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Abstract

Patterns of symmetry breaking induced by potentials at the boundary of free O(N)-
models in d = 3 − ε dimensions are studied. We show that the spontaneous symmetry
breaking in these theories leads to a boundary RG flow ending with N−1 Neumann modes
in the IR. The possibility of fluctuation-induced symmetry breaking is examined and we
derive a general formula for computing one-loop effective potentials at the boundary.
Using the ε-expansion we test these ideas in an O(N)⊕ O(N)-model with boundary in-
teractions. We determine the RG flow diagram of this theory and find that it has an IR-
stable critical point satisfying conformal boundary conditions. The leading correction
to the effective potential is computed and we argue the existence of a phase boundary
separating the region flowing to the symmetric fixed point from the region flowing to a
symmetry-broken phase with a combination of Neumann and Dirchlet boundary condi-
tions.
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1 Introduction

Spontaneous breaking of global symmetries is one of the most universally used tools to un-
derstand phase transitions in modern theoretical physics. In this paper we would like to con-
sider its application to systems described by scalar field theories existing on a manifold with a
boundary. A lot has already been understood in the condensed matter context [1], where such
systems describe polymer absorption by walls [2]. Other than the usual order-disorder phase
transition in the bulk (called the ordinary transition), there is a possibility of an extraordinary
phase transition at the boundary above the bulk critical temperature. Field theoretically such
systems are represented by an O(N)-model in d = 3 dimensions with polynomial interactions
in the bulk where the extraordinary phase transition is triggered by a negative ’boundary mass’
term. This representation makes them amenable to study with the techniques of high-energy
physics. In particular the machinery of boundary conformal bootstrap [3] allows for high pre-
cision evaluation of correlation functions at the Wilson-Fisher (WF) fixed point (f.p.) [4, 5],
which was recently used in evaluation of layer susceptibility at the extraordinary transition
point [6, 7]. Alternatively a wealth of information on these models can be obtained by cou-
pling them to a curved background and calculating the resulting partition function [8,9].

In this work we would like to examine the case when the bulk couplings are turned off and
instead we include interactions at the boundary. For d = 3− ε this still leads to a non-trivial
RG flow at the boundary with an interacting infrared (IR) f.p., which was recently studied
in [10] and [11]. Scalar models with boundary interactions were considered long before in
condensed matter literature [12]. In the context of polymer physics, tuning the bulk couplings
to zero means considering a rather non-realistic example with two-body monomer interactions
confined to the boundary.

In the realm of high energy physics there are nevertheless important examples of free
theories with boundary interactions. For d = 2 free bosons with boundary potentials have
been studied in the context of open strings [13,14]. More recently there has been a progress
in constraining free scalar theories with boundaries and defects with d > 2 by using conformal
boostrap techniques [15,16].

Finally let us note that free models are often related to interacting ones via dualities such
as bosonisation in d = 2 or more refined dualities that have recently been discovered in d = 3
[17, 18]. Thus it is possible that already by studying the models that are free in the bulk we
can learn something about the interacting theories and their boundary deformations via the
duality.

In this paper we would like to consider giving a vacuum expectation value (v.e.v.) to a
boundary field. This is not a new idea in itself, e.g. in the condensed matter context (cf. [1])
this phenomenon gives rise to new kinds of phase transitions called the special and the extraor-
dinary. These transitions cannot be deduced from the knowledge of the bulk phase diagram
itself and are described by a set of independent boundary parameters (couplings, v.e.v.’s, etc.).
When the bulk is free there are no bulk parameters to tune so all the non-trivial dynamics
happens at the boundary either through edge degrees of freedom or dynamical boundary con-
ditions (b.c.’s). We would like to study the latter in the present work and convince the reader
that such a simple set-up can lead to rich physics similar to the phase structure of the Ising
model.

Let us start by introducing the class of models we want to work with. We will consider a
free O(N)-scalar with a boundary potential

S[φ] =

∫

Rd
+

dd x

�

(∂µφ)2

2
+δ(x⊥)V (φ)

�

, d = 3− ε , (1)

where Rd
+ = {(x‖, x⊥) : x‖ ∈ Rd−1, x⊥ > 0}, we have suppressed the index notation for φ ≡ φ i
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with i running from 1 to N and used the Euclidean space conventions. The bulk theory has an
O(N)-symmetry

φ→ Rφ , R ∈ O(N) , (2)

and an additional shift symmetry
φ→ φ + c . (3)

Here c is a constant vector.1 In the absence of boundary potential we can choose Neumann
b.c.’s, which will preserve both of these symmetries.

The boundary potential will break the bulk shift symmetry, but we will assume that it
preserves the O(N)-symmetry. We have only chosen O(N) for simplicity but all of the following
discussion can be generalized to other compact global symmetry groups. The equations of
motion (e.o.m.) together with the b.c.’s describing the system in (1) read

∂ 2φ = 0 , ∂⊥φ|x⊥=0 = V ′(φ)|x⊥=0 . (4)

If the potential has any non-trivial minima these equations admit a constant solution
φ = 〈φ〉 6= 0 satisfying

∂ V
∂ φ i

(〈φ〉) = 0 . (5)

We will furthermore assume that the solution is a stable minimum with ∂ 2V
∂ φ i∂ φ j ≥ 0 (by this

we mean that the Hessian matrix has only non-negative eigenvalues). Now what are the
consequences of having such solution? The vacuum 〈φ〉 will break the global O(N)-symmetry
down to O(N − 1). Had there been no boundary interaction this would obviously not be the
case since the new vacuum would be related to the trivial one by the shift symmetry. We will
now demonstrate that in the presence of a boundary the expansion around 〈φ〉 leads to a
distinct qualitative picture.

By running the usual textbook arguments leading to the Goldstone theorem we see that the
Hessian matrix ∂ 2V

∂ φ i∂ φ j has exactly N − 1 vanishing eigenvalues corresponding to the broken
generators of O(N). We can choose the usual parametrisation to expand about the minimum

φ = eη
k T k
(〈φ〉+σ) . (6)

Here T k, k ∈ {1, . . . , N−1} is the generator of the Lie algebra corresponding to O(N)/O(N−1)
and σ is a vector in the flavour space parallel to 〈φ〉 satisfying |σ| � |〈φ〉|. If we insert (6)
into the potential (1) we find that ηk is a free massless field and thatσ has a positive boundary
mass and both cubic as well as quartic interactions2

S[η,σ] =

∫

Rd
+

dd x

�

(∂µηk)2

2
+
(∂µσ)2

2
+δ(x⊥)V (σ)

�

+ . . . ,

V (η,σ) =
m
2
σ2 +O(σ3) ,

(7)

where m > 0 corresponds to the nonzero eigenvalue of ∂ 2V
∂ φ i∂ φ j . This mass term induces a

boundary RG flow for σ into Dirichlet b.c. in the IR.3 The fields ηk are similar to the usual

1For a compact scalar φ in three dimensions the symmetry can be interpreted as a topological U(1) that acts
on the corresponding magnetic monopoles eiφ . For bosonic strings on a worldsheet this symmetry corresponds to
space-time translations.

2Here we used that eη
k T k ∈ O(N)/O(N − 1) ⊂ O(N), which means that φ2 = (〈φ〉+σ)2.

3By IR we mean large distances parallel to the boundary.

3

https://scipost.org
https://scipost.org/SciPostPhys.11.2.035


SciPost Phys. 11, 035 (2021)

Goldstone bosons in that they gain no boundary potential and therefore will retain the Neu-
mann b.c.’s in the IR. This gives us a clear picture of how the symmetry breaking is realized in
the IR: the flow will leave us with N−1 free Neumann scalars preserving the O(N−1)- and the
shift-symmetry. The remaining field satisfies Dirichlet b.c. and therefore its boundary propa-
gator vanishes. This is similar to the tachyon condensation in open string theory [14] with the
preserved O(N −1)- and shift-symmetry being the rotations and translations preserving the IR
D-brane. Note that since the symmetry breaking only affects the b.c.’s the effect gets weaker as
we depart from the boundary. More concretely by examining the propagators corresponding
to (7) at large perpendicular distance4 (cf. (63)) we find that both ηk and σ have the same
asymptotics implying the preserved O(N)-symmetry deep in the bulk as expected.

In a quantum theory the constant solution to (4) can only exist in the absence of bulk cou-
plings. Were there any bulk couplings the solution to the e.o.m. would acquire a dependence
on the normal coordinate and we would need to deal with the renormalisation ofφ in the near
boundary limit.5 As a consequence the v.e.v.’s of bulk and boundary fields become unequal,
which leads to so called extraordinary phase transitions (see [1] for a comprehensive review
of phase transitions with boundaries).

In the case of a free bulk that we consider here, the v.e.v. of a bulk field φ is completely
determined from the boundary potential V . This is in line with the fact that in the absence
of bulk interactions, φ does not renormalise at the boundary (i.e. limx⊥→0φ = φ̂ is well
defined).6 Thus to understand the IR dynamics of such fields theories we need to determine
the potential at the quantum level.

For a potential without non-zero local minima we have two possibilities. Either there exists
a boundary RG flow into an IR f.p. satisfying conformal b.c.’s7 or new minima appear through
quantum corrections. The former scenario is analogous to second-order phase transitions in
statistical physics as it involves an IR f.p. with calculable critical exponents (scaling dimensions
of boundary operators). The latter corresponds to a fluctuation induced first-order phase tran-
sition with the order parameter 〈φ〉. At the perturbative level the quantum corrections to the
classical potential come from the loops through the Coleman-Weinberg (CW) mechanism [21].

Since the example we consider in this paper involves a boundary with low dimensional-
ity (≤ 2) we should comment on the Mermin-Wagner theorem [22] prohibiting spontaneous
symmetry breaking of continuous global symmetries in d ≤ 2. For bulk dimension d > 2 this
is not an issue due to the boundary theory being non-local.8 The d = 2 case is more subtle due
to the IR divergences of the free scalar propagator screening the v.e.v. and thus preventing
the long range order. Nevertheless based on the discussion above we still expect to see the
emergence of Dirichlet scalar described under (7) at large boundary distances. This is because
the boundary primary operator corresponding to a Dirichlet scalar is actually ∂⊥φ|x⊥=0 which
has a well defined IR behaviour. Nevertheless it is not clear to the authors whether one can
still interpret this as a phase transition. We will return to this point at the end of the explicit
example in section 3.2.

In section 2 we will show how to compute the quantum corrections to the potential at
the one-loop level for theories of type (1). We illustrate how these ideas can be implemented

4In appendix A we find a general expression for the spacetime and the momentum propagator in a boundary
quantum field theory (BQFT) with a mass term in both the bulk and on the boundary.

5By this we mean that the field enjoys the boundary operator expansion φ = x−∆+∆̂⊥ φ̂+ . . . , where φ̂ is a bound-
ary operator of dimension ∆̂. As shown in [10], this expansion is actually equivalent to operator renormalisation
and φ̂ can be interpreted as renormalised field.

6See [10,11] and the earlier work [19] for a proof of this statement.
7The conformal b.c.’s of [20] imply vanishing of the normal-parallel components of the bulk energy-momentum

at the boundary. It was shown in [10] that for models of the kind (1) this is equivalent to vanishing of the boundary
β-functions.

8We would like to thank an anonymous referee for pointing this out.
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in a scalar theory with O(N)⊕O(N)-symmetry with interactions confined to the boundary in
section 3. Finally in section 4, we discuss the broader picture and some future extensions of
this work.

2 One loop effective boundary potentials

In the following we will assume the existence of a classical potential V (φ) at the boundary. For
simplicity we will consider a single scalar field in the bulk, and later generalize this to O(N).
We will expand the action (1) with φ = φcl + δφ about the classical minimum background
φcl satisfying the e.o.m. (4).9 The linear terms vanish by virtue of the e.o.m. and we will only
keep the quadratic part of the potential

Vquad =
M
2
(δφ)2 +O

�

δφ3
�

, M = V ′′(φ = φcl)> 0 . (8)

The bulk action for δφ will be the one of a free massless scalar. The one-loop effective potential
will therefore be obtained by computing the functional determinant of the operator

D = −∂ 2 , (9)

subject to the following b.c.
lim

x⊥→0
(∂⊥ −M)φ = 0 . (10)

In general a functional determinant of a differential operator D is computed using

det D = e−
1
2 tr log D , (11)

where the trace is evaluated in a suitable (complete) basis of functions {φn}. I.e. we have

tr log D =
∑

n

∫

Rd
+

dd xφ∗n log Dφn . (12)

Without a boundary we typically take the complete set of eigenfunctions of D. For example
in the case of D = −∂ 2 we take φn → φp = eipx and the sum over n turns into a momentum
space integral.

In our case we have to impose the b.c. (10) on the eigenfunctions. The corresponding
functional determinant will take the form

tr log D =

∫

Rd

dd p
(2π)d

∫

Rd
+

dd xφ̃∗p log Dφ̃p , (13)

with the momentum eigenfunctions satisfying (10). More concretely they read

φ̃p(x) =
1
p

2

�

eipx +
ip⊥ −M
ip⊥ +M

ei p̃x
�

, (14)

where we defined a reflected momentum p̃ = (p‖,−p⊥). By substituting these eigenfunctions
in (14) we get

tr log D =

∫

Rd

dd p
(2π)d

∫

Rd
+

dd x
�

1− i
−M + ip⊥
p⊥ − iM

e−2ip⊥x⊥

�

log(p2) . (15)

9There is a factor of ħh= 1 in front of the quantum fluctuations δφ.
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Figure 1: Integration countour for M > |p‖| closed in the lower plane with a branch
cut between (−i|p‖|,+i|p‖|) and a simple pole at iM . In the case M < |p‖| we take
the branch cuts between infinity and ±i|p‖| to move the pole away from them (this
will not change the resulting integral).

The first term inside the bracket in (15) corresponds to the usual (IR divergent) bulk contribu-
tion. The second term is a new boundary contribution. We can evaluate it by first calculating
the integral over p⊥

∫

R

dp⊥

�

−i
M + ip⊥
p⊥ + iM

�

[log(|p‖|+ ip⊥) + log(|p‖| − ip⊥)]e
−2ip⊥x⊥ . (16)

This integral is evaluated by using the contour shown on figure 1. We close the contour in the
lower half-plane so that the integral along the semicircle at infinity vanishes. This will also
imply that the residue at iM will not contribute. The integral (16) will therefore reduce to
integrating the segment around the branch point at −i|p‖| which evaluates to

2π

∫ |p‖|

0

du
u−M
u+M

e−2x⊥u . (17)

This expression is still to be integrated over x⊥ > 0, which will turn (17) into

2π
1
2

∫ |p‖|

0

du
u−M

u(u+M)
. (18)

The integral in the above expression can now be evaluated by standard methods
∫ |p‖|

0

du
u−M

u(u+M)
= − log

�

|p‖|
µIR

�

+ 2 log

�

|p‖|+M

M

�

, (19)

where µIR is an IR cutoff introduced to regulate the IR divergence in the above integral.10

Finally putting everything together we find the boundary contribution to the functional deter-
minant (15)

tr log D|∂M =
∫

Rd−1

d2 x‖

∫

Rd−1

dd−1p‖
(2π)d−1

�

−
1
2

log

�

|p‖|
µIR

�

+ log

�

|p‖|+M

M

��

. (20)

10Physically this divergence arises from the infinite volume limit (or more specifically it comes from the x⊥→∞
region of the original integral).

6

https://scipost.org
https://scipost.org/SciPostPhys.11.2.035


SciPost Phys. 11, 035 (2021)

The first term in (20) does not depend on M and therefore will not contribute to the effective
potential. So we are left with the second term. From the path integral we have

−
1
2

tr log D = V 1-loop
eff + . . . (21)

Here the dots stand for derivative corrections. Thus we find that the non-trivial contribution
to the boundary effective potential at one-loop reads

−
∫

Rd−1

dd−1p‖
(2π)d−1

log

�

|p‖|+M

M

�

. (22)

Note that the denominator of the logarithm in (22) leads to a non-analytic power divergence
Λd−1 log M . Such term does not appear in the usual bulk CW computation, but we can choose
a suitable subtraction scheme to remove it,11 so the relevant one-loop contribution to the
effective potential reads

V 1-loop
eff = −

∫

Rd−1

dd−1p‖
(2π)d−1

log
�

|p‖|+M
�

. (23)

For N > 1 this formula still holds with M promoted to a matrix covariant under the global
symmetry group. While the discussion so far has been focused on O(N), the argument will
hold for more general symmetry groups, where the explicit computation depends on the form
of M . We will therefore proceed to evaluate the remaining integral over (d − 1)-dimensional
momenta in the next section.12

3 O(Nφ)⊕O(Nχ) scalar model

3.1 The model

In this section we will consider an O(Nφ)⊕O(Nχ) scalar model similar to that in [24–26], but
with interactions happening at the boundary instead of in the bulk. The model will be defined
by the following action13

S[φ,χ] =

∫

Rd
+

dd x

�

(∂ φ)2

2
+
(∂ χ)2

2
+δ(x⊥)V (φ

2,χ2)

�

,

V (φ2,χ2) =
λ

8
(φ2)2 +

ξ

8
(χ2)2 +

g
4
φ2χ2 .

(24)

The scalar fields φ ≡ φ i , i ∈ {1, . . . , Nφ} and χ ≡ χa, a ∈ {1, . . . , Nχ} satisfy O(Nφ)- as well
as O(Nχ)-symmetry respectively. The potential in (24) breaks the O(Nφ +Nχ) bulk symmetry
down to O(Nφ) ⊕ O(Nχ). In general the potential can also include other relevant operators
such as boundary masses14 which we do not include as we do not want to have any symmetry
breaking at the classical level (for a more detailed treatment of boundary masses we refer the
interested reader to appendix A).

11More specifically this term will be set to zero by the CW renormalisation conditions (37) and addition of a
’cosmological’ constant counterterm similar to (38). Addition of such counterterm does not change the form of the
renormalised effective potential so we will not discuss it further.

12It should be noted that the relevant integral (23) was also computed in the condensed matter literature [23]
for a diagonal M in a different context (contribution to the Casimir free energy in the presence of Robin b.c.’s).
The authors would like to thank H. W. Diehl for pointing this out.

13We consider scalar couplings, although in general they can be promoted to be tensorial [27].
14Other relevant operators involve the normal derivatives ∂⊥φ

2 and ∂⊥χ
2. However these are related to

φ2,χ2,φ4 and χ4 through the e.o.m.
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g

λ

GP

WFP

TCP

1st order

SP

2nd order

Figure 2: The RG flow for the model (24) when Nφ = Nχ = 1. F.p.’s are marked
by dots, where the black dot is the fully repellent Gaussian f.p. (GP), the red dots
(WFP and TCP) define a separatrix that separates regions corresponding to first- and
second-order phase transitions and the blue dot is a fully attractive f.p. (SP) that is
stable in the IR. The order parameter for the first order transition corresponds to 〈φ〉.

To simplify the computations we take Nφ = Nχ ≡ N and therefore also λ = ξ. This
simplifies the classical potential down to

V (φ2,χ2) =
λ

8
(φ2)2 +

λ

8
(χ2)2 +

g
4
φ2χ2 =

λ

8

�

φ2 +χ2
�2
+

g −λ
4
φ2χ2 , (25)

where we have made the residual O(2N)-symmetry and the coupling that breaks it manifest.15

In this case the theory also has an additional Z2 symmetry

φ←→ χ . (26)

From dimensional analysis we have the following engineering dimensions

∆φ =∆χ =
d − 2

2
=

1− ε
2

, ∆λ =∆ξ =∆g = 3− d = ε . (27)

A detailed discussion of the renormalisation of such models has been presented in our earlier
work [10]. In appendix B we compute the β-functions for a model with generic λ, ξ up to
order two in the coupling constants. For ξ= λ we have the following β-functions

βλ = −ελ+
N + 8

4π
λ2 +

N
4π

g2 + . . . , βg = −εg +
g2

π
+ 2

N + 2
4π

λg + . . . (28)

These β-functions have one Gaussian, and three WF f.p.’s defining a boundary RG flow chart
depicted on figure 2. The positions of these f.p.’s read

(g∗,λ∗) ∈
§

(0, 0),
�

0,
4πε

N + 8

�

,
�

2π(4− N)ε
N2 + 8

,
2πNε
N2 + 8

�

,
�

2πε
N + 4

,
2πε

N + 4

�ª

. (29)

15This splitting of the terms in the potential is not unique. A more detailed analysis along the lines of [27] would
reveal that one should project the couplings on irreducible representations of O(2N).
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The first one is the fully repulsive Gaussian f.p. (GP), the second of these corresponds to
decoupled O(N)-models with a single coupling at a WF point (WFP) studied in [10, 11], the
third one (TCP) defines a stable solution only for N < 4, while the last f.p. (SP) enjoys an
emergent O(2N)-symmetry. As already mentioned, the fundamental field φ does not acquire
an anomalous dimension at these f.p.’s. On the other hand the composite operators (eg. φ2, χ2

etc.) have to be renormalised due to divergences in the boundary limit which leads to their
anomalous dimensions in perturbation theory [10].

The flow diagram in figure 2 shares many features with the corresponding charts of the
Abelian-Higgs model or the bulk O(N)⊕O(N)-model (see for example [26]). In particular the
diamond region corresponds to the domain of attraction of the symmetric, IR stable critical
point. We would expect that the separatrix running from the Gaussian f.p. to the third f.p. in
(29) (which is similar to tri-critical f.p. in the language of statistical physics) should determine
the cross-over to a region with fluctuation-induced first order phase transition. More specifi-
cally the RG flow in this region should end up in an ordered phase. In the next section we will
argue that this is indeed the case.

3.2 Coleman-Weinberg mechanism

In this section we will follow the standard reasoning of Coleman and Weinberg [21] applied
within the context of this paper. We will expand around classical field values

φ i = φ i
cl +δφ

i ,
�

�δφ i
�

�� 1 ,

χa = χa
cl +δχ

a , |δχa| � 1 ,
(30)

and only keep up to quadratic terms

S = S[φcl ,χcl] +

∫

Rd
+

dd x

�

(∂ δφ)2

2
+
(∂ δχ)2

2
+δ(x⊥)δV (φ2

cl ,δφ
2,χ2

cl ,δχ
2)

�

, (31)

where the quadratic part of the potential can be written as a boundary mass term

δV = ΦI mI J
Φ Φ

J , (32)

with

mI J
Φ =

�

mi j
φ

gφ j
clχ

b
cl

gχa
clφ

k
cl mab

χ

�I J

, (33)

mi j
φ
≡ Aλgδ

i j +λφ̂ i
clφ̂

j
cl ,

mab
χ ≡ Ag

λ
δab +λχ̂a

cl χ̂
b
cl ,

Ax
y =

xφ2
cl + yχ2

cl

2
.

(34)

Here we defined the field ΦI = δφ j ⊕ δχa, I , J ∈ {1, . . . , 2N}. The one-loop correction to the
path integral ZΦ can be calculated by substituting the above mass term into the formula derived
in section 2 and performing the relevant momentum integral (23). We leave the details of this
computation to appendix C. It yields the effective boundary potential

Veff(φ
2
cl ,χ

2
cl) =

�

λ

8
+ B1

�

φ4
cl +

� g
4
+ B2

�

φ2
clχ

2
cl +

�

λ

8
+ B1

�

χ4
cl

+Ξ1(φ
2
cl ,χ

2
cl) +Ξ2(φ

2
cl ,χ

2
cl) + A1φ

2
cl + A2χ

2
cl ,

(35)
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where Ξ1, Ξ2 can be found in appendix C, and the constants Ai , Bi , i ∈ {1,2} are counter-terms
(which depend on the momentum cut-off Λ) which can be fixed by defining the renormalised
masses and coupling constants as the respective coefficients in the potential

∂ V
∂ (φ2

cl)

�

�

�

�

�

φ2
cl=χ

2
cl=0

=
∂ V
∂ (χ2

cl)

�

�

�

�

�

φ2
cl=χ

2
cl=0

= 0 ,

∂ 2V
∂ (φ2

cl)
2

�

�

�

�

�

φ2
cl=χ

2
cl=0

=
∂ 2V
∂ (χ2

cl)
2

�

�

�

�

�

φ2
cl=χ

2
cl=0

=
λ

4
,

∂ 2V
∂ (φ2

cl)∂ (χ
2
cl)

�

�

�

�

�

φ2
cl=χ

2
cl=0

=
g
4

.

(36)

The latter two derivatives are IR divergent in the φcl , χcl → 0 limit due to the presence of
logarithms in Veff. Following the CW procedure we can resolve this issue by evaluating the
renormalisation conditions at non-zero field value for φ (alternately for χ)

∂ Veff

∂ (φ2
cl)

�

�

�

�

�

φ2
cl=χ

2
cl=0

=
∂ Veff

∂ (χ2
cl)

�

�

�

�

�

φ2
cl=χ

2
cl=0

= 0 ,

∂ 2Veff

∂ (φ2
cl)

2

�

�

�

�

�

φ2
cl=µ,χ2

cl=0

=
∂ 2Veff

∂ (χ2
cl)

2

�

�

�

�

�

φ2
cl=µ,χ2

cl=0

=
λ

4
,

∂ 2Veff

∂ (φ2
cl)∂ (χ

2
cl)

�

�

�

�

�

φ2
cl=µ,χ2

cl=0

=
g
4

,

(37)

where µ is an arbitrary RG scale and we used that near d = 3 the scaling dimension of φc is
(27) so to leading order in ε-expansion φ2

cl scales as mass.16

The renormalisation conditions (37) now fix the counter-terms in such a way that the
divergences in Λ vanish in the effective potential

A1 = (d − 4)e(d−3)γE/2
N g + (N + 2)λ

2dπ(d−1)/2
Λd−2 ,

A2 = (d − 4)e(d−3)γE/2
N g + (N + 2)ξ

2dπ(d−1)/2
Λd−2 ,

(38)

B1 =
�

N + 8
4π

λ2 +
N
4π

g2
�

logΛ
8
+ . . . ,

B2 =

�

g2

π
+ 2

N + 2
4π

λg

�

logΛ
4
+ . . .

(39)

Here we only wrote out the divergent parts of the bare couplings (75) in Bi . As a consistency
check we can readily verify that the coefficients of the logarithmic divergences in Bi agree with
the β-functions (28) computed with dimensional regularisation. If we plug these constants
into (35) we get the full effective potential which we do not write out here since it is given by a
cumbersome expression. Details of this can be found in an appended Mathematica notebook.

16Note that we choose to define the renormalisation conditions w.r.t. φ2
cl , χ

2
cl as opposed to some particular

component of φcl , χcl . In this way we obtain O(N)-invariant counter-terms, but otherwise the physics remains the
same.
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Figure 3: Plots of the effective potential for N = 1. There are two three-dimensional
plots: one with narrow range of φcl and one of χcl . We can see that the potential
only has two minima along the χcl -axis. The two-dimensional plots are slices of the
three-dimensional plot when φcl = 0 or χcl = 0. In the plots g = 0.01 and µ= 1.

We can verify by explicit computation that this effective potential admits a perturbative
minimum at φ2

cl = µ with

φ i
cl
∂ V

∂ φ̂ i
cl

�

�

�

�

�

φ2
cl=〈φ〉

2=µ,χ2
cl=〈χ〉

2=0

= χa
cl
∂ V
∂ χa

cl

�

�

�

�

φ2
cl=〈φ〉

2=µ,χ2
cl=〈χ〉

2=0

= 0 , (40)

provided the couplings satisfy the relation

λ=
4π−

p

16π2 − 4N(N + 8)g2

2(N + 8)
=

N g2

4π
+O(g3) . (41)

This relation describes a region very close to the Gaussian f.p. (rather than a WF one), making
it independent of the ε-expansion. A plot of the effective potential with N = 1 is depicted on
figure 3 from which we can see that this solution indeed corresponds to a minimum. Without
loss of generality we can parametrise this solution as follows

〈φ〉= (pµ, 0, . . . 0) , 〈χ〉= 0 . (42)

This minimum tells us that the O(N)⊕O(N)-symmetry has been broken into O(N −1)⊕O(N).
Additionally this vacuum breaks the discrete symmetry (26).

Since this vacuum only breaks one of the O(N)-symmetries we can apply the arguments
discussed in the introduction around (4). In particular we can now study the perturbations
around (42) by using the parametrisation (6) for φ. Expanding the effective potential to the
quadratic order yields17

Veff(σ,χ2) =
N g2µ

8π
σ2 +

�

1−
g
π

� gµ
4
χ2 + . . . , (43)

17At higher orders there will be interactions with both even and odd powers of σ, e.g. σ3 and σχ2
cl .
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where the dots stand for higher order terms in g, χ, σ. The positive sign of both mass terms
is a consequence of (42) being the minimum of the effective potential. The leading (positive)
correction to the mass term for χ is a purely classical consequence of the mixed coupling.
Hence we see that the potential (43) induces a boundary RG flow ending with N−1 Neumann
scalars from the broken O(N)-symmetry.

To summarize, the theory (24) we started with had O(N)⊕O(N)-symmetry as well as the
symmetry (26). After integrating out quantum fluctuations, one of the O(N)-symmetries is
still preserved while the symmetry (26) is completely broken and the other O(N)-symmetry
is broken down to its subgroup O(N − 1). The remaining O(N − 1) can be seen through the
effective theory in the IR which contains N − 1 Neumann scalars (which additionally regain
the shift symmetry (3)), and N + 1 Dirichlet scalars.

At last let us discuss the validity of the one-loop approximation and its relevance to the
flow diagram charted on figure 2. The condition (41) tells us that the region of validity of the
approximation lies in the λ, g > 0 quadrant. Furthermore, in the g � 1 limit this region lies
below the line connecting the Gaussian f.p. with the 3rd TC f.p. in (29), which is defined by
the relation λ= kg with k being O(g0) and positive. As we can see in figure 2, the flow in this
region drives the coupling λ to negative values and hence we would indeed expect a phase-
transition happening here. We should also remark that the approximation we used cannot be
trusted for field values far from

p
µ and thus we cannot exclude the possibility of other vacua

hiding in these regions.
One might also wonder whether the phase transition persists in the ε→ 1 limit given the

applicability of Mermin-Wagner theorem mentioned in the introduction. While we presently
cannot give a definite answer to this question we can make the following qualitative observa-
tion: from the discussion around (29) we see that the phase diagram in figure 2 exists only for
models with low N (< 4). This window certainly includes N = 1 and one might expect that it
shrinks further at higher orders in ε. Thus it could be that in the ε→ 1 limit only the N = 1
remains in which case the broken symmetry in question is discrete (Z2) which is not at odds
with the Mermin-Wagner theorem.

Let us finally mention the d = 3 case. For ε = 0 the three non-Gaussian f.p.’s in figure 2
disappear and the asymptotic freedom is lost.18 Despite that, the arguments of this subsection
apply if we think of the model at non-zero (g,λ) as an effective field theory with radiately
generated potential just as in the original Coleman-Weinberg paper.

4 Conclusion

In this paper we have argued that many of the critical phenomena appearing for interacting
bulk systems can also be observed in free theories with non-trivial dynamical b.c.’s. These dy-
namical b.c.’s generically break the conformal symmetry and induce an RG flow at the bound-
ary. We have found that in this context the phase transitions should be understood in terms
of the b.c.’s at the IR end of this flow. The second-order phase transitions are described by a
boundary RG flow preserving the global symmetries of the theory. It has an IR f.p. with confor-
mal b.c.’s that are neither Dirichlet nor Neumann. To check whether the f.p.’s we discovered
in section 3 are artefacts of the ε-expansion or actual physical boundary CFT’s would require a
non-perturbative approach which is beyond the scope of this paper. An evidence for existence
of such f.p. beyond perturbation theory was nevertheless put forward in a recent work [16]
employing the numerical boostrap. It would be interesting to investigate the existence of the
phase diagram 2 by such boostrap methods.

Our analysis also suggests the possibility of RG flows leading to first-order phase transi-

18More concretely the boundary RG flow ends with the Gaussian f.p. with Neumann b.c.’s for all fields.
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tions induced by quantum effects. These will be described by a combination of Dirichlet and
Neumann scalars, with the latter playing a role analogous to Goldstone bosons of the ordinary
symmetry breaking. To confirm such assertion beyond the perturbative reasoning offered here,
we could devise a lattice simulation of the model.

The physical interpretation of the model described in section 3 remains an open question.
It would be very interesting to explore whether the interpolation ε→ 1 of the model we de-
scribed in section 3 describes a meaningful two-dimensional theory. In particular there remains
the question of whether the fixed points (29) correspond to conformal boundary conditions
in d = 2. For compact scalars in d = 2 there is a body of evidence [28,29] suggesting that in
a conformal theory we can have at most a combination of Dirichlet and Neumann boundary
conditions. To make a connection with our work we note that in d = 2 the full potential in (24)
should include infinitely many more terms that are classically marginal. Such deformations do
lead to f.p.’s corresponding to Dirichlet b.c.’s [13,30] and hence it would not be unreasonable
to expect something similar to happen here too.

In d = 3 the free scalar can be interpreted as a dual photon of the Maxwell theory. A
boundary potential (1) would correspond to a monopole potential breaking the topological
U(1) symmetry. Given that the bulk theory is free, it would be very interesting to investigate
the possibility of exactly solvable monopole potentials.

The free O(N) model with N > 1 also has a nice condensed matter interpretation as crys-
taline displacement fields with N being the spatial dimension of the solid [31]. The boundary
potential we consider would correspond to dislocations interacting directly at the edge of the
solid. It would be amusing to explore whether it can describe a realistic physical situation.

Let us mention a few interesting possible extensions of this work. First we could try cou-
pling the free bulk scalar to boundary degrees of freedom and use this to generate an effective
potential and condensates for the boundary fields. This could provide some quantitative ar-
guments for the possible existence of ordered phases of mixed dimensional theories similar to
the ones recently considered in the literature (e.g. [32–34]).

On the other hand we could consider adding bulk couplings and making connection with
the recent work [8], where the contribution of a bulk φ6-interaction to the one-loop effective
action was computed.
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A Propagators in boundary quantum field theories

In this appendix we will study Feynman propagators in an O(N)-symmetric scalar BQFT with
masses in both the bulk and on the boundary

L=
∫

Rd
+

dd x

�

(∂µφ i)2

2
+
(m2)i jφ iφ j

2
+δ(x⊥)m̂

i jφ iφ j

�

. (44)
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This theory has the e.o.m.
�

−δi j∂ 2 + (m2)i j
�

φ j = 0 ,

∂⊥φ
i|x⊥=0 = M i jφ j|x⊥=0 .

(45)

Please note that the RG flow of the boundary mass describes a flow between Neumann
(M i j = 0) and Dirichlet (M i j →∞) b.c.’s.

A.1 In spacetime coordinates

We will find the Feynman propagator∆i j
bc(s‖, x⊥, y⊥)≡ 〈φ i(x‖, x⊥)φ j(y‖, y⊥)〉. It satisfies the

Dyson-Schwinger equation corresponding to the e.o.m. (45) at separate points

�

−δi j∂ 2
x + (m

2)i j
�

∆
jk
bc(s‖, x⊥, y⊥) = δ

ikδ(s‖, x⊥ − y⊥) ,

∂x⊥∆
ik
bc(s‖, 0, y⊥) = M i j∆

jk
bc(s‖, 0, y⊥) .

(46)

Here ∂ 2
x ≡ ∂

2
x‖
+ ∂ 2

x⊥
is the d’Alembert operator and s‖ ≡ x‖ − y‖ is the distance between the

parallel coordinates. Let us first study the first equation in a homogeneous QFT
�

−δi j∂ 2
x + (m

2)i j
�

∆ jk(s) = δikδ(s) , (47)

where s ≡ sa
‖ ⊕ (x⊥ − y⊥) ∈ Rd . To solve this consider the Fourier-transform of ∆ jk(s)

∆ jk(s) =

∫

Rd

dd k
(2π)d

e−iksG jk(k) , (48)

which yields

∂ 2∆ jk(s) =

∫

Rd

dd k
(2π)d

e−iks(−ik)2G jk(k) , (49)

and use the definition of the Dirac δ-function

δ(s) =

∫

Rd

dd k
(2π)d

e−iks . (50)

We can now compare the integrands in (47) to find

G jk(k) =
�

δ jkk2 + (m2) jk
�−1

. (51)

Finding this inverse is difficult without knowing the specific form of mi j . Let us assume it is
on the form

(m2)i j = m2
1δ

i j + aφ i
clφ

j
cl , (52)

where a, m2
1 ∈ R are two constants and φ i

cl is a classical background. The momentum propa-
gator (51) is then19

G jk(k) =
δ jk

k2 +m2
1

−
aφ i

clφ
j
cl

(k2 +m2
1)(k2 +m2

2)
, m2

2 ≡ m2
1 + aφ2

cl . (53)

19Here we used the ansatz
�

δi j k2 +mi j
�−1
= aδi j + bφ iφ j , and then found the coefficients a and b by matching

δi j and φ iφ j terms on both sides of
�

δi j k2 +mi j
�−1 �

δ jkk2 +m jk
�

= δik.
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Here φ2
cl ≡ (φ

i
cl)

2. In the massless limit the second term vanishes. Using Schwinger and
Feynman parametrisations, we find ∆ jk(s) by performing the integrals in (48)

Id
α(m

2)≡
∫

Rd

dd k
(2π)d

e−iks

(k2 +m2)α
=

∫ ∞

0

du
Γα

∫

Rd

dd k
(2π)d

uα−1e−u(k2+m2)−iks

=

∫ ∞

0

du
(4π)d/2Γα

e−m2u−s2/(4u)

u(d+2)/2−α =
md/2−αKd/2−α(m|s|)

2(d−2)/2+απd/2Γα|s|d/2−α
,

(54)

J d(m2
1, m2

2)≡
∫

Rd

dd k
(2π)d

e−iks

(k2 +m2
1)(k2 +m2

2)
=

∫ 1

0

duId
2 (um2

1 + (1− u)m2
2)

= −
m
∆φ
1 K∆φ (m1|s|)−m

∆φ
2 K∆φ (m2|s|)

(2π)d/2|s|∆φ (m1 +m2)(m1 −m2)
.

(55)

This holds for (27). We find

∆ jk(s) = δ jk Id
1 (m

2
1)− aφ j

clφ
k
cl J

d(m2
1, m2

2)

=
δ jkm

∆φ
1 K∆φ (m1|s|)

(2π)d/2|s|∆φ
+

aφ j
clφ

k
cl

�

m
∆φ
1 K∆φ (m1|s|)−m

∆φ
2 K∆φ (m2|s|)

�

(2π)d/2|s|∆φ (m1 +m2)(m1 −m2)
.

(56)

Here Kν(z) is a modified Bessel function of the second kind. Please note that the two terms
are on the form |s|−∆φK∆φ (m j|s|), j ∈ {1, 2}.

In the massless limit (m1, m2→ 0) this reduces to the usual correlator in a CFT

lim
m→0
∆ jk(s) =

Adδ
jk

|s|2∆φ
, Ad =

1
(d − 2)Sd

, (57)

where Sd is the area of a (d − 1)-dimensional sphere.
Let us now proceed with finding the Feynman propagator in a BQFT, i.e. we wish to use

(56) to solve the b.c. in (46). To do this we make the ansatz20

∆ik
bc(s‖, x⊥, y⊥) =∆

ik(s‖, x⊥ − y⊥) +∆
ik(s‖, x⊥ + y⊥) +

∫ ∞

0

dz f i j(z)∆ jk(s‖, x⊥ + y⊥ + z) .

We want to find the function f i j(z) from the b.c. (46). Since all terms in (56) are on the
same form, the function f i j(z) will be the same for all of them. This means we can let
∆i j(s‖, x⊥) = τi j(s2

‖+ x2
⊥)
−∆φ/2K∆φ (m

Ç

s2
‖ + x2

⊥), with the tensor structure τi j ∈ {δi j ,φ i
clφ

j
cl},

when we find f i j(z). The second term in the ansatz above reduces the normal derivative in
the LHS of the b.c. to a single integral using the recursion relation

K∆φ−1(z) = K∆φ+1(z)−
2∆φ

z
K∆φ (z) . (58)

We find

∂x⊥∆
ik
bc(s‖, 0, y⊥)

= −m

∫ ∞

0

dz f i j(z)τ jk z⊥ + y⊥
�

s2
‖ + (z⊥ + y⊥)2

�(∆φ+1)/2
K∆φ+1(m

r

s2
‖ + (z⊥ + y⊥)2)

= − f i j(0)∆ jk(s‖, y⊥)−
∫ ∞

0

dz∂z f i j(z)∆ jk(s‖, z⊥ + y⊥) .

(59)

20Here we are using the method of images where we consider a semi-infinite line of images on the other side of
the boundary. Each image corresponds to adding a Dirac δ-function that is always zero (since x⊥, y⊥ > 0) on the
RHS of (46).
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Here we used partial integration, and assumed that

lim
z→∞

e−mz f i j(z)

z∆φ+1/2
= 0 . (60)

The RHS of the b.c. at (46) is

M i j∆
jk
bc(s‖, 0, y⊥) = 2M i j∆ jk(s‖, y⊥) +

∫ ∞

0

dzM i j f jl(z)∆lk(s‖, z⊥ + y⊥) . (61)

We can now match the terms outside and inside the integral with those in (59) to find an
ordinary differential equation for f i j(z). It tells us that f i j(z) is an exponential of the matrix
M i j

�

f i j(0) = −2M i j

∂z f i j(z) = −M ik f k j(z)

�

⇒ f i j(z) = −2M ik(e−Mz)k j . (62)

This function does indeed satisfy (60). It gives us the Feynman propagator

∆
i j
bc(s‖, x⊥, y⊥) =∆

i j(s‖, x⊥ − y⊥) +∆
i j(s‖, x⊥ + y⊥)

− 2M ik

∫ ∞

0

dz(e−Mz)kl∆l j(s‖, x⊥ + y⊥ + z) .
(63)

A.2 Momentum propagator

In this appendix we will Fourier transform the Feynman propagator found in the previous
section with respect to s‖. We call this a momentum propagator, although it depends on the
normal coordinates x⊥ and y⊥, which should be seen as new scales in a BQFT that regulate
divergences that may appear in the boundary limit [10]. Since each term (63) behave in the
same way w.r.t. s‖, we will first study the Fourier transform of

∆ jk(s‖, x⊥) =
m∆φτ jkK∆φ (m

Ç

s2
‖ + x2

⊥)

(2π)d/2(s2
‖ + x2

⊥)
∆φ/2

, τ jk ∈ {δi j ,φ j
clφ

k
cl} . (64)

We will use the following representations of the Bessel function

Kν(z) =

∫

γn

d t
4πi
ΓtΓt−ν

� z
2

�ν−2t
, γn = {t ∈ R |ν+ ε+ i t , ε > 0} ,

Kν(z) =
�

2
x

�ν Γν+1/2
p
π

∫ ∞

0

du
cos(uz)

(u2 + 1)ν+1/2
.

(65)

Here Γx ≡ Γ (x) is the Gamma function. The first of the identities above, together with a
Schwinger parametrisation yields

G jk
‖ (k‖, x⊥) =

∫

Rd−1

dd−1s‖e
ik‖s‖∆ jk(s‖, x⊥)

=
τ jk

π(d−2)/2i

∫

γ∆φ

d t
m2(∆φ−t)ΓtΓt−∆φ

2(d+4)/2+∆φ−2t

∫

Rd−1

dd−1s‖
eik‖s‖

(s2
‖ + x2

⊥)
t
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=
τ jk

π(d−2)/2i

∫

γ∆φ

d t
m2(∆φ−t)Γt−∆φ

2(d+4)/2+∆φ−2t

∫ ∞

0

duut−1e−ux2
⊥

∫

Rd−1

dd−1s‖e
−us2

‖+ik‖s‖

=
τ jk

π3/2i

∫

γ∆φ

d t
m2(∆φ−t)Γt−∆φ

2(d+4)/2+∆φ−2t

∫ ∞

0

du
e−ux2

⊥−k2
‖/(4u)

u(d+1)/2−t
(66)

=
τ jk

π3/2i

∫

γ∆φ

d t
m2(∆φ−t)Γt−∆φ

2∆φ−t+3/2

�

x⊥
|k‖|

�(d−1)/2−t

K(d−1)/2−t(|k‖|x⊥) .

This integrand has simple poles at t =∆φ−n, n ∈ Z≥0 coming from Γt−∆φ . As dictated by the
residue theorem, we need to sum over all of the corresponding residues. In order to do this
summation, we use the second identity in (65)

G jk
‖ (k‖, x⊥) =

τ jk

p
π

∑

n≥0

(−1)nm2n

2n+1/2n!

�

x⊥
|k‖|

�(d−1)/2−∆φ+n

K(d−1)/2−∆φ+n(|k‖|x⊥)

=
2(d−2)/2−∆φτ jk

π

∫ ∞

0

du cos(u|k‖|x⊥)
∑

n≥0

(−1)nm2nΓd/2−∆φ+n

n!|k‖|d−1−2∆φ+2n(u2 + 1)d/2−∆φ+n

=
2(d−2)/2−∆φΓd/2−∆φ |k‖|τ

jk

π

∫ ∞

0

du
cos(u|k‖|x⊥)

(k2
‖u

2 + k2
‖ +m2)d/2−∆φ

=
τ jk x

(d−1)/2−∆φ
⊥ K∆φ−(d−1)/2(

Ç

k2
‖ +m2 x⊥)

p
2π(k2

‖ +m2)(d−1)/4−∆φ/2
. (67)

This simplifies drastically in the case of fundamental scalars (27)

G jk
‖ (k‖, x⊥) =

τ jke−
Ç

k2
‖+m2 x⊥

2
Ç

k2
‖ +m2

. (68)

Let us now perform the integration over z in (63)

G̃ i j(k‖, x⊥ + y⊥) = −2M ik

∫ ∞

0

dz
�

e−Mz
�kl

G l j
‖ (k‖, x⊥ + y⊥ + z)

= −
M ik

Ç

k2
‖ +m2

∑

n≥0

(M n)klτl j

n!

∫ ∞

0

dz(−z)ne−
Ç

k2
‖+m2(x⊥+y⊥+z)

= −e−
Ç

k2
‖+m2(x⊥+y⊥)M ik

∑

n≥0

(−1)n(M n)kl

(k2
‖ +m2)n/2+1

τl j

= −
e−
Ç

k2
‖+m2(x⊥+y⊥)

Ç

k2
‖ +m2

�

M ik +
r

k2
‖ +m2δik −

r

k2
‖ +m2δik

��

M kl +
r

k2
‖ +m2δkl

�−1
τlk

= e−
Ç

k2
‖+m2(x⊥+y⊥)



−
τi j

Ç

k2
‖ +m2

+
�

M ik +
r

k2
‖ +m2δik

�−1
τk j



 .

Together with (68), we now have the full Fourier transform of (63)

H ik
m (k‖, x⊥, y⊥)≡

�

G i j
‖ (K‖, x⊥ − y⊥) + G i j

‖ (K‖, x⊥ + y⊥) + G̃ i j(k‖, x⊥ + y⊥)
�

�

τ jk
�−1

=
e−
Ç

k2
‖+m2 x⊥ sinh(

Ç

k2
‖ +m2 y⊥)δik

Ç

k2
‖ +m2

+ e−
Ç

k2
‖+m2(x⊥+y⊥)

�

M ik +
r

k2
‖ +m2δik

�−1
.
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This means that the Fourier transform of (63), with (56) is given by

G ik
bc(k‖, x⊥, y⊥) = H ik

m1
(k‖, x⊥, y⊥) + aφ iφ j

H jk
m1
(k‖, x⊥, y⊥)−H jk

m2
(k‖, x⊥, y⊥)

(m1 +m2)(m1 −m2)
.

In the boundary limit we have

H ik
m (k‖, 0, 0) =

�

M ik +
r

k2
‖ +m2δik

�−1
. (69)

B β-function

In this appendix we find the β-functions for the model (24). This is done in the standard QFT
way. We will study the following correlators up to order two in the coupling constants

G jklm
φ
(p) = 〈φ̂ j(p1)φ̂

k(p2)φ̂
l(p3)φ̂

m(p4)〉

= −
λ0

8
8D jklm +

�

−
λ0

8

�2

32
E jklm I12 + E jlkm I13 + E jmkl I14

(2π)d−1

+
�

−
g0

4

�2
8
δ jkδlm I12 +δ jlδkm I13 +δ jmδkl I14

(2π)d−1
+ . . . ,

(70)

Gabcd
χ (p) = 〈χ̂a(p1)χ̂

b(p2)χ̂
c(p3)χ̂

d(p4)〉

= −
ξ0

8
8Dabcd +

�

−
ξ0

8

�2

32
Eabcd I12 + Eacbd I13 + Ead bc I14

(2π)d−1

+
�

−
g0

4

�2
8
δabδcd I12 +δacδbd I13 +δadδbc I14

(2π)d−1
+ . . . ,

(71)

G jkab
φχ
(p) = 〈φ̂ j(p1)φ̂

k(p2)χ̂
a(p3)χ̂

b(p4)〉

= −
g0

4
4δ jkδab +

�

−
g0

4

�2
16δ jkδab I13 + I14

(2π)d−1

+
�

−
g0

4

�

�

−
λ0

8

�

16(Nφ + 2)δ jkδab I12

(2π)d−1

+
�

−
g0

4

�

�

−
ξ0

8

�

16(Nχ + 2)δ jkδab I34

(2π)d−1
+ . . .

(72)

Here λ0, g0 and ξ0 are the bare coupling constants that appear in the action (24). Hatted
operators denote their respective boundary fields. We have the Wick theorem factors

D jklm = δ jkδlm +δ jlδkm +δ jmδkl ,

E jklm = (Nφ + 2)δ jkδlm + D jklm .
(73)

The master integral I jk is found using the Schwinger parametrisation and is given by an Euler-
Beta function

I jk = Id−1
1/2,1/2(p j + pk) ,

In
αβ(p) =

∫

Rn

dnk
|p− k|α|w|β

= πn/2
Γα+β−n/2

ΓαΓβ

Bn/2−α,n/2−β

|p|2(α+β)−n
,

(74)
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where in d = 3− ε it has a pole in ε

Id−1
1/2,1/2(p) =

1
2π

�

1
ε
+ log

�√

√64π
eγE

�

− log(p)

�

+O(ε) .

The bare coupling constants that renormalise these correlators21 are given by

λ0 =

�

eγE/2

64π

�ε/2

µε
�

λ+
Nφ + 8

4π
λ2

ε
+

Nχ
4π

g2

ε

�

+ . . . ,

ξ0 =

�

eγE/2

64π

�ε/2

µε
�

ξ+
Nχ + 8

4π
ξ2

ε
+

Nφ
4π

g2

ε

�

+ . . . ,

g0 =

�

eγE/2

64π

�ε/2

µε
�

g +
g2

πε
+

Nφ + 2

4π
λg
ε
+

Nχ + 2

4π
ξg
ε

�

+ . . .

(75)

Here the dots represent terms that have more than two coupling constants, µ is the renormal-
isation scale, and λ, g as well as ξ are renormalised coupling constants. Please note that we
have used multiplicative renormalisation of g0, and both multiplicative and additive renor-
malisation of λ0 as well as ξ0. We can see that λ0 and ξ0 are the same up to flavour numbers.
To find the β-functions we will use

∂ logσ0

∂ logµ
= 0 ,

∂ σ

∂ logµ
= βσ ,

∂ logσ
∂ logµ

=
βσ
σ

, (76)

where σ0 ∈ {g0,λ0,ξ0} is any bare coupling, and σ ∈ {g,λ,ξ} is any renormalised cou-
pling. Taking the logarithm of the coupling constants in (75), and only keeping terms that are
quadratic in couplings yields

logλ0 = ε logµ+ logλ+
Nφ + 8

4πε
λ+

Nχ
4πε

g2

λ
+ . . . ,

logξ0 = ε logµ+ logξ+
Nχ + 8

4πε
ξ+

Nφ
4πε

g2

ξ
+ . . . ,

log g0 = ε logµ+ log g +
g
πε
+

Nφ + 2

4πε
λ+

Nχ + 2

4πε
ξ+ . . .

(77)

Now differentiate these equations w.r.t. logµ and use the definitions (76)

ε+
βλ
λ
+

Nφ + 8

4πε
βλ +

Nχ
4πε

g
λ

�

2βg −
g
λ
βλ

�

= 0 ,

ε+
βξ

ξ
+

Nχ + 8

4πε
βξ +

Nφ
4πε

g
ξ

�

2βg −
g
ξ
βξ

�

= 0 ,

ε+
βg

g
+
βg

πε
+

Nφ + 2

4πε
βλ +

Nχ + 2

4πε
βξ = 0 .

(78)

The solution to these equations yields the β-functions

βλ = −ελ+
Nφ + 8

4π
λ2 +

Nχ
4π

g2 + . . . ,

βξ = −εξ+
Nχ + 8

4π
ξ2 +

Nφ
4π

g2 + . . . ,

βg = −εg +
g2

π
+

Nφ + 2

4π
λg +

Nχ + 2

4π
ξg + . . .

(79)

21And which absorbs the factors of γE and log(π).
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C Functional determinants

In this appendix we compute the path integral of a bosonic O(Nφ) ⊕ O(Nχ)-vector that is
massless in the bulk, but has a tensor mass mI J at the boundary. We will not assume any
specific form of the boundary mass until it is needed. We will write the fluctuation correction
to the boundary potential as

V ⊃ ΦI mI JΦJ , (80)

mI J =

�

mi j
φ

gφ j
clχ

b
cl

gχa
clφ

k
cl mab

χ

�I J

,

mi j
φ
≡ Aλgδ

i j +λφ̂ i
clφ̂

j
cl ,

mab
χ ≡ Ag

ξ
δab + ξχ̂a

cl χ̂
b
cl .

(81)

The constant Ax
y can be found in (34). In this appendix we will not use the exact form of Ax

y ,
although it is important to remember that it is proportional to the coupling constants. Using
the results of section 2, i.e. (23), we have

V 1-loop
eff =

∫

Rd
+

dd x IM +

∫

Rd−1

dd−1 x‖ I∂M ,

IM =

∫

Rd

dd k
(2π)d

trO(N)
log[G I J (k)]

2
,

I∂M =

∫

Rd−1

dd−1k‖
(2π)d−1

trO(N)
log[G I J

b.c.(k‖)]

2
.

(82)

Here we trace over the O(N)-indices, G I J is the momentum propagator (53) in the bulk, and
G I J

b.c. is the momentum propagator (69) in the boundary limit

G I J (k) =
δI J

k2
, G I J

b.c.(k‖) =
�

mI J + |k‖|δI J
�−1

. (83)

The logarithm of the bulk propagator is

log[G I J (k)] = −2δI J log |k| . (84)

This allows us to find IM in (82). We will use spherical coordinates and regulate the diver-
gences using a momentum cutoff Λ. The integral is of the form

Jn(Λ)≡
∫ Λ

0

drrn−1 log(r) =
Λn

n

�

log(Λ)−
1
n

�

. (85)

Which yields

IM = −
(Nφ + Nχ)Sd

(2π)d
Jd(Λ) . (86)

To compute I∂M we will use that the logarithm of the inverse of a matrix can be expressed in
terms the original matrix via

�

A = elog(A) ⇒ A−1 = e− log(A)

A−1 = elog(A−1)

�

⇒ log(A−1) = − log(A) . (87)
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Using this we find the trace of the logarithm of the momentum propagator (83)

log[G I J
b.c.(k‖)] = − log

�

|k‖|δI J

�

mI J

|k‖|
+ 1

��

= −δI J log(|k‖|)− log

�

mI J

|k‖|
+ 1

�

. (88)

To find the second logarithm we diagonalise mI J . It has four eigenvalues. The first two of
these are

λ1 = Aλg , (with multiplicity Nφ − 1) ,

λ2 = Ag
ξ

, (with multiplicity Nχ − 1) ,
(89)

and the other two have both multiplicity one

λ± =
Aλg +λφ

2
cl + Ag

ξ
+ ξχ2

cl ±
Ç

(Ag
ξ
+ ξχ2

cl − Aλg −λφ
2
cl)

2 + 4g2φ2
clχ

2
cl

2
. (90)

We proceed with diagonalising the boundary mass mI J using some matrix A (as we will see,
the exact form of A does not matter)

mI J = (A−1DA)I J , D = diag(λ+3 , Aλg , . . . , Aλg ,λ−3 , Ag
ξ
, . . . , Ag

ξ
) . (91)

The second logarithm in (88) can now be found from its Taylor expansion

log

�

mI J

|k‖|
+ 1

�

=
∑

n≥1

(−1)n+1

n|k‖|n
((A−1DA)n)I J = (A−1)IK

∑

n≥1

(−1)n+1

n|k‖|n
((D)n)K LALJ

=

�

A−1diag

�

log

�

λ+3
|k‖|
+ 1

�

, . . .

�

A

�I J

.

(92)

Using cyclicity of the trace, we find

tr log[G I J
b.c.(k‖)] =− log

�

λ+ + |k‖|
�

− log
�

λ− + |k‖|
�

− (Nφ − 1) log(Aλg + |k‖|)− (Nχ − 1) log(Ag
ξ
+ |k‖|) .

The boundary integrals in (82) are then of the form

I∂M = −Kλ+3 (Λ)− Kλ−3 (Λ)− (Nφ − 1)KAλg
(Λ)− (Nχ − 1)KAg

ξ
(Λ) ,

Kx(Λ) =
Sd−1

2dπd−1

∫ Λ

0

drrd−2 log(x + r) .
(93)

This integral is a 2F1-hypergeometric function. Its expansion in ε in 3− ε dimensions is per-
formed using the HypExp mathematica package [35,36]. We will keep terms up to O(ε2) and
order two in the coupling constants. After this we expand around large Λ, and neglect terms
that goes as Λ−1

I∂M = −
Nφ + Nχ
2dπd−1

Sd−1Jd−1(Λ)− K̃φ(Λ)− K̃χ(Λ) +O(Λ−1) +O(ε3) ,

Kx(Λ) = −
3d2 − 22d + 43− 2(d2 − 8d + 19)

16
Λd−1 log(Λ)− (d − 4)Λd−2 x +

x2

2

�

log
� x
Λ

�

−
1
2

�

.

This, together with (86) and (82), yields the full path integral over Φ

Z = (2π)d/2 exp
�

−
Nφ + Nχ
(2π)d

Sd Jd −
Nφ + Nχ
2dπd−1

Sd−1Jd−1 −Ξ1(φ
2
cl ,χ

2
cl)−Ξ2(φ

2
cl ,χ

2
cl)
�

,
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Ξ1(φ
2
cl ,χ

2
cl) = −(d − 4)Λd−2(NφAλg + NχAg

ξ
+λφ2

cl + ξχ
2
cl)

= −(d − 4)Λd−2
(Nχ g + (Nφ + 2)λ)φ2

cl + (Nφ g + (Nχ + 2)ξ)χ2
cl

2
,

Ξ2(φ
2
cl ,χ

2
cl) =

Nφ − 1

2
(Aλg)

2

�

log

�

Aλg
Λ

�

−
1
2

�

+
Nχ − 1

2
(Ag
ξ
)2
�

log

�

Ag
ξ

Λ

�

−
1
2

�

+
λ2
+

2

�

log
�

λ+
Λ

�

−
1
2

�

+
λ2
−

2

�

log
�

λ−
Λ

�

−
1
2

�

.

(94)

Note that the constants Ax
y at (34) depend on φ2

cl and χ2
cl . By taking Nφ = Nχ and ξ = λ we

obtain the result relevant for section 3.2.
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