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Importance sampling scheme
for the stochastic simulation of quantum spin dynamics
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Abstract

The numerical simulation of dynamical phenomena in interacting quantum systems is
a notoriously hard problem. Although a number of promising numerical methods exist,
they often have limited applicability due to the growth of entanglement or the presence of
the so-called sign problem. In this work, we develop an importance sampling scheme for
the simulation of quantum spin dynamics, building on a recent approach mapping quan-
tum spin systems to classical stochastic processes. The importance sampling scheme is
based on identifying the classical trajectory that yields the largest contribution to a given
quantum observable. An exact transformation is then carried out to preferentially sam-
ple trajectories that are close to the dominant one. We demonstrate that this approach is
capable of reducing the temporal growth of fluctuations in the stochastic quantities, thus
extending the range of accessible times and system sizes compared to direct sampling.
We discuss advantages and limitations of the proposed approach, outlining directions
for further developments.
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1 Introduction

Experimental breakthroughs in the simulation of isolated many-body quantum systems [1,2]
have led to great theoretical interest in their far-from-equilibrium dynamics [3]. Concepts such
as the thermalization of isolated quantum systems [4,5], or the absence thereof [6,7], and the
discovery of novel non-equilibrium phenomena [8–10], have been the subject of intense ex-
perimental and theoretical exploration. Great progress has been achieved for one-dimensional
systems, which include analytically solvable integrable models [11] and are often amenable
to efficient numerical treatment via tensor-network based approaches [12–14]. However, the
limitations of existing techniques call for the development of additional analytical and numer-
ical tools to describe non-equilibrium quantum dynamics. This is particularly important in
higher-dimensional settings, where no exact solutions are generally available and the applica-
bility of tensor network methods is limited [15,16]. A number of directions are currently being
explored, including linked cluster expansions [17] and neural network approaches [18–20].

An alternative technique, recently applied to many-body quantum spin systems, consists
in exactly mapping unitary quantum dynamics to an ensemble of classical stochastic pro-
cesses [21–25]. This approach is based on the disentanglement formalism [21–23,26], which
provides an exact functional integral representation of the time-evolution operator. In this
formalism, interactions are decoupled by means of Hubbard-Stratonovich (HS) transforma-
tions [27,28], and the resulting single-spin dynamics is then parameterized in terms of a set of
classical disentangling variables, defined by a Lie-algebraic transformation [21–23,26,29,30].
Quantum expectation values are then obtained as classical averages over ensembles of stochas-
tic trajectories of the disentangling variables. Early investigations have shown that the stochas-
tic approach is immediately applicable to higher-dimensional settings, but its practical perfor-
mance is limited by the exponential growth of fluctuations in the stochastic quantities as a
function of time [24]. In recent work, the disentanglement formalism was applied in imag-
inary time, providing an analytical and numerical framework to study the ground states of
quantum spin systems [31]. In this context, the identification of the saddle point trajectory
of a suitable action, which provides the dominant contribution to observables, was used to
perform an exact measure transformation. This resulted in an importance sampling scheme
which greatly improves the performance of the numerical stochastic approach.

In this manuscript, we generalize the importance sampling scheme to real-time evolution.
We begin by briefly recapping the main aspects of the disentanglement formalism in Section 2.
The real-time importance sampling scheme in then introduced in Section 3, emphasizing simi-
larities and differences with the imaginary-time case. The approach is first applied to local ob-
servables in Section 4, comparing it to direct sampling and discussing the role of fluctuations.
Return probabilities are then considered in Section 5 in the context of dynamical quantum
phase transitions [8,32]. We conclude in Section 6, summarizing our findings and discussing
directions for further research.

2 Disentanglement formalism

The dynamics of a quantum state |ψ0〉 under the action of a Hamiltonian Ĥ is encoded in the
time-evolution operator Û(t) ≡ Texp[−i

∫ t
0 Ĥ(t ′)dt ′], where we set ħh = 1 and T denotes

time ordering: |ψ(t)〉= Û(t)|ψ0〉. We consider a generic quadratic spin Hamiltonian

Ĥ = −J
∑

jkab

J ab
jk Ŝa

j Ŝb
k −

∑

ja

ha
j Ŝ

a
j , (1)
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where the indices j, k correspond to lattice sites and a, b, run over the generators of SU(2).
The external fields ha

j and the interaction matrix J ab
jk can in general be time-dependent and

no specific boundary conditions are assumed. The constant J is an overall coupling strength.
The time-evolution operator corresponding to the Hamiltonian (1) is represented by a ma-
trix whose size grows exponentially with the system size N , forbidding its direct evaluation
for large systems. However, this issue can be circumvented by means of the disentanglement
formalism [21–24, 26, 31]. In this approach, Û is exactly written as a functional integral fea-
turing matrices whose size is determined by the local Hilbert space dimension, e.g. they are
2× 2 matrices for spin-1/2 systems. Below we recap the main features of this approach; ad-
ditional details can be found in Ref. [24]. For simplicity, we consider systems initialized in a
product state |ψ0〉 = ⊗i|ψ0〉i; more general initial conditions can also be treated within the
same formalism, e.g. by first performing imaginary-time evolution from a product state and
subsequently evolving in real time. The time-evolution operator Û admits the exact functional
integral representation [21–23]

Û(t) =

∫

Dϕe−S0[ϕ]
∏

j

eξ
+
j (t)Ŝ

+
j eξ

z
j (t)Ŝ

z
j eξ

−
j (t)Ŝ

−
j , (2)

where the noise action S0 is given by

S0[ϕ]≡
iJ
4

∫ t

0

dt ′
∑

ab jk

(J −1)ab
jkϕ

a
j (t
′)ϕb

k (t
′) (3)

and the disentangling variables ξa
j (t) satisfy the equations of motion [22]

−iξ̇+j = Φ
+
j +Φ

z
jξ
+
j −Φ

−
i ξ
+
j

2 , (4a)

−iξ̇z
j = Φ

z
j − 2Φ−j ξ

+
j , (4b)

−iξ̇−j = Φ
−
j expξz

j , (4c)

with Φa
j ≡ ha

j + Jϕa
j and initial conditions ξa

j = 0. The system of equations (4) encodes
the details of the system at hand. The fields ϕa

i are in general complex valued. The noise
action (3) can be diagonalized by a linear transformation ϕa

i =
∑

b j Oab
i j φ

b
j where Oab

i j is

defined by iJOTJ −1O/2 = 1; here Oab
i j and (J −1)ab

i j are treated as matrices by grouping the
(a, i) and (b, j) indices. This yields [22–24]

S0[φ] =
1
2

∫ t

0

dt ′
∑

ia

φa
i (t
′)φa

i (t
′) . (5)

The real-valuedness of the fields φa
j is required for convergence of the integral (2) and can

be viewed as defining the appropriate integration lines for the complex-valued fields ϕa
j [24].

Due to the Gaussian action (5), the functional integral in Eq. (2) can be seen as an average
over realizations of Gaussian white noise variables φ [22],

Û(t) = 〈
∏

j

eξ
+
j (t)Ŝ

+
j eξ

z
j (t)Ŝ

z
j eξ

−
j (t)Ŝ

−
j 〉φ . (6)

Eqs (4) can then be interpreted as stochastic differential equations (SDEs) [21–23]. Eq. (6)
makes it possible to establish an exact map between quantum expectation values and classical
averages. Time-evolved expectation values are given by O(t) = 〈Û†(t)ÔÛ(t)〉, where 〈. . . 〉
denotes the expectation value with respect to a chosen initial state. Quantum observables
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can thus be cast in functional integral form by expressing their time dependence in terms
of time-evolution operators Û(t) and substituting the representation (6) [23, 24]. In order
to disentangle two time-evolution operators, as in the case of local expectation values, one
can introduce independent HS fields φx = {φa

x ,i} and the associated disentangling variables
ξx = {ξa

x ,i}, with x ∈ { f , b} denoting forwards and backwards evolution. Eq. (6) features
a product of single-site operators, whose action on product states can be straightforwardly
evaluated; this yields a classical function FO(ξa

i ) such that 〈Ô〉= 〈FO(ξa
i )〉φ . Local observables

correspond to classical functions of the form

FO = F1 F̄O , (7)

where 〈F1(t)〉φ gives the norm of the state and F̄O is a product of a finite number of terms,
each featuring the disentangling variables relative to a single site [31]. For instance, for spin-
1/2 systems the spin operators are represented by the Pauli matrices, Ŝa

i = σ
a
i /2; inserting this

in Eq. (6) one readily finds that for an initial ⊗i|↓〉i state the normalization function is given
by

F1(t)≡
∏

i

[1+ ξ+f ,i(t)ξ
+∗
b,i(t)]e

− 1
2 [ξ

z
f ,i(t)+ξ

z∗
b,i(t)] , (8)

while the on-site longitudinal magnetization Mz
i (t) = 〈ψ(t)|Ŝ

z
i |ψ(t)〉 is given by Mz

i =
〈F1 F̄Mz

i
〉φ with

F̄Mz
i
(t) = −

1
2

�

1− ξ+f ,i(t)ξ
+∗
b,i(t)

1+ ξ+f ,i(t)ξ
+∗
b,i(t)

�

. (9)

Expressions such as (9) are easily obtained for any physical observable and take the same form
for different models, in real or imaginary time; see Refs [24, 31]. Different initial conditions
correspond to different FO [23,24], or, alternatively, can be encoded in the initial conditions of
the disentangling variables [25, 31]. In general, any time-evolving quantity can be expressed
within the disentanglement approach. However, the approach is best suited to quantities that
are readily expressed in terms of time-evolution operators, since these are the objects that
are replaced by their disentangled counterparts (2). This is the case of the local observables
discussed above.

Quantum expectation values O(t) can be numerically computed by averaging the classical
functions FO over realization of the stochastic processes φ(t). As demonstrated in Refs [24,
25], the numerical evaluation of such averages is stymied by the exponential growth of fluctu-
ations in FO with time and the system size. In the imaginary-time case, it was recently shown
that the growth of fluctuations can be greatly suppressed by applying an importance sampling
method whereby, when randomly generating trajectories, strongly-contributing ones are sam-
pled preferentially [31]. In contrast, when sampling according to the original measure (5)
one mostly draws trajectories that are nearly non-interacting and give little contribution. Be-
low we generalize the importance sampling approach to real-time evolution, showing that it
leads to a significant reduction in fluctuations compared to the direct sampling approach of
Refs [23–25].

3 Importance sampling

For analytical computations, it is convenient to work with the ϕ fields. For a given observable
O, we seek to identify the saddle point (SP) trajectory ϕSP yielding the largest contribution
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0 1
t

−1

0
φ
(t
)

Direct Sampling
Importance Sampling

Figure 1: Illustration of the importance sampling approach. When directly sampling
according to the measure (5), one predominantly generates trajectories aroundφ = 0
(dashed black line), which might however carry a small contribution to a given ob-
servable. In contrast, in the importance sampling approach one preferentially gener-
ates trajectories in the vicinity of the saddle point trajectory (dashed blue line), which
carries the largest contribution. The solid black and blue lines respectively represent
stochastic trajectories generated according to direct and importance sampling.

to the corresponding functional integral. This is obtained by extremizing the effective action
SO[ϕ]≡ S0[ϕ]− log FO[ϕ], defined such that [31]

O =
∫

Dϕe−SO[ϕ] . (10)

The action SO features the fields ξa
i via the function FO; these are themselves functionals of

ϕ, such that Euler-Lagrange equations cannot be derived. Instead, the SP equation is obtained
by direct extremization of SO:

δSO
δϕ(t)

�

�

�

ϕSP

= 0 . (11)

This condition yields a functional integral equation for ϕSP, which can be solved recursively.
One can then perform an exact measure transformation such that trajectories around the sad-
dle point configuration are sampled preferentially, as illustrated in Fig. 1. This is carried out by
performing the change of variables φ(t)→ φ(t)+φSP(t) in the functional integral (10) [31],
where φSP is readily obtained from ϕSP as indicated in Section 2. This transformation does
not constitute a saddle point approximation: a change of measure does not truncate fluctua-
tions, so that the resulting expressions are still formally exact. Due to the Gaussianity of the
action (5), the importance sampling method then amounts to numerically sampling a modified
functional

〈Ô〉= e−S0[φSP]

∫

Dφe−S0[φ]e−
∫

dtφ(t)·φSP(t)FO[φSP +φ] , (12)

where φ ≡ {φa
x ,i}, φSP ·φ ≡

∑

iax(φSP)ax ,iφ
a
x ,i , and the index x runs over all sets of disentan-

gling fields, e.g. forwards and backwards for local observables.
Eq. (12) can be evaluated numerically in order to compute quantum expectation values,

yielding an importance sampling scheme for the stochastic approach. In practice, one gen-
erates an ensemble of stochastic trajectories ξa

i whose time evolution is determined via the
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SDEs (4) with the modified field φ(t)→ φ(t)+φSP(t). To the best of our current knowledge,
the SDEs (4) can only be solved analytically in certain special cases, such as non-interacting
systems or Hamiltonians made up of commuting terms [24]. Thus, a discrete-time numerical
method is generally needed in order to solve (4). Different numerical integration schemes have
been previously used to this end, including the Euler-Maruyama [23,24,33] and the stochastic
Heun [25, 33, 34] schemes. Here, unless otherwise stated, we use the explicit strong order-1
scheme [33, 35] with time-step ∆t = 0.01, which was found to perform comparatively well.
The numerical time evolution of the disentangling variables ξa

i is known to give rise to di-
vergences whereby |ξ+i (t)| → ∞ at finite t [23]; this issue can be avoided by means of a
suitable reparameterization of the disentangling variables [25, 36]. We explicitly normalize
observables by 〈F1〉φ , which improves the final accuracy [25]. For results obtained as classical
averages of stochastic quantities, we estimate error bars as σ/

p
nB, where σ is the standard

deviation over nB = 5 batches of independent simulations unless otherwise specified.
For definiteness, we will illustrate the importance sampling approach by considering the

quantum Ising model in D spatial dimensions. For a system with N = N1 × · · · × ND sites, this
is given by

Ĥ = −J
N
∑

〈i j〉

Ŝz
i Ŝz

j − Γ
N
∑

j=1

Ŝ x
j − h

N
∑

j=1

Ŝz
j , (13)

where we use D-dimensional spatial indices i = (i1, · · · , iD) with ik ∈ {1, · · · , Nk} and 〈i j〉
denotes pairs of nearest neighbors1. We consider periodic boundary conditions and ferromag-
netic (FM) interactions, J > 0. When D = 1, the model (13) reduces to the quantum Ising
chain, and for h = 0 it can be solved exactly in terms of free fermions, harboring a quantum
phase transition (QPT) at Γc = J/2 in the present units [37]. The Hamiltonian (13) is encoded
in the SDEs (4) with h+j = h−j = Γ/2, hz

j = h [22, 23]. In our numerical results below we set
J = 1 and consider D ∈ {1, 2}, illustrating the applicability of the importance sampling method
to higher-dimensional systems.

4 Local observables

In general, the SP equation (11) must be solved numerically, and the resulting SP field configu-
ration depends on the chosen end time t f , i.e. ϕSP ≡ ϕSP(t|t f ). However, as further discussed
below, for local observables of the form O = 〈Û†ÔÛ〉 the functional equation (11) can be
reduced to a differential equation. The effective action for an observable of this form is given
by

SO = S0[ϕ f ] + S∗0[ϕb] +
1
2

∑

i

ξz
f ,i(t f ) +

1
2

∑

i

ξz∗
b,i(t f )

−
∑

i

log
�

1+ ξ+f ,i(t f )ξ
+∗
b,i(t f )

�

− log F̄O(t f ) . (14)

Eq. (14) features forwards and backwards fields ϕx = {ϕa
x , j} with x ∈ { f , b}, introduced to

decouple the two time-evolution operators in O, and the respective noise actions S0[ϕx] and
disentangling variables ξa

x , j , given by (3) and (4). Eq. (14) is general to spin-1/2 systems
in any dimension. It is apparent that only the last term of Eq. (14) is observable-dependent.

1This model corresponds toJ ab
i j = δazδbz

∑D
d=1 J

d
i j , whereJ d

i j = (δid jd+1+δid jd−1)/2
∏

k 6=d δik jk is the interaction
matrix relative to the dimension d. For this model, if any of the dimensions Nk of the system is a multiple of 4, the
corresponding interaction matrix needs to be regularized by including a diagonal term, which does not affect the
resulting dynamics; see Ref. [24].
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Let us begin by considering the case F̄O = 1, corresponding to the normalization function F1.
Extremization of (14) with respect to ϕa

f ,i(t
′) leads to the SP equation

iJ
∑

bk

[J −1]ab
jkϕ

b
f ,k(t

′)
�

�

�

SP
= −

δξz
f , j(t f )

δϕa
f , j(t

′)

�

�

�

SP
+

2ξ+∗b, j(t f )

[1+ ξ+f , j(t f )ξ+∗b, j(t f )]

δξ+f , j(t f )

δϕa
f , j(t

′)

�

�

�

SP
, (15)

where we used δξa
j /δϕ

b
k ∝ δ jk; explicit expressions for the functional derivatives are given in

Appendix A. Symmetry between the forwards and backwards fields implies ϕa
f ,i|SP = ϕa

b,i|SP =
ϕa

SP,i and similarly ξa
f ,i|SP = ξa

b,i|SP ≡ ξa
SP,i . For ground state expectation values, SP equations

analogous to (15) can be reduced to algebraic ones by considering the infinite imaginary-time
limit [31]; this is however not possible in the present context of real-time evolution. However,
it can be shown that the solution of Eq. (15) satisfies ∂t f

ϕa
SP,i(t|t f ) = 0; see Appendix B. As a

consequence, the end time t f in Eq. (15) can be chosen freely so as to simplify the computation
of the SP configuration. It is convenient to set t f = t ′; the SP equation (15) then readily yields

ϕa
f , j|SP =

∑

k

J ab
jk vb

k , (16)

where the vectors

va
k ≡

1
1+ |ξ+SP,k|2

�

ξ+∗SP,k,
|ξ+SP,k|

2 − 1

2
,ξ+SP,k

�

, (17)

with a ∈ {+, z,−}, feature the normalized expectation values of the spin operators Ŝa
k under

the dynamics induced by the SP field. Eq. (16) is thus equivalent to a mean field condition,
ϕa

SP, j(t) =
∑

bk J ab
jk 〈Ŝ

b
k (t)〉|SP, whereby the effective field acting on each spin is produced

by the magnetization of its neighbors. The above steps should in principle be repeated for
each different observable, adding the corresponding term − log F̄O to the action. However,
for translationally invariant observables it can be shown that the F̄O-dependent term in the
SP equation becomes negligible in the thermodynamic limit; see Appendix C. This makes it
possible to use the SP configuration given by (16) to perform importance sampling for local
observables given a sufficiently large system. These findings generalize the results of Ref. [31],
where it was shown that in the limit of infinite imaginary time the dominant contribution to
ground-state expectation values corresponds to the mean-field ground state. The physical in-
terpretation is analogous: the optimal approximation to the full dynamics of a quantum system
within the manifold of single-spin trajectories, in the spirit of the time-dependent variational
principle (TDVP) [38, 39], is given by mean field. In contrast to TDVP, however, here we do
not restrict ourselves to the optimal trajectory, but perform a sum over trajectories: this re-
stores entanglement, and the resulting time evolution is formally exact. The set of coupled
equations (16) can be solved numerically together with (4); the solution matches the direct
recursive solution of (15), but is much more efficient.

Having obtained the SP configuration from Eq. (16), we can perform importance sampling
according to Eq. (12) to compute local observables. To illustrate the difference in performance
between direct and importance sampling, in Fig. 2 we consider results obtained using the same
numerical solution scheme, discretization time step, and number of simulations. We consider
the longitudinal magnetization Mz =

∑

j Mz
j of a 3×3 quantum Ising model initialized in the

symmetry-broken ferromagnetic ground state for Γ = 0, h< 0, |⇓〉 ≡ ⊗i|↓〉i , and evolved with
Γ = h = 2J , comparing our results to exact diagonalization (ED) performed using the QuS-
pin package [40]. Generating each data set required ≈ 12 minutes on a laptop, using 2 Intel
Core i5 processors with a clock speed of 2.9 GHz. The results obtained using the importance
sampling approach are in much better agreement with ED compared to direct sampling. The
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Figure 2: Time evolution of the longitudinal magnetization Mz of the 2D Ising
model (13) following a quantum quench. We consider a 3 × 3 system initialized
in the |⇓〉 state and evolved using the Hamiltonian (13) with Γ = h = 2J . We com-
pare the results obtained by solving the Ising SDEs (dots) using (a) direct sampling
and (b) importance sampling, showing ED (full lines) as a benchmark. Each data set
consists of N = 104 trajectories. The error bars signal the much stronger and more
rapidly growing fluctuations for direct sampling. The inset of panel (b) illustrates the
exponential growth of fluctuations in the stochastic quantities with time; the solid
red line shows the fit given in the main text.

difference between the two approaches is also reflected in the behavior of fluctuations around
mean values. Due to the strong fluctuations in the direct sampling results, dividing the data set
into small batches leads to an underestimation of fluctuations. Instead, in Fig. 2 we estimate
fluctuations as the standard error σ/

p
N over the full data set, where the standard deviation

σ over N independent simulations is obtained from the standard deviations of the numera-
tor and denominator by using uncertainty propagation [31]. The bars clearly show that the
importance sampling scheme results in a significant mitigation of fluctuations. To investigate
this quantitatively, in the inset of Fig. 2(b) we show the variance σ2

F of the stochastic func-
tion F1 yielding the normalization, whose behavior is representative of all local observables
due to Eq. (7) [31]. Beyond a transient regime, the time evolution of this quantity is well-
approximated by exponential growth, σ2

F (t)∼ αexp(βN t) with α≈ 10−3, β ≈ 1. In contrast,
for direct sampling one has a comparable β ≈ 1 but a much larger prefactor α ≈ 10. Thus,
the importance sampling approach does not eliminate the exponential growth of fluctuations,
but it can suppress by several orders of magnitude the associated prefactor. This allows impor-
tance sampling to access larger systems and later times than it was previously possible using
the direct approach [23–25]. As an example, in Fig. 3 we consider 5× 5 and 13× 13 systems
initialized in the |⇓〉 state and time-evolved using the Hamiltonian (13) with Γ = h= J/4. The
suppression of fluctuations is increasingly effective as the transverse field Γ is reduced and the
classical Γ = 0 limit is approached, as previously reported for imaginary-time evolution [31].
This can again be understood in light of the physical interpretation of the importance sampling
approach, whereby the sampling accounts for the presence of entanglement on top of the op-
timal mean-field trajectory. As a consequence, although the above derivation did not assume
a particular regime, the approach can be expected to be most effective in regimes where mean
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0 1 2
t

0

0.2

M
x
(t
)

ED
IS, 5× 5
IS, 13× 13

Figure 3: Time evolution of the transverse magnetization Mx in the 2D Ising
model (13) initialized in the |⇓〉 state and evolved using the Hamiltonian (13) with
Γ = h = J/4. For a 5 × 5 system we compare the results obtained by importance
sampling (IS) to ED, finding good agreement up to the time when fluctuations be-
come sizable. We also include data for a 13×13 system, for which no ED results are
available. The IS results were respectively obtained from 5× 104 and 105 indepen-
dent trajectories. The error bars show the onset of large fluctuations at t ≈ 2.1 and
t ≈ 1.7 for the chosen physical and computational parameters.

field theory would provide a reasonably good approximation to the true quantum dynamics.

5 Loschmidt amplitude

The importance sampling approach is not restricted to local observables and can be applied
to compute global quantities. As an illustration, we consider the Loschmidt amplitude A(t) ≡
〈ψ(0)|ψ(t)〉, where |A(t)|2 gives the probability for the system to return to its initial state
following unitary evolution for a time t. Since A(t) is exponentially suppressed as N →∞, one
typically considers the rate function λ(t)≡ − log |A(t)|2/N , also known as the fidelity density,
which has a well-defined thermodynamic limit [32]. This quantity has recently received great
theoretical [8] and experimental [41] interest in the context of dynamical quantum phase
transitions (DQPTs), a proposed generalization of equilibrium QPTs whereby λ(t) becomes
non-analytic as a function of time [8,32]. Notably, DQPTs can only occur in the thermodynamic
limit, but signatures of their presence can be observed in large but finite systems [23, 24, 32,
41]. Furthermore, these phenomena typically occur at early times, making them promising
candidates for currently available experimental platforms.

To illustrate how the importance sampling method can be applied to reveal DQPTs, we con-
sider the 2D quantum Ising model (13) with h= 0. This model has a QPT at Γ ≈ 1.523 J [42,
43]. We initialize the system in the symmetric FM ground state |ψFM〉 ≡ (|⇑〉+ |⇓〉)/

p
2, where

|⇑〉 ≡ ⊗i|↑〉i , and consider a quench deep into the paramagnetic phase; the return probability
is then given by

|A|2 = |〈⇓|Û |⇓〉|2 + |〈⇑|Û |⇓〉|2 ≡ |Aud |2 + |Add |2 , (18)

where Û = Û(t) and we used |〈⇑|Û |⇑〉| = |〈⇓|Û |⇓〉| and |〈⇑|Û |⇓〉| = |〈⇓|Û |⇑〉|. DQPTs in
this quantity can be understood as arising from the crossing of the contributions of |Aud |2 and
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Figure 4: Time evolution of the Loschmidt rate function λ(t) corresponding to the
return probability (18) for a system initialized in the Γ = h= 0 ferromagnetic ground
state |ψFM〉 and evolved using the Hamiltonian (13) with Γ = 8J , h = 0. The main
panel shows that the results obtained from the importance sampling (IS) approach
(dots) are in good agreement with ED (full line) for a 5× 5 system. As the system
size is increased, the peak in the rate function sharpens, eventually becoming non-
analytic in the thermodynamic limit; this is demonstrated in the inset, where we
show results for 7× 7 and 15× 15 systems for which ED cannot be performed. The
numerical results were obtained from 5×104, 105 and 106 independent simulations,
in order of increasing system size. The error bars are nearly invisible on the scale of
the plot.

|Add |2. In the stochastic approach, the amplitudes are obtained as A= 〈 f 〉φ with

fdd(t) = e−1/2
∑

i ξ
z
i (t)/2, fud(t) = fdd(t)

∏

i

ξ+i (t) . (19)

The SP equation for each amplitude can be obtained as in (11) and solved numerically to find
the SP field. In contrast to local observables, here the SP field is not equal to the mean field
and the whole configuration depends on the chosen end time t f , ϕSP ≡ ϕSP(t|t f ).

One can then perform importance sampling separately for the two contributions in (18),
using the SP field obtained numerically for each. Fig. 4 shows the results obtained in this way
for systems of increasing size. In the main panel we compare our results to ED for a 5 × 5
system time-evolved with Γ = 8J , finding good agreement. Here we use the stochastic Heun
scheme applied in Ref. [25], setting ∆t = 10−4. Notably, the number of simulations required
by the importance sampling scheme to accurately reproduce the ED result is more than two
orders of magnitudes smaller in comparison to direct sampling using the measure (5) [25].
The inset shows that the peak becomes increasingly sharp as the system size is increased to
7× 7 and 15× 15.

It is known that non-analytic points can also occur in the time evolution of the term |Add |2,
which corresponds to the return probability for a quench from the symmetry-broken initial
state |⇓〉, and the relative rate function λdd = − limN→∞ log |Add |2/N [32]. In contrast to the
previously considered case of a quench from |ψFM〉, such DQPTs cannot be straightforwardly
understood as arising from a sum of competing contributions. However, insights about the
origin of DQPTs in the amplitude |Add | can be obtained from the solution of the SP equation
itself. We illustrate this for the 1D Ising chain, where the exact location of the non-analytic
point can be computed analytically or determined to arbitrary numerical precision using infi-
nite time-evolving block decimation (iTEBD) [12].
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Figure 5: Time evolution of the SP field ϕSP(t) corresponding to the rate function
λdd(t f ) for a quantum Ising chain initialized in the |⇓〉 state and evolved with Γ = 8J ,
h = 0. The red and blue lines respectively show the real and imaginary parts of
ϕSP(t) for different end times t f , where t f corresponds to the point at which each
curve terminates. In contrast to the case of local observables, the SP field shows a
marked dependence on the end time. Notably, the SP field changes abruptly when
the end time is chosen to be near the location of a DQPT at t∗ ≈ 0.397 (vertical
dashed line), with its real and imaginary parts changing sign. The inset shows that
the number NSP of iterations required to solve the SP equation sharply increases in
a region close to the DQPT.

In Fig. 5 we consider the solution ϕSP(t|t f ) of Eq. (11) as a function of the stopping time
t f for a system initialized as |⇓〉 and evolved with Γ = 8J . For this quench, a DQPT occurs at
t∗ ≈ 0.397. It can be seen that the entire SP configuration evolves as a function of t f , with an
abrupt change occurring at t f ≈ t∗ whereby the real and imaginary parts of the SP field change
sign. As shown in the inset, the number of iterations NSP required to recursively solve Eq. (11)
sharply increases in a region near t f ≈ t∗. In particular, we find that the recursive solution
does not converge within 103 iterations for 0.404 < t f < 0.409. Such behavior points to an
instability of the recursive solution in this region, which could be due to the coexistence of dif-
ferent minima yielding a comparable action; the leading and subleading contributions would
then switch at a critical time t∗SP ≈ 0.406. These observations suggest that DQPTs in |Add |2

are associated with an abrupt change of the product-state configuration carrying the largest
contribution to the quantum dynamics, consistently with recent findings [44]. This immedi-
ately generalizes the phenomenology of ground-state QPTs in the disentanglement formalism,
where QPTs are associated with an abrupt change of the dominant trajectory as a function of
a control parameter [31]. Similar switching behavior near DQPTs was previously observed by
considering generalized expectation values in fermionic systems [45]. In the present context,
this phenomenology would not be reproduced if the SP field corresponded to the mean field,
since it is closely tied to the end-time dependence of Eq. (11). The full quantum dynamics,
obtained from sampling, includes the additional effects of entanglement on top of the optimal
SP product-state dynamics. This potentially explains the small difference between t∗SP and the
DQPT critical time t∗: the product-state approximation provided by the SP field can only de-
termine the DQPT location approximately, as a degree of entanglement is always needed to
fully capture these phenomena [44].
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6 Conclusions

In this manuscript, we have introduced an importance sampling scheme for the real-time dy-
namics of many-body quantum spin systems. The importance sampling method is based on
the disentanglement approach, whereby unitary quantum dynamics is exactly mapped to an
ensemble of classical stochastic processes. Quantum expectation values are then obtained as
averages over stochastic trajectories, which can be generated numerically. We have shown that
the dominant contribution to a given observable is given by a saddle point trajectory, which can
be obtained by extremizing an appropriate effective action. By preferentially sampling trajec-
tories close to the saddle point trajectory, it is possible to significantly improve the performance
of the method compared to direct sampling, as we have demonstrated for both local observ-
ables and return probabilities. This improvement in performance is due to a suppression in the
strength of fluctuations in the stochastic quantities, which determines the numerical efficiency
of the method. However, fluctuations are still found to grow exponentially with time and the
system size; while the accessible parameter regions can be extended by using importance sam-
pling, large systems and late times remain challenging to capture. Further progress will thus be
needed in order for the method to access interesting regimes of higher-dimensional quantum
dynamics; several directions for development can be envisaged, including cluster approaches
and the development of approximate schemes that truncate fluctuations. Since the importance
sampling scheme completely eliminates fluctuations in the limit of a Hamiltonian made up of
commuting terms, it would also be interesting to explore its application to higher-spin sys-
tems, where the performance of the approach might benefit from the proximity to a classical
limit. Furthermore, the broader framework introduced in this work might prove useful beyond
its application to importance sampling. In the context of imaginary-time evolution, it has re-
cently been shown that corrections to the mean-field estimate for ground state expectation
values can be analytically obtained order-by-order by viewing the disentanglement approach
as a field theory [31]. A similar development for real-time evolution would make it possible
to systematically include the effect of entanglement on top of the leading-order mean-field
dynamics.

Acknowledgments.— SDN would like to thank S. Begg, M. J. Bhaseen, B. Doyon, V. Gritsev,
C. Mendl and M. Serbyn for valuable feedback and discussions. SDN acknowledges funding
from the Institute of Science and Technology (IST) Austria, and from the European Union’s
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During the preparation of this manuscript we became aware of the work [46], in which
an importance sampling scheme is developed by considering the Hermiticity of the effective
Hamiltonian governing the stochastic evolution; this also leads to an improvement in the ac-
cessible time-scale for a given number of simulations.

A Functional derivatives of the disentangling variables

Here we provide the functional derivatives of the disentangling variables, which can be ob-
tained from the SDEs (4). For clarity we suppress site indices, ξa

i → ξa, since all variables
at different sites are independent. Let us begin from ξ+; differentiating the equation of mo-
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tion (4a) yields

δξ̇+(t)
δϕa(t ′)

= iJδ(t − t ′)
�

δa+ + ξ
+(t)δaz − [ξ+(t)]2δa−

�

+ i
�

Φz(t)− 2Φ−(t)ξ+(t)
� δξ+(t)
δϕa(t ′)

,

(20)

resulting in

δξ+(t)
δϕa(t ′)

= iJθ (t − t ′)
�

δa+ + ξ
+(t ′)δaz − [ξ+(t ′)]2δa−

�

exp

�

i

∫ t

t ′

�

Φz(s)− 2Φ−(s)ξ+(s)
�

ds

�

.

(21)

Proceeding similarly for ξz , Eq. (4b) yields

δξ̇z(t)
δϕa(t ′)

= iJδ(t − t ′)
�

δaz − 2ξ+(t)δa−
�

− 2iΦ−(t)
δξ+(t)
δϕa(t ′)

, (22)

which integrates to

δξz(t)
δϕa(t ′)

= iJθ (t − t ′)
�

δaz − 2ξ+(t ′)δa−
�

− 2i

∫ t

t ′
Φ−(s)

δξ+(s)
δϕa(t ′)

ds . (23)

B Saddle point field for the normalization

The SP equation (15) was obtained by extremizing the action (14) for O = 1 with respect
to the field ϕa

f ,i . Saddle point configurations can in principle depend on the chosen end time
t f , ϕSP,i ≡ ϕSP,i(t|t f ), as is the case in Section 5. However, a recursive numerical solution
of Eq. (15) shows that its solution is independent of t f , which provides a significant simplifi-
cation. In order to show this analytically, we differentiate Eq. (15) with respect to t f , using
the explicit expressions (21), (23). Let us collect into the left-hand side L all terms featuring
explicit derivatives with respect to t f of variables evaluated at times t ′ 6= t f , namely all terms
proportional to ∂t f

ϕa
SP,i(t

′), ∂t f
ξa

SP,i(t
′) with t ′ < t f . This term reads:

L/J =
∑

bk

[J −1]ab
jk ∂t f

ϕb
SP,k(t

′)− 2δa−∂t f
ξ+SP, j(t

′)

+
2ξ+∗SP, j(t f )

[1+ ξ+SP, j(t f )ξ+∗SP, j(t f )]
exp

�

i

∫ t f

t ′

�

Φz
SP, j(s)− 2Φ−SP, j(s)ξ

+
SP, j(s)

�

ds

�

(24)

×
�

�

δaz − 2δa−ξ
+
SP, j(t

′)
�

∂ t f ξ
+
SP, j(t

′) + i

∫ t f

t ′
∂t f
[Φz

SP, j(s)− 2ξ+SP, j(s)Φ
−
SP, j(s)]ds

�

.

The remaining terms are collected into the right-hand side R:

R= 2Φ−SP, j(t f )
δξ+f , j(t f )

δϕa
f , j(t

′)

�

�

�

SP
+ 2

δξ+f , j(t f )

δϕa
f , j(t

′)

�

�

�

SP

×





iξ+∗SP, j(t f )
�

Φz
SP, j(t f )− 2Φ−SP, j(t f )ξ+SP, j(t f )

�

1+ ξ+SP, j(t f )ξ+∗SP, j(t f )
+
∂

∂ t f

ξ+∗SP, j(t f )

[1+ ξ+SP, j(t f )ξ+∗SP, j(t f )]



 . (25)
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Using the equations of motion (4), the right-hand side simplifies to

R=2
δξ+f , j(t f )

δϕa
f , j(t

′)

�

�

�

SP

�

Φ−SP, j(t f )+ (26)

Φ−∗SP, j(ξ
+∗
SP, j)2−Φ

+
SP, j(ξ

+∗
SP, j)

2 −Φ+∗SP, j −Φ
−
SP, j

�

(ξ+SP, j)
2(ξ+∗SP, j)

2 + 2ξ+SP, jξ
∗
SP, j

�

+Φz
SP, jξ

+∗
SP, j −Φ

z∗
SP, jξ

+∗
SP, j

[1+ ξ+SP, jξ
+∗
SP, j]

2

�

.

It is easy to see that the right-hand side R vanishes providedΦ+SP,i = (Φ
−
SP,i)

∗ and (Φz
SP,i)

∗ = Φz
SP,i ,

which, for a Hermitian Hamiltonian (1) such that h+i = (h
−
i )
∗, corresponds to the conditions

ϕ+SP,k = (ϕ
−
SP,k)

∗, ϕz
SP,k ∈ R; the solution for ϕa

SP,k obtained below can be self-consistently
checked to satisfy these conditions. The initial equality is then verified if ∂t f

ϕa
SP,i(t

′) = 0∀ t ′ 6=
t f , so that L also vanishes; a t f -independent solution is thus consistent with Eq. (15). We
therefore arbitrarily choose t f in (15); the simplest choice is given by t f = t ′, which yields:

∑

bk

[J −1]ab
jkϕ

b
SP,k = −

1
2

�

δaz − 2δa−ξ
+
SP, j

�

+
ξ+∗SP, j

1+ ξ+SP, jξ
+∗
SP, j

�

δa+ +δazξ
+
SP, j −δa−(ξ

+
SP, j)

2
�

,

(27)

where the explicit time-dependence has been suppressed, since all variables are evaluated at
the same time t, and we used Eqs (21) and (23). Considering the different cases a ∈ {+, z,−}
readily reproduces Eq. (16), which is consistent with the conditionsϕ+SP,k = (ϕ

−
SP,k)

∗,ϕz
SP,k ∈R.

This can be checked to be a solution of (15) by substitution. For the quantum Ising model, a
direct numerical solution of Eq. (15) matches the solution (16).

C Saddle point field for translationally invariant observables

In the main text we consider the SP equation corresponding to the normalization function F1.
Here we show that, in the thermodynamic limit, the same SP trajectory applies to any other
translationally invariant observable. In general, a local observable is given by

〈Ô〉= 〈F1FO〉φ , (28)

where FO is a classical function determined by the observable Ô. Crucially, FO for translation-
ally invariant local observables is a sum of N terms, each featuring the variables ξa

i at a single
site. For instance, for the z-magnetization Mz = 〈

∑

i Ŝz
i 〉/N one has

FMz = −
1

2N

∑

j

1− ξ+f , jξ
+∗
b, j

1+ ξ+f , jξ
+∗
b, j

. (29)

The effective action for the observable O is given by

SO = S1 − log FO . (30)

Proceeding as for the normalization leads to the saddle point equation for the field ϕ(O)SP, j(t
′)

iJ
∑

kb

[J −1]ab
jkϕ

(O)b
f ,k

�

�

�

SP
= (F1)af , j −

2
fO

δFO
δϕ

(O)a
f , j

�

�

�

SP
, (31)
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where F1 is is the right-hand side of Eq. (15), which gives the SP condition for the normal-
ization. We can thus write

iJϕ(O)af , j

�

�

�

SP
=
∑

kb

J ab
jk (F1)bf ,k −

1
FO

∑

kb

J ab
jk

δFO
δϕ

(O)b
f ,k

�

�

�

SP
. (32)

Consider the second term on the right-hand side: at the saddle point, FO is of order 1, while
for local models the sum only runs over few terms due to the sparse structure of J ab

jk ; each of
these terms is of order 1/N . Therefore, this term does not contribute in the thermodynamic
limit, and, for sufficiently large systems, one can use the SP field obtained by solving Eq. (15)
to perform importance sampling for local observables.
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