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Abstract

The competition between short-range and cavity-mediated infinite-range interactions in
a cavity-boson system leads to the existence of a superfluid phase and a Mott-insulator
phase within the self-organized regime. In this work, we quantitatively compare the
steady-state phase boundaries of this transition measured in experiments and simulated
using the Multiconfigurational Time-Dependent Hartree Method for Indistinguishable
Particles. To make the problem computationally feasible, we represent the full system by
the exact many-body wave function of a two-dimensional four-well potential. We argue
that the validity of this representation comes from the nature of both the cavity-atomic
system and the Bose-Hubbard physics. Additionally, we show that the chosen represen-
tation only induces small systematic errors, and that the experimentally measured and
theoretically predicted phase boundaries agree reasonably well. We thus demonstrate a
new approach for the quantitative numerical modeling for the physics of the superfluid–
Mott-insulator phase boundary.
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1 Introduction

During the past decade, experimental and theoretical progress using quantum gases to real-
ize models of solid state physics has made it possible to study many-body effects in isolated
and highly controllable scenarios [1–3]. In particular, the interplay between light and matter
creates a unique platform for the exploration of a plethora of exotic behaviors in quantum sys-
tems [4–15]. Compared to traditional solid state systems, light-matter systems have a simpler
nature, because they comprise much fewer particles and have easily tunable system param-
eters. These advantages enable the study of a wide range of toy models, and the achieved
knowledge can be further applied to systems with complex band structures and interactions
in solid state physics and material science.

Many-body effects in ultracold atomic systems have seen an enduring interest, particularly
the coherence between particles in the superfluid phase and its loss in the Mott-insulator phase
of a lattice system. The transition between these two phases is driven by the competition of the
tunneling processes and the on-site interactions, and was first realized by controlling an optical
lattice potential in cold-atom systems in three [16] and two dimensions [17,18], respectively.
This transition can also be realized in a system as sketched in Fig. 1, where the optical potential
is self-organized due to the coupling of atoms to an optical cavity. Driven by an external laser
and with cavity-mediated interactions, effectively two-dimensional Bose-Einstein condensates
(BECs) can self-organize into a lattice [7]. As the drive intensity increases, a transition between
a self-organized superfluid (SSF) phase and a self-organized Mott-insulator (SMI) phase has
been observed experimentally [15,19] and investigated theoretically [20–24]. This transition
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Figure 1: Sketch of the experimental system. The atoms are first prepared as (a) a
three-dimensional BEC, and then cut into (b) two-dimensional slices by an external
laser pump along z direction. (c) Due to the pumping laser along y direction and the
interplay with the cavity, they finally self-organize into a checkerboard lattice with
wavelength λc along both x and y directions. The onset of the self-organization
can be detected by the intracavity photons. After the checkerboard lattice is formed,
the system can be mapped to a Bose-Hubbard model with tunneling strength t and
on-site interaction U .

stems from a combination of the short-range interaction due to s-wave scattering between
the atoms and the infinite-range interaction mediated by the cavity [25, 26]. The cavity-BEC
system thus realizes a quantum-optical version of the Bose-Hubbard model, where any pair of
lattice sites is coupled by global infinite-range interactions [19,27,28].

Hitherto, a direct quantitative comparison between experiment and theory regarding to
the SSF–SMI transition has not been presented because of the enormous computational effort
required. However, this comparison is crucial for future applications like machine learning
techniques, which have recently been applied to various physical systems [29–33], including
ultracold atomic systems [34–36]. Because of their exact control of system parameters and
their shorter time scales in data collection, quantitative numerical simulations provide com-
plementary access to data for the training of neural networks for experimental systems.

In this work, we perform quantitative numerical simulations of the SSF–SMI phase transi-
tion, in particular of the phase diagram, by employing the Multiconfigurational Time-Depen-
dent Hartree Method for Indistinguishable Particles (MCTDH-X) [37–44], and validate the
simulated results with the experimental ones. MCTDH-X captures many-body effects beyond
the Gross-Pitaevskii mean-field limit, including but not limited to the coherence between the
atoms. In contrast, treating the current cavity-BEC system in the mean-field limit can capture
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Figure 2: The steady-state phase diagram identifying the normal BEC phase (NP), the
self-organized superfluid phase (SSF) and the self-organized Mott-insulator phase
(SMI). It is plotted against effective cavity-pump detuning ∆eff and pump strength
Ep,exp = γEp in units of the recoil energy Erec, where γ = 1.36 is a calibration factor
between the pump strength used in experiments and simulations. To determine the
experimental NP–SSF boundary (dark red crosses), we use the slow ramping protocol
with ramping time Tr = 40 ms and measure the intracavity photon number (back-
ground color). The boundary is then defined by the rapid increase in the photon
number. It is compared to the simulated NP–SSF boundary (black diamonds). To de-
termine the experimental SSF–SMI boundary (black circles), we use the fast ramping
protocol with Tr = 20 ms and measure the momentum space density. The boundary
is then defined by the rapid increase in the central peak width. It is compared to
the simulated SSF–SMI boundary (blue squares) which is obtained through our pro-
posed simplification scheme. The simplification scheme induces systematic errors in
the predicted boundary of roughly ±0.5Erec. The black and blue lines are guides to
the eyes, and the gray dashed line marks the detuning ∆eff used in Figs. 5 and 6.

the self-organization, but fails to describe the Mott insulation. In order to keep the computa-
tional complexity within a tractable range, we construct a simplification scheme for the sim-
ulations by exploiting the nature of the cavity-BEC system and the superfluid–Mott-insulator
transition. This simplification scheme nevertheless retains the many-body essence of the sys-
tem to a satisfactory degree, and quantitatively reproduces the phase boundary in agreement
with the experiments in a wide parameter range. The comparison is summarized in the phase
diagram in Fig. 2.

This work is organized as follows. In Sec. 2, we introduce the system as well as the ex-
perimental setup, and we describe our experimental protocol for obtaining the experimental
phase diagram. In Sec. 3, we first briefly introduce MCTDH-X, and then propose a simplifica-
tion scheme, which is well adapted and specialized to the cavity-BEC system and MCTDH-X.
In Sec. 4, we compare the experimental and simulation results, and discuss the origin of the
discrepancy between them. Moreover, we compare and cross validate our MCTDH-X scheme
against existing approach based on Wannier functions and the Bose-Hubbard model. Finally,
we draw conclusions in Sec. 5.

4

https://scipost.org
https://scipost.org/SciPostPhys.11.2.030


SciPost Phys. 11, 030 (2021)

2 Experimental setup and measurement protocol

2.1 Cavity-BEC system and superfluid–Mott-insulator transition

The experimental system, as sketched in Fig. 1, consists of a laser-driven Bose-Einstein conden-
sate (BEC) of N3D = 5.5×104 rubidium-87 (87Rb) atoms dispersively coupled to a high-finesse
optical cavity with strength Ωg . The atoms are magnetically trapped in a three-dimensional
harmonic potential with trapping frequencies (ωx ,ωy ,ωz) = 2π × (25.2,202.2, 215.6) Hz.
In the absence of an external drive, the ensemble forms a Thomas-Fermi cloud with mea-
sured radii (rx , ry , rz) = (26.8,3.3, 3.1) µm [Fig. 1(a)]. The three-dimensional atomic cloud is
overlapped with the fundamental mode of the high-finesse optical cavity oriented along the x
direction. The cavity resonance frequency ωc and wave vector kc correspond to a wavelength
of λc = 803 nm and a recoil energy of Erec = ħh2k2

c /2mRb = ħh × 2π × 3.55 kHz. The cavity
has a field decay rate of κ = 2π × 4.45 kHz comparable to the recoil frequency, and there-
fore operates in the sub-recoil regime [45]. After the initial preparation, the atomic cloud
is then loaded into an external optical lattice oriented along the z direction, which is given
by Eext(z) = Ez cos2(2πz/λz) with wavelength λz = 803 nm and depth Ez = 12.5 Erec. The
strong external lattice suppresses tunneling along the z direction and reduces the system into
effective two-dimensional slices spanned on the x-y plane, as illustrated in Fig. 1(b).

After preparing and loading the BEC into Eext(z), the ensemble is transversely pumped
along the y direction by a laser with effective pump strength Ep and frequency ωp = 2πλp/c,
which forms an effective standing-wave optical lattice Ey(y) = Ep cos2(2πy/λp). We work in
the dispersive regime ωp�ωa using pump light at a wavelength of λp = 803 nm. This is far
detuned from the relevant atomic transition of 87Rb at λa = 795 nm. We note that the atoms
and the cavity are both red-detuned from the pump light∆a =ωp−ωa < 0,∆c =ωp−ωc < 0.

Combining all the aforementioned components of the setup, we can write down the full
many-body Hamiltonian of the cavity-BEC system [7,46,47],

Ĥ =

∫

d xd ydzΨ̂†

�

p2

2mRb
+ Vtrap + Vopt

�

Ψ̂ +
g3D

2

∫

d xd ydzΨ̂†Ψ̂†Ψ̂Ψ̂ , (1a)

Vtrap =
mRb

2
(ω2

x x2 +ω2
y y2 +ω2

z z2) , (1b)

Vopt = −Ep cos2(kc y)− Ez cos2(kcz)

+ħhU0|α|2 cos2(kc x) +
q

ħhEp|U0|(α+α∗) cos(kc x) cos(kc y) . (1c)

Here, Ψ̂ ≡ Ψ̂(x , y, z) is the atomic annihilation operator, mRb = 1.44× 10−25 kg is the mass of
the 87Rb atoms, g3D is the atom-atom contact interaction strength, and U0 = Ω2

g/∆a = −2π×
0.36 Hz is the single-atom light shift. The cavity field, pumping laser, and external lattice are
near resonance λc ≈ λp ≈ λz , and for clarity we denote the wavelengths and wave vectors
along all three directions as λc and kc respectively in Eq. (1) and in the rest of this work. A
summary of the experimental parameters is given in Appendix A.

The cavity field is treated as coherent light and represented by its expectation valueα= 〈a〉,
where a is the annihilation operator of the cavity field. The expectation value α follows the
equations of motion [7,46,47]

∂tα = [i(∆c − N3DU0B)−κ]α− i

√

√ Ep|U0|
ħh

N3Dθ , (2a)

θ =

∫

d xd ydzρ(x , y, z) cos(kc x) cos(kc y) , (2b)

B =

∫

d xd ydzρ(x , y, z) cos2(kc x) , (2c)
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where ρ(x , y, z) = 〈Ψ̂†Ψ̂〉/N3D is the spatial density distribution. Under this treatment, the
cavity field effectively imposes a one-body potential upon the atoms, as evident in the second
line of Eq. (1c). This treatment of the cavity field is legitimate as long as the cavity fluctuations
〈δa2〉 = 〈a†a〉 − |α|2 are small, which is indeed the case except near the self-organization
boundary [23,48–50], which will be introduced in detail below.

The atomic many-body wave function of the steady state of the cavity-BEC system can be
obtained by solving Eqs. (1) and (2) self-consistently. While for small pump strengths the
system remains in the normal BEC phase (NP), for pump strengths above a critical threshold,
the atoms reduce the potential energy by self-organizing into a checkerboard lattice with lattice
spacing λc along the x and y directions as depicted in Fig. 1(c), and constructively scatter
photons from the pump into the cavity [7–9, 47–49]. In a steady state, the dominant part
[cos(kc x) cos(kc y)] of the cavity-induced potential has an effective depth

Ecb =

�

�

�

�

2EpU0N3Dθ (∆c − N3DU0B)

(∆c − N3DU0B)2 + κ2

�

�

�

�

. (3)

This self-organization transition can be mapped to the Hepp-Lieb normal–superradiant phase
transition of the Dicke model [51–54], and is accompanied by the spontaneous breaking of
the Z2 symmetry, which is reflected by the sign of θ . A positive (negative) θ corresponds to an
even (odd) lattice configuration. In our experimental system this symmetry is well established,
and the system spontaneously breaks into either configuration upon self-organization [55].

Deep in the self-organized phase, the atoms progressively localize on the checkerboard
lattice sites as the pump strength increases and the induced optical potential deepens. Coher-
ence between atoms at different lattice sites gradually decays, leading to a second transition
from the SSF phase to the SMI phase [15, 23, 24]. During this transition, cavity fluctuations
are indeed minimal [23, 48–50], validating our mean-field treatment of the cavity field. The
SSF and SMI phases behave similar to the superfluid and Mott-insulator phases, respectively,
of the usual Bose-Hubbard model

HBH = −t
∑

〈i, j〉

�

b†
i b j + b†

j bi

�

+
U
2

∑

i

b†
i b†

i bi bi , (4)

where bi is the annihilation operator for bosonic atoms at the i-th lattice site, t is the tunneling
strength, U is the on-site interaction, and 〈i, j〉 indicates the summation is over nearest neigh-
bors. In this model, a superfluid is characterized by a fluctuating particle number per site and
phase coherence of the whole ensemble due to large tunneling between different lattice sites.
On the contrary, in a Mott-insulator, phase coherence is lost, the particle fluctuations vanish
and the number of atoms per lattice site is fixed due to suppressed tunneling. The differences
between the two phases lead to distinct behaviors in various quantities, including the vari-
ance of the on-site atom number Var= 〈(b†

i bi)2〉 − 〈b
†
i bi〉2 [56–58] and the momentum space

density distribution [15–18,22–24,59–63]

ρ̃(k) = 〈Ψ̂†(k)Ψ̂(k)〉 . (5)

Since the former quantity is hard to measure experimentally [56], we choose ρ̃(k) as our
main quantity of interest for defining the phase boundary. As the system enters the Mott-
insulator phase from the superfluid phase, a significant increase in the full width at half max-
imum (FWHM) W of the central peak in the momentum space density distribution can be
observed [15–18, 23, 24, 59–61] accompanying the loss of phase coherence. The transition
between the two phases is thus smooth and has only weak criticality. For a d-dimensional
system, it is in the same universality class as a (d + 1)-dimensional X Y model [64].
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In the cavity-BEC system, the total number of atoms enters the equation of motion Eq. (2)
and effectively modifies the cavity detuning. Meanwhile, the number of atoms per site, equiva-
lent to the filling factor in the Bose-Hubbard model, is an important ingredient in determining
the SSF–SMI boundary [17,59,65–67]. Therefore, a quantitative comparison between experi-
ment and theory necessitates an estimate of the number of atoms in each two-dimensional slice
as well as at each lattice site near the center of the harmonic trap. For simplicity, we assume
a uniform distribution of the atoms in the central cuboid of the three-dimensional harmonic
trap, such that x/rx , y/ry and z/rz are all within the interval [−1/2, 1/2]. In this region,
since the two-dimensional slices are λc/2 apart from each other along the z direction, there
are 2rz/λc ≈ 8 slices in total and each slice contains roughly N2D ≈ 6,900 atoms. Once the
system enters the self-organized phase, the atoms in each slice will further form a lattice with
two lattice sites per area of λ2

c . There are thus 2rx ry/λ
2
c = 275 lattice sites in the considered

rectangle on each slice, and each of the lattices contains ν≈ 25 atoms.

2.2 Measurement protocol

The comparison between the experimental and simulated phase diagrams involves both the
NP–SSF and the SSF–SMI boundaries for the steady state. In experiments, we fix the effective
detunings

∆eff =∆c −
1
2

N3DU0 , (6)

while ramping up the pump strength linearly from zero to Ep,exp = 14.5Erec within a time Tr .
There is a trade-off, which will be described in detail below, when choosing an appropriate
ramping time, and we choose two different ramping times for the measurements of different
observables to best approximate the steady-state phase boundaries.

In the vicinity of the NP–SSF boundary, the photonic behavior is dominating due to sig-
nificant cavity fluctuations. As the cavity decay rate is small in comparison to the effective
detuning κ < |∆eff|, the cavity field experiences a retardation effect when crossing the steady-
state NP–SSF boundary [9]. As a result, the dynamical NP–SSF boundary shifts towards higher
pump strength for shorter ramping time Tr , and converges to the steady-state boundary with
long Tr . With a ramping time of Tr = 40 ms, the hysteresis area is negligibly small and the
steady-state boundary can be well approximated [9].

On the contrary, deep inside the self-organized phase, the cavity fluctuations vanish and
atomic behavior becomes dominant, rendering particularly atom loss a key factor. A decrease
in the atom number effectively increases |∆eff|when both∆c and U0 are negative [cf. Eq. (6)],
and it generally indicates that a higher pump strength Ep is required to achieve the same lattice
depth [cf. Eq. (3)]. Therefore, all phase boundaries are shifted towards higher pump strengths
when atom loss occurs. Since a longer ramping time implies a larger atom loss and hence a
larger shift in the boundary, a fast ramp with Tr = 20 ms is thus preferred for the measurement
of the steady-state SSF–SMI boundary.

After understanding the dynamical effects on the boundaries, we first use the slow ramp
Tr = 40 ms for the determination of the NP–SSF boundary. During the ramp, we record the
transmitted photons leaking through one of the cavity mirrors using a single photon counting
module (SPCM), and scale them with the detection efficiency to obtain the intracavity photon
number Nph. This is plotted in logarithmic scale in Fig. 2, where a background count offset
originating from diffuse light is subtracted from the measured signal. We can then determine
the phase boundary according to the threshold of the corrected photon number Nph ≈ 300.
The measured NP–SSF boundary will later be compared to the simulated one as a calibration.
In Fig. 2, the effects of the atom loss can already be observed for more negative detunings at
the onset of the self-organization, where the measured NP–SSF boundary is slightly shifted to
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higher pump strengths. Similar effects can also be observed for the SSF–SMI boundary, which
we will discuss in detail in Sec. 4.1.

We then use the fast ramp Tr = 20 ms to determine the SSF–SMI boundary, which is ex-
tracted from the momentum space density distribution ρ̃(k) [15, 16, 18, 21, 23]. To measure
the momentum distribution we repeat the experiment several times where we stop at a certain
pump strength for ballistic expansion of the sample. After switching off all the trapping poten-
tials and a 25 ms long time of flight, we detect the momentum distribution using single-shot
absorption images. Thereafter, we extract the width of the central peak from the distribution,
and mark the SSF–SMI boundary at the pump strength where the width starts to increase. The
measured SSF–SMI boundary is marked as the black line with circles in the phase diagram
Fig. 2. With the fast ramping protocol Tr = 20 ms, the measured dynamical NP–SSF is indeed
significantly shifted towards larger pump strengths when compared to the slow ramping pro-
tocol (see Appendix B). Nevertheless, the cavity field and the induced potential converge to
the steady-state values soon after the system dynamically enters the self-organized phase, as
verified in Ref. [9]. This significantly reduces the retardation effect on the dynamical SSF–SMI
boundary.

Caution needs to be taken when analyzing the experimental measurements. The experi-
mentally calibrated pump strength Ep,exp is different from the pump strength Ep entering the
Hamiltonian, because the experimental pump laser is not strictly monochromatic. The pump
strength is calibrated by measuring the energy difference between the first and the third Bloch
bands at zero quasi-momentum. This is done by an active modulation of the lattice depth and
measuring the resonance frequency for parametric heating of the BEC [68, 69]. Such mea-
surement considers effects from electromagnetic waves of all frequencies. The central peak is
almost in resonance with the cavity frequencyωc , and has a linewidth of roughly 100 Hz. The
linewidth of the pump is well within the cavity linewidth, which is equivalent to the cavity dis-
sipation rate κ. Therefore, the central peak can fully contribute to the scattering of the cavity
field. However, there are also two servo bumps with a frequency shift roughly of ±2 MHz from
the cavity frequency ωc , which is large compared to the cavity linewidth. As a result, the light
from the side peaks cannot scatter into the cavity or contribute to the effective cavity-induced
potential of the atoms, and the effective pump strength Ep entering Eqs. (1) and (2) is different
from the experimental one Ep,exp obtained directly through calibration in experiments. These
two pump strengths are related through a calibration factor

γ≡ Ep,exp/Ep > 1 , (7)

which is not measurable through experiments without applying significant hardware changes
to the system. To determine the factor γ, we need to compare the experimental and simulated
phase diagrams, and require that they coincide with each other. This comparison will be
performed in Sec. 3.2 after obtaining the simulated NP–SSF boundary.

3 Simulation methodology

3.1 Numerical method

We use the approach Multiconfigurational Time-Dependent Hartree Method for Indistinguish-
able Particles (MCTDH-X) to simulate the steady state of the system and extract the observ-
ables of interest [37–43], like the momentum space density distribution and the cavity field
expectation value. MCTDH-X is able to solve problems beyond the Gross-Pitaevskii mean-
field limit, and capture the correlations between atoms as well as quantum fluctuations in the
many-body states. The method relies on a variational ansatz for the many-body state, which
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is the permanent of multiple time-dependent optimized functions, or orbitals. The number
of orbitals M controls the simulation accuracy. Ideally, the exact solution of the numerical
problem is found when an infinite number of orbitals is used [39, 40, 70]. MCTDH-X has
been successfully applied for investigating the static and dynamic behaviors of Bose-Hubbard
systems [22, 23, 62, 63, 71–74]. A more detailed description of the method can be found in
Appendix C.

The number of orbitals used in a simulation depends on the nature of the quantum state
of interest. For example, the formation of the cavity-induced potential and thereby the self-
organization of the atoms can well be observed in the mean-field limit with M = 1 orbital [23,
38,75]. In contrast, to correctly describe a Mott-insulator state, the number of orbitals should
be at least as large as the number of lattice sites [22,23,43,70,76]. Since the required compu-
tational resources scale as

�N−M+1
M

�

[39], given the currently available computational softwares
and hardwares, it is computationally unfeasible to simulate the full experimental cavity-BEC
system with MCTDH-X. Therefore, we need to simplify the problem and reduce the number
of orbitals and particles needed for the MCTDH-X simulations. We will now elaborate on the
methodology for choosing this simplification.

3.2 Reduction of system dimensionality and rescaling of the contact interaction
strength

The computational complexity can be significantly reduced by lowering the system dimen-
sionality. We argue that the system can be well represented by a two-dimensional model, and
determine the effective atom-atom interaction strength in this model.

In experiments, the system is divided into two-dimensional slices by the deep external
optical lattice. The hopping between two slices is strongly suppressed by the strong external
lattice, and thus the slices are independent from each other on the atomic level [cf. Eq. (1)].
On the other hand, atoms from all slices collectively contribute to the cavity field, and therefore
they are strongly coupled to each other through the cavity [cf. Eq. (2)]. In order to represent
the full system by one two-dimensional slice, we propose to decouple the slices by simulating
Eqs. (1) and (2) with N2D atoms at z = 0, and using the scaling of parameters [47]

U0 7→ Ũ0 = U0
N3D

N2D
, α 7→ α

√

√N2D

N3D
. (8)

Under this scaling, the equations of motion for the cavity field [Eq. (2)] as well as the cavity-
induced potential Vopt [Eq. (1)] remain invariant for a fixed atomic density profile. We thus
expect that the atomic many-body wave function of the two-dimensional system obtained from
Eq. (8) approximately reproduces the wave function of the original system at z = 0,

|Ψ2D(x , y)〉 ≈ |Ψ3D(x , y, z = 0)〉 . (9)

This approach requires a knowledge of the effective contact interaction in the two-dimen-
sional slice, which is crucial for the formation of Mott insulation. The strength g2D is esti-
mated according to the harmonic trapping frequencies and the corresponding Thomas-Fermi
radii [77],

N2D g2D =
πmRb

4

r4
xω

3
x

ωy
, (10)

which yields g2D ≈ 0.34ħh2/mRb for N2D = 6, 900, as explained in detail in Appendix D .
With the effective single slice, we can simulate the physics of the realistic experimental

system using MCTDH-X at different pump lattice depths Ep and effective detunings∆eff in sim-
ulations, and as the first observable we choose the cavity field strength. The self-organization
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Figure 3: Real space density distributions ρ(x) of (a) a normal BEC state and (b) a
self-organized state of the full two-dimensional system simulated in the mean-field
limit using MCTDH-X. The zooms of the two states around the center of the harmonic
trap are shown in Figs. 5(s) and 5(t), respectively.

and the accompanying macroscopic activation of the cavity field can already be captured with
sufficient precision by using M = 1 orbital in the mean-field limit. Exemplary real space den-
sity distributions of a normal BEC state with a Thomas-Fermi profile and a self-organized state
with a checkerboard lattice are shown in Fig. 3. Along with the density distributions, these
mean-field simulations also yield the cavity field expectation values αMF(Ep,∆eff). The NP–SSF
boundary can then be drawn at |αMF|2 ≈ 0.1. Although this choice of threshold is different
from the experimental one, it does not lead to a substantial difference in the predicted bound-
ary due to the rapid increase of photon number across the boundary. Both criteria are chosen
based on the analytically expected boundary and the respective limitations in experiments and
simulations.

With the simulation results, the calibration factor γ [cf. Eq. (7)] for the experimental pump
strength can now be calculated to be γ = 1.36. This is determined by requiring that the mea-
sured NP–SSF boundary and the simulated one, which are fitted as ∆eff/2π =
(−8.536Ep,exp/Erec + 6.305) kHz and ∆eff/2π= (−11.616Ep/Erec + 5.834) kHz respectively,
have the same slope as functions of pump strengths. For the fitting of the experimental bound-
ary, only the data measured between cavity detunings −2π×5 kHz and −2π×20 kHz is taken
into account, because atom loss already slightly shifts the boundary at more negative detun-
ings. The experimental and simulated NP–SSF boundaries indeed collapse upon each other
when this calibration factor is taken into account (cf. Fig. 2). The effective contact interaction
strength g2D and the calibration factor γ are the last two system parameters to be determined
for the comparison to the experimental system.

3.3 Four-well model

We now proceed to simulate the SSF–SMI transition. A proper description of this transition re-
quires at least one orbital for each lattice site. Given the large number of atoms and lattice sites,
it is impractical to simulate the quantum state of the full two-dimensional system, and thus a
further simplification of the model is needed. Since the SSF–SMI transition is mainly driven by
the competition between on-site interaction and hopping between nearest-neighboring sites,
the loss of superfluidity of the whole system should already be quantitatively captured by a
local representation. A minimal choice for such a local representation is a unit cell consisting
of four lattice sites in the center of the harmonic trap, which is shown in Fig. 4(b).

This four-well potential can be described by the Hamiltonian

Ĥ4well =

∫

d xd yΨ̂†

�

p2

2mRb
+ V4well

�

Ψ̂ +
g2D

2

∫

d xd yΨ̂†Ψ̂†Ψ̂Ψ̂ , (11)
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Figure 4: A comparison between (a) the cavity-induced lattice potential Vopt(z = 0)
[Eq. (1)] and (b) the four-well potential V4well [Eq. (12)]. Each of the four wells
faithfully reproduces the lattice sites of the lattice.

where a tight non-harmonic confining potential is applied on top of the optical lattice

V4well = Ṽopt + Vconf . (12a)

The ideal confining potential should be relatively flat in the center of the system x2+ y2 < λ2
c ,

but form a rapidly increasing wall surrounding the four wells at x2 + y2 > λ2
c . This can be

achieved by using an algebraic function of x2+ y2 with high power. For example, the following
confining potential is chosen for our simulation:

Vconf(x , y) = 13Erec(x
2 + y2)4/λ8

c . (12b)

We note that this is not the unique choice for the confining potential, and the simulated SSF–
SMI boundary should not be sensitive to the choice (see Appendix E).

However, a straightforward implementation of the tight confining potential can easily dis-
tort the underlying optical lattice, because the equations of motion [Eqs. (1), (2)] are solved
self-consistently and the solution can be very sensitive to slight changes of parameters, es-
pecially near the self-organization boundary. We thus make use of the previously simulated
expectation value of the cavity fieldαMF(Ep,∆eff) to determine the depths of the cavity-induced
potential, i.e., U0|αMF|2 and 2

Æ

ħhEp|U0|Re(αMF), which is equivalent to using

Ṽopt(x , y) = Vopt(x , y, z = 0,α= αMF, odd) . (12c)

The Z2 symmetry of the cavity-BEC system corresponds to two energetically degenerate states,
which are distinguishable by a π phase shift of the intracavity field αMF,even = −αMF, odd. Here
we explicitly choose the one corresponding to the odd configuration, whose lattice sites are
located at the desired positions (0,±λc/2) and (±λc/2, 0). The four-well potential is compared
to the original lattice in Fig. 4. Indeed, the shape of each of the four wells precisely recreates
the shape of the each lattice site of the original optical lattice.

With four sites in total and each containing ν≈ 25 atoms, we perform the simulations with
Ñ = 100 atoms and M̃ = 4 orbitals subject to the one-body potential V4well and contact inter-
action with strength g2D = 0.34ħh2/mRb. MCTDH-X generates a numerically highly accurate
many-body wave function for the four-well system. In terms of the quantities related to the
SSF–SMI transition, for example the momentum space density distribution and the one-body
correlation function between neighboring sites, the four-well model Eq. (12) should produce
the same result as the full three-dimensional experimental setup from Eqs. (1) and (2). A
summary of the simulation approaches and parameters is given in Appendix A.
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The representation of the full effective optical lattice by our four-well model is a crucial,
non-trivial simplification. The complexity of the minimal model is mainly determined by the
symmetry of the full system and the filling factor ν. The symmetry of the checkerboard lat-
tice contributes significantly to the simplicity of the minimal representative four-well model.
In contrast, for a system with weaker symmetry, the number of lattice sites in a unit cell
Nsite increases. This will significantly increase the computational workload, which scales as
�Nsite(ν−1)+1

Nsite

�

.
Moreover, the validity of this simplification is based on the nature of the SSF-SMI phase

transition and the geometry of the system. The finite size effect of this minimal representation
for the full lattice system still proves to be the main source of systematic errors in the simpli-
fication scheme. More specifically, the transition point of a Bose-Hubbard model is subject to
finite size effect, and is increased by tens of percents in terms of the ratio t/U compared to
the thermodynamic limit [57, 58]. However, in a cavity-BEC system, the ratio t/U decreases
exponentially as the pump strength Ep increases [23]. As a result, the shift of the SSF–SMI
boundary due to finite size effect in terms of Ep is negligible. As a confirmation, we compare
the phase boundary obtained for different numbers of lattice sites in Appendix E. The sim-
ulated boundaries show a systematic variance of roughly 0.5Erec, and the result has indeed
already converged with the four-well model.

4 Results

4.1 The Mott transition

The momentum space density distribution ρ̃(k) measured from experiments and calculated
from simulations can be used to extract the SSF–SMI phase boundary. The obtained phase
diagram of the cavity-BEC system against pump strength Ep and effective detuning ∆eff is
shown in Fig. 2. It serves as a map to identify the three different phases of matter, NP, SSF, and
SMI, which are realized in both experiments and simulations. To illustrate the system behavior
in the three different phases, we choose a series of states at ∆eff = −2π× 30 kHz, and show
their simulated and experimentally measured density distributions in Fig. 5. The numbering
(1 to 6) of the quantum states in Fig. 5 refers to the different pump strengths indicated in
Fig. 6(b).

In the normal phase, the real space density distribution of the BEC has a Thomas-Fermi
profile [Fig. 5(m)], whereas the momentum space density distribution has correspondingly
a single blob [Fig. 5(a,g)]. This can be observed both in experiments and simulations. The
momentum space distribution has an elliptical shape in experiments but a circular shape in sim-
ulation. This is because the harmonic trap is anisotropic in the experimental setup ωx 6=ωy ,
while the confining potential in simulations [Eq. (12b)] is isotropic in the x and y directions.

As the pump and hence the cavity-atom coupling are switched on, the momentum space
density distributions ρ̃(k) behave similarly in experiments [Fig. 5(a-f)] and simulations Fig. 5(g-
l)], except for the thermal background in experiments which is due to heating of the sample
and cannot be captured by our model. In both experiments and simulations, ρ̃(k) in the SSF
and SMI phases are completely different. It provides a way to determine the phase boundary.
A typical SSF state is represented by “State 2”, whose measured and simulated momentum
space densities are shown in Figs. 5(b) and 5(h), respectively. In the SSF phase, the central
Bragg peak at (kx , ky) = (0,0) is high and narrow and the satellite peaks are clearly visible.
The four Bragg peaks at (kx , ky) = (±kc ,±kc) are the next dominant peaks and they indicate a
strong coherence between atoms in the immediately neighboring sites of the checkerboard lat-
tice, which are (±λc/2,±λc/2) apart from each other in the real space. On top of these strong
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Figure 5: (a-f) Experimentally measured and (g-l) simulated momentum space den-
sity distributions ρ̃(kx , ky), as well as simulated real space density distributions
ρ(x , y) of the four-well model for six different parameter sets. The chosen states
range from normal BEC state to SSF states to SMI states. (s-x) For comparison,
ρ(x , y) of the full two-dimensional model [cf. Eq. (9)] simulated in the mean-field
limit. To facilitate the comparison with panels (m-r), we zoom around the trap cen-
ter and choose only the odd configurations. These states are simulated or measured
at ∆eff = −2π × 30 kHz and at different pump strengths Ep, which correspond re-
spectively to the points 1 to 6 indicated in Fig. 6(b). In panel (m) the BEC is highly
localized at the trap center due to the tight trap [Eq. (12b)], whereas in panel (s),
the BEC has an almost uniform non-zero distribution in the center of the trap due to
the relatively loose harmonic trap.

peaks, small peaks are seen at (kx , ky) = (0,±2kc) and barely visible at (kx , ky) = (±2kc , 0),
which correspond to the optical pump lattice and the intracavity lattice, respectively. In con-
trast, “State 6” is a good representative of the SMI phase, whose measured and simulated
momentum space densities are shown in Figs. 5(f) and 5(l), respectively. In the SMI phase,
the central peak becomes broad and low, and the satellite peaks become diffuse. They indicate
the strong localization of the atoms in the individual lattice sites and the lack of coherence be-
tween the atoms [15–18, 22–24, 59–63]. The localization and loss of coherence of the atoms
accompanying the increasing pump strength does not trigger qualitative changes in the real
space density distributions ρ(x) [Fig. 5(m-r)], despite their significant impact in momentum
space. These images are not available from our experimental setup because the resolution
of the absorption imaging system in the experiment is not good enough to resolve the indi-
vidual lattice sites. Nevertheless, as a sanity check, we confirm that the four-well model and
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Figure 6: Cavity field magnitude |αMF|2, intracavity photon number Nph, and the rel-
ative width of the central Bragg peak W as functions of pump strength Ep,exp = γEp
at fixed detuning ∆eff = −2π×30 kHz. The relative width of the central Bragg peak
for the BEC is set to be W = 1. As the pump strength increases, the system tran-
sitions through all three phases, i.e., NP, SSF, and SMI. Panel (a) shows simulated
steady-state results for |αMF|2 (blue squares) obtained from the mean-field M = 1
simulations, and W (red circles) obtained from the beyond-mean-field M = 4 simu-
lations. Panel (b) shows experimentally measured Nph for the Tr = 40 ms ramping
protocol (blue squares), as well as Nph (blue crosses) and W (red circles) for the
Tr = 20 ms ramping protocol. A background radiation of Nph ≈ 2.7× 103 originates
from the diffuse light forming the external lattice potential. This background count
offset can be safely subtracted for the determination of the NP–SSF boundary. The
numbers indicate the representative points whose simulated and measured density
distributions are shown in Fig. 5.

the full two-dimensional mean-field model [Fig. 5(s-x)] produce the same real space density
distributions locally at the center of the harmonic trap.

For different pump strengths at the fixed detuning ∆eff = −2π× 30 kHz, we summarize
the simulated cavity field magnitude |αMF|2, the measured intracavity photon number Nph, as
well as the simulated and measured relative widths W of the central Bragg peak in Fig. 6. In
both simulations [Fig. 6(a)] and experiments [Fig. 6(b)], the NP–SSF boundary is defined as
where |αMF|2 or Nph starts to increase, whereas the SSF–SMI boundary is defined as where W
starts to increase. Specifically for the experimental SSF–SMI boundary, we fit a line, shown as
the red solid line in Fig. 6(b), using the first five data points after W starts to increase. The
crossing with the initial width, i.e., the horizontal red dashed line, marks the SSF to SMI phase
boundary.

We further discuss the discrepancies between the experimental and simulation results.
The retardation effect discussed in Sec. 2.2 and Appendix B clearly manifests itself in Nph for
the fast ramp. This dynamical effect, however, cannot be reproduced numerically because it
requires a prohibitively large amount of computational resources. To better appreciate the
retardation effect, we perform a fit on the respective Nph for both ramps, shown as blue solid
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lines in Fig. 6(b). These two fitted lines have different slopes, and when they intersect, the
retarded cavity field is expected to reach its steady-state value. Compared to the simulation
results, a plateau is further seen in Nph for large pump strengths in experiments [Fig. 6(b)] for
both fast and slow ramps as a result of atom loss. For the fast ramp, this plateau occurs slightly
later than the increase in W , and it thus contributes negligibly to the position of the SSF–SMI
boundary. However, it contributes to one of the two factors why the increase behavior of W is
also different between experiments and simulations in the SMI phase. The other factor is the
different shapes of the initial BEC cloud in experiments and simulations due to the different
confining potentials. The above analysis for ∆eff = −2π × 30 kHz helps us comprehend the
trade-off we encountered when choosing the ramping time. Even with a fast ramp Tr = 20 ms,
the estimated position of the SSF–SMI boundary still suffers non-negligible systematic errors
from the retardation effect. However, the heating and atom loss are anticipated to immediately
set in and introduce further systematic errors for a slightly slower ramp.

The experimental and simulated SSF–SMI boundaries for all detunings are obtained in a
similar manner, and shown in Fig. 2 as black and blue lines, respectively. Here we briefly
discuss the effects of the retardation and atom loss for different detunings. The retardation
effects are dominating for less negative detunings and are secondary for more negative detun-
ings. In particular, for the least negative detunings, the steady-state SSF–SMI boundary could
take place earlier than the dynamical NP–SSF boundary for the fast ramp. On the contrary, the
atom loss has a larger impact for more negative detunings, where a larger pump strength is
required for the self-organization and Mott insulation. We thus generally expect that the ex-
perimentally measured SSF–SMI boundary takes place at a slightly larger pump strength than
the steady-state boundary. With all the experimental and simulation systematic errors under
consideration, our results show that the experimental and simulation results are generally in
good agreement for more negative detunings.

4.2 Comparison to Wannier-based Bose-Hubbard approaches

The quantitative determination of the SSF–SMI boundary can also be achieved by other exist-
ing approaches besides our MCTDH-X-based approach proposed above. We describe here an
alternative approach which is based on the mapping to the Bose-Hubbard model. Given the
effective optical lattice potential, the Wannier functions can be estimated by different numeri-
cal methods, many of which are available for quantum optical systems [78–81]. The Wannier
functions then allow the extraction of the Bose-Hubbard parameters t and U [cf. Eq. (4)],
which can be further used to determine the superfluid–Mott-insulator boundary. The last step
can be performed by utilizing an empirical formula [65]. For the prediction of the Mott bound-
ary, the criterion based on the Bose-Hubbard ratio U/t has been shown to be compatible with
the criterion based on the behaviors of the central Bragg peak [59]. This approach no longer
suffers from the finite size effect in comparison to our proposed simplification scheme. Never-
theless, when calculating the Wannier functions, the broadening of Wannier function induced
by on-site interaction is generally not taken into account [82,83]. This could result in an un-
derestimation in the Bose-Hubbard ratio t/U , and give rise to a different kind of systematic
errors in comparison to our proposed MCTDH-X scheme.

In Appendix F, we compare the SSF–SMI boundaries obtained using the maximally local-
ized generalized Wannier states package [80] and the MCTDH-X approach for different values
of contact interaction strengths g2D. Thereby, we validate the MCTDH-X approach at weak
contact interaction. More importantly, we confirm that MCTDH-X can indeed capture higher
order corrections in comparison to the Wannier-based Bose-Hubbard approach, which mainly
include the expansion of the local atomic cloud at lattice sites induced by the experimentally
relevant contact interaction. Eventually, these corrections have noticeable impact on the pre-
dicted position of the SSF–SMI boundary.
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5 Conclusions

We have used MCTDH-X to quantitatively determine the SSF–SMI boundary of a recoil re-
solved cavity-BEC system. This is the first time that MCTDH-X simulation results are directly
compared quantitatively to experimental results for a cavity-BEC system, and the compari-
son is non-trivial due to limitation in computational resources. In contrast to the significant
dynamical effects at play and a relatively large size of the lattice in the experiments, our two-
dimensional simulations are limited to steady states and a small number of lattice sites. These
computational difficulties can be judiciously circumvented by choosing different ramping rates
for the measurement of different quantities on the experimental side, as well as simplifying
the full lattice to a minimal four-well representation in the simulation. The systematic er-
rors of our proposed approach mainly stem from the small size of the lattice system used
in simulations, and are small when expressed in terms of the pump rate. We have thereby
established MCTDH-X as a feasible numerical method for the quantitative calculation of the
superfluid–Mott-insulator boundary in an ultracold atomic system which forms a lattice with
a large number of atoms per site.
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A Summary of methods and parameters

The methods and parameters used in the experiments and simulations are summarized in
Table 1.

B Experimental phase diagram with fast ramping protocol

For a complementary comparison between the slow and fast ramping protocols in experiments,
we show in Fig. 7 the phase diagram for the fast ramping protocol with Tr = 20 ms. Compared
to the steady-state phase diagram shown in Fig. 2 of the main text, the dynamical NP–SSF
boundary for the fast protocol is indeed apparently shifted to higher pump strength due to
retardation effect during the self-organization process. Importantly, at less negative detunings
∆eff = −12.5 kHz and −17.5 kHz, the onset of the self-organization in experiments takes
place later than the loss of superfluidity predicted by the simulations. As discussed in the
main text, this accounts for the discrepancy between the simulated and experimental SSF–
SMI boundaries.
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Table 1: Summary of the experimental and computational methods and parameters.
Here aB is the Bohr radius.

Experiments Simulation Step 1 Simulation Step 2
“Full two-dimensional model” “Four-well model”

Methods
Hamiltonians and/or Eqs. (1), (2) Eqs. (1), (2) with z = 0 Eq. (11)
Equations of motion

Solved state Evolving state Steady state Ground state
Extracted quantities Nph, ρ̃(k) αMF ρ̃(k), ρ(x)

General setup parameters
Particle number N3D = 5.5× 104 N2D = 6,900 Ñ = 100
Orbital number − M = 1 M̃ = 4
Particle mass mRb = 1.44× 10−25 kg
Dimensions 3 2 2

Interaction strength g ≈ 98× 4πħh2aB/mRb [84] g2D = 0.34ħh2/mRb g2D = 0.34ħh2/mRb

Trap Harmonic with (ωx ,ωy ,ωz) = Harmonic with Octic with form Eq. (12b)
2π× (25.2, 202.2,215.6) Hz (ωx ,ωy) = 2π× (25.2, 202.2) Hz

Parameters related to optical lattice potentials
Wave length λc = 803 nm
Recoil energy Erec = ħh× 2π× 3.55 kHz
Pump strength Ep,exp = 0 to 14.5Erec Ep = 0 to 11Erec −

Single photon light shift U0 = −2π× 0.36 Hz Ũ0 = −2π× 2.87 Hz −
Effective detunings ∆eff = 0 to −2π× 40 kHz ∆eff = 0 to −2π× 40 kHz −
Cavity decay rate κ= 2π× 4.45 kHz κ= 2π× 4.45 kHz −

Other input parameters − − αMF obtained from Step 1
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Figure 7: Experimental phase diagram for the fast ramping protocol with ramping
time Tr = 20 ms. The photon number is shown as color scale in the background, and
the NP–SSF boundary is shown as dark red crosses. The SSF–SMI boundary is shown
as black circles. For comparison, the simulated SSF–SMI boundary is shown by the
blue squares. The experimental and simulation data for the SSF–SMI boundary are
also used for the steady-state phase diagram in Fig. 2 of the main text.
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C Multiconfigurational time-dependent Hartree method for indis-
tinguishable particles

The Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles [38–
40,42,43] is implemented in the MCTDH-X software [41], and can accurately simulate cavity-
BEC systems. We consider a general Hamiltonian containing a one-body potential V (x) and a
two-body interaction W (x,x′):

Ĥ =
∫

dxΨ̂†(x)

�

p2

2m
+ V (x)

�

Ψ̂(x) +
1
2

∫

dx dx′ Ψ̂†(x)Ψ̂†(x′)W (x,x′)Ψ̂(x)Ψ̂(x′) . (13)

With the MCTDH-X approach, the many-body wave function follows the ansatz

|Ψ(t)〉=
∑

n

Cn(t)
M
∏

k=1

��

b̂†
k(t)

�nk

p

nk!

�

|vac〉 , (14)

where |vac〉 is the vacuum state, M is the number of single-particle wave functions (orbitals)
and n = (n1, n2, ..., nM ) gives the number of atoms in each orbital. Their sum is the total
number of particles in the system

∑M
k=1 nk = N . The time-dependent operator b̂†

k(k) creates
one atom in the k-th orbital ψk(x)

b̂†
k(t) =

∫

ψ∗k(x; t)Ψ̂†(x; t)d x . (15)

The MCDTH-X working differential equations governing the time evolution of the coefficients
Cn(t) and the orbitalsψk(x; t) are obtained using the time-dependent variational principle [85].

D Calculation of the effective two-dimensional atomic contact in-
teraction strength

The atomic contact interaction strength in the two-dimensional system is calculated based
on the Thomas-Fermi approximation. By assuming a strong interaction and comparatively
vanishing kinetic energy, the Gross-Pitaevskii equation for the Thomas-Fermi cloud can be
written as

E0φ(x , y) = Vtrap(x , y)φ(x , y) + N g2D|φ(x , y)|2φ(x , y) , (16)

where φ(x , y) is the single-particle wave function, E0 is the energy of the system to be deter-
mined, N is the atom number, Vtrap =

m
2 (ω

2
x x2+ω2

y y2) is the harmonic trap, g2D is the effective
two-dimensional interaction strength which we want to calculate. The atomic density profile
ρ(x , y) = |φ(x , y)|2 thus follows:

ρ(x , y)≡ |φ(x , y)|2 = −
m

2N g2D
(ω2

x x2 +ω2
y y2) + E0 , (17)

and vanishes at ρ(rx , 0) = ρ(0, ry) = 0, with the Thomas-Fermi radii

ωx rx =ωy ry =

√

√2E0N g2D

m
≡ r̃0 . (18)
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Figure 8: (a-d) Exemplary real-space density distributions of (a) the four-well system
described by Eq. (12b) in Sec. 3.3, (b) an alternative realization of the four-well
system, (c) a five-well system, and (d) a nine-well system. (e) The width W of the
central peak in the momentum space as a function of the pump strength Ep in these
four systems.

The normalization of the density distribution requires
∫

Ω
d xd yρ(x , y) = 1 where the in-

tegration region Ω = {x , y|ρ(x , y) > 0} = {x , y|ω2
x r2

x +ω
2
y y2 < r̃2

0} is an ellipse. This solves
the system energy:

E0 =

√

√mωxωy

πN g
. (19)

Combining the equations above, the two-dimensional contact interaction strength is

N g2D =
πm
4

r4
xω

3
x

ωy
=
πm
4

r4
yω

3
y

ωx
. (20)

E Effects induced by the confining potential and the size of the
reduced lattice

In Sec. 3.3 we have argued that, for the purpose of determining the SSF–SMI boundary in
terms of Ep, it is enough to use the unit cell with four sites to represent the full lattice. This
is because size effect only slightly affects the transition point in terms of the Bose-Hubbard
parameter ratio t/U , which in turn has an exponential dependence on the pump strength
Ep. Furthermore, we have argued that the simulated boundary is almost insensitive to the
confining potential Vconf, which we use to impose the boundary condition for the small lattice
cell. In this Appendix we confirm these arguments by performing simulations with a different
number of lattice sites and different confining potentials, and the results are summarized in
Fig. 8.

We reproduce the simulations in Sec. 3.3 with confining potentials different from the one
presented in Eq. (12b). The confining potentials we use for Fig. 8 share the form

Vconf(x , y) = Econf(x
2 + y2)8/λ16

c . (21)
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For a fixed effective detuning ∆eff = −2π × 30 kHz and varying pump strength Ep, we use
different confining potential strengths Econf on top of the optical lattice Ṽopt(x , y), and choose
the configuration parity of the lattice according to our need. The following combinations of
confining potential strengths and lattice configuration parities are chosen:

Econf,4well(ii) = 20Erec , odd lattice , (22a)

Econf,5well = 10Erec , even lattice , (22b)

Econf,9well = 0.01Erec , even lattice . (22c)

These combinations respectively produce an alternative realization of the four-well system, a
five-well system, and a nine-well system. Their exemplary real-space density distributions are
shown in Fig. 8(a-d).

In order to make the computational effort feasible and the simulation results comparable,
we impose a filling factor of ν = 1 for all the four cases. As a result, the number of atoms N
and the number of orbitals M are both equal to the number of wells in the simulations. We
summarize the width W of the central peak in the momentum space for different confining
potentials in Fig. 8(e).

In the SSF phase, the width W is sensitive to the confining potential, and similar effects
have been seen in Fig. 6 in the main text. This sensitivity contributes to a slight variance in
the predicted SSF–SMI boundary for different confining potentials. Nevertheless, in all the
four scenarios that we investigate in this Appendix, the SSF–SMI boundary is predicted to take
place at roughly the same pump strength, with a variance of roughly 0.5Erec. We can thus
confirm that, for the determination of the SSF–SMI boundary in terms of the pump strength, a
small system with four lattice sites is enough and the sensitivity on the form of the confining
potential is small. We note that now the SSF–SMI transition takes place at a smaller pump
strength than the results in Fig. 6(a) because of the low filling factor.

F Comparison to maximally localized generalized Wannier states
method

We compare here the MCTDH-X predictions of the SSF–SMI boundary with the maximally
localized generalized Wannier states (MLGWS) package [80] used for optical lattice potentials.
We consider the optical lattice potential Ṽopt obtained in Eq. (12c) for different pump strengths
Ep at fixed detuning ∆eff = −2π× 30 kHz. Using the MLGWS method, we obtain the ratio of
the Bose-Hubbard parameters U/g2D t in units of mRb/ħh2 as shown in Fig. 9(a). The SSF–SMI
boundary of the two-dimensional system can then be determined using the empirical formula
presented in Ref. [65]:

(U/t)c = 2ν(5.80+ 2.66ν−2.19) . (23)

For the experimentally appropriate filling factor of ν= 25, the SSF-SMI boundary is estimated
to be (U/t)c ≈ 290. This threshold is indicated as red squares in Fig. 9(a) for different values
of g2D. We emphasize that the MLGWS method does not take into account the broadening
effects of the Wannier functions due to the finite contact interaction g2D. Consequently, the
curve U/g2D t remains unchanged for different values of g2D. The method can significantly
underestimate the hopping strength t and thus predicts that the SSF–SMI transition takes
place at a much smaller pump strength.

The MCTDH-X predictions are obtained from the width W of the central peak in the mo-
mentum space density for different values of contact interaction g2D. These simulations are
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Figure 9: (a) The ratio of the Bose-Hubbard parameters U/g2D t as a function of
the pump strength Ep calculated using the MLGWS package [80]. The red squares
indicate the predicted Mott transition point (U/t)c ≈ 290 [cf. Eq. (23)] for different
values of contact interaction strength: (from left to right) g2DmRb/ħh2 = 0.34, 0.17,
0.068, 0.034, 0.017, 0.0068, 0.0034. (b-h) The width W of the central peak in the
momentum space as a function of pump strength Ep for different values of contact
interactions g2D simulated using MCTDH-X. The Mott transition is determined by the
onset of the increase in W , and is indicated in the figures by the blue squares. The
Mott transition points predicted in panel (a) are also shown in the corresponding
panels (b-h) as red squares.

performed at different pump strengths Ep at fixed detuning ∆eff = −2π× 30 kHz. Fig. 9(b-
h) presents a comparison of the SSF–SMI boundaries obtained using both methods. For the
large, experimentally relevant value g2D = 0.34ħh2/mRb [Fig. 9(b)], the MCTDH-X boundary
occurs at a much larger pump strength than that predicted by MLGWS. This difference can be
attributed to the realistic width of the local atomic clouds at each individual lattice site. As g2D
decreases, the boundaries predicted by the two methods approach each other. Nonetheless, a
difference of γ∆Ep ≈ 2Erec between the two boundaries still remains at small contact inter-
action g2D = 0.0034ħh2/mRb [Fig. 9(h)]. A potential source of this discord is the non-trivial
effects induced by the trapping potential, which are not considered by the MLGWS package.

Interestingly, the position of the boundary predicted by MCTDH-X does not move monoton-
ically as g2D decreases. In particular, when g2D decreases from 0.34ħh2/mRb to 0.068ħh2/mRb,
we observe that the MCTDH-X boundary moves slightly towards shallower optical lattice po-
tential depths, which is contradictory to straightforward expectations. This indicates that, as
the contact interaction g2D decreases, the increase in the hopping strength t due to atomic
cloud expansion dominates over the decrease in the on-site interaction U in this regime. This
result is in consistent with the findings of Ref. [82], where t has been observed to increase
more significantly with g2D for a larger value of νg2D.

We have thereby confirmed the consistency between the MLGWS package and the MCTDH-
X scheme at weak contact interaction. More importantly, we have confirmed that the MCTDH-X
scheme can incorporate higher order effects induced by a strong contact interaction.
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