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Abstract

We consider the exact time-evolution of a broad class of fermionic open quantum systems
with both strong interactions and strong coupling to wide-band reservoirs. We present
a nontrivial fermionic duality relation between the evolution of states (Schrédinger)
and of observables (Heisenberg). We show how this highly nonintuitive relation can
be understood and exploited in analytical calculations within all canonical approaches
to quantum dynamics, covering Kraus measurement operators, the Choi-Jamiotkowski
state, time-convolution and convolutionless quantum master equations and generalized
Lindblad jump operators. We discuss the insights this offers into the divisibility and
causal structure of the dynamics and the application to nonperturbative Markov approx-
imations and their initial-slip corrections. Our results underscore that predictions for
fermionic models are already fixed by fundamental principles to a much greater extent
than previously thought.
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1 Introduction

The dynamics of open quantum systems is a problem of interest in a range of research fields.
Their higher complexity as compared to closed systems evolving unitarily continues to motivate
the development of new frameworks and approximation schemes to make further progress.
Complementary to this, it has become more important to maximally reduce this complexity
within existing well-developed approaches using basic symmetries and other general struc-
tures, see, e.g., Ref. [1] and references therein. For closed quantum systems, simplification by
exploiting symmetries for some fixed set of system parameters is a highly developed subject
and builds on the unitarity of transformations and the corresponding Hermicity of its gener-
ators. When turning to dynamics of open systems one runs into interesting new problems
because the latter properties are lost in a reduced description.

In this paper we instead consider a different kind of simplification offered by a duality
mapping in which the dynamics of a fermionic open system of interest is associated in a simple
way to the dynamics of a similar system governed by different parameters.
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What is fermionic duality? The idea of the duality mapping is particularly easy to describe
for a closed quantum system evolving unitarily with a time-constant Hamiltonian H. In this
case the mapping explicitly constructs the adjoint Heisenberg evolution (superscript H) from
the Schrodinger one by a substitution of physical parameters:

UH(t) i= eH"t = U (1) = ¢!t = ¢~ 1A = [(¢). @))

We will denote such a parameter mapping by an overbar. In the present simple example of a
duality, the required relation between the Hamiltonian evolution generators,

HY=H=-H, )

is achieved by inverting the signs of all energies H — —H: all local energies, all hopping am-
plitudes and all many-body interactions. To motivate this duality mapping consider the com-
putation of the evolution of an arbitrary state, |[y(t)) = >, [u;)u;(t)(u; |4 (0)) which requires
both the right eigenvectors {|u;)} of U(t) and its left eigenvectors {(u;|}. Equivalently, one
needs the right eigenvectors of U(t) and of U(t) = U(t) where we consider the Heisenberg
evolution “as” a Schrodinger evolution at different parameter values. The duality mapping (1)
makes explicit that these two sets of eigenvectors are related in a simple way through their
parameter dependence allowing unnecessary algebra to be bypassed.

Having outlined the key idea, we immediately observe that for closed systems with time-
constant H this trick is completely pointless because there is an obvious shortcut: the eigen-
vectors of U(t) are time-constant and coincide with the eigenvectors of H = H' which are
related by taking the Hermitian adjoint, (u;| = (h;| = [|h;)]" = [|u;)]". Since [H,U(t)] = 0,
time-dependence arises only through the eigenvalues u;(t) = e~i* where h; are the constant
energy eigenvalues. Also, one may hesitate to work with the Hamiltonian H since it is clearly
unphysical: inverting energies destabilizes any physical system which does not have an upper
bound on its energy spectrum. Notably, for a fermionic system with a finite number of modes
this latter objection is not really an issue since its spectrum is bounded by the Pauli exclusion
principle.

However, when considering an open system with evolving density operator p(t) =
I1(t)p(0) the above mentioned shortcut completely breaks down. Although it turns out that
non-unitary open-system evolutions can still be generated time-locally [2-5] as J,p(t) =
—iG(t)p(t), new problems arise because the generator is a time-dependent, non-Hermitian
superoperator G(t) # [G(t)]" even though the total system evolution is generated by a time-
constant, Hermitian Hamiltonian operator. Physically, these new complications derive from
memory (retardation) and dissipation effects, hallmarks of open-system dynamics. They cause
the left and right eigenvectors of the generator G(t) to be distinct, time-dependent and dif-
ferent from the eigenvectors of the evolution propagator II(t) which is ultimately of inter-
est: [G(t),TI(t)] # 0. This implies that for an open system the transformation between the
Schrodinger and Heisenberg generators is highly nontrivial (Ref. [4], p. 125) unlike the re-
lation (2) for the underlying closed total system. An alternative simple mapping between
the Schrodinger and Heisenberg picture evolution would dramatically simplify time-evolution
calculations by providing a link between the left and right vectors.

Transposing the simple duality mapping for fermions from a closed to an open system
does not seem to be possible at first: it is unclear how to evaluate the average of the simple
relation (1) or (2) over the reservoir degrees of freedom (partial trace), even when making
specific microscopic model assumptions. This is in contrast to other closed-system duality map-
pings [6-8] which are distinct from the one considered here [9]. It is therefore remarkable
that for a very large class of fermionic open systems there does exist a nontrivial and useful
extension of the duality which applies to the reduced time-evolution superoperator II(t). An-
ticipating its later detailed discussion [Eq. (23)], it provides an elegant formula for the adjoint
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Heisenberg evolution analogous to Eq. (1) [10]:

mi(e) .= [1(0)] = e TP P. (3)

Here P is a linear transformation involving the fermion parity. Its presence hints at fermion
parity superselection—forbidding quantum superpositions of states with even and odd fermion
parity—as one fundamental principle on which the duality (3) is based [10]. T is the lump sum
of microscopic tunneling constants—known by inspecting the underlying model Hamiltonian—
and the overbar again denotes a parameter mapping. This generalization of Eq. (1) is truly
dissipative. For example, for a resonant level coupled to a reservoir the parameter mapping
inverts not only the sign of the level energy € and the electrochemical potential u, but also
the dissipative tunnel-rate constant I'. The relation (3) was first derived in Ref. [10] without
making weak coupling and / or “Markovian” assumptions, requiring the techniques of Refs.
[11-14] to explicitly consider all orders of the expansion of I1(t) in the system-environment
coupling. In the following we will denote this direct consideration of the exact propagator I1(t)
as approach (i) to duality.

Applied to weakly coupled but locally interacting open systems, the fermionic duality (3)
has already provided several interesting insights and predictions [10,15-17]. For example, the
time-dependent response of a “kicked” quantum dot with repulsive Coulomb interaction was
shown to exhibit effects of electron-attraction. This surprising effect can be nicely understood
from the duality mapping which involves the inversion of the local interaction parameter as
in Eq. (2). This explains pronounced effects in the measurable time-dependent heat current
which is sensitive to interactions. The same formulas are very difficult to understand directly
in terms of the real repulsive interaction, but are easily rationalized by electron-pairing in-
duced by the attraction in the fictitious dual system defined by the duality mapping. More
generally, the thermoelectric response of a quantum dot—although studied long ago—entails
several features that turned out to have a very simple explanation in terms of an effective
attractive model that is dual to the repulsive system of interest [15,16]. These conclusions
hold even beyond linear response to electro-thermal biases where, e.g., Onsager relations no
longer apply, and the effects can be understood by extending the weak-coupling fermionic du-
ality beyond the wide-band limit [16]. In all these cases, the original system is analyzed by a
dual system, an effective system with at worst unconventional properties. Conversely, it was
also shown that the response of a physically attractive dual system can be understood better
by exploiting its repulsive original system [17]. Thus in the weak-coupling limit the duality
can also be used in reverse.

Extension to other approaches. So far, these applications were in fact all based on a differ-
ent formulation of the duality which we will denote by approach (ii) in the following. It dif-
fers from Eq. (3) by relying on the time-nonlocal quantum master equation (QME) also called
Nakajima-Zwanzig (NZ) [18,19] or time-convolution type QME. By introducing a memory ker-
nel it anticipates the time-convolution structure of the higher-order system-reservoir coupling
terms encountered in the microscopic derivation of the duality [10]. Whereas in the weak-
coupling limit approach (ii) recovers various other types of quantum master equations, for the
interesting regime of stronger coupling it differs in essential points. So far it has remained
unclear what the implications of the fermionic duality are in general for other approaches to
open-system dynamics. This problem is solved in the present paper: besides extending the
propagator approach (i) and the memory kernel approach (ii), we establish the fermionic du-
ality for three additional approaches which are fundamentally different and complementary
as we now outline.

(iii) The Sudarshan-Kraus or measurement-operator approach [20-22]—ubiquitous in
quantum-information theory—also directly addresses the time-evolution superoperator II(t).

4


https://scipost.org
https://scipost.org/SciPostPhys.11.3.053

Scil SciPost Phys. 11, 053 (2021)

However, it is an operational approach which decomposes the evolution into independent phys-
ical processes conditioned on possible outcomes of measurements performed on the system’s
environment. Theoretically, this has the distinct advantage that approximations formulated
in terms of these operational building blocks automatically preserve the positivity of quantum
states, also in the presence of initial entanglement with a reference system (complete posi-
tivity). From these measurement operators acting only on the system one can furthermore
compute the evolution of its effective environment and quantify the exchange of information
as illustrated in Ref. [23]. Barring special limits where simpler Lindblad equations [24, 25]
apply (Markovian semigroups), for most systems of interest the insights offered by this ap-
proach seem practically impossible to gain in other formulations. The same applies to the
so-called Choi-Jamiotkowski state, which is closely related to the measurement-operator sum
by a well-known isomorphism [26-28]. The microscopic calculation of Kraus operators has
received recent attention [29-33] but remains very difficult, motivating our search for analytic
simplifications.

(iv) The time-convolutionless (TCL) or time-local quantum master equation approach [2,3,
34] has the advantage that it allows the Markovianity of the evolution to be scrutinized more
conveniently through the time-local generator G(t) mentioned earlier. It is thus closely tied
to the question of the divisibility of the dynamics [35,36]. In practice, time-local QMEs also
arise naturally from the time-nonlocal QMEs of approach (ii) when consistently accounting for
frequency dependence of the memory kernel in decay problems [37,38]—recently generalized
in Ref. [5]—or in adiabatic expansions for situations with external driving [9,39-41]. The mi-
croscopic calculation of G(t) is, however, very challenging making additional analytic insights
valuable [34,42,43].

(v) The closely related jump-operator approach decomposes the time-local generator G(t)
into “quantum jumps” with intermittent renormalized Hamiltonian evolution occurring at in-
finitesimal time steps. Although this is similar to the measurement-operator approach (iii)
it provides distinct insights by primarily making the conditions for divisibility—rather than
complete positivity—explicit. Importantly, this approach is also at the basis of the success-
ful stochastic simulation method for open-system dynamics [44-51] and includes the familiar
Markovian Lindblad QMEs as a special case. In the present work the jump-operator approach
is particularly interesting because it most explicitly generalizes the closed-system duality (2)
discussed above.

In none of the approaches (iii)—(v) the implications of fermionic duality have been ex-
plored. Doing so is of particular interest since these methods are pivotal for the contin-
ued fruitful application of ideas from quantum information theory to open-system dynam-
ics [4,50,52-56]. One should note that although approaches (i)-(v) are exactly equivalent,
they define completely different starting points for approximations and formal considerations.
Thus, having a formulation of fermionic duality in hand for each case will enable attaining
independent insights. This holds true even when applied to the simplest, explicitly solvable
transport model of a strongly coupled resonant level as was recently highlighted in Ref. [23]
and we will draw on this reference for illustration. Even though this model has been studied
for decades [57] the fermionic duality relations presented here went unnoticed. Importantly,
our results continue to hold for a large class of much more complicated models whose detailed
discussion is however beyond the present scope.

Fermionic duality: Useful but unphysical? Before proceeding it is important to neutralize
two potential points of confusion. An immediate worry is that the fermionic duality for open
systems maps some physical parameters to unphysical values as noted above. In fact, for
open systems the unphysical destabilization of the system by inverting the signs of all local
energies discussed after Eq. (1) becomes more prominent. For one, the duality mapping even
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makes the system-reservoir coupling Hamiltonian anti-Hermitian, Hy — iHy. Although no real
physical parameters become imaginary, this does invert the sign of all dissipative decay rates.
As mentioned, for a resonant level this means that the decay constant is inverted I' — —T.
This does not lead to divergent quantities since in the duality relation (3) the negative decay
rates are explicitly compensated by an exponentially decaying prefactor e '¢. Moreover, in the
weak coupling limit close inspection reveals [10] that one can use fermionic duality to set up
a relation between two dual physical systems which both have nonnegative decay constants
but otherwise different physical parameters. This simplification facilitated the applications
in the weak coupling limit cited earlier. In the present paper we will, however, focus on the
general case of strong coupling where this simplification fails' and this non-physicality must
be confronted.

We will show that the anti-Hermitian coupling Hamiltonian causes the reduced dynamics
I1(t) to violate complete positivity, giving a clear operational meaning to the vague notion of
an “unphysical” system. This is important since it will allow us to identify which contributions
to the evolution of the dual system are unavoidably unphysical, a question that cannot be
answered directly using the original derivation of the duality in Ref. [10]. Instead, by leaving
aside the derivation and only considering the duality relation (3) as such, this paper shows that
the loss of complete positivity is associated with the fermionic parity transformation P, a key
ingredient of the duality. Hence, unlike in the weak coupling limit, the dual evolution has no
statistical meaning anymore and one can no longer refer to an effective, physical dual system
which simulates the original system. Although this may sound disastrous at first, it will become
clear that in none of the discussed approaches these unintuitive features of fermionic duality
limit its practical usefulness. Since in each of these approaches the fundamental property of
complete positivity is expressed—if at all—by different constraints, a careful discussion what
is unphysical about the dual equations will be a recurring side-theme. It will emerge that the
general unphysicality of fermionic duality is instead of an artifact a key feature unveiling its
unconventional insights as compared to ordinary symmetries, see Sec. 6.

To avoid confusion about the domain of applicability we note that the fermionic duality (3)
is primarily important for analytical calculations where one obtains some quantities of inter-
est as functions of physical parameters. By a simple substitution of parameters it allows one
to bypass very complicated and nonintuitive algebra. The ultimate importance of fermionic
duality lies therein that this simplification allows the analysis of physical effects [10, 15-17]
to be pushed much further. Unlike doing algebra, solution by parameter substitution has the
advantage that it preserves the compact form of an expression that has already been calculated,
simplified and physically well-understood. For example, it makes explicit which quantities have
a similar functional dependence: if one knows that some contribution is an exponential func-
tion of time then generically the dual contribution obtained by a parameter substitution is
exponential as well. Loosely speaking, one can thus distinguish individual nontrivial contri-
butions to the dynamics (non-exponential time dependence) from trivial (exponential) ones.
The duality mapping also implies the concept of self-dual quantities: Despite being physical,
such quantities are mapped onto themselves by the generally unphysical duality relation, and
are thereby constrained in ways that are impossible to see with common physical dualities,
symmetries or intuition.

Outline. The outline of the paper is as follows. In Sec. 2 we first consider the simplest, ex-
actly solvable open system that exhibits fermionic duality beyond the weak-coupling limit [16],
the resonant level. This provides the simplest yet nontrivial illustration of the general results
derived in the subsequent sections. In Sec. 3 we consider the fermionic duality in its most
basic form (3) obtained in Ref. [10] as a mapping between the finite-time Schrédinger and

see footnote 20 at Eq. (70).
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Table 1: Duality relations for the approaches numbered (i)-(v) mentioned in the
introduction. By = we indicate equalities that are valid only in the special case
where the evolution commutes with its generator, [G(t), II(t)] = 0, which includes
the weak-coupling limit where I1(t) = e~'9¢ with constant G. Hat denotes the Laplace
transform f(w) = f Ooo dte'“tf(t). Bar denotes the duality mapping of parameters
which effects H - —H, Hy — iHt and u, — —u,. Z is the identity superoperator.

Finite evolution approaches Infinitesimal evolution approaches
Super- (1) Propagator II(t) [Sec. 3.1] (ii) Time-nonlocal memory kernel [Sec. 4.3]
operator () = 11M(t) [K(t)]T = KcH(t)
approaches _ ,Ttp ~
PP =e PP =irZ8()—e " PR(O)P

fit—e")" = (e K(—e) = Ki(w) = iT= P K(w +i1) P

=PH(w +il)P
(iv) Time-local generator [Sec. 4.1]
G(0)" = g"(t) = [y g(om()]’
=ilrZ—PG(t)P
Operational (iii) Measurement operators (v) Jump operators and
approaches [Sec. 3.2] effective Hamiltonian [Sec. 4.2]
M, (t)" = M, (t) T = JH(6) = T (¢)

L) =e TN g () , i}
M =e " Jul8) = (0 = (1) o (0)

H(t) = H(t) = —H(¢)

Heisenberg superoperators. From this we derive a fermionic duality for the set of Kraus mea-
surement operators using the Choi-Jamiotkowski state associated with the dynamics. In Sec. 4
we consider fermionic duality for the infinitesimal-time generators of the evolution, either via
a time-local or time-nonlocal quantum master equation. Whereas the time-nonlocal formula-
tion allows for a solution in the Laplace-frequency domain, the time-local formulation allows
for a further decomposition into jump operators. This leads to some unexpected insights into
the divisibility of the dynamics and its causal structure. Finally, in Sec. 5 we combine these
approaches to gain deeper insight into a generally applicable nonperturbative semigroup ap-
proximation [5, 23] and its correction by an “initial slip”. Here we combine the fermionic
duality with a recently found exact functional relation between the time-local generator G
and the time-nonlocal memory kernel K [5]. In Sec. 6 we conclude and outline directions for
follow-up work. Table 1 provides a guide to the paper by summarizing the duality relations
for all discussed approaches. Throughout the paper we set i = kz = 1.

2 Simple example: Fermionic resonant level

The general fermionic duality is best illustrated for the simple model of a resonant level with
arbitrary tunnel coupling I' to a single reservoir at temperature T and electrochemical potential

u,
Htotzngd+Jdcowb('ubw+\ Z—de(dfbw+b;d), 4
T

where d and b, are fermionic annihilation operators. This gives only a very basic description
of the time-dependent (dis)charging of quantum dot systems realized in a range of heterostruc-
tures including molecular junctions [58-60] and atomic impurities [61]. Because it ignores
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Coulomb interaction effects this model is exactly solvable for strong coupling I' whose effects
are primarily of interest here. Although the solution is known since Ref. [57], several interest-
ing aspects of the dynamics of the density operator p(t) were overlooked until recently [23],
including measurable effects of the breakdown of two different notions of Markovianity. In the
present paper we complement the study [23] by pointing out further interesting properties of
this model which are implied by fermionic duality and which, importantly, turn out to be more
generally valid. For example, the spectral properties of the various time-evolution quantities
of approaches (i), (ii) and (iv) were noted in Ref. [23] to display striking regularities which
could not be rationalized by any symmetry of the resonant level model. The measurement- and
jump-operators of approach (iii) and (v) were likewise found to exhibit a pronounced pattern
and to obey an unexpected sum rule whose form depends only on one microscopic parameter
and time. These formal regularities indicate that there is still more to be said about the physical
properties of this model, for instance, its degree of (non-)Markovianity as introduced below.
As we will see in Sec. 5 this ties in with the practical task of constructing Markovian semi-
group approximations to the solution and their corrections. All these points—and more—will
be explored step by step in this paper.

Physical properties of the dynamics. To appreciate these implications of fermionic duality,
we, however, first need to give a summary of the various analytical forms of the resonant
level model dynamics for later reference. Further details on the latter are given in Ref. [23].
Explicitly, all nontrivial dependence on the level detuning € — u, temperature T and tunnel
coupling T is captured by three related functions of time:

sin((& — u)t)

k() =2T sinh(nTt) ’ )
t
g(t) = J ds e 2K(s), (6)
0
t
p(t) = =" J dse Tt)g(s). @)
0

These functions contain pronounced damped oscillatory contributions at low T. Fortunately
their complicated precise form given in Ref. [23] is not needed here.

We first review how the functions k, g and p encode basic physical properties of the dynam-
ics which will be important later on. For fixed time ¢, the state-evolution map p(0) — p(t) =
[1(t)p(0) has two fundamental properties, namely trace-preservation (TP), TrII(t)p(0) =
Tr p(0) for all initial states p(0), and complete positivity (CP)—reviewed in App. A—which
implies I1(t)p(0) = O for all p(0) > 0. Although TP imposes no restrictions on k, g and p,
the CP property is fully encoded in the range of values that the function p(t) can take at any
time: TI(t) is CP if and only if |p(t)| < 1. This nontrivial constraint is indeed [23] satisfied by
formula (7) for all times t and all physical values of the parameters ¢, u, T, T of the model, as
it should. Depending on these parameters, the dynamics may be Markovian in two different
ways with different observable consequences as we now explain.

(1) The dynamics may be divisible by itself, TI(t) = TI(t — t")II(t"), for all t > t’, which
is the case if and only if the function g(t) = constant for t > 0. Despite the simplicity of
the model, this semigroup-divisibility always breaks down except at resonance, |¢ —u|/T — 0,
where p(t) = 0 (which always holds in the limit of a hot reservoir, T — ©0), or, when the level
is completely off-resonance, |¢ — u|/T — oo, where p(t) = £0O(t) is a step function. Thus,
the dynamics is virtually never Markovian in the semigroup sense and cannot be described
by a Lindblad quantum master equation. The breakdown of this property is witnessed by an
anomalous transient enhanced level occupation when decaying to a more depleted stationary
state [23].
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Figure 1: CP-divisibility for the resonant level model. The maximal value
max,>o|g(t)| is plotted as function of level detuning ¢ — u and temperature T in
units of tunnel coupling I'. Whenever |g(t)| > 1 for some time ¢ the dynamics is not
CP-divisible. The black curve marks where the maximal value equals 1. Note that
max,q |g(t)| depends only on the ratios (¢ —u)/T" and T /T, whereas g(t) like k(t)
depends on all parameters separately.

(2) In a less strict sense, the dynamics may still be divisible as T1(t) = I1(t, t)I1(t") for all
t > t’ by another physical evolution TI(t,t’), a CP-TP map [35,36]. This CP-divisibility turns
out to occur if and only if |g(t)| < 1 for all t. This nontrivial condition is mapped out in
Fig. 1 as function of level position and temperature relative to the coupling energy. One sees
that the dynamics fails to be Markovian in the sense of CP-divisibility whenever the level is
off-resonant by more than the tunneling and thermal broadening, |¢ —u| 2 max{I', T}. For the
resonant level this distinct property can be observed in transport by checking whether there is
no reversal of the measured current as function of time for any initial level occupation [23].

Evolution. Having outlined some of the physics of this model, we now describe how the
functions (5)-(7) explicitly determine the structure of the exact dynamics of p(t). The evolu-
tion can be written in three different ways and features the function p(t) [Eq. (7)]:

M(t) = exp( —i[H, o]t + 3Tt > [1—np(0)] D, ) ®)
3 =
= > m(0)|m(0)((6) €
i=0
= >0 >y, ()M, (£) e My, (£)". (10)
N=0,1n=%

By [H,e] we denote the commutator of the system Hamiltonian? H = ed'd with argument e,
and the dissipator D, will be defined in Eq. (11). Also, we write (Alo = TrA"e and |B) ‘=B
for operators A, B. Throughout the paper we will label each right eigenvector by its eigenvalue
and the corresponding left eigenvector is distinguished by an additional prime as in Eq. (9).
The exponential form (8) is particular to this simple model. Due to the nontrivial depen-
dence of p(t) on time [Eq. (6)] it is not the exponential solution of some Lindblad equation,

2Throughout the paper we consider the action of the map II(t) on arbitrary initial states p(0) since this enables
the techniques of Refs. [11, 13, 14] which lead to the neat exponential form (8), see Ref. [23]. Also, this allows us
later on [Eq. (61)] in the jump-operator approach (v) to generalize Eq. (2) of the introduction. If one restricts the
action of the map II(t) to operators p(0) which are fermionic states commuting with the parity, [ 0(0), (—1)]1=0
(superselection), then the contribution of the system Hamiltonian in Eq. (8) is not relevant in this model. For this
restricted map one can also find a simpler set of measurement operators.

9
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despite the appearance of the familiar dissipator superoperators

Dy = dn’d;_%{d;dn"}’ n=4%+, D

where we defined d, :=d', d_ := d. The more general spectral decomposition (9) is natural
to approach (i). The eigenvalues and their distinct left and right eigenvectors for this model
are listed in Table 2. Finally, the Kraus operator sum (10) of approach (iii) always exists and
in the present case the measurement operators read

Moy (t) = ny/on (D25 dd" + me—i%“dm, My, =d,,  (12)

with nonnegative coefficients
my, (t) = e_%“ [cosh(%l“t) + n\/l + p(t)? sinh(%Ft)zJ , (13a)
ma,(6) = 3(1—e )1 —np(0)], (13b)

and the shorthand

L1 p(t)sinh(3T¢) . an

1
2 2 \/1 + p(t)? sinh(%l"t)2

Quantum master equations. The above dynamics is the solution of the exact time-nonlocal
QME of approach (ii),

v, (t) =

t
i;o(t)=—if dt’K(t—t")p(t"), (15)
dt 0

whose memory kernel features the function k(t) [Eq. (5)],
1
—iK(t) = —i[H,#]8(t) + 3T > [ 6(t) —ne 2"k() | D, . (16)
n

Note that we included the system Hamiltonian H into K and used the normalization

f Ot ds6(s) = 1. Finally, the dynamics is also the solution of an exact time-local QME that
defines approach (iv),

d
2 P= —iG(t)p(t), (17)
with a generator that features the function g(t) [Eq. (6)],
—ig(t) =—i[H, o]+ 3T ) [1—-ng(0)]D, (182)
n
=—i > &i(0)]&(0)(g/(0)]. (18b)

The eigenvalues and eigenvectors in Eq. (18b) are listed in Table 2. Although Eq. (16) and
Eq. (18a) look similar to the exponent of Eq. (8), they involve the three very different func-
tions (5)-(7).

Having summarized the exact equations for this model to be discussed, we note that in
the weak coupling limit it is not difficult to reveal a simple structure. For example, in the
time-local QME (17) one can simplify 1—ng(t) ~ f(n(e —u)/T) where f is the Fermi func-
tion and one then directly derives a fermionic duality relation using the formal replacement
fl(e—=w)/T) > 1—f((¢ —u)/T) as explained in Ref. [16]. However, this is not possible in
the case of arbitrarily strong coupling I" considered here. Thus, despite the simplicity of this
solvable model none of the above representations of its exact dynamics seems to exhibit an
obvious general structure. In the following we will derive such a structure and illustrate it for
each of the above expressions.
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Table 2: Time-dependent eigenvectors and eigenvalues of the evolution I1(t) and its
time-local generator G(t) derived in Ref. [23]. Observe that the eigenvalues are triv-
ial exponentially decaying functions and constants, respectively, fixed by the T = oo
semigroup limit of the model. All nontrivial time-dependence is due to finite-T ef-
fects [23] and enters the dynamics through the functions p(t) and g(t) which appear
only in the eigenvectors of T1(t) and G(t), respectively. Note that here the normal-
ization of the eigenvectors of G(t) differs from the normalization fixed in Egs. (50b)
and (50c). The duality relation for the coherences can be seen from Pldn) = —nldn).

Spectral decomposition of TI(t)

i (mo|  m®  |m©)
0 (1] 1 s[1) +p(0]=1Y)]
1,2 (d“ e(ins—%F)t |d1’7)

3 llED¥=-p@@]] e DY)

Spectral decomposition of G(t)

i (OO RENA0)
0 (1] 0 3[[1) +g(](-1)")]
1,2 (d:]| —ne—i%l" |dT’])

3 (0] —eo)(1]] —iT |(—1))

3 Fermionic duality for exact time-evolution

We now extend the scope to the much broader class of models of the form H,,, = H + Hg + Hy
where only the following assumptions are made: (I) The multiple fermionic reservoirs de-
scribed by Hy are noninteracting with structureless, infinitely wide bands, each one being
separately in equilibrium at the initial time. (II) The coupling to the fermions in the system
(indexed by 1) is bilinear in the field operators, Hy = Y. f dwt, di'(crw + h.c., and indepen-
dent of the energy w of the fermionic modes in the reservoirs (indexed further by r). (III) The
system Hamiltonian H obeys parity superselection, [H,(—1)N]= 0, and as a result so does the
total system. The only microscopic quantity that explicitly plays a role in the fermionic duality
is the lump sum of tunnel-coupling constants over the system and reservoir indices:

Fi=2m» |ty (19)
rl

Here [ (r) includes all relevant quantum numbers (spin, orbital moment, etc.) on the system
(reservoir) which need not be conserved by Hr, unlike the fermion number.

Based on these three assumptions the duality was established in Ref. [10]. However, the
detailed derivation given there does not lead to the insights reported in the present paper. The
conditions (I)-(III) do not help to understand the results obtained here by starting from the
established duality relation Eq. (3). We refer to Refs. [10, 16] for further discussion of these
assumptions and the derivation and to Refs. [10,13-17,62] for numerous detailed illustrations
of how the duality can be technically applied and physically exploited in the weak coupling
limit.

No other assumptions are necessary: in particular, the system, described by H, may consist
of any finite number of levels with any type of multi-particle interaction of arbitrary strength,
including superconducting pairing terms that break particle conservation but preserve parity.
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Also, the magnitude of the couplings, temperatures and electrochemical biases can be arbi-
trary assuming that the employed perturbation series converges. Thus, the following results
apply to a very large class of actively studied models which are relevant to nonequilibrium
quantum-impurity physics, quantum transport and open-system dynamics. We also note that
for weak coupling, the duality relation can be generalized beyond the case of structureless
wide bands [16].

Of central interest is the superoperator II(t) describing the state evolution, i.e., the
Schrodinger propagator,

p() =T1(6)p(0) = Tr {e~ M p(0)pge e:'} (20)

It is obtained by tracing out the fermionic reservoirs, assuming that each of these is initially
uncorrelated with the system and separately in an equilibrium state. The propagator is thus
a function of the parameters specifying the system Hamiltonian H, the coupling Hy, and the
different electrochemical potentials of the reservoirs, collected in u = (u,). This dependence
is important in the following and will be denoted by I1(¢t, H, u, Hy) when required. The de-
pendence on the different reservoir temperatures T, need not be indicated.
The superoperator I1(t)" describes the time-evolution of system observables 4, i.e., the
Heisenberg propagator,
A(t) =TH(DA=T1(t)"A, (21)

such that (A(t)") o0) = (A(D)]p(0)) = (Alp(t)) = (AT) o(t) for expectation values. Here the su-
peradjoint of a superoperator, indicated by bold T, is defined by Tr {A"'(HB )} =Tr {(HTA)TB}
and is of central importance in this paper. It is defined relative to the Hilbert-Schmidt scalar
product between operators (A|B) = TrA'B and therefore distinct from the ordinary adjoint +
of an operator relative to the scalar product between vectors (1)|A¢) = (AT4|¢). For superop-
erators with the special form e — (L e R) of a left and right multiplication by operators L and
R, respectively, the two distinct adjoint operations are related in a simple way:

(LeR) =LTeR'. (22)

In the following these distinctions will be clear in the context and we will talk about adjoints,
eigenvectors, and orthogonality without further specification (“super”). Since generally the
evolution II(t) is a not represented by a normal matrix, [I1(t)",T1(t)] # 0, its left and right
eigenvectors are not simply related by taking the adjoint . As both sets of vectors are required
in the analysis of dynamics, this presents a crucial complicating factor in any (semi-)analytical
treatment of open quantum systems. This is what fermionic duality addresses.

3.1 Evolution superoperator

The fermionic duality establishes a relation between IT%(t) = II(t)" and II(t) evaluated at
different parameter values which is denoted by I1(t). By first explicitly evaluating the wide-
band limit, this relation can be derived within a renormalized perturbation expansion of all
finite-T corrections of the propagator I1(t) around the T — oo limit [10, 13,14]. For the
considered class of models the propagator obeys the fermionic duality relation

() =[] = e TP P (23)
order-by-order. Here T is the lump sum of couplings (19) and the superoperator

P=(—1)"e (24)
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denotes the left multiplication with the system parity operator (—1)" := exp(inN). By the
overbar we denote the following parameter substitution of some function X:

X(H,,U/,HT) :=X(—H,—‘U/, lHT) (25)

For example, for the resonant level model of Sec. 2 this parameter mapping corresponds to
(e,u,T) = (—e,—u,—T) which transforms the functions encoding all nontrivial parameter
dependence as follows®:

k(t) =—k(t), (26)
gt)=e"[—g(t)+ (1 —e)p(t)], (27)
p(t) =—p(t). (28)

The fermionic duality (23) expresses an exact restriction on the possible parameter de-
pendence of T1(t) based only on the quite generic physical assumptions (I)—(III) mentioned at
the beginning of Sec. 3 and two fundamental physical principles, the Pauli exclusion (anticom-
mutation relations) and fermion-parity superselection applied to the total system. One may
think of I1(t) as a continuation of II(t)—considered as function of microscopic parameters—
from a physical domain to a larger domain of unphysical values. This is not uncommon
in physics, cf. for example, the complexification of angular momentum in scattering theory
(Regge theory). In the present case, the system-reservoir coupling Hamiltonian is mapped to
anti-Hermitian values, Hy — iHy. This corresponds* to a Wick-rotation t,;,, — it,;,, together
with inversion of the relative sign between the two tunneling terms in Hy. The fermionic du-
ality is the imprint left behind in the reduced description (after tracing out reservoirs) of the
mentioned physical assumptions and principles (before tracing). It takes the form of a restric-
tion (23) on the continuation beyond the physical parameter domain. It is not required—or
to be expected—that the superoperator I1(t) resulting from the parameter substitution (25)
should be a physical evolution. The construction as a continuation guarantees that I1(t) is still
a TP map, but we will see that it is not CP. Nevertheless, approximations that break fermionic
duality are inconsistent with the physical assumptions and principles governing the underlying
total system, see Sec. 6. After presenting all our results we will compare with other works in
the discussion [Sec. 6].

3.1.1 Cross-relation left and right eigenvectors
We now first explain the usefulness of relation (23), extending the analysis of Ref. [10]. It
implies that if |7Tl-(t)) is a right eigenvector of I1(t) with eigenvalue 7;(t) then

mi(t) =e " ()" (29a)

is also an—in general different—eigenvalue, numbered j # i, with left eigenvector

(/)| = (7P = [P|70)]' . (29b)

Similarly, right eigenvectors are related to left ones by

|7,(0) = P|70) = [(7i(0)|P]'. (29¢)

3Relation (27), written as (1 —e"")p(t) = g(t) + e ' g(t), is obtained by inserting (7) on the left and partially
integrating using p(0) = 0. Relation (28) follows by taking the overbar of Eq. (27).

“The substitution H; — iH; means that we treat the conjugate pair of tunnel constants in
H; = Zrlfdco(trld;cm +thc d) as independent parameters: t, — it but t?, — it", = (—it,))*. This in-
verts the sign of all spectral densities t,,t7,, — —t,t},, determining the decay rates, see Ref. [10].
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Thus, although II(t) is not a unitary matrix [cf. Eq. (1)] its left and right eigenvectors are
nevertheless related by conjugation up to parity signs (P) and a parameter substitution (25)
(overbar).

The duality only ensures proportionality of the vectors in Egs. (29b)-(29c). The propor-
tionality constants were chosen such that binormalization imposed for pair i is preserved for
pair j: (n;.(t)lnj(t)) = (7i(t)|7;(t))* = 1. One is then still free to gauge the right hand side of
Eq. (29¢) by any nonzero time-dependent complex scalar 6;(t) and correspondingly Eq. (29b)
by 1/6;(t). If an eigenvalue happens to be self-dual, 7;(t) = e Tt 7t,(t)*, we have i = j in
Eq. (29a). In this case the gauge freedom is fixed by binormalization (7}(t)|r;(t)) = 1:

(mi(0)] = (m:0P,  |m)= Pla(0),  (30)

1 1
(7:(0)|P|m:(0) (m/(0)|P|7i(1))

with related factors (fci(t)|73|7'cl-(t)) . (Trg(t)lplﬁg(t)) =1.

Table 2 shows that for the resonant level model all eigenvalues are indeed cross-related
by the duality relation (29a). The nontrivial, non-exponential time-dependence is located
in the eigenvectors. The duality relation (29b) now dictates that if the right eigenvector to
eigenvalue 7, (t) = 1 depends nontrivially on time through p(t), then the same must hold
for the left eigenvector to eigenvalue 75(t) = e ¢, see Table 2 and Eq. (28). Analogously,
the time-constancy of the left and right eigenvectors i = 1 dictates the time-constancy of the
i = 2 eigenvectors. Thus, duality provides a fine-grained insight into the location of nontrivial
contributions to the dynamics.

In an analytical calculation of the spectrum of II(t) one may, for example, determine for
each dual pair only one eigenvalue and its left and right eigenvector algebraically, and then ob-
tain the remaining eigenvalues and eigenvectors via a mere parameter substitution [Eq. (25)]
and parity transform P [Eq. (24)]. This is much simpler and, moreover, preserves the com-
pactness of analytical expressions already obtained. For models only slightly more complicated
than the resonant level this already leads to significant simplifications and some surprising in-
sights as shown in the weak coupling limit [10, 15-17].

3.1.2 Constraints on evolution of states and observables

We have seen for the resonant level that the duality (29) dictates that terms with qualitatively
similar time-dependence in the spectral decomposition of I1(t) occur pairwise on opposite ends
of the real part of the eigenspectrum. In the general dynamics,

|p(0) = (D) p(0) = > m(0)] () (=UD]p(0)), (31)
i=0

one pair of contributions is of particular interest.

The right eigenvector to eigenvalue 7, = 1 is a time-dependent fixed point>, H(t)|77:0(t)) =
|n0(t)), which is guaranteed to exist by the evolution’s TP property, (n6|1'[(t) = (n6| writing
(7’[6| = Tr. Often the operator |7r0(t)) is unique and can then be scaled to a positive, trace-
normalized physical state®. For simplicity we assume throughout the paper that the eigenvalue
7o is nondegenerate. The time-dependence of the fixed-point is important and its significance
was recently highlighted [23]: If one initially prepares | p(O)) = |n0(tr)) where the reentrance
time t, > 0 is a parameter, then the nontrivial evolution is guaranteed to exactly recover this
state at the preset time t = ¢, H(tr)l p(O)) = |7‘C0(tr)), even though the environment state for

>For a given time, the fixed point of a dynamical map relates to the disturbance caused by its measurement
operators [63].
6See Chap. 6. of Ref. [64] and discussion in Ref. [23].
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t = 0 generally differs from the one at t = t,.. For the resonant level model this reentrant
behavior signals the breakdown of semigroup-Markovianity [23].

The duality cross-relation (29a) now dictates that the dynamics has another fundamental
eigenvalue 7,(t) = e Tt with trivial time-dependence at the opposite end of the spectrum.

Here we number i = 0, ...,n where n := d? —1 and d is the system Hilbert space dimension.
The right eigenvector |7'cn) = (—1)V is the time-constant parity operator,
n(o)|(—nV) =e ™ |(-1)V). (32)

We note that this follows directly from the fact that the dual propagator II(t) is also a TP
map’, (]llﬁ(t) = (]l| The corresponding left eigenvector can be expressed via the zeroth
right eigenvector, (n;(t)l = Tr{ty(t)(—1)N e}, where 7,(t) denotes the self-adjoint operator
specifying |1"c0(t)). It determines the amplitude in the expansion of the time-dependent state:

|p(0) = |7mo(6) + ... + e T Te{Zo(6)(=1)" p(0)} - [(—1)Y). (33)

Thus, the nontrivial time-dependence of the coefficient of the fast I'-decay is also determined by
the time-dependent non-decaying fixed-point component | no(t)), namely through its functional
dependence on parameters. For semigroup dynamics this coefficient is time-constant, but in
general it is time-dependent, even in the resonant level model, see |7r0(t)) in Table 2. The
result (33) implies that the expectation value of a system observable A can be decomposed into
an instantaneous expectation value in the time-dependent fixed-point state plus corrections:

Ay = A gy + -~ +e  Tr{te(O)(—1)V p(0)} - Tr{A(-1)V}. (34)

The corrections with the fast I'-decay appear only for observables which overlap with the
fermion-parity, Tr{A(—1)"} # 0. Such operators A depend multiplicatively on the occupa-
tions of all fermionic orbitals in the open system, i.e., they probe global correlations within
the system. The above insight into the general dynamics extends the weak-coupling results of
Ref. [16].

3.2 Measurement operator sum

We now turn to an entirely different formulation of the same dynamics which is ubiquitous
in quantum information theory. We can apply this approach here since we are assured that
I1(t)—being the exact evolution—is a CP map®. It can therefore be written in the form of a
Sudarshan-Kraus operator sum [20-22]

() = > ma (M (1) e My ()" (35)

Without loss of generality we choose to normalize the measurement operators using the Hilbert-
Schmidt scalar product, Tr M,,(t)"M,(t) = 1. The coefficients m,(t) are then real and positive
by CB see App. A, and the TP property of II(t) is equivalent to

> ma (M () My(0) = 1. (36)

By taking the trace this implies a scalar sum rule: the coefficients must sum to the Hilbert
space dimension d,

D img(t)=d. (37)

7This follows from [I'I(t)l(—]l)l\’)]T = (]l|731'[(t)Jr @ e_“(]lllzl(t)P = e‘“((—]l)N|.
8The CP property is very difficult to maintain when performing approximations, see Ref. [33] for a discussion
and references.
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Each term in the operator sum (35) describes a physical process in which outcome a is ob-
tained by a measurement on the environment R in some basis. For each different choice of
a basis, there is a set of measurement operators {M,(t)} and thus a different operator-sum
representation. We fix this freedom by considering canonical measurement operators which
are orthonormal, Tr M, (t)"M,,(t) = §,4. If the m,(t) are nondegenerate, this fixes the set
{M,(t)} uniquely up to trivial changes by phase factors which cancel out term-by-term in the
sum (35), see App. A for the case of degeneracy. Importantly, for fermionic systems the oper-
ators must have a definite parity denoted by (—1)"e, i.e., (=1)N M, (—1)N = (—=1)N«M,,, since
the operators describe measurements’.

3.2.1 Cross-relation of Heisenberg and Schrodinger measurement operators

From the operator sum (35) it is easy to find the measurement operators for the Heisenberg
evolution ITH(t) = I1(t)" by using Eq. (22),

()" =D my ()Mo (£)" @ My(t). (38)

To see the nontrivial implication of fermionic duality (23), we insert Eq. (35) and Eq. (38) and
show that the individual terms in the two operator sums must be equal up to a permutation
of the summation index a. This follows most elegantly by the Choi-Jamiotkowski (CJ) corre-
spondence for which the fermionic duality is worked out in App. A. We obtain the key result
that pairs of orthonormal measurement operators with the same parity obey

M (6)" = My (0), (39a)
and their corresponding coefficients fulfill
my(t) = e TH(—1)Nm,(t), (39b)

where a = o’ is allowed. In Eq. (39a) the only freedom left in the relation between the
operators M, and M, is a complex phase factor, which we set to 1.

The fermionic duality relation (39) implies that if a coefficient is self-dual, m, =
e Tt(—1)N«rn ,, the measurement operator is a strongly constrained function: its adjoint must
correspond to dual parameters, M; = M,. In all other cases, for each pair a, a’ of dual co-
efficients one needs to determine only one of the measurement operators, obtaining its dual
operator for free. Thus, very similar to the relation (29) between left and right eigenvectors of
I1(t), the difficult task of analytically finding the measurement operators and coefficients for
nontrivial fermionic open systems is significantly simplified.

3.2.2 Additional fermionic sum rule for measurement operators

Since the dual propagator I1(t) = >, m,M,(t) e M, (t)" is also a TP map, the dual measure-
ment operators also obey a sum rule: Y. ,M,(t)"M,(t) = 1. Notably, this is not an obvious
consequence of the TP sum rule (36) for II(t): inserting Eq. (39) we instead find'® that the

°If the parity is initially definite, [, (—1)"] = 0, then for individual processes conditioned on outcome a, parity
is still well-defined, [M,pM,(—=1)"]= 0. This holds for any p, giving M,(—1)" o< (=1)"M,. Applying this twice
we find that the proportionality constant is some sign (—1)"«. See also App. A.

To this end, multiply ()1 = > mM,(-1)"M] = T (-=1)¥ by (-1)V and use
(—D)NM,(—1)¥ = (—1)"«M,. Note that not every eigenvalue equation I(£)X = > m,M, XM/ = AX can
be converted to a sum rule of this form: it requires that the operator X is invertible and commutes up to a scalar
factor with all measurement operators M, X = k, XM,.

16


https://scipost.org
https://scipost.org/SciPostPhys.11.3.053

Scil SciPost Phys. 11, 053 (2021)

original measurement operators of the fermionic systems must obey an additional, independent
sum rule:

D (1)Namy (M (M () =1 (40)

This shares with Eq. (32) the remarkable feature of depending only on a single detail of the
microscopic model, the lump sum of couplings I', independent of interactions and external
controls such as temperature, and chemical potentials. Unlike the familiar sum rule (36),
the adjoint appears on the right operator and the difference of even and odd parity terms is
constrained to a time-dependent operator.

The trace of Eq. (40) implies an extra scalar sum rule

D 1Nemy () =deT, 41)

where we used that Tr M, (t)' M, (t) = &, for canonical measurement operators. Together
with Eq. (37) we obtain separate sum rules for the coefficients of the even and odd mea-
surement-operators as functions of time:

DA+ ()N Imy () =d 31+, (42a)

DAl — ()M my(6) =d 3[1—e 7] (42b)

Whereas for t = 0 the even operators must contain all the weight to produce I1(0) = 1 o 1, the
even and odd weights coincide in the stationary limit t — ©0, evenly splitting the standard
sum rule (37). In other words, the stationary evolution gives equal weight to parity changing
and parity preserving processes.

For the resonant level model the measurement operators are indexed by a = N1 with level
occupation N = 0, 1 for even or odd parity and y = . The operators (12) and coefficients (13)
have a simple explicit dependence on T', . All nontrivial parameter dependence is contained
in the function p(t) [Eq. (7)] which has a simple transform p(t) = —p(t) [Eq. (28)] under the
parameter mapping (e, u,I') — (—e,—u,—T). Thus, duality strongly restricts the functional
form of the coefficients (13) for even parity, and for odd parity pairs them up:

mon = +e_rtﬁl0n 5 mln = _e_rtﬁll(_n) . (43)

Correspondingly, the even-parity operators (12) are self-dual and the odd ones are dual part-
ners,

- -
MOn - MOn > Mlin - Ml(—ﬁ) ' (44)

The self-duality strongly constraints the coefficients of d'd and dd" inside the operator Mgn:
the substitution (g, u,I’) — (—&,—u,—T') maps the coefficients to their complex conjugates.
We stress that without the unphysical inversion of the decay rates I' — —I'" one cannot explain
this puzzling “symmetry” of this exact result. Furthermore, it is by no means obvious from
the explicit solutions (12)-(13) that the additional simple sum rule (40) indeed holds. Also,
the scalar sum rule (42) implies for fixed level occupation N = 0 or 1 that any nontrivial
time-dependence of the coefficients (13) for n = & must be the same up to a sign. All these
structural features of the measurement operators were left unexplained in Ref. [23].
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3.2.3 Unphysicality of the duality mapping

Of all the approaches to be discussed, the measurement-operator formulation (39) most clearly
reveals that the dual propagator II(t) is unphysical. It is not CP whenever II(t) and ITH(t)
are CP: the fermion-parity signs in Eq. (39b) imply that for operators M, with odd-parity
the coefficients m,, are strictly negative. This means that due to the inversion of coupling
constants, I' — —T, TI(t) cannot correspond to the evolution of any physical system. In the
duality relation (23) this is reflected in the parity transformation P.

We stress that this unphysicality in no way obstructs the derivation of Eq. (23) or its useful
application to physical problems. On the contrary, it makes the duality mapping particularly
interesting: by continuation of parameters to non-physical domains [Eq. (28) ff.] it points
out functional dependencies which are not just physically “unintuitive” but even impossible to
motivate by strictly physical parameter mappings.

4 Fermionic duality for exact quantum master equations

We now consider how fermionic duality constrains equivalent exact quantum master equations
which generate the evolution I1(t).

4.1 Time-local quantum master equation

The dynamics can be described by a time-local QME [5]
d
Eﬂ(t)=—ig(t)ﬂ(t), no)y=1. (45)

Importantly, the time-local generator G(t) is in general time-dependent even though it derives
microscopically from a time-constant Hamiltonian generator H,,, for system plus reservoirs.
The generator of the corresponding Heisenberg evolution acts from the left,

Lt =ighoney’, 46)

in order to generate the evolution of observables (21) as %A(t) = iGH(t)A(t). As a conse-
quence, it is not'! simply equal to the adjoint of the generator:

OB ORIOGIETICH (47)

This difference implies that for open systems one cannot switch from the equation of motion in
the Schrédinger picture, % p(t) =—iG(t)p(t), to the Heisenberg picture, %A(t) =iGH(DOA(D),
without first solving the dynamics. This is a known complication (Ref. [4], p. 125) of the anal-
ysis of open-system evolutions not commuting with their generator [65].

This nontrivial problem—specific to open systems—is solved by fermionic duality and will
play a role in the construction of approximations in Sec. 5. Only in the simple cases where
[G(t),TI(t)] = 0 do we have GH(t) = G(t)". This includes the familiar case of Markovian
semigroup dynamics where a time-constant G generates I1(t) = e~'9t. However, already for
the resonant level model we have GH(t) # G(t)' since time-ordering of the generator matters
except for special parameters (T = ©o or € = U, see Sec. 2).

The adjoint equation LT1(¢)" := ill(t)'G(¢)" suggests to identify G(t)" with the generator. However,
since it acts on the right one verifies that it is not the generator in the equation of motion for an observable
A(t) :=TI(t)"A(0) which is instead G*(t).
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The TP property of the Schrédinger evolution, Tr G(t) = 0, by Eq. (47), corresponds to the
Heisenberg evolution being unit-preserving or unital,

GH(o[1) = ¢ (on|1) = [(1|gn®] =o. (48)

Physically this means that trivial measurements stay trivial.
Taking the time-derivative of relation (23) one obtains the fermionic duality for the time-
local generator:

- T, 5

Gty =) 'g(om(e)] =irz—ra(t)p. (49)
This relation is another key result of the paper which we again stress is exact, in particular,
it is not based on any time-local approximation. It solves the nontrivial task of obtaining the
Heisenberg generator G'(t) directly from G(t), without computing II(t). Already for the res-
onant level model this presents a significant simplification: instead of performing quite some
superoperator algebra'? as required by Eq. (47), we obtain G'(t) by the simple parameter
substitution g(t) — g(t) given in Eq. (27).
4.1.1 Cross-relation left and right eigenvectors of the generator

The time-local fermionic duality (49) immediately implies that if |gi(t)) is a right eigenvector
of G(t) with eigenvalue g;(t) then

gi(O)=[ir-g(©O] (50a)
is also a—generally different—eigenvalue g; with left eigenvector
o i
"2 (gl(0)] = (g(o)|Pr(o) ! =M™ Pzi(0) ] - (50b)
Similarly, for right eigenvectors:
_ _ il
eT2|g(1)) = (0P| 2/() = [ (g/(0)]|Pr() ] . (500)

As before [Eq. (29) ff.], the proportionality factors were chosen to ensure that the binormaliza-
tion of pair i is passed on to pair j: (g;(t)lgj(t)) = (g!(1)1g;(t))* = 1. For self-dual eigenvalues
gi(t) = [il' — g;(t)]* biorthonormality (g/(t)|g;(t)) = 1 implies

1
(0| = g (O|PI() ™, (51a)
S N O CRI0 )
1
(D)= (t)P|g;(1)), (51b)
|&:(0) EOOPEO) (OP|z/(0)

where (gi(t)lPH(t)_llgi(t)) . (g{(t)lH(t)Plgi'(t)) = 1. It is expected that fermionic duality
takes a more complicated form here since the generator G(t) incorporates a great deal of the
complexity of the solution I1(t) into the QME (45) in order to eliminate the memory integral
of QME (15). In this respect, the simplicity of the eigenvalue duality (50a) is surprising and
presents a definite advantage for analytical calculations. It generalizes the relations of Refs.
[10,16] which for weak coupling imply that I is always the largest decay rate [16].

As expected the cross-relation (50b)-(50c) of the eigenvectors is more complicated due
to the involvement of TI(t). Only the special case [G(t),II(t)] = O leads to a simpler dual-
ity relation G(t)" = iT'Z — PG(t)P that directly relates left and right eigenvectors of G(t):

2Insert Eq. (8) and use PD:;P =-D_,—Z,[L,D,] =0, [L,11] = 0 and the general relations L' = L, and
PLP =L.
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(g]’.(t)l = (gi(t)|73 and |gj(t)) = Plg’{(t)). This includes the Markovian-semigroup limit with
time-constant G, recovering the weak-coupling results of Ref. [16].

Table 2 shows that for the resonant level model, the eigenvalues of G(t) indeed satisfy
the cross-relation (50a). Yet, since [G(t),II(t)] # O for this model, the eigenvector rela-
tions (50b)-(50c) remain nontrivial: their verification requires the transformation (27) of
the function g(t) and some algebra to verify Eq. (49). We note that G(t) and its eigenvectors
also satisfy another, simpler relation which is, however, specific to the model and not related
to general principles, see App. B.

4.1.2 Constraints on time derivatives of states and observables

Analogous to the fermionic duality (31) for the propagator, its time-local version (49) provides
general insight into where nontrivial (non-exponential) contributions occur in the dynamics.
In this case it concerns the time-derivative of the state:

dt|p () = ~6(ON(0)]p(0)) (52a)
=—i > g(0)]&(0) ((O]1(D)|p(0)) (52b)
=—ie 2> gi(0)] (D) (80| P|p(0)). (520)

ij

The prime indicates that we sum over pairs of dual eigenvalues i and j keeping only one term
for self-dual ones. Here there is a catch because the evaluation of Eq. (52c) requires that the
normalization of | gi(t)) is known, which we implicitly fixed in the duality relation Eq. (50).
This is not an issue for two important contributions which we now discuss.

The first one is the missing contribution: the time-dependent zero-mode of the generator,
g(t)lgo(t)) = 0. Such a right eigenvector with eigenvalue g,(t) = 0 always exists since by
trace preservation (g(’)lg(t) = 0, writing (g6| =Tr= (ngl. At finite times |g0(t)) is distinct
from the time-dependent fixed point |7r0(t)) of TI(t) [Eq. (31)], even though asymptotically
both converge to the stationary state | p(oo)) = | go(oo)) = ITEO(OO)) whenever it is unique!®.
In fact, for the resonant level | go(t)) even fails to be a positive operator in time intervals where
|g(t)| > 1 [Table 2], which happens precisely in parameter regimes where the dynamics is not
CP-divisible shown Fig. 1. In contrast, |n0(t)) is always positive since |p(t)| < 1 for all t, see
Sec. 2.

The fermionic duality (50a) implies that there is another fundamental contribution to
Eq. (52c) with eigenvalue g,(t) = —il at the other end of the spectrum. Remarkably; it only
depends on T and its right eigenvector does not depend on any microscopic detail:

G(O)|(—=1)V) = —ir|(-1)"). (53)

This follows from |gn(t)) = eFt/ZH(t)l(—]l)N) = e_“/zl(—]l)N) [Eq. (32)]. Note that this
also follows from the fact that G(t) generates a TP map, (]1|g’ (t) = 0. The corresponding left
eigenvector is (g;(t)| = e T2 Tr{g,(t)(—1)NTI(t) e} [Eq. (29b)] where g,(t) denotes the
self-adjoint operator specifying |g0(t)). It inherits the parameter dependence of the zero-mode
which in general is complicated,

felp(0) = = T| (1)) (& (D] P|p (@) + ... (54)

For the time-derivative of the expectation value of an observable A the nontrivial time-dependent
prefactor of the I'-decay rate,

LA = —e T T TH{AC-DV} - Te{go (1N p(0)} + ... (55)

13This agrees with the stationary state obtained from the memory kernel, |IA<0(O)) = | go(oo)) [Eq. (79].
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is completely determined by the parameter dependence of the zero-mode of the generator, | go),
the missing term in the expansion (52c).

This remarkable structure is a generalization of the weak-coupling result of Ref. [16] which
introduces a new distinction: whereas the fixed-point of II(t) determines this fast contri-
bution to p(t) and expectation values (A)(t) [Eq. (34)], it is the distinct zero-mode of G(t)
that determines the fast contribution to %p(t) or currents %(A)(t) [Eq. (55)]. Whereas for
[G(t),T1(t)] = 0 (including Markovian semigroups) the fixed point and zero mode coincide
at any time, they are in general different, |7"7:0(t)) # |g0(t)). This illustrates that fermionic
duality leads to independent insights when formulated in complementary approaches.

For the simple resonant level model this leads to an interesting insight into the transport
current by taking A = N, the level occupation operator. Using Eq. (52¢) one can verify that the
omitted terms in Eq. (55) are zero because (N|g;(t)) = 0 except for j = 3. The normalization
of the eigenvector |g3(t)) can then be calculated'# by taking the trace of Eq. (50c) and we
obtain from Eq. (55)

LNy =Te T 3 [&(t) + (=1)N|p(0))] . (56)

Thus, the observable transport current is automatically decomposed in two contributions of
which one is a trivial exponential decay depending on the initial state through %((—]I)N lp(0)) =
% — (N)(0). All nontrivial time-dependence is captured by the single function g(t) from the
generator G(t) but evaluated at dual parameters. Note that this relation does not follow from

Eq. (34) unless one laboriously uses identities connecting the nontrivial functions g and p.

4.2 Jump operator sum

As mentioned in the introduction, a distinct advantage of the previous time-local QME ap-
proach is that it connects to the divisibility properties of the dynamics (Markovianity). These
are, however, only revealed when decomposing the generators G and G"(t) [Eq. (47)] ap-
pearing in the time-local fermionic duality (49) into jump-operator sums, analogous to the
decomposition of T1(t) into a measurement-operator-sum.

4.2.1 Causal and anti-causal divisibility

This approach requires some preliminary discussion. We first note that the Hermicity- and
trace-preservation properties of the dynamics alone already imply the following structure of
the generator [App. C] due to Lindblad, Gorini, Kossakowski and Sudarshan [24,25]

—iG(t) = —i[H(t),*] + Y . jo(t)DL(t). (57)

The dissipators D, (t) = Ja(t)OJa(t)T—%{Ja(t)TJa(t), 0} contain jump operators J,(t) and are
weighted with real coefficients j,(t) which we assume to be nondegenerate, see App. C for the
degenerate case. Their structure guarantees that the generated dynamics is TP (Tr D,(t) = 0).
The coefficients j,(t) need not be positive, in contrast to the coefficients of measurement
operators [Eq. (37)]. The effective Hamiltonian H(t) is Hermitian but differs from the bare
one, H, which we indicate by the time argument.

Similar to the measurement operators [Sec. 3.2], we eliminate gauge freedom by working
with canonical jump operators, which are orthonormal, both mutually TrJ,,(t)"J p(t) = d4p
and to the identity, TrJ,(t) = 0. Importantly, the canonical jump operators J,(t) have a defi-
nite parity (—1)e, i.e. (—1)NJ(t)(=1)N = (—=1)NeJ,(t) and the canonical effective Hamilto-
nian has even parity, (—1)VH(t)(—=1)N = H(t) [App. C].

14In this case we can circumvent the calculation of I1(t) in Eq. (50c) because we only need the normalization of
|g0(t)) which can be fixed using the known left eigenvector (IL |l'[(t) = (ILI
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Figure 2: Regions of causal and anti-causal CP-divisibility for the resonant level
model. The Heisenberg jump rates j?(t) = %[1 —ng(t)]T are positive if and only
if |g(t)| < 1. (a) max,>q |g(t)| as function of level detuning £ —u and temperature T.
The black line marks max,>( |g(t)| = 1, forming the boundary of the anti-causally
divisible region. The dashed line limits the causally divisible regime by marking
max,sq |g(t)| =1, see Fig. 1. (b) Continuation of max,-q |g(t)| from physical (I' > 0)
to dual parameters (I’ < 0) shows the connection of causal and anti-causal divisibility
revealed by fermionic duality. In (a) this connection is hidden in the T /T' — oo limit.
At resonance (¢ = u) the evolution is a semigroup which is trivially both causally and
anti-causally divisible. As one tunes further away from resonance, the evolution first
looses the anti-causal and then the causal divisibility. For T < I'/(27) (white re-
gions) max, |g(t)| = oo, reflecting that the stationary limit of GF(t) does not exist
even though the limit IT"(o0) is well defined. This is a peculiarity of the time-local
description.

The dynamics is CP divisible, II(t) = II(t, t")II(t") for all 0 < t’ < t < oo, if and only if
the condition’® j,(t) = 0 holds for all @ and t > 0 [35,36]. In this case the jump operators
have an operational meaning: J,(t) is a measurement operator for outcome o measured on
the environment with infinitesimal probability j,(t)6t > 0 during infinitesimal evolution. For
example, in the resonant level model, the two jump rates j,(t) = %[1 —ng(t)]T are positive
if and only if |g(t)| < 1 which holds true for the parameter in the divisible region mapped
out in Figs. 1 and 2(a). In this case the corresponding odd-parity jump-operators J,, = d,
[cf. Eq. (11)] represent a jump of a particle to or from the level induced by a measurement
in the environment in an infinitesimal time 6¢t. The effective Hamiltonian coincides with the
original one, H(t) = H = ed'd [Eq. (18a)]. The relation to stochastic simulation methods will
be discussed in Sec. 6.

Divisibility also has a clear operational meaning in terms of a simulation task. The con-
dition states that the full evolution up to time t can be simulated by stopping the evolution
earlier at t’—decoupling and discarding the environment—and then applying to the output
some postprocessing device described by II(t,t’). Such a physical device exists if and only if
the latter is a CP map, see Sec. III of Ref. [23] for a discussion. If such a simulation is possible
for every t” and every t, then I1(t) is called CP divisible. This indicates that the input-output
correlations of the dynamics are weak. For this purpose we only need to inquire into the

151f G(t) satisfies this condition of CP-divisibility, it implies that I1(t) = II(t,0) is CR Note that if G(t) does not
satisfy this condition, it is not known which sufficient conditions the J,,(t) and j,(t) should satisfy to ensure that
I(¢) is CR
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possibility of such a simulation, not its implementation.
To derive a fermionic duality for jump coefficients and operators, we need to decompose
the Heisenberg generator G'(t) appearing in Eq. (49) in a similar way,

iGH(0) = i[HY(0), ]+ > j(6)DI(0), (58)

with Hermitian HY(t). The different structure of the Heisenberg dissipator, DI;(t) =
J f(t)OJ(If(t)T—% {J (I;I(t)J(If(t)T, 0}, now ensures that the Heisenberg evolution is unit-preserving
[Eq. (48)]. Moreover, the coefficients jg(t) are distinct from the j,(t) and related to a differ-
ent type of divisibility: jg(t) > 0 is the condition'® for what can be called anti-causal CP
divisibility of the state dynamics, I1(t) = I1(t")I1,(t,t") for all t’ € [0, t] by some CP-TP map
I1,(t, t") on the right, in contrast to the usual division of the dynamics by postprocessing to the
left. Whereas semigroup dynamics is both causally and anti-causally CP divisible, this does not
hold for more general dynamics as studied here. For the resonant level model the parameter
regime of anti-causal divisibility is mapped out in Fig. 2(a) and does not coincide with the
regimes of causal divisibility.

The operational meaning of anti-causal divisibility becomes clear when viewed as a simu-
lation task: The condition states that the full evolution II(t) up to time t can be simulated by
preprocessing its input by some device described by I1,(t, t'), and then afterwards running the
evolution I1(t") only up to time t’. Also here, a physical preprocessing device exists if and only
if T, (t, t") is a CP map. If such a simulation is possible for every ¢’ and every t, the evolution
can be called anti-causally CP divisible. This indicates that the input-output correlations of
the dynamics are weak and additionally that the causal ordering is weak, i.e., the dynamics is
robust against interruption at t’ and reversal of causal ordering. As for causal divisibility, we
only inquire into the possibility of such a simulation, not its implementation.

These two types of divisibility are not related in an obvious way. It is in general possible
to express H'(t), JI(t) and j¥'(¢) in H(t), J,(t) and j,(t) using the measurement operators
M, (t) and m,(t) of the solution of the dynamics I1(t). However, just like the relation between
G(t) and GH(t), this relation is highly nontrivial whenever [G(t), II(t)] # 0. As a result, anti-
causal divisibility cannot be easily related to causal divisibility. The fermionic duality for jump
operators solves this nontrivial problem by relating the two jump operator sums, as we will
explain below.

4.2.2 Fermionic sum rule for jump operators

To derive the duality relation for the jump operator sum, we first note a special implication
of Eq. (49), the exact fermion-parity zero mode of G(t), Eq. (53). This is equivalent to a
fundamental sum rule for the jump operators:

P AGIEAORAGEICINGINGUESE S (59)

This is remarkable since in general the jump operators are not constrained by any sum rule
independent of model details, and here the only such detail is the lump sum T'. Taking the
trace, we find that the time-dependent coefficients j,(t) of the odd-parity jump operators sum
to a constant,

D lja(0)3[1— (1] = dr, (60)

leaving the even parity jump coefficients unrestricted. Although Egs. (59) and (60) are clearly
analogous to the additional sum rules (40)—(41) and originate from the same fermionic duality

161f GH(t) satisfies this condition, then it implies that I1(t) = IT,(t, 0) is CR

23


https://scipost.org
https://scipost.org/SciPostPhys.11.3.053

Scil SciPost Phys. 11, 053 (2021)

relation they are not simple consequences of each other. In the resonant level model there are
only odd-parity jump operators [Eqgs. (11) and (18a)] and the fermionic sum rule for jump
operators (59) is obeyed, Zn jn(t)[d:;dn + dnd;] = I'll, which in this case is a multiple of the
scalar sum rule (60), Zn jn(t)=T.

4.2.3 Cross-relations between Heisenberg and Schrédinger jump operators

Inserting Eq. (57) into Eq. (49) and using the fermionic sum rule (59) we obtain'” GH(¢) in
the form (58) where the effective Heisenberg Hamiltonian equals minus the Schrédinger one
evaluated at dual parameters,

HY(t)=—H(t). (61a)
We thus explicitly recover the closed-system fermionic duality (2) extended nontrivially by the
inclusion of the time-dependent renormalization by the environment (H(t) # H). In close
analogy to the measurement-operator duality (39), the Heisenberg jump operators are related
pairwise to Schrodinger jump operators at dual parameters:

Jo () =Jo(0), (61b)
whereas their corresponding coefficients obey
Ja ()= (=1 (6). (61c)

This duality relation implies that the distinct anti-causal divisibility of the dynamics
(all jg(t) > 0) can be decided by the parameter dependence of the coefficients determining
the causal divisibility properties (all j,(t) > 0). For the resonant level model, this is achieved
by simply replotting Fig. 2(a) in units of temperature while varying the coupling I' as shown in
Fig. 2(b). The continuation of the causal divisibility boundary to negative coupling I' precisely
gives the anti-causal divisibility boundary that was shown in Fig. 2(a).

The duality relation (61c) tells us precisely when causal and anti-causal divisibility co-
incide: j,(t) > O for all @ must imply (—1)N«j, > 0 and vice versa. This imposes a very
strong constraint on the parameter dependence of the dynamics. This always holds when the
evolution commutes with its generator, which includes the case of Markovian semigroup evo-
lutions. We then have G¥(t) = G(¢)', implying by Eq. (22) that H(t) = H(t), JH(t) = J,(6)"
and jg(t) = j,(t). Moreover, Eq. (61a) becomes H(t) = —H(t): the effective Hamiltonian is
constrained to change sign under the duality mapping. In this case equation (58) additionally
strengthens to a cross relation between the jump operators of G(t) alone: J,(t)" = J,(t) and
their coefficients j,(t) = (—1)N«j,(t). This extends the results of Ref. [16] for the weak-
coupling generators G in Lindblad form (57).

Beyond this trivial case the two types of divisibility need not coincide, as evidenced by the
resonant level model [Fig. 2(a)]. Thus, fermionic duality strongly suggests that anti-causal
divisibility generically differs from causal divisibility by an explicit strong constraint on model
parameters. This is in line with the general intuition that this type of divisibility addition-
ally requires weak causal ordering of the dynamics and is thus a more fragile property. This
motivates further investigation, for example in relation to recent work on causal ordering in
quantum information theory [66,67].

We stress that although the duality relations (39) and (61) have a common origin, for gen-
eral dynamics one cannot derive the jump-operator duality by using the trick of “linearizing”
the measurement operators in Eq. (39) as it is possible in the Markovian semigroup limit [68].
The analogy between (39) and (61) is best seen in the Choi-Jamiotkowski correspondence to
G(t) (instead of TI(t)) as discussed in App. C.

7In Eq. (49) the parity transformation P e P inverts the sign of the odd parity jump coefficients in Eq. (57).
Combined with the I'-shift in Eq. (49) it transforms the trace-preserving property of G(t) into the unit-preserving
property of GH(t) as it should.
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4.2.4 Unphysicality of the duality mapping

To conclude we verify that G(t) is the generator of the dual evolution I1(t): using Eq. (23)
and (49) we find )
L1I(t) = —iG(O)T(t). (62)

What is interesting here is that G(t) generates I1(t) in the same causal order as the Schrédinger
evolution TI(t). On the other hand the dual propagator I1(t) is related to the propagator in the
Heisenberg picture IT7(t) = e T*PII(t)P. This implies that G(t) is related to the generator
GH(t) acting from the left in the Heisenberg evolution [Eq. (46)] and not to G(t)' acting
from the right. This explains why in Eq. (61c) the jump-coefficients j,(t) are related to the
coefficients jaH(t) characterizing the anti-causal divisibility of the evolution [Eq. (58)] and not
to the j,(t) describing ordinary causal divisibility. Note that the generator G/ builds up the
Heisenberg evolution in anti-causal order in contrast to G'. These observations are gratifying
since they tie the physical divisibility properties of the dynamics to a key step in the derivation
of the duality (23), the formal reversal of the causal ordering [Eq. (S-71) of Ref. [10]], within
a completely different formalism.

We also observe that the relation between IT%(t) and I1(t) is reflected by their generators
appearing in the duality (49). Written as jump operator sum similar to Eq. (58), the dual
generator reads

—iG(t) = —i[A(t), o] + Y, ja()Du(t). (63)

The TP property of II(t) corresponds to Tr G(t) = 0 which is ensured by Eq. (53). In Eq. (63)
this property is ensured by the causal structure of the dual dissipators D,(t) =
J,(t)eJ,(t) — %{J_a(t)'rja(t), e} which differs from the Heisenberg dissipators DH(t) by the
position of the adjoint in the anticommutator [cf. Eq. (58) ff.].

Even though G(t) has the causal structure and the TP property of a Schrédinger picture
generator, we know that the dynamics I1(t) it generates is never CP [Sec. 3.2.3]. This general
conclusion is not readily seen from the jump expansion (57) of G(t), which is tailored to reflect
divisibility properties.'® However, it can be seen in the special case where G is time-constant:
then I1(t) = et is CP-TP if and only if j, > 0. Since in this case we also have j, = (—1)"j,,
[Eq. (61) ff.] this implies j, < O for all odd-parity jump-operators and thus the generated map
I1(t) = e7'9 is not CP

4.3 Time-nonlocal quantum master equation

We now turn to the expression of fermionic duality in the last approach discussed in this
paper, which will be particularly important for the application in Sec. 5. We now exploit that
the evolution II(t) is also the solution of the completely different time-nonlocal QME

d t
—II(t) = —if dt'KK(t — tHII(t"). (64)
dt 0

In contrast to the time-local QME (45), its convolution structure matches the one obtained in
the microscopic derivation of the evolution [10-14,18,19]: the propagator decomposes into a
geometric series of convolutions of memory-kernel blocks —i}C(t —t”) of duration t —t’, giving

a self-consistent Dyson equation: denoting (f * g)(t) = fot dt’f(e—t)g(t),

N=ZT4+IZx(—iK)«ZT+IT*x(—iK)*«Tx(—i)+«Z+...=Z+T*(—iK)*II. (65)

8For time-dependent generators which commute with the evolution, [G(t),TI(t)] = 0, we still have a direct
relation j,(t) = (1)« j,,(t). If TI(t) is CP-divisible, i.e., j,(t) = O for all t > O then j,(t) < O for all odd-parity
operators. As mentioned in footnote 15 this does not allow to infer whether II(t) is CP or not. If II(t) is not
CP-divisible, the signs of j,(t) are unrestricted and we cannot conclude either.
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Taking the time derivative gives Eq. (64) [Eq. (15)].

By definition we included the time-local closed-system dynamics L. = [H, ] into the mem-
ory kernel K(t) = L 6(t) + K'(t) with the normalization f Ot ds 6(s) = 1. Using the adjoint of
Eq. (64) and (65) we obtain the time-nonlocal Heisenberg QME

t
in(t)’r = iJ de’'K(t—t) (), (66)
dt 0
noting that under the convolution one may commute'® TI(t") and K(t —t").

Inserting the propagator duality (23) and Eq. (64) on the left-hand-side of Eq. (66) we
obtain the fermionic duality for the memory kernel

(K] =irzs(6)—e PR P. (67)

For the resonant level model the memory kernel (16) indeed obeys this relation: this follows
from the parameter dependence of the nontrivial function k(t) = —k(t) [Eq. (26)] and the
parity transformation of the dissipator PDZP =-D_,—T.

4.3.1 Complex-frequency representation of dynamics

An advantage of the time-nonlocal QME (64) is that it allows a particularly simple explicit
expression of T1(t) in terms of the Laplace transform /C(w) := f Ooo dte''K(t) of the memory
kernel which facilitates further analysis:

i

H(CO): w_—m

(68)
Laplace transforming relation (23) gives the fermionic duality in frequency-domain reported
in Ref. [10]: R

(w)" =POGT - w*)P. (69)

This relates I1(w) and II(w) in complex-frequency regions where either both their Laplace
transforms converge, or in regions where both are defined by analytical continuation. The
mapping of the complex frequency argument reverses the real energy part of w, while main-
taining the sign of the dissipative imaginary part of w up to a shift iI" into the upper half plane.

The fermionic duality for the frequency-domain memory kernel has the same structure:2°

K(w)f = il'T — PK(T — w*)P. (70)

4.3.2 Unphysicality of the duality mapping

While the above discussed operational approaches concern algebraic properties at each in-
stance of time, the analytical structure of the memory kernel makes explicit how physical prop-
erties evolve in time. This makes fermionic duality in the frequency domain of independent
interest (see below). It also reveals another way in which the dual propagator is unphysical as
follows. Since a physical evolution II(t) in general shows oscillations and decay or a combi-
nation thereof, its Laplace transform converges only for complex frequencies in the upper half
plane. The obtained function I1(w) has a unique extension to the lower half plane where in

“The identity K * II = TI x K follows from the two ways of writing the Dyson equation,
O=T+Z+(—iK)«sU=T+0x(—iK)*xZ=T+7TZx*[Ilx(—iK)] and taking the time derivative.

201n the weak coupling limit T enters in K(w) only as a prefactor, K(w) o< T. In this case it is possible to consider
a physical dual system without inversion of the coupling T by directly including the sign change of K in a modified
duality relation [10,16,17].
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Figure 3: Resonant level model for strong coupling and detuning e—u = I'/2. Plotted
is the modulus of the complex valued matrix element (0|I1()|0) in units of T' in the
complex frequency plane where |0) = |0)(0| denotes the unoccupied state. (a) Finite
temperature T = I'/4: distinct from the two infinite sets of equidistant poles there
are four poles (marked x) at w = 0, w = —il' and w = & —il'/2. The last two poles
are not visible here but appear in other matrix elements. (b) For T — 0 two branch
cuts develop from the sets of equidistant poles. At resonance (¢ —u < T) these poles
(branch cuts) cancel exactly leaving just a single pole at —iI' whereas off-resonance
(e —u > T,T) they move to the sides where they become suppressed in amplitude.
Only in these two limits four poles remain and the dynamics is a semigroup [23]. For
T — oo the first case always applies.

general it has both poles and branch points. This is illustrated for the resonant level model in
Fig. 3. Integrating along any clockwise oriented contour C enclosing the poles and branch cuts
(parallel to the imaginary axis) gives the general solution for the real-time evolution [11,12]:

I(t) = f d—we—iwfﬁ(w) = —iZRes[ﬁ(wp)e—i%f] +f de e (w),  (71)
¢ 2’ 5 be 2n
where Res f(w,) denotes the residue of f(w) at w = w,. In view of our later application
in Sec. 5.2, we note that the first term on the right hand side of (71) sums up contribu-
tions from two types of poles: those that arise due to the frequency- dependent eigenvalues
fti(w) =1i/[w— k; :(w)] obeying the pole equation k; i(wp) = w, where k; ;(w) is an eigenvalue
of K(w), and the remaining poles which also involve the eigenvectors.

Since the parameter map I1(t) — I1(t) appearing in the duality relation (23) inverts the
sign of dissipative decay rates, the Laplace transform of II(t) converges only for frequencies
above an imaginary cutoff in the upper half of the complex plane which is at least iT, the
fundamental parity eigenvalue: If II(t) converges to some stationary value I1(o0) this implies
by Eq. (23) that [1(t) diverges at least as fast as e'¢ which must be suppressed by ¢! in the
Laplace transform. Thus, also its analytical structure proves clearly that the time-dependence
of the dual propagator I1(t) is not physical, complementing the discussion of the algebraic,
operational constraints of CP and TP [Sec. 3.2.3] which are independent of time, see also [33].
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4.3.3 Cross-relations frequency-dependent left and right eigenvectors

Laplace transforming I1(t) and KC(t), analytically continuing and diagonalizing gives
H(w)= > #)|r(@)(#(@)],  Kw) =D k@|k@)k@]|. @2
i i
Inserted into the memory-kernel duality (70) we obtain for the eigenvalues
ki(w)=[ir—k(r—on ], (73a)
with the duality between left and right eigenvectors
(K(e)| = (kiT — )| P, k() = P|k/GT - w¥). (73b)

Due to the simple relation (68) in the frequency domain the eigenvectors coincide,
(#l(w)| = (k{(w)| and |#;(w)) = |k;i(w)), with eigenvalues #;(w) = i/[w —k;(w)]:

#j(w) = 7 (iT — w*)*, (74)

in agreement with Eq. (69). We stress that the frequency-domain fermionic duality rela-
tions (73)-(74) are of independent interest: they are not trivial consequences of the time-
domain relations (29) since the Laplace transformation and diagonalization do not commute.
The w-dependent eigenvectors (eigenvalues) of I1(w) are not the Laplace transforms of the
t-dependent eigenvectors (eigenvalues) of TI(t).

For the resonant level model, Laplace transforming Eq. (8) gives (App. D of Ref. [23]):

fi() = Y, ————fap)(d|+ T3 [[1) +k(o+5) 0] (1]

=t wtnet+is

L) [0 k(o + D) ()] 75

The left and right eigenvectors are indeed cross-related as dictated by Eq. (73b). In particular,
the (non)trivial frequency dependence of the left (right) eigenvector for the eigenvalue with
pole w = 0 necessarily implies that the right (left) eigenvector for the eigenvalue with pole
w = —il' is (non)trivial as well. Thus, also in the frequency domain duality provides fine-
grained insight into the location of nontrivial (non-exponential in time) contributions to the
dynamics. In particular, the frequency dependence of the eigenvectors through the Laplace
transform of k(t) [Eq. (5)],

fooy_ 1 1 w+nle—w
k(w)—nnzzinw(z (o Te i) ) 76)

generates infinitely many additional poles at w = +(e —u) —il'/2—inT(2n+1),n=0,1,...
due to the digamma function v. For T — 0 the poles merge to form two branch cuts as shown
in Fig. 3. In our application in the next section this analytic structure turns out to provide
crucial insights.

5 Nonperturbative semigroup approximation and initial slip
Finally, we consider an application of fermionic duality where the insights of several of the

discussed approaches come together. We consider analytic approximations to the solution of
the time-local QME (45), %H(t) = —iG(t)II(t), constructed from the generator G(t) which
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we assume to be exactly known (best case). This equation naturally suggests a nonperturbative
semigroup approximation which does not rely on any weak-coupling assumption [5, 38]:

I (£) = e=i9(0)t = Ze—igi(oo)rlgi(oo))(gl{(oo)|, (77)

i

requiring only that the generator converges to a stationary value G(oo), which is diagonaliz-
able. It is not in general clear how accurate this approximation and corrections to it are. We
will show that the quality of these approximations can be deeply understood using its exact
relation to the corresponding time-nonlocal QME (64) and its memory kernel K(t) combined
with fermionic duality. This effort is motivated by two attractive properties of the approxima-
tion (77):

(i) For the large class of evolutions which are CP-divisible in the stationary limit, i.e.,
ju(00) = 0 in Eq. (57), the approximate evolution (77) is both CP and TP. This is in gen-
eral very difficult to achieve for nonperturbative approximations [29-33]. This class includes
dynamics which is not a trivial semigroup described by a Lindblad equation, which is already
the case for the resonant level model (except for T = 00 or € = u, see Sec. 2). It also includes
dynamics which is not CP-divisible as long as j,(t) < 0 occurs only for finite times.

(ii) The approximate evolution (77) converges to the exact stationary state as we demon-
strate below, e‘ig(oo)flrro(oo)) = |7'co(oo)) = |p(oo)).

5.1 Fixed-point relation between generator G and memory kernel C

To address this problem, we will make use of a recent exact result [5] which shows that the
stationary generator obeys the self-consistent equation [App. E]

G(o0) =J dt K(t)elt9(e) (78)
0

Here the superoperator G(oo) takes the role of the complex frequency w in the Laplace
transform of the memory kernel X(t). Inserting the spectral decompositions, this implies
Klg;(00)] | gl-(oo)) = gi(oo)l gi(oo)), and a careful analysis shows that the eigenvalues of
the stationary generator G(00) are eigenvalue-poles®' of I1(w), i.e., w, = lch(wp) [Eq. (68)].
Equation (78) thus states that G(co) “samples” the Laplace transform K(w) of the memory
kernel precisely at complex frequencies given by the eigenvalues of G(00):

G(00) = D F; (g:(0o)|k; (g:(00)))(/(00)] (79)

Here lchl_ (gi(c0)) = g; where j; denotes the index of the eigenvalue lch(w) of K(w) which
equals g; at frequency w = g;. By trace-preservation, the frequency sampling always includes
zero, g,(00) = 0, and thus G(o0) and K (0) have the same stationary state eigenvector, proving
property (ii) mentioned above. However, also nonzero complex frequencies are sampled. Thus,
only the set of eigenvectors {|IA<ji(gl~(c>o)))}, collected from different superoperators [K(w) at
different frequencies w = g;(00)] provides the full set of right eigenvectors {|gl-(oo))} of the
single superoperator G(oo). This in turn determines the left eigenvectors {(glf (oo)|} of G(o0)
and thus, remarkably, G(00) can be directly constructed from the memory kernel K(w) once
one knows the eigenvalues g;(o0). For the resonant level model this surprising construction
was verified explicitly in Ref. [5].

Ref. [5] focused on the implications of relation (78) assuming that one knows K and aims
to compute G. Here we focus in a sense on the converse question: Using a known G to construct

21Because we assume that G(00) exists and Eq. (78) holds, K(g;(c0)) cannot have poles in its eigenvectors.
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Figure 4: Error analysis for approximations to the resonant level model for cou-
pling T = 4T and ¢ — u = T'/2. Plotted is the amplitude of one matrix element
(O|[T1(ew) — TN ()]]0) (left) and (0|[I1(ew) — 1) (w)]]0) (right) for the unoccupied
state |0) = |0)(0] in the complex frequency plane. Whereas the semigroup approxi-
mation ITM(t) = e719(°)t does not fully cancel the pole at w = —iT, the initial-slip
approximation I1?(t) = e79(°°)S exactly cancels all four indicated poles of I1(w)
in Fig. 3.

an approximation for I1(t), what general insights into the quality of the approximation does
K provide, and how does fermionic duality help in this analysis? We consider the simplest
approximation beyond the semigroup approximation (77), a corrected semigroup which aims
at improving the description of the evolution at long times. To illustrate the simplest type
of such a correction we assume in the following that the poles of II(w) at the eigenvalues of
G(00) are of first order.2? We start by noting that by Eq. (79) the eigenvalues of G(c0) must
be poles in the eigenvalues of I1(w) [first term of Eq. (71)]. Their contribution to the exact
evolution can be expressed as

n@(t) = —iZe_igi(‘x’)tRes 11(g;(00)) (80a)

=: g7 g (80Db)

Here the sum over i runs over distinct values of g;(o0). This indeed looks like an initial
slip correction to the semigroup approximation. We will now discuss the quality of the two
approximations IV and I1® and then derive an exact restriction on this procedure imposed
by fermionic duality.

5.2 Nonperturbative semigroup approximation

The quality of the semigroup approximation (77) can be investigated using the result (80a) of
the time-nonlocal QME approach. We observe that in the complex-frequency domain the error
I1(w)—T1"(w) has in general the same poles as the exact dynamics except for the pole at zero
frequency. Thus, the approximation captures only the stationary state systematically.

220ur assumption is equivalent to dlA<ji(o.>) /d®| =g (o0) # 1. Higher order poles would require a time-dependent
slip superoperator S(t) = S, + Syt +S;t% +--- where S, is constructed from the residues of all n™ order poles of
[1(w) at eigenvalues of G(00).
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In Fig. 4(a) this is illustrated for the resonant level model. The reason becomes clear when
comparing Eq. (77) with Eq. (80a). Although the decompositions of [I")(¢) and I1®)(¢) share
the same coefficients and right vectors, only in TI¥)(t) the different pole contributions appear
with the correct left eigenvectors. In Eq. (77) all eigenvalues are exponential functions with
prefactor one, while the coefficients in Eq. (80a) may include prefactors from the residuals
I1(g;(00)) due to the frequency-dependence of K(w) [cf. Eq. (82b)]. Also, the left eigenvec-
tors in Eq. (77) are biorthogonal to the right eigenvectors, while the left eigenvectors of the
residuals in Eq. (80a) are collected from kernels K(w) at different frequencies and do not need
to obey such restrictions, as is indeed the case for the resonant level model [5].

5.3 Nonperturbative initial slip correction

Within the time-local QME approach one may set up a nonperturbative correction of the semi-
group approximation by an initial slip [69-73] using some superoperator S:

A (¢) = e 19() g, (81)

This initial-slip approximation is precisely what is obtained in the time-nonlocal QME approach
when selecting the exact poles g;(©0) in the contour integration (71) of the inverse Laplace
transform. This relation can be used to investigate how well one can do in the time-local
approach: we know from Eq. (80) that such a correction can be achieved by

S =—i ) Resll(g;(c0)) (82a)

1 .
Zi:1_3]21}-/30)(81'(0<>))|gl(oo))( 7.(gi(e0)) (82b)

Note that this expansion is not the spectral decomposition of S, since the sets of left and right
eigenvectors are not biorthogonal. This is in fact the best one can do for an approximation in
the long time limit since in the frequency domain this approximation for the resolvent reads

ﬁ(z)(w) = mé’ = —lz l Res ﬁ(gi)> (83)

i 1

showing that now the exact poles g; are completely canceled in the error [1(w) — I1®(w) as
illustrated in Fig. 4(b). Here we assumed that the eigenvalues g;(©0) are nondegenerate as is
the case in the resonant level model, see App. D for the degenerate case.

In Fig. 5(a) we illustrate that for the resonant level model the inclusion of the exact initial
slip S may indeed lead to a much faster approach to the exact dynamics than the nonpertur-
bative semigroup. In Eq. (80b) this is achieved by first mapping the initial state using S to a
possibly nonpositive density operator—reflected in the plot by the unphysical occupation > 1—
and then applying the semigroup evolution (77). Indeed, although S and I1®(t) are both TP
maps>>, the map S is not CR Thus, the initial dynamics is unphysical whenever the slip is
nontrivial, since by construction II®(0) = S # Z [74-76]. For the same reason, the slip-
approximated dynamics (81) is not a semigroup: even though the decay is exponential, any
nontrivial slip obstructs addition of the exponentials: e 19(%)t' Sei0(20) g £ o—iG(0)t+1) g
Although this is not a problem—the exact dynamics I1(t) is not a semigroup either—it may
be overlooked that summing isolated pole contributions [Eq. (80a)] in the time-nonlocal QME
approach, one does not obtain a Markovian semigroup approximation.

In Fig. 6 we investigate this correction more closely for the resonant level model by plotting
the time at which IT®)(t) becomes CP a necessary indicator of quality. Interestingly, near

BTrS =Tr since Trg; = (g)lg;) = ;0 and (7':6| ="Tr.
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Figure 5: Resonant level model: Nonperturbative semigroup [Eq. (77), dashed] and
initial slip approximation [Eq. (80), dash-dotted] compared to the exact occupation
dynamics (solid line). (a) For generic level positions € and couplings I' S 2nT
the slip-corrected dynamics coincides with the exact result well before reaching
the stationary value, while the semigroup approximation converges much later. In
this case the time-nonlocal QME (64) solved by selection of the poles [Eq. (83)]—
automatically including semigroup plus initial slip—is advantageous. (b) Surpris-
ingly, near isolated points in the ¢, I'-parameter space the initial slip correction wors-
ens the reliable semigroup approximation (77) based on the time-local QME. The
precise positions at which this failure occurs are predicted by fermionic duality: As
explained after Eq. (85), they are a consequence of the constraints it imposes on the
slippage superoperator. The increased error introduced by the slip correction can also
be understood as a failure to account for cancellation by eigenvector poles responsible
for the branch cuts of the dynamics at T = 0.

resonance, € = U, this time may diverge for specific physical values of the strong coupling.
Fig. 5(b) illustrates that in their vicinity the initial slip may give a very large correction even
though the semigroup approximation is very close to the exact dynamics. This breakdown is
easily overlooked when constructing the slip approximation within the time-local formulation
in which the frequency-domain structure is not available. This crucial insight is enabled by
the fixed-point relation (78) of Ref. [5].

We note that in the time-local approach, one might expect the exact slip superoperator to
be expressible as S = lim,_, o, ¢!9(°)TI(¢) but this limit may actually fail to exist. In the reso-
nant level model this indeed happens when the coupling exceeds a sharp threshold, I' > 27 T.
However, one can regularize this expression to recover Eq. (82) by taking the zero-frequency
residual of its Laplace transform £: & = —iRes S[eig(oo)tl'[(t)](O). We further note that
Markovian approximations can also be performed starting from the Heisenberg equation of
motion %A(t) = iGH(t)A(t) as is often done in quantum optics. However, naively following
the same steps in this picture leads to different results with problematic features. This further
subtlety and its resolution are discussed in App. D.

5.4 Fermionic duality for the initial slip

The restrictions imposed by fermionic duality now provide a crucial insight: already for the res-
onant level model, divergences of the CP-time quality indicator [Fig. 6] are unavoidable. This
can be understood by taking the stationary limit of the duality relation (49) which, provided
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Figure 6: Time after which the initial slip approximation (80b) to the resonant
level evolution becomes completely positive, in units of inverse temperature. For
|e —u| — oo the semigroup approximation is exact and the slip correction vanishes.
Arbitrarily close to the discrete parameter points (87) [Fig. 5(b)] the correction di-
verges even though the semigroup is very accurate. In between these points the
correction remains small [Fig. 5(a)].

S exists, simplifies to
G1(00) =[571G(00)S]' =ir7—PG(co)P. (84)

Here G(o0) applies the duality mapping after the stationary limit [App. D]. This matters
since although the generator G(00) exists for all parameters of the model this is not true for
GH(00) and G(00), a further illustration of the nontrivial relation between the Schrodinger
and Heisenberg time-local generators. Importantly, the slip superoperator that appears here
obeys a separate fermionic duality which is another key result of the paper:

ST=pPSPp. (85)

For the resonant level model, the exact relations (84) and (85), together with the trace pre-
serving property of S, completely fix the relevant part of the slip superoperator constructed
from the generator G(oo) [App. D]:

S=T+3 > nknizD)|-1V)(1], (86)
n

where l?(i%f‘) = (2/n)1m¢(% +[T/2+i(e —u)]/(ZTET)) [cf. Eq. (76)]. As function of pa-
rameters the expression ﬁ(i%f‘) dictated by fermionic duality is singular at physical parameter
points

e=u+0", I'=(1+2n)2nT, (87)

withn=0,1,2,..., causing the slip approximation (80b) to break down as in Fig. 5(b). More-
over, the Heisenberg and dual generator diverge here. This illustrates that fermionic duality
can be a useful tool for understanding the often highly nontrivial properties of time-local gen-
erators of quantum evolutions which complicate analytic approximations.

In the time-nonlocal approach the breakdown can be clearly understood in the frequency
representation: Close to the values (87), three poles in the exact result for (w) [Eq. (75)]
approach the same point (w = —iI'). One pole comes from an eigenvalue of () (lowest cross
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in Fig. 3) and two others come from its eigenvectors (top two unmarked poles in Fig. 3). The
prefactor of the eigenvalue-pole diverges as function of parameters as 1/(e—u) but in the exact
result this is canceled by corresponding divergence of the prefactors of the two eigenvector
poles. However, in the slip approximation the latter two poles are discarded [Fig. 4], leaving
the spurious divergence of the remaining one.

6 Discussion

In this paper we have shown that for a large class of fermionic open systems the nontrivial rela-
tion between state and observable evolution can be completely bypassed by a simple fermionic
duality mapping that exploits and generalizes the functional dependence of the two evolutions
on the microscopic physical parameters. We have shown that this works for essentially all canon-
ical approaches used in quantum transport, open-system dynamics and quantum information
theory without introducing any assumptions (such as weak coupling, high temperature, var-
ious Markovian approximations, etc.) except for wide-band coupling to the reservoirs. The
obtained fermionic duality relations are summarized in Table 1. In the superoperator-based
approaches these imply exact parity eigenvalues and eigenvectors [Egs. (32), (53)] and non-
trivial cross-relations for the entire spectrum [Egs. (29), (50), (73), (74)]. Correspondingly, in
the operational approaches we derived additional fermionic sum rules for measurement and
jump operators [Egs. (40), (59)] and their scalars coefficients [Egs. (41), (42), (60)], and
nontrivial cross-relations for these entire sets of operators [Egs. (39), (61)]. Combining the
latter approaches with fermionic duality naturally led us to consider a new type of divisibility
of the dynamics: We noted that the Schrodinger and Heisenberg time-local generators through
their quantum-jump coefficients encode both ordinary causal and anti-causal divisibility, re-
spectively. Using fermionic duality we showed how the operational condition of anti-causal
divisibility can be inferred from the condition of ordinary, causal divisibility. Dynamics which
does not commute with its generator may be causally divisible but fail to be anti-causally divis-
ible, as we demonstrated by an explicit example. This provides definite information about the
causal ordering of the dynamics, i.e., whether the ordering of dividing the dynamics matters.

Throughout we emphasized both the wusefulness of duality relations such as
I(t)" = e TUPII(t)P and the unphysicality of mappings such as I1(t) — II(t). The useful-
ness was illustrated by identifying various “symmetries” in the dynamics of the resonant level
model which went unnoticed so far. Importantly, our results apply much more generally and
are therefore relevant for a large class of outstanding dynamical open-system problems in
regimes of strong coupling, strong interactions, finite temperature and nonequilibrium. This
holds in particular for much of the analysis and applications in Sec. 5, which apply to complex
models of high interest for which the calculations are of course very complicated. Here one
should remember that the merit of duality lies in simplifying a calculation given a method
of choice, not in providing this method. In this application we exploited fermionic duality to
provide deeper insight into a nonperturbative semigroup approximation which respects CP-TP
for a broad class of dynamics, using the key result from Ref. [5] that relates time-local and
non-local QMEs. We showed that inclusion of the initial-slip correction [Eq. (80b)] in the
time-local approach (TCL) corresponds precisely to a selection of poles in the time-nonlocal ap-
proach (Nakajima-Zwanzig). We found that even for the resonant level model this correction
unexpectedly fails at specific physical parameters and that this failure is unavoidable due to
fermionic duality constraints. The failure of the slip-correction is interesting: in the resonant
level model it is caused by the poles that form branch-cuts in the limit T — 0. That branch
cuts invalidate exponential approximations at T = 0 is not unexpected, but here we found that
precursors of branch-cuts already cause havoc at finite temperature T.

34


https://scipost.org
https://scipost.org/SciPostPhys.11.3.053

Scil SciPost Phys. 11, 053 (2021)

The unphysicality of the duality mapping appeared particularly clearly in the operational
formulations tailored to quantum information theory which show that the evolution II(t) at
dual parameters violates complete positivity. We highlighted this point since it implies that
when tacitly assuming this valid and important restriction in any of the operational approaches
one may easily overlook the powerful constraints imposed by fermionic duality. For example,
in the operational approach evolution maps are invariably written as 1= Y. M, ® M(’; (which
we avoided doing) by anticipating positive coefficients in the operator sum and absorbing
them into the norm of the measurement operators, i.e., TrM;Ma = m,. This automatically
eliminates the dual superoperator I1(t) with its benefits from further considerations since it
has no such expression.

Relation to other works. The fermionic duality is most closely related to the extension of PT-
symmetry [77,78] to dissipative systems [79,80]. Unlike ordinary symmetries which relate for
example the evolution to itself by conjugation with a symmetry transformation, the evolution
is related to its adjoint. In the present paper we have emphasized this relation as a connection
between the mathematically and physically distinct evolutions of states and observables. In
the Refs. [79,80] this was achieved under the strong assumption of Markovianity in the sense
of semigroup divisibility (Lindblad). The fermionic duality which was derived in Ref. [10] is
instead based on far less restrictive assumptions and is applicable to strongly non-Markovian
dynamics such as in the resonant level model.

The involvement of the adjoint sets fermionic duality apart from standard symmetry con-
sideration transposed to Liouville space—called “weak symmetry” in Ref. [81]—where the
time-local generator commutes with the symmetry superoperator. Open systems also allow for
a notion of “strong symmetry” where the Hamiltonian and jump operators of this time-local
generator commute with a symmetry operator. This stronger notion introduced in Ref. [81]
for semigroup-Markovian systems played a role in our analysis albeit in modified form (the
jump operators may either commute or anticommute with the fermion parity operator, see
Eq. (57) ff. and App. C). However, fermionic duality is distinct from both these notions of
symmetry.

We furthermore note that after the original derivation of fermionic duality in Ref. [10] sub-
sequent work appeared [82, 83] which exploited similar tricks to simplify the calculation of
open system evolutions, such as unphysical, non-Hermitian coupling to reservoirs with struc-
tureless wide bands. However, in addition to focussing on bosonic systems, these works relate
the environment of a system of interest to a simpler, effective environment to reduce the com-
putational complexity. In contrast, the fermionic duality relates a system and its environment
to an equally complex dual system and environment, in order to exploit the functional param-
eter dependence of the evolution.

Finally, our finding of a new type of divisibility of the dynamics raises an interesting ques-
tion regarding stochastic simulations as different types of divisibility are at the basis of differ-
ent simulation methods. Whereas CP-divisibility of the dynamics enables an implementation
that directly uses the jump operators to generate quantum jumps [51, 84, 85], P-divisibility
allows only for an indirect implementation of the jumps via Diosi’s rate-operator [51,86,87].
If the evolution has no divisibility property, its simulation is more complicated, requiring re-
verse quantum jumps connecting trajectories [51]. However, all these distinctions are based
on causal division of the dynamics. Fermionic duality surprisingly enables conclusions about
anti-causal divisibility, an apparently new concept with a clear operational formulation in-
dependent of fermionic duality. It presents a refined distinction between different types of
dynamics. For the resonant level model we found that anti-causal CP-divisibility is lost while
the dynamics remains causally CP-divisible and thus efficiently simulateable. It is an interest-
ing open question how to detect the loss of this property on the level of simulated quantum
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trajectories.

Outlook. Exploiting the results reported here in applications to interacting models with
strong coupling requires that one uses an approach that maintains fermionic duality in approx-
imations. The renormalized perturbation theory [13, 14] which was used originally [10, 16]
to derive the duality relation (3) exhibits this feature: It preserves duality order by order in
a renormalized temperature-dependent coupling, see Ref. [88] for a recent implementation.
Ordinary perturbation theory in the bare coupling I' [89-91] already breaks fermionic dual-
ity in the next to leading order I'2. For the Anderson model this breakage seems specifically
related to the electron pair-tunneling contributions [90, 92,93].

For calculations involving stronger coupling the renormalization-group approach of Refs.
[11-13,94-99] is well-suited. Its original formulation [11,13]is build on the renormalized per-
turbation expansion, which explicitly preserves fermionic duality [10]. Although in Ref. [13]
the first implications of fermionic duality were discovered and applied in a very advanced con-
text, it remains an interesting open question which truncation schemes for this exact hierarchy
of the RG equations maintain the fermionic duality. Moreover, the potential advantages of the
duality for the more recent E-flow formulation [95-97,99] also remain unexplored. Finally, it
is of interest to understand how approximations can be formulated within other nonperturba-
tive approaches in a way that maintains fermionic duality, i.e., by which rules. A key step in
this direction would be an elementary microscopic derivation of fermionic-duality within these
approaches. Our finding that fermionic duality takes a simple form in each of the canonical
approaches to quantum dynamics suggests that this is possible.
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A Duality for Choi-Jamiotkowski state of propagator I1(t)

CP and CJ operator. A dynamical map p(t) = I1(t)p(0) is completely positive (CP) if and only
if it preserves positivity when evolving the system together a non-evolving auxiliary system:
(TI(t) ® 7)) pexi(0) = O for any initial state pey(0) of the system plus any auxiliary system. This
is equivalent to positivity for the worst case p.,(0) = %I]l) (1] of a maximally entangled state
|1) = >, |k)|k) on the tensor product of the system Hilbert space with an auxiliary copy of
itself. Thus, the so-called Choi-Jamiotkowski (CJ) operator should be positive:

choi[T1(¢)] == (T1(t) ® Z)I1) (1] . (88)

The operators M,(t) in the operator sum (35) for a Hermicity-preserving superoperator II(t)
are obtained by diagonalizing the Hermitian choi[II(t)]:

choi[TI(£)] = Y my ()M (D) (M ()] (89)

When diagonalized with eigenvectors normalized to 1 the real eigenvalues m,(t) are the coeffi-
cients in the operator sum (35). If I1(t) is CP they are positive since then choiII(t) > 0 as noted
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in the main text. The bipartite eigenvectors |[M,(t)) = (M,(t) ® 1)|1) = Zij(ilMa(t)lj) [i)]7)
determine the matrix elements of the canonical measurement operators relative to the chosen
basis {|i)}.

Parity of measurement operators. Fermion superselection for the total system evolution
and initial reservoir state implies that the reduced system evolution I1(t) commutes with the
parity superoperator (—1)! := (—1)N ¢ (—1)N. This implies that choi[II(t)] commutes with
the bipartite parity (—1)" ® (—1)V,

choi[T1(£)] = choi [ (—1)™I1(¢)(—1)™ | = (—1)N @ (—1)" choi[TI(6)] (—1)V ® (—1)V . (90)

This shows that the eigenvectors |[M,(t)) have definite bipartite parity and thus the measure-
ment operators must have definite parity: (—1)Y M, (t)(—=1)N = (—1)NeM,(t) with N, = even
or odd, as claimed in the main text.

Fermionic duality. Using the property that in the maximally entangled state the action of
any operator on the system is perfectly transposed to its copy, A® 1|1) = 1®AT|1), the relation
(23) implies the fermionic duality for the CJ state

choi[T1(¢)"] = S( choi[T1(£)])"S = e T ((—=1)¥ & (—1)V) choi[ [1(¢)], (91)

involving the bipartite swap operator S|i)|j) = |j)|i). Thus, if |[M(t)) is a right eigenvector
of choi[I1(t)] with eigenvalue m(t), then [S|M,,(t))]* = |[M,(t)') is also a right eigenvec-
tor with eigenvalue m,(t) = e T{(—1)N«m, (t) proving Eq. (39b) in the main text. Using
IM,) = (M, ® 1)|1) we also establish the fermionic duality (39a) for measurement operators.
Degenerate coefficients m,(t). If some coefficient m,(t) is a degenerate eigenvalue of
choi[ IT(t)] with eigenvectors denoted {|M,,)}cq, then the above argument establishes a cor-
respondence between Hermitian eigenprojectors, P, = >, ., IMy2) (Mg, |. The eigenvalues m’,
and m,(t) = e T¢(—1)N«'n,(t) are equally degenerate and the projectors on their eigenspaces

are related by
(SP,S)* =P, . (92)

This means that corresponding partial operator sums for the dual eigenvalue pair a and a’ are
equal:
ZM;;\ * Moy = Z M3 @ My - (93)

A€a Aea/

B Relation specific to resonant level model

In addition to the generally valid duality relation (49), the time-local generator of the reso-
nant level model obeys another, simpler relation. This may be understood also from the formal
similarity of Eq. (8) and Eq. (18). Despite the fact that II(t) = 7 exp ( —1i fot dsg(t)) and the
time-ordering 7 is nontrivial for this model, it holds true that I1(¢) = exp(—itG(t))lg(¢)—p(e)-
Inserting this into the relation (23) and using p(t) = —p(t) one obtains by comparing expo-
nents

(6] =iTT+P G(O)lgroginy P> (94)

where on the right we replace “by hand” g(t) — —g(t) in analogy to the transformation of
p(t) under the parameter substitution. As a result, the left and right eigenvectors of G(t) are
formally related by taking the adjoint, multiplying with the fermion parity (—1)" and replacing
g(t) — —g(t), as one can verify in Table 2. Although relation (94) is simpler and inferred by
inspection, it is not valid for the general class of models for which Eq. (50) holds.
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C Duality for Choi-Jamioltkowski operator of generator G(t)

Jump expansion for G(t). The canonical jump-expansion for a time-local generator G(t) is
obtained by constructing its CJ-operator (88) proceeding analogous to II(t) as in App. A.
However, G(t) is not a CP map (unlike I1(t)) and we can only use that TrG = 0 (instead of
TrIl = Tr), and that —iG is Hermicity-preserving and thus choi[—iG(t)] is Hermitian. The
canonical form

choi[—iG(£)] = |1)(BI + B){L + D julla) (el (95)

is obtained by diagonalizing the projection of choi[—iG(t)] on the orthogonal space of the
maximally entangled state [1) := >, |k)|k). This gives the last term in Eq. (95) and the first
two terms account for the remaining matrix elements. The projector to this orthogonal space
is denoted as Q := 1 —|1)(1|/d. Splitting B = Re B+iIm B one checks that the Hermitian part
is fixed to ReB = —% Da jaJaTJa by the condition TrG(t) = 0. The remaining anti-Hermitian
part defines the effective Hamiltonian H(t) = —ImB(t) in Eq. (57).

Parity of jump operators. In our case we can also use that fermion superselection,
[(—1)™, TI(t)] = 0, implies [(—1)"¥,G(t)] = 0. Thus, choi[G(t)] also commutes with the
bipartite parity since Eq. (90) also applies with IT — G. Since |1) has even bipartite parity,
we have (—1)Y ® (—=1)V|B) = |B) or [B,(—1)N] = 0. This shows that the Hamiltonian part in
Eq. (57) commutes with fermion parity [H(t),(—1)"]=0.

The remaining eigenvectors of the projection with Q have definite bipartite parity of either
sign, (—1)Y ® (—1)N|J,) = (—1)M«|J,) for N, being even or odd. These determine the jump
operators through |J,(t)) = (J4(t) ® 1)|1) for which (—=1)NJ,(t)(—1)Y = (—1)NeJ,(t) as
claimed in the main text. Note that this implies that Re B has even parity consistent with the
above.

Degenerate coefficients j,(t). If some coefficient j, is a degenerate eigenvalue of
Qchoi[—iG(t)]Q in the construction of Eq. (95) then similar remarks apply as for the mea-
surement operators. The partial operator sums for the dual eigenvalue pair a and a’ are

equal,
DIt el =D el (96)

Aea’ A€a

instead of the individual jump operators [Eq. (61b)].

Evolution commutes with its generator. In the special case where [G(t),TI(t)] = 0 things
simplify, iG"(¢t) = [—iG(t)]", and we have by Eq. (22) H(t) = H(t), JH(t) = J,(t)" and
jaH(t) = j,(t) in Eq. (58). Comparing the latter with the jump expansion for the right hand
side of Eq. (49),

choi[iG(t)"] = choi[-TZ —iPG(t)P]
=11) [(BI= 5]+ [1B) = 5] (0l + D (DMl ) Tal . 97

we find the result of the main text H(t) = —H(t), J,(t)" = J,(t) and j,(t) = (—=1)"«j,(t) for
nondegenerate coefficients.
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D Duality for stationary generator and slip superoperator

Duality for the slip superoperator S [Eq. (86)] Using the t — oo limit of Eq. (50a),
gj(o0) = [iF— gi(oo)]*, and Eq. (69) in Eq. (82) we obtain writing g; for g;(o0)

PSP =—i » PResi(g)P =—i » Res[MI(—il — )] (98a)

= iz [ Res TI(—il' — g;k)]T = Z [ —iRes f[(gj)]T =S, (98b)

i J

Initial slip S for resonant level model. The nontrivial part of the slip A := S—7 obeys three
equations by the fact that S is TB Eq. (85) and Eq. (84),

(1la=o, AT=PAP,  G(co)1+A)=(1+A)—TT—PG(o0) P].  (99)

Solving these equations for the resonant level model gives Eq. (86) up to an additional term
Zn an(t)ldn)(dn| with undetermined function a,(t)* = a,(t). The latter term is irrelevant
for the occupation dynamics, in which the breakdown of the initial slip correction occurs. Thus
duality fixes the relevant part. Note that the evolution of the coherences is already exact in
the semigroup approximation. Setting a,,(t) = 0 we obtain the exact result.

Stationary limit of time-local duality (49) [Eq. (84) ] Noting that the left action of G(00)
on the slip operator gives G(00)S = —i ), g; Res I1(g;) by Eq. (82b), we insert the dual pa-
rameters and follow the same steps as in Eq. (98):

PG(00)SP = —i Z ;P Res ﬁ(gi)P

=i > (i —g?)[ ResTi(g,)]" = {[~il' — G(c0)IS}. (100)
J

This relation holds generally. When § is invertible, we can insert Eq. (98) on the left hand
side and right-multiply with ST to obtain the result Eq. (84):

iTZ —PG(c0)P =[S71G(c0)S] . (101)

Note that S is invertible if and only if {(Izgi(gi(oo))|} is a linearly independent set, i.e., I?(t)
and II(t) have the same rank.

Degeneracy of g;(00). In the main part we assume that G(co) and K(g;(o0)) are diag-
onalizable, sharing nondegenerate stationary eigenvalues g;(o0). However, the slip approx-
imation can also be constructed if G(oco) and I@(gl-(oo)) share an eigenvalue with the same
degeneracy d;. In the construction of the slip approximation the contributions of different
eigenvectors | gi(00), Z), [ =1,...,d; to a degenerate eigenvalue g;(o0) can be treated sepa-
rately. However, when writing S as a sum of residuals Res ﬁ(gi(oo)) in Egs. (82a) and (83)
we must count these independent contributions only once: the summation index i must label
the different eigenvalues of G(o0), not the eigenvectors.

Inconsistent approximations using GH(t) and G(t)'. It is clear that the equation of mo-
tion %HH(t) = ill"(£)G(t)", obtained by taking the adjoint of the time-local QME -TI(t) =
—iG(t)II(t), leads to the semigroup approximation IV (¢)" = ei9(02)'t yith initial slip cor-
rection T ()7 = ST e9(%°)'t These approximations are equivalent to those discussed in the
main text, but not related to the observable equation of motion.

Semigroup approximation in Heisenberg picture. If one instead uses the generator
G" [Eq. (47)] appearing in the observable equation of motion, %A(t) = iG(t)"A(t) to construct
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a semigroup approximation, one obtains a different result, I1(t)" ~ eigH(°°)t, which has several
problems. It is not asymptotically exact and the required stationary generator lim,_, oo G(t)
may fail to exist even when G(o0) exists [Eq. (49)]. This problem can be circumvented by
constructing a generator from the duality relation Eq. (84) as gglx(oo) = [S71G(c0)S] =
iT'Z —PG(00)P where it is important that the long time limit lim,_, ., G(t) = G(00) is taken
before inserting dual parameters, avoiding the trouble with lim,_, o, G(t). Using this “fixed” sta-

tionary generator for observables we then obtain a semigroup approximation STl gt
with slip approximation ¢ 9(°) ST which coincide with the above mentioned adjoints of
Schrodinger picture approximations [TV (¢)™ and TI®)(¢)T, respectively.

E Fixed-point relation generator and memory kernel

Here we verify the consistency of the fermionic duality relations (49) and (67) applicable to
a broad class of fermionic systems with the general, exact connection between the generator
G(t) and the memory kernel K(t) established in Ref. [5]. This relation takes the form of a
functional fixed-point equation:

t
G(t) =K[G1(t) := J dsK(t —s)T,elJs 49| (102)
0
with anti-timeordering 7_,. In Ref. [5] it was shown that for t — oo this gives the stationary
fixed-point relation (78) used in the main text.
Analogous to Eq. (102) the Heisenberg generator G1(t) = [I1(t)"'G(t)II(¢)]" also obeys
a functional fixed-point equation with the memory kernel CH(t) = KC(t)':

t

GH(e) = KH[—gH(t) == f dsKH(t —s)T e J 4rd") (103)

0

The proof of this relation is analogous to the proof of the functional fixed-point equation in
Schrodinger picture in Ref. [5]. In neither of the above general relations fermionic duality was
used and it is thus important to check that it is consistent with these relations. To see this,
substitute (49) and (67) in Eq. (103) to recover Eq. (102) evaluated at dual parameters:

GH(t)=irT—PS(t)P (104a)

t
= f ds [iFIé(t —s)—e TSP R(t—s) 73] Te J{LrI=PG(r)Pldr (104b)
0

t
:iFI—Pf dsK(t —s)T,etls r9p. (104c)
0
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