonds to remove this chiral symmetry and the additional modes.

We find that if every hopping decays the same way with the bond length, even the edges of
a crystalline sample that break reflection behave like the edge of a fully isotropic continuum
sample that has protected modes for every orientation close to k = 0. Hence without changing
the symmetry properties we include a different decay constant in the prefactor for each term:

Hhop(d) — Ze_fi'|d|aithOP(a), (45)
i

where i runs over the linearly independent hopping terms [24] in H"P(d) = D al-thOp((Ai).
Fig. 6 and Fig. 7 illustrate the importance of this consideration.

The band structures of the chiral class models are all gapped for edge orientations that
break reflection symmetry, as seen in Fig. 7. For the class AIIl model, Fig. 7 shows that the
case is similar to the class D crystal bands: the more general distance dependence (absence of
a global prefactor related to the bond lengths before each of the hopping terms) is required
to open the gap along reflection asymmetric edges. For the class BDI model, the reflection
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Figure 7: Band structures of the chiral models on periodic crystal strips for different
edge terminations and hopping relations. Solid lines indicate bands recorded along
the reflection symmetric [1 0] edge, and dashed lines along the reflection asymmetric

[2 1] edge. The different hopping relations are distinguished by different values of
f from (45), see App. F.

asymmetric edges are gapped even without the more general distance dependence, as seen
in Fig. 7, but it does increase the size of the gap. The situation is similar for the CII model,
where the more general distance dependence of the hopping opens a gap only on reflection
asymmetric edges.

G Transport scaling

Fig. 8 shows the transport scaling of the class D amorphous model without onsite disorder.
The scaling arises from the intrinsic noise of the random graph. The bottom panel shows that
we recover the relation o o< /L for the standard deviation of a. The conductance data in
the inset shows that the noise due to the physical randomness of the amorphous system has
a much weaker effect on localizing the modes compared to the noise originating from terms
added to the model as in Fig. 3. The conductance relation g o< L™'/2 is not recoverable with
the numerically accessible edge lengths, as it is only valid for g < 1.

H Bulk invariant for chiral classes

In this section we construct invariants classifying continuum and amorphous systems protected
by continuous rotation and unitary reflection symmetry.
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Figure 8: Critical transport scaling for the 8-band class D amorphous system without
onsite disorder. Top panel: histogram of a for various system sizes L from 59 different
amorphous system realizations. In red: maximum likelihood estimate fit of a half-
normal distribution to the data. Bottom panel: length dependence of o, the square
root of the scale factors of the half-normal fits. Inset: average conductance g as a
function of system size. The dashed line indicates the L'/2 fit to the data.

H.1 Classes AIII, BDI and CII

In the presence of chiral symmetry, the band-flattened Hamiltonian Q(k) can be rearranged
into two off-diagonal blocks in the basis where C = 7, [3,5]:

_( 0 g

As [S,,C] = 0 we can simultaneously diagonalize the two operators and choose S, = s,7,
where s, is diagonal. A mirror operator Uy, anticommutes with S, and we fix Uf/[ = +1
in the following, this can always be achieved by choosing its overall phase. A mirror either
commutes or anticommutes with C, here we assume [U,;,C] = 0 as we found in Sec. 3.1 that
all symmetry groups protecting gapless edges have this property. In this case Uy, takes a block-
diagonal form with diagonal blocks m and m’, both of which square to +1 and anticommute
with s,, guaranteeing that the spectrum of s, is symmetric. Because of this, m (also m’) is
only nonzero between opposite s, eigenvalues, an appropriately chosen block-diagonal basis
transformation that preserves the form of C and S, makes it proportional to o, in each |s,|
sector. Hence there is always a basis where m = m’ = o, ® 1 and the symmetry constraint is
m q(k) m! = q(Ryk).

This allows to decompose g(k) into even/odd mirror sectors g, (k) with respect to a mirror
operator that leaves k invariant [50], and to assign an individual winding number along a
mirror-invariant line:

(46)

o0

1 d
ng=—— dk— argdetq,(kn), 47
£=75n | Megpame q+(kf) (47)
where the sectors are with respect to the reflection operator with normal orthogonal to fi. Due
to the regularization of the Hamiltonian the integral is along a closed loop, hence quantized

to integers, ny € Z. The twofold rotation symmetry C, = exp (i%Sz) reverses k and for integer
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Figure 9: The bulk invariant v as a function of the chemical potential u calculated
using the effective Hamiltonian for chiral models AIll, BDI, and CII. Top panels: the
bulk spectra of the effective Hamiltonians. States at k = 0 are in red, states at k = 0o
are in blue, and states at intermediate k are in varying shades of purple. Bottom
panels: winding number invariants (50) obtained by dividing the integration space
into 20 (AIII, CII) or 50 (BDI) segments.

or half-integer spin commutes or anticommutes with U, respectively. For the integer case this
means for the winding numbers that n, = n_ = 0 making the invariant trivial, while in the half-
integer case n, = —n_ meaning that the total winding n vanishes. So in the half-integer S, case
we can select either one of the reflection-resolved windings to define a nontrivial topological
invariant n,; = *n.. As argued in Sec. 5.1 this implies the presence of n,, zero modes in
each mirror sector at k = 0 on any straight edge. In class CII time reversal symmetry imposes
Kramers-degeneracy making n,, even.

The winding number invariant we found for continuum systems is integer valued, suggest-
ing that it is possible for the edge to host more than one pair of counter-propagating modes.
In the presence of disorder, however, an even multiple of the minimum number of symmetry-
allowed counter-propagating mode pairs always localizes [11]. In classes AIIl and BDI (CII)
this renders edges of systems with even n,; (n;,/2) insulating, and those with odd n,; (n,,/2)
indistingushable through transport probes. Therefore, rather than the winding number ny, € Z
itself being our invariant for amorphous systems, we identify its parity v;; € Z, as the mirror
invariant in classes AIIl and BDI:

vy = ny; mod 2, (48)

and the parity of half of ny, € 2Z in class CII:
n

vy = 7M mod 2. (49)

We calculate the Z, invariant for the effective Hamiltonian of the amorphous models in

all the chiral symmetry classes as the chemical potential u is tuned across two topological
phase transitions, the result is shown in Fig. 9. For the numerical calculation we discretize the
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Figure 10: The bulk invariant v as a function of the chemical potential u calculated
using the effective Hamiltonian for the DIII model in the commuting (DIIL, ) and anti-
commuting (DIII_) cases. Top panels: the bulk spectra of the effective Hamiltonians.
States at k = 0 are in red, states at k = oo are in blue, and states at intermediate k
are in varying shades of purple. Bottom panels: the DIII Z, mirror-resolved strong
invariant (53) shown for the DIIL, case (in orange). For the DIII_ case, the DIII Z,
strong invariant (51) is shown in green, and the winding number invariant is shown
in purple.

integral in equation (47) as

1 detqi(kmn))
N ZI lo ( detq.(k;n) GO

where k; is a discrete set of k-values in increasing order and with cyclic indexing. To address
numerical integration to infinity, we choose the parametrization k = tan(¢/2) where ¢ cor-
responds to the latitude in stereographic projection ranging from —m to . We use 10 evenly
spaced values for ¢ in the numerical calculations, we show the results in Fig. 9.

H.2 Class DIII

In this section we show that the above invariant, while well defined in classes DIII,, in class
DIII, it always vanishes, and in class DIIL_ its parity is determined by the strong Z, invariant
of class DIII. For class DIII, we introduce a different Z, invariant that is independent of the
strong invariant.

We start by deriving general symmetry constraints. We choose the onsite symmetry rep-
resentation as C = 1,, 7 = 7,K and P = 7,K, in this basis the Hamiltonian has the off-
diagonal form of (46) with q(k) = —q(—k)” [5]. This form of the symmetries is invariant
under basis transformations of the block-diagonal form diag (u,u*) which allows to bring
spin operator to the diagonal form S, = diag(s,,—s,). For half-integer S, the combination
C,T leaves k invariant and acts as o,q(k)o, = q(k)’. We find for the mirror operator that
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it takes a block-diagonal form M = diag(m,+m") where the + stands for the commuting
([Uy,P]=[Uy,T]=0) and anticommuting ({U,;, P} = {U,;, 7} = 0) case. As m anticom-
mutes with s, it is only nonzero in the off-diagonal blocks connecting opposite spin eigenval-
ues. In a single |s,| # O sector s, o< o, and m has off-diagonal blocks u and u', these can
be diagonalized by a basis transformation that in this sector acts as diag (1, u). For class DIII
(DIII_) we bring the reflection operator to the form m = o, (m = ay) which imposes the
constraint o, q(k)o, = q(k) (o,q(k)o, = q(k)). We transform to a basis where m = o, using
u = exp(in/20,) (u = exp(in/20,)), in this basis q. are the diagonal (off-diagonal) blocks
of q and the C,7 constraint reads q, (k) = q_(k)" (q.(k) = q.(k)"). In DIII, this implies
detq, (k) = detq_(k)?, meaning that the winding is the same in both sectors, however, the
total winding always vanishes in class DIII, so the reflection-resolved windings also vanish.
We write the 1D class DIII Z,, strong invariant [5] adapted to the compactified k-space as

y=Prae) (

o0
i d
—= | dk——argdetq(kd) |. 51
Prq(0) P ZJO 75 Argdetq( n)) (51)

This is also the strong 2D invariant, as the k-space sphere only has two time-reversal invariant
momenta at k = 0 and oo. In class DIIL_ q has off-diagonal blocks q. and g, (k) = —q_(k)”
for k = 0 and oo, meaning pfq(k) = (—1)"=1/2 det q.(k) where n is the size of a reflection
block. Using that ¢ (k) = —q+(—k)” for all k, adding and subtracting the winding inn, in the
exponential, and noting that the winding of the phase of the determinant between two points
can only differ from the difference in the phases at the endpoints by a multiple of 27, we find

y=el™m (52)

showing that the parity of n,;, hence the protection of gapless edges in the presence of disorder,
is given by the strong invariant.
We define an invariant for class DIIL, in terms of the reflection-resolved class DIII Z, in-

variant:
_ pf qs(o0) ( i
—~ex

o0
d
= — dk— argd kf) | . 53
£ = T 0a(0) p ZJO 75 18 etq.( n)) (53)

As follows from the relations derived above, the invariant is the same for both sectors and we
define the mirror invariant as v,; = v.. This also shows that in class DIII, the strong invariant
is always trivial in the presence of reflection symmetry.
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