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Abstract

We formulate the Schwinger-Keldysh effective field theory of hydrodynamics without
boost symmetry. This includes a spacetime covariant formulation of classical hydrody-
namics without boosts with an additional conserved particle/charge current coupled to
Aristotelian background sources. We find that, up to first order in derivatives, the theory
is characterised by the thermodynamic equation of state and a total of 29 independent
transport coefficients, in particular, 3 hydrostatic, 9 non-hydrostatic non-dissipative, and
17 dissipative. Furthermore, we study the spectrum of linearised fluctuations around
anisotropic equilibrium states with non-vanishing fluid velocity. This analysis reveals a
pair of sound modes that propagate at different speeds along and opposite to the fluid
flow, one charge diffusion mode, and two distinct shear modes along and perpendic-
ular to the fluid velocity. We present these results in a new hydrodynamic frame that
is linearly stable irrespective of the boost symmetry in place. This provides a unified
covariant stable approach for simultaneously treating Lorentzian, Galilean, and Lifshitz
fluids within an effective field theory framework and sets the stage for future studies of
non-relativistic intertwined patterns of symmetry breaking.
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1 Introduction

Hydrodynamics describes the long-wavelength collective behaviour of low-energy excitations
in a broad range of physical systems. In this regime, the dynamics is insensitive to most mi-
croscopic details and is universally captured by a set of conservation laws. The range of ap-
plicability of hydrodynamics spans widely separated scales, in particular those of quantum
gravity [1, 2], viscous electron flows [3, 4], biological fluids [5], and the dynamics of black
hole accretion disks [6], to mention only a few. Traditionally, hydrodynamics has been a phe-
nomenological field of study. One specifies the symmetry-breaking pattern; postulates a set
of currents with associated conservation laws; invokes the second law of thermodynamics
(through the positivity of the divergence of an entropy current) together with Onsager’s rela-
tions, and determines the constitutive relations in a gradient expansion [7]. While this classical
approach has been extremely successful, one expects that symmetry alone should be sufficient
to characterise the hydrodynamic regime.

Treating hydrodynamics as a bona fide thermal field theory, a more fundamental approach
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has been developed in the context of relativistic fluids in the past few years [8-10], and has
recently been adapted to Galilean-invariant fluids as well [11]. This formulation is based
on the Schwinger-Keldysh effective field theory (EFT) framework for non-equilibrium ther-
mal systems; see [12] for a review. The starting point of this EFT framework is a generating
functional from which correlation functions of hydrodynamic operators and hydrodynamic
equations of motion can be derived. In addition, the framework systematically accounts for
the effects of stochastic/thermal noise on the hydrodynamic evolution via stochastic interac-
tions. In order to describe out-of-equilibrium thermal systems, the EFT generating functional
must satisfy certain requirements, such as KMS symmetry, which lead to an emergent second
law of thermodynamics and implementation of the Onsager’s relations at the classical level, in
addition to fluctuation-dissipation constraints on the correlation functions. The main goal of
this work is to develop a Schwinger-Keldysh EFT for the hydrodynamic description of physical
systems that lack any boost symmetry, Lorentzian or Galilean, to begin with. In particular,
this covers systems which have their boost symmetry explicitly broken due to the presence
of a background medium! or systems that do respect a boost symmetry but is not explicitly
manifest at the macroscopic level. Systems without a boost symmetry are ubiquitous in non-
Fermi liquid phases of matter such as metallic quantum critical systems [15]. Fermi-liquids
can also exhibit phases characterised by the absence of a boost symmetry, the prime example
being liquid helium-3 at sufficiently low temperatures [14].? In the realm of classical physics,
various many-body systems in soft matter physics and biophysics [17] do not respect Galilean
boost symmetry. Common examples include models with self-propelled agents such as flocks
of birds and colonies of bacteria swimming in a medium.

In general, however, physical systems that break boost symmetry also exhibit other pat-
terns of symmetry breaking. In the context of quantum matter, spatial translations are usually
also spontaneously broken, due to the presence of the ionic lattice, or explicitly broken due
to the presence of impurities [18]. Charge density wave phases are one such example; see
also [19,20]. In the setting of classical fluids, self-propelled agents break spacetime transla-
tions explicitly due to the presence of driving forces [21], while active liquid crystal phases
can break translations and rotations spontaneously [22]. Such situations compromise the gra-
dient expansion of hydrodynamics and thus it is important to move away from traditional
treatments and understand what are the rules of the game for building hydrodynamics models
with intertwined patterns of symmetry breaking.

Schwinger-Keldysh EFT provides a controlled framework for developing such hydrody-
namic theories and studying stochastic corrections to classical hydrodynamics. In particular,
it was shown recently in the context of isotropic relativistic fluids that stochastic corrections
break the hydrodynamic derivative expansion at third derivative order, leading to non-classical
contributions to hydrodynamic correlation functions [23]. However, such effects may possibly
appear earlier in the derivative expansion in systems with specific kinds of broken symmetries.
The work presented here considers only the case of broken boost symmetry and has a three-fold
purpose: (1) to accurately classify the transport properties of hydrodynamics without boosts
in the presence of a conserved U(1) particle-number/charge current; (2) to provide a uni-
fied field theoretic framework that can simultaneously describe Lorentzian as well as Galilean
and Lifshitz fluids,® which can be obtained by restoring different types of boost symmetries or

1n [13, 14] the case of spontaneous breaking of Lorentz boost symmetry was considered. This is distinct from
the setup considered in this paper, where the boost symmetry is explicitly broken and the respective Ward identity
is absent to begin with. This can be thought of as being accomplished by “integrating out” the medium through
which the fluid is moving.

2In the context of quantum matter, it has also been argued that electron flows in graphene may break Lorentz
invariance due to the presence of long-range Coulomb interactions [16].

3This framework could also potentially describe Carrollian-boost invariant fluids [24-26], but we have not
explored this possibility here.
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taking different scaling limits; and (3) to provide the necessary foundations for future explo-
rations addressing more complicated patterns of symmetry breaking and associated stochastic
contributions.

Several recent works have motivated this study. Earlier literature established a classical co-
variant approach to ideal fluids without boost symmetry, by coupling the fluid to Aristotelian
geometry [26]. A full treatment of one-derivative corrections was carried out in [27], but
the U(1) current responsible for particle-number/charge conservation was not introduced. A
linearised analysis of fluctuating isotropic and homogeneous configurations in charged hy-
drodynamics without boosts was done in [28]. A classification of first order transport in flat
spacetime with the additional U(1) current was undertaken in [29], but a complete analysis
of the second law constraints was not carried out. In this work, we develop further all of these
lines of research by providing a complete covariant treatment and classification of transport in
hydrodynamics without boosts within a field theoretic framework, including the presence of
a U(1) current, and consider the most general fluctuation analysis around equilibrium states
that are inherently anisotropic.

In contrast with all the previous literature, we present our results in a new hydrodynamic
frame, which we call density frame, that is linearly stable (in the sense of [30-32]) irrespective
of the boost symmetry in place (Galilean or Lorentzian), or absence thereof, and is thus better
suited for potential numerical simulations. This frame choice aligns the fluid velocity with
the flow of momentum, rather than the flow of internal energy (as in the Landau frame) or
charge/particle-number (as in the Eckart frame). Note that momentum is a reference-frame
dependent quantity. Therefore, when employed in Galilean or relativistic hydrodynamics, the
density frame will lead to a manifestly non-covariant representation of the respective consti-
tutive relations. However, the equations of motion are still manifestly covariant and boost-
invariant (up to second derivative corrections). We emphasise that hydrodynamic models,
irrespective of the hydrodynamic frame utilised to represent the constitutive relations, are not
suitable to make reliable universal predictions about gapped “high-energy” modes. In this
sense, the aforementioned linear stability (i.e. the absence of unstable gapped modes) in the
density frame is not a physical prediction of the model. It is rather a technical characteris-
tic of the model that makes it “more suitable” for setting up initial-value problems aimed at
exploring the low-energy long-wavelength physics of fluids.

This paper is organised as follows. In section 2, we introduce classical aspects of hydro-
dynamics without boost symmetry, conservation laws as well as entropy production, and the
basics of Aristotelian geometry to which these fluids couple to. In section 3, we use these
considerations in order to formulate the Schwinger-Keldysh effective field theory for these
systems. In section 4, we write down the specific Lagrangian that includes all the dissipa-
tive and non-dissipative transport coefficients that characterise the effective theory up to first
order in a gradient expansion. In section 5, we examine special limits where one recovers
Lorentzian, Galilean, and Lifshitz fluids. In section 6, we study fluctuations around generic
anisotropic equilibrium configurations and obtain explicit expressions for sound, shear, and
charge diffusion modes in a linearly stable hydrodynamic frame. Finally, we conclude with
some discussion in section 7. Appendix A is dedicated to expressing our results in the Landau
frame in order to compare with the previous literature. Appendix B provides the interaction
Lagrangian for the linearised effective field theory of hydrodynamics without boosts, which
can be used for studying stochastic contributions to hydrodynamic correlation functions.
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2 Classical boost-agnostic hydrodynamics

In this section, we review various aspects of classical boost-agnostic hydrodynamics. We start
with the energy, momentum, and charge/particle-number conservation equations and use the
second law of thermodynamics to derive the constitutive relations of an ideal fluid without
boost symmetry. We discuss how to introduce curved background sources into these equations
coupled to various hydrodynamic observables, which will be crucial for our subsequent dis-
cussion of the EFT framework. Following this, we outline a generic procedure to implement
the second law constraints at arbitrarily high orders in the derivative expansion using the adi-
abaticity equation. A more concrete construction of the allowed one-derivative corrections is
presented later in section 4.

2.1 Ideal hydrodynamics on flat background

2.1.1 Symmetries and conservation laws

Hydrodynamics is a theory of locally conserved quantities. One starts by outlining the complete
set of Noether currents associated with any global symmetries that the system might enjoy, and
expresses various “fluxes” in terms of the conserved “densities”, arranged in a perturbative
expansion in derivatives. For a given set of such “constitutive relations”, the time evolution
of the conserved densities is determined by their respective conservation equations. In typical
hydrodynamic systems, these conserved densities are the energy e, momentum 7!, and particle
number density n of the fluid, associated with time and space translational invariance and an
abstract internal U(1) phase shift invariance of the theory. The associated fluxes are the energy
flux €, stress tensor 7/, and mass/particle number flux j¢, with conservation equations

Energy conservation: d e+, =0,
Momentum conservation: o o+ airii =0,
Continuity equation: on+3j =0. 1

In addition, hydrodynamic systems usually feature rotational invariance and some kind of
boost invariance. Provided that the fluid does not carry an intrinsic spin density, rotational
invariance requires the orbital angular momentum density to be conserved

Angular-momentum conservation: 8, (7'x) — n/x?) + & (t*ix) — M x) =2/t =<V | (2)

ensuring the stress tensor to be symmetric. If the theory is required to be invariant under
Galilean boosts, the center of inertia will need to be conserved

Center-of-mass conservation: J, (m nxt— nit) + 0 (mjkxi — ki t) =mj' —nt, (3a)

where m is the constant mass per particle. This leads to the momentum density being aligned
with the mass flux m! = m j'. Similarly, we have a conserved center-of-energy in the relativistic
case
. T i U ki ki L

Center-of-energy conservation: &, (C—Zex -1 t) + 0, (C—ze xt—1 t) = C—Ze —mn', (3b)
where c is the speed of light, equating the momentum density to the energy-flux n! = e!/c?
instead.* The paradigm of the present work is to study systems which might not necessarily
respect a boost symmetry. In this sense, we do not tie 7' to either ji or e'. We will still focus on
systems respecting rotational invariance (on hydrodynamic length scales), so 7/ is assumed
to be symmetric.

“Note that in the relativistic theory, we have a conserved energy momentum tensor T#”. Momentum density
equalling the energy-flux is merely the statement that T* = T*.
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2.1.2 Constitutive relations and second law

The starting point of hydrodynamics is the assumption that the low-energy dynamics of the
system near thermal equilibrium is entirely governed by its conserved operators: density n,
energy density €, and momentum density w'. Hydrodynamics is then characterised by the
most generic expressions for the fluxes ji, €', and 7/, written in terms of the chosen variables
and their spatial derivatives, i.e.

ji[n’ g, ﬂ'i’ al] D ei[na g, ﬂ:i,ai] > Tij[n, £, ni) al] . (4)

These are known as the hydrodynamic constitutive relations. Note that the temporal deriva-
tives of various quantities are determined by eq. (1) and hence are not independent. Our
assumption of near-equilibrium allows us to arrange the constitutive relations in a derivative
expansion, truncated at a given order in derivatives according to the phenomenological sen-
sitivity required. At any given order in the derivative expansion, the constitutive relations
contain all the possible tensor structures made out of derivatives of n, €, and 7l, consistent
with symmetries, appended with arbitrary transport coefficients as a functions of n, €, 72.
The hydrodynamic constitutive relations are required to respect certain phenomenological
constraints. Most important of these is the “local second law of thermodynamics” that requires

that there must exist an entropy density s’ and an associated flux s' such that
dps' +3s'>0. (5)

At the leading order in the derivative expansion, entropy density is merely given by an arbitrary
function of n, €, and 72, i.e. s* =s(e,n, ). Let us define intensive parameters: temperature
T(e,n, 7#2), chemical potential u(e, n, 72), velocity u'(e, n, 7#2), and pressure p(e, n, 7#2) via the
thermodynamic relations: local first law of thermodynamics and Euler relation respectively

Tds = de —udn—u'dm; , p=Ts+un+um —e. (6)
Due to rotational invariance, the velocity must be aligned with momentum, i.e. u' = 7'/p,
where p is the momentum susceptibility. It is easy to check that
3st+3»si——i(ei—(e+ )ui)a-T—('i—nui)aﬂ—(Tij— U — 6’7)8-E (7)
t [ T2 P 1 J lT P P 1 T >
where we have identified the entropy flux as
Ts'=pu'+e' —uj' —17u; +0(3) . (8)

We need to require that the RHS of eq. (7) is positive semi-definite for arbitrary fluid configu-
rations. At the leading order in derivatives, this leads to the ideal fluid constitutive relations

el=(e+p+0(d), U =pul +p&U+0(3), j'=nul+0(3),
st=su' +0(3). 9

The respective dynamics is given by substituting these into the conservation equations (1).
Note that entropy is conserved at ideal order. We can, in principle, extend this analysis to
higher orders in the derivative expansion (see [27]). We shall return to this when equipped
with more tools.

The relation s = s(e, n, 72), or equivalently € = e(s, n, 2), can be understood as the micro-
canonical equation of state of the fluid and completely characterises its constitutive relations at
ideal order through the thermodynamic relations (6). We note, however, that hydrodynamics
as a physical system is better defined in the grand canonical ensemble, because a fluid element

6
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is allowed to freely exchange particles, energy, and momentum with its surroundings. Keeping
this in mind, we can take the fundamental dynamical fields to be T, u, u' instead of €, n, and
;. In this case, the equation of state is given in terms of p(T, u, ii?) instead of e(s, n, #2) with
the thermodynamic relations: Gibbs-Duhem relation and Euler relation respectively

dp =sdT +ndu + m;du’, e=Ts+un+u'm —p. (10)

Recall that 7t; = p u;. These relations define €, n, and ; in terms of T, u, and ul.

2.2 Coupling to background sources

2.2.1 Aristotelian background sources

We would like to introduce a set of Aristotelian background sources to which fluids without
boost symmetry couple to, as discussed in [27]. These are similar to the Newton-Cartan sources
prevalent in Galilean hydrodynamics, but with no Milne boost symmetry. The absence of this
symmetry, in fact, makes these sources easier to implement in an effective theory. These are
given by

Clock-form: n Spatial metric: h Gauge field: Ay, an

uo uv o>

where h,,,, is a symmetric matrix of signature (0,1,1,1,...). n, and h,,, can be vaguely under-
stood as the time and space components of the relativistic spacetime metric g,,,, now being
treated independently due to the lack of any boost symmetry. Since h,,, is a degenerate ma-
trix, it admits a zero-eigenvector v*, normalised as v¥n,, = 1, such that v*h,,,, = 0. Its spatial
components v! can be identified as the velocity of a lab frame observer. This can be used to
define an “inverse spatial metric” h*” via the relations h*”n, = 0 and h*’h,,, +v#n, = 5%.
Note that h*” is not the inverse of h,,,. Together,

Frame velocity: v* , Inverse spatial metric: h*” , (12)

should be understood along the same lines as the inverse metric g*” in relativistic field theories.
They are entirely fixed by the sources (11) via the conditions

vin, =1, vWh,, =0, h*"n, =0, h*"h,, +vhn, = 6% . (13)
The flat background limit is given as n,, = 5;, h,, = 5L5iv, A,=0,vk= 5%, and h*Y = 6”‘5;’.

Let d be the number of spatial dimensions. The clock-form n,, couples to the energy density
and flux e, the d independent components of the frame velocity v* couple to the momentum
density 7, (normalised as v/, = 0), while the remaining d(d+1)/2 independent components
of the spatial metric h,,,, couple to the stress tensor T/ (satisfying 7#"n, = 0 and t#” = 7"%),
and finally the gauge field A, couples to the particle number current j*. In terms of the non-

covariant densities and fluxes we have

ok t Kl o2 o kj
€ vem /v T /n T /n, . n
‘ (e) - ( ni ) ’ (—nkr’“/nt i) S

We will often use " = h*”r,, satisfying ¥n, = 0. The coupling can be denoted in terms of
the variation of an (equilibrium) effective action S describing the theory as

1
58 = f ded®x .y ( jH8A, —etn, —m,ovH + ET‘“’Shw)

:fdtddx\/? (j“5Au—e“5nu+(v“n”+%T“”) ShW), (15)
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where y = det(h,, + n,n,). The second line is to highlight that v* is not an independent
source.

We require the theory to be invariant under local diffeomorphisms parametrised by arbi-
trary invertible maps x’#(x) and U(1) gauge transformation parametrised by A(x). We have
collectively denoted the spacetime coordinates x* = (t,x!). Their action on the background
fields is defined as usual

ox” ax ox°
n,u(x)_)n;(x/):mnv(x): ,u,v(x)_)h;“,( ) /“a v pa( x),

A (x) - AL (x) = 3 »(X)+0,A(x)) , (16)

and similarly for v* and h*”. Under infinitesimal version of these transformations, with

xM(x) = x* + E¥(x), the diffeomorphisms merely act as Lie derivatives
n,—n,+$mn,, h,,—>h,,+3$:h,,, A, A, +$:A,+A. 7

Implementing this on the action variation in eq. (15), we can work out the covariant conser-
vation equations

Energy conservation: (V + F” ) et =—v” (ij“ —F) e“) — T“AhMVMv”
Momentum conservation: (V + F"Av ) (WY + t#) = p"* (FMJ F;Llue“) — v, v,
Continuity equation: (Vu + Fﬁlv )j“ =0. (18)

Here F,,, = 2¢;,A,) and F ;}v = 20,n,) are the field strengths associated with A, and n,, and
V, is the covariant derivative operator associated with the connection®

1
r;v =v*g,n, + 5hA (8uhyp + 31y — Bphys) (19)

This connection satisfies
VA 2 1
V“nv = Vuh =0 , vlhuv = _n(,u$vhv))L , hMVHv = £$vhuw

= MF" ) (20)

1 A
Fﬁv +FZMVM - ﬁavﬁ B ZF[MV]

Note that this connection is torsional. In addition to torsional contributions on the left, the con-
servation of energy and momentum in eq. (18) is sourced by Lorentz force-like terms coupled
to the field strengths F,, and F gw and pseudo-force terms coupled to the covariant derivative
of the frame velocity VMV .

2.2.2 Hydrodynamics on curved background

The ideal order hydrodynamic constitutive relations (9) can be coupled to background sources
naturally as

et=eu+pu*+0(2), ot =pu*+0O(3), ™™ =pa*d”+ph*” +0O(2),
j“:nu“—l—(’)(a), sf=sut+0(2), (21)

°In Galilean theories, it is often convenient to work with a different connection, namely

o =v*on, + = h*P(a h,p +8,h,, — 8,h,,) + n,F R,

which is Milne boost-invariant on backgrounds with F” = 0. Since we do not have any boost invariance, we
choose to work with the simpler connection. The choice of connection has no bearing on the physical results.

8
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where the covariant version of various hydrodynamic observables are defined in eq. (14). We
have also taken u® = (1—u'n;)/n,, which is just equal to 1 on a flat background, so that the co-
variant fluid velocity u* satisfies the normalisation condition u*n,, = 1. The velocity of the fluid
with respect to the Galilean frame is defined as u* = u" —v¥, @, = h,,,u” = h,,1i", satisfying
u*n, = 0, ii,v* = 0. These constitutive relations should be understood as written in the grand
canonical ensemble characterised by a function p(T, u, ii%), where ii2 = u'u’hy,, = uti"hy,,,
and the thermodynamic relations (10). The structure of the constitutive relations is fixed by
the second law of thermodynamics; it can be checked that eq. (21) represents the most generic
leading derivative order constitutive relations satisfying

(VH-FFEAVA)S“:%%L(‘/?S“)ZO, st =sut+0(2). (22)

The equations of motion of hydrodynamics are obtained by substituting the constitutive
relations (21) into the conservation equations (18). We obtain

=Y T2

“1;7 5.5 (/T T2p) — (e + PIH"'5 yn, +nh"'5 5A, + p u”h*P S 5h,, = O(32)
1 1
—64(J/7Tn)=0(3%), — 55 (J/7Ts)=0(8%). (23)
N T 7

Here 6 4 denotes a Lie derivative along u" /T combined with a gauge-shift along (u—u"A,)/T.
Explicitly, we find

A A

5 gn, = —%aﬂ - %Fﬁvu”, 5 hyy = 2hwvv)”? + ”?vlh,” ,
6y = Gy %qu” : (24)
Note the identity for arbitrary function f (T, u, @i2),
87N = [ (155 +uh 22 SL )i [am,
+ %u“d@A“ + (2%u“uv +fh“”) %6%hw . (25)

There are a few lessons to be learnt from the equations of motion (23). Firstly, note that the
equations of motion can be written entirely in terms of 6 gn,,, 6 gh,,,, and 6 zA,,. Let us say
that the background fields admit a timelike Killing vector K*, i.e. $xn, = $xh,, = $xA, =0,
where $; denotes a Lie derivative along K*. Coupled to such a background, the equations of
motion admit a trivial “equilibrium solution” given by u* /T = K" and u/T = K"A,,. Secondly,
we can always eliminate any (d + 2) number of linear combinations of 6 4n,, 6 zh,,, and
0 g4, from the higher derivative corrections to the constitutive relations using equations of
motion. This shall be useful later while writing down the set of independent one-derivative
corrections to the hydrodynamic constitutive relations.

2.2.3 Hydrodynamic frame transformations

Recall that we had defined the hydrodynamic variables u/, T, and u using the thermodynamic
relations (6). However, these definitions are only well posed in equilibrium. Out of equilib-
rium, there is no unique notion of fluid velocity, temperature, or chemical potential. This is
important because we can always redefine these quantities with terms involving spacetime
derivatives which will vanish in equilibrium, such as

T—>T+6T, u—u+ou, ut - ut+8u’, (26)

9
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where 6T, 6u, Su' contain terms with at least one derivative. We can also define Su* as the
change in the covariant fluid velocity, with n,6u" = 0. More details on the explicit action of
these redefinitions on the hydrodynamic constitutive relations can be found in appendix A.

Often, it is convenient to work in a “hydrodynamic frame” where one imposes extra con-
straints on the derivative corrections that can enter the ideal order constitutive relations (21),
so that this freedom is exactly fixed. A natural choice is to ensure that the conserved densities:
energy, momentum, and particle number, do not obtain any corrections, by requiring

e*n,=¢€, = pu*, *n,=n, 27)

w u

which we call the density frame. This frame ties the fluid velocity with the flow of momen-
tum. In the Galilean case, this is same as the “mass frame” with the fluid velocity aligned with
the flow of mass. For relativistic hydrodynamics, there are other more popular hydrodynamic
frames used in the literature, such as the Landau and Eckart frame, where the fluid velocity is
aligned with internal energy and charge flow, respectively. However these frames are known
to exhibit unphysical pathologies such as superluminal propagation and unstable modes in
the linear spectrum in a finite velocity state [30,33-36]. By contrast, the density frame de-
fined above is always well-defined. We will return to these issues in section 6. More details
about hydrodynamic frame transformations in boost-agnostic hydrodynamics can be found in
appendix A. As it turns out, the most useful choice for us is to leave the hydrodynamic field
redefinition freedom to be unfixed for now. We shall return to it in the next subsection.

2.3 Adiabaticity equation, thermodynamic frame, and discrete symmetries

We can write down a covariant version of the second law of thermodynamics given in eq. (5)
as 1
A

(Wit Ei?)s = 2o (V7 =kt 2 0. (8)
Here A has to be a positive semi-definite quadratic form and ky is the Boltzmann constant. The
second law is imposed onshell, i.e. it is only required to be satisfied by configurations satisfying
the conservation equations (18). Nonetheless, we can convert it into a offshell statement
by adding arbitrary combinations of conservation equations. Introducing an arbitrary vector
multiplier §* and a scalar one Ag, we can write [37, 38]

(Vu +ngvk)s“ —kgpPn, [(Vu +F"jka) e +.. ]
+kgBPh,, [(Vu + F:lvl) (e + TP+ ]
+ kg (Ap + BPA,) (Y, +Fvt) U = kgA 20, (29)

which will be satisfied offshell for some " and Ag. It can be checked that the ideal fluid
constitutive relations (21) satisfy this relation for A = O(92), provided that we choose kz3* =
u"/T +O(9) and kgAg = (u—u"A,)/T + O(3).

Recall that we had an immense amount of redefinition freedom on our hands in the choice
of hydrodynamic variables u*, T, and u that we left unfixed at the end of section 2.2.3. We
can fix this freedom by requiring the multipliers 8, Ag to be exactly equal to their ideal order
values with no derivative corrections

u u—utA,

[ Ap =
P P kpT

= 30
T (30)

This is known as a thermodynamic frame. This, however, is not a complete fixing. We can
imagine performing certain redefinitions of u", T, u, and by extension of ", Ag, that only
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change the constitutive relations satisfying the adiabaticity equation (33) up to combinations
of conservation equations. Such redefinitions still need to be accounted for as they leave the
dynamics invariant. This can be unambiguously done following our discussion around eq. (23)
and eliminating any (d + 2) combinations among 6 4A,,,  zn,, and 6 zh,,, from the hydro-
dynamic data, leaving us with d(d + 5)/2 independent components. Note that v/v’6 4h,,,, is
trivially zero. Different choices lead to different thermodynamic frames. Of particular interest
to us is the thermodynamic density frame, where we choose the independent data to be

W8 gA,,  h6gn,,  RPh&gh,, . (31)

This matches up with the density frame defined in eq. (27) in the non-hydrostatic sector (i.e.
part of the constitutive relations that vanish in a hydrostatic/equilibrium configuration), but
differ substantially in the hydrostatic sector. The discussion for thermodynamic Landau frame
is presented in appendix A. In the core of this paper we will be working in the thermodynamic
density frame. The main reason for this choice is that this frame, unlike the Landau or Eckart
frames, does not exhibit unphysical instabilities in the linearised mode spectrum [30,33-36].°
This fact will be clear when studying linearised fluctuations in section 6.
Eq. (29) can be transformed into a more useful form by defining the free energy current

1
Nt = =5t = Bny e+ VBV, + Brhy, T + (Ap + BPA, ) 1 (32)
B

which leads to the adiabaticity equation
1 :
(Vu+FLy NI =—ek5 5n, + (v“nv + ET‘”) Sghyy +j 5 5A,+A, A20. (33)
The operator 6 4 combines a Lie derivative $5 along " and a gauge shift along Ag, i.e.

5%nu=$ﬂnu, 6%h,uv:$/5huv: 5%Au=$/5AM+3MA,3 . (34)

This form of the second law of thermodynamics is more useful to implement on a curved
background. It can be checked that the constitutive relations (21) are the most general solution
of the adiabaticity equation (33) at the leading derivative order with A = 0. This also justifies
their explicit form in the presence of background sources. Note that A being zero at this
derivative order means that ideal fluids are non-dissipative, as we would physically expect.

Additional phenomenological requirements beyond Aristotelian symmetries, and the sec-
ond law of thermodynamics, are also usually imposed on the hydrodynamic constitutive re-
lations. Such is the case of discrete time-reversal (T), parity (P), and charge conjugation (C)
symmetries. In particular, underlying microscopic theories are often taken to respect some
kind of time-reversal symmetry, like T, PT, or CPT. Denoting the action of these symmetries
by ©, in table 1 we provide the transformation properties of various quantities of interest un-
der these symmetries. Such symmetries are responsible for imposing Onsager’s conditions on
the hydrodynamic correlation functions (see [7]) or for requiring the constitutive relations to
be ©-invariant in equilibrium [39-41]. These discrete symmetries will be crucial when for-
mulating the Schwinger-Keldysh EFT in the next section. This completes our brief review of
Aristotelian hydrodynamics — the explicit one-derivative order corrections will be considered
in section 4.

3 Effective field theory for boost-agnostic hydrodynamics

In this section, we discuss the Schwinger-Keldysh effective field theory for boost-agnostic hy-
drodynamics. Unlike the EFT for relativistic hydrodynamics developed over the last decade [8,

6Stability of various hydrodynamic frames in relativistic, Galilean, and Carrollian fluids was studied in [31].
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Table 1: Action of parity, time-reversal, and charge conjugation on various quantities
in classical hydrodynamics and effective field theory. In the next section we intro-
duce Schwinger-Keldysh double copies of various quantities in the effective theory,
with labels “1/2” or “r/a”, which have the same transformation properties as their
unlabelled counterparts.

P T |PT|CPT

Xt |+ + —| =] —
XLxbot |+ — +| —| —
¢ -+ |- +

u, B, |+ — =+ |+
T,B% " |+ + +| + | +
u, Ag, A | — + +| + | —
en, |+ + + |+ | +
€', n; + - —| + +
vt |+ — — |+ | +
R |4+ o+ |+
by | — + + |+ | —

10,42-50], the EFT description of boost-agnostic hydrodynamics needs to treat time and space
directions on independent footing. A similar discussion for Galilean hydrodynamics appeared
recently in [11], where the time and space directions were indeed treated independently, but
nonetheless had to be tied down to respect the underlying Milne boost symmetry. As noted
there, Milne boosts actually make things quite hard for an effective field theorist; to make this
symmetry manifest, one needs to pass to a higher-dimensional “null-background” represen-
tation followed by a null reduction to obtain the final results. Since boost-agnostic hydrody-
namics does not worry about boosts altogether, the ensuing EFT is formally simpler than its
Galilean cousin. In fact, the following discussion is mostly a reproduction of section 5 of [11],
but with the Milne boost symmetry revoked. The lack of a symmetry does mean that many
more terms can now enter the effective action at a given derivative order that were previously
not allowed, making the boost-agnostic case structurally more richer; we will see an example
of this for one-derivative fluids in section 4.

3.1 Schwinger-Keldysh sigma model on the fluid worldvolume

In this section we introduce a worldvolume formulation of the EFT. The fluid worldvolume is a
(d + 1)-dimensional manifold endowed with coordinates o®. These coordinates can be inter-
preted as labels associated with each fluid element in the physical spacetime. The dynamical
fields living on the worldvolume are X!(o) and ¢ (o) with s = 1,2, and are Schwinger-
Keldysh double copies of spacetime coordinates and U(1) phases of a given fluid element. We
can decompose these fields in average combinations according to X f s =X P +n/2xY and
¢12 =@, £h1/2¢p,. The combination X (o) denotes the physical spacetime coordinates and
is akin to an embedding map, while ¢,.(o) denotes the physical U(1) phase of the fluid ele-
ments. In turn, the average combinations X/ (o) and ¢,(c) encode the stochastic degrees of
freedom. The worldvolume also contains two fixed reference fields, namely, a thermal vector
field %(o) and a chemical shift field A (o). These additional fields define the global rest
frame and global chemical potential associated with states in global thermal equilibrium.
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The EFT is required to be invariant under translations and rotations of the coordinates
X! (o) as well as under global U(1) shifts of the phases (o) acting independently on the
two Schwinger-Keldysh spacetimes. In order to understand their action within the effective
field theory, one must introduce double copies of Aristotelian sources as in section 2.2.1. In
particular, associated with each Schwinger-Keldysh spacetime we have the clock forms n,,, (X;),
degenerate spatial metrics hy,,,(X,) and gauge fields A, (X,). Thus, under local Schwinger-
Keldysh spacetime diffeomorphisms and gauge transformations

XM (o) > XFX(0)),  9s(0) = py(0) = A(X(0)), (35)

the action on the background sources is given by eq. (16). It is useful to make the symmetries
(35) manifest on the fluid worldvolume by defining pullbacks of the background sources (with
an additional gauge transformation) such that

Nye(0) = nsu(Xs(U)) 8aX§u(O') 5 hsa[j (o) = hsuv(Xs(O')) aaXs'u(U)a[g’st(O') 5
Aso(0) :Asu(Xs(G)) aaxéu(o-) + 0,p5(0) . (36)
All the dependence on the dynamical and background fields in the effective theory must en-
ter via these invariants to respect Schwinger-Keldysh spacetime symmetries. This fixes the
structure of coupling between background and dynamical fields in the effective theory.

The EFT on the fluid worldvolume is required to be locally reparametrisation invariant and
invariant under local shifts of the U(1) phases ¢ (o). In particular, under

o> 0" 0),  ¢0) > pl0)+A(0), (37a)

in which the two phases shift simultaneously. The pullback of background sources,

doP oo’ dod
Ny (o) —=n; (o) = mns/j(U) , heap(0) = hi(0) = maa—,ﬁhsys(@ ,
doP
Aa(0) = Ay(01) = 2= (Ap(0) + 3pA(0) (37b)

transform as tensors under such reparametrisations and phase shifts while the worldvolume
fields *(o) and A (o) transform in the expected manner, namely

do’(0) 4
dob

Given the transformation properties (37), it is possible to build a gauge-invariant combination
using the pullback of the gauge fields A, = (A;,—A,,)/h. On the other hand, the combination
Arq = (A1 + Ay,)/2 is not gauge-invariant. As such, when considering an effective action,
A, can only enter via the gauge-invariant combinations “A., +A and 25;,A, 1.

It is possible to partially fix the reparametrisation freedom by choosing a set of worldvol-
ume coordinates 0% = (7, ') and setting * = 3,6 *aswellas A = fBoug. Here, By = (kg To) ™
is the (constant) inverse temperature and u, the (constant) chemical potential of the global
thermal state. Given these choices, we are left with residual spatial reparametrisation freedom
T — T+ f(3) and o' — o’(5) as well as with U(1) phase shifts ¢, — ¢, + A(F) (see [11]).

The effective action S for boost-agnostic hydrodynamics is the most generic functional
made out of the background and dynamical fields, respecting the Schwinger-Keldysh space-
time symmetries (35) and the fluid worldvolume symmetries (37). Using the invariants =
(Nsa> Nsap, Aq) and the reference thermal data B = (- %, A ), the effective action can be written
in terms of a Lagrangian density

*o)— o) = (0), A(o)=AN(o)=A (0)— *0)IA(0). (370)

S[ 1, 2;B]=Jdd+101/_rﬁ[ 1» 2:B1, (38)
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where we have defined , = det(n,N,g + h.4p) with n,., = (N1, +Ny,)/2 and h,,p =
(h1qp +h14p)/2. The Lagrangian L is a gauge-invariant scalar on the worldvolume. This form
of the action makes all the spacetime and worldvolume symmetries of the effective theory man-
ifest. However, the action is also required to obey a set of Schwinger-Keldysh requirements on
the account of describing generic thermal field theories [8,11]. These are

S*[ 1, 2;BI=-S[ 5, 1;B], (39a)
s[, ;B]=0, (39b)

ImS[ 1> 2,8]20, (39(:)

S[ 1, BI=S["1, 481, (39d)

where the “tilde” KMS-conjugation in eq. (39d) is defined as
N1a(0) =Oh14(0), MNya(0) =ONy,(0)—iOF Ny, (o) + O(R),
Riap(0) = ON1ep(0) . Pogs(0) = ONyep(0) —iOS hogp(0) +O(M),
A1a(0) = OAL,(0),  Agy(0) =OAg(0) —iTOF Ayy(0) —iIOF,A (0) +O(R),
“Y0)=0 *(o), A (0c)=6A (o). (40)
Here © represents a discrete symmetry transformation involving a time-flip, e.g. T, PT, or CPT.

Its action on various quantities is given in table 1. The operator § denotes a Lie derivative
along *. We can compactly denote these transformations as

~1:@ 1> ~2:® Z_lh®5B 2+O(h), B:@B (41)

The operator 6g combines the Lie derivative § along ¢ and a gauge shift along A . Here we
have focused on the KMS transformations in the statistical limit (% — 0); the finite # quantum
versions are the same as those in the Galilean case [11].

3.2 Physical spacetime formulation

The effective theory on the fluid worldvolume can be rewritten on the physical spacetime. The
average coordinates X" (o) are interpreted as an embedding map, such that the location of the
worldvolume in the physical spacetime is given by x* = X (o). Inverting this map implies
that the worldvolume coordinates 0% = o*(x) are seen as dynamical fields from the physical
spacetime point of view. Analogously, we can express all other dynamical fields living on the
worldvolume as functions of the physical spacetime coordinates, in particular, the U(1) phase
¢.(x) = ¢,(0(x)) and the stochastic noise fields X5 (x) = X% (o(x)) and ¢, (x) = @, (o (x)).
It is useful to split the worldvolume sources (36) into average and difference combinations
Nioq =N £H/2N44, N1 065 =hpgp £H/2040p, and Ay 5, = A, £H/2A,,. Using these, one
can define worldvolume gauge-invariant pushforwards onto the physical spacetime using the
inverse map o %(x). In particular the average physical sources are given by’

Ny (x) = N (0(2)) 8,0%(x) = 1y, (x) + O(R)
H, (X)) = Dy op(0(x)) 8,0%(x)8,0P (x) = hy (X)) + O(R)
By () = Ao (0(x)) 8,0%(x) — 8,6, (x) = Ay, (x) + O(h) (42)
while the stochastic sources are defined as
Noy (%) = Ngq(0(x)) 8,0%(x) = ngy(x) + $x ., (x) + O(R)
Hayuy(X) = haap(0(x)) 8,0 *(x)3,0P (x) = oy (x) + 8x By + O(R)
Bgu(x) =Agq(0(x)) 8,0%(x) = Aqu(x) + Gy pa(x) + $x Ar(x) + O(R) . (42b)

"Here N, should not be confused with the free energy current N* in eq. (32).

14


https://scipost.org
https://scipost.org/SciPostPhys.11.3.054

Scil SciPost Phys. 11, 054 (2021)

In eq. (42), we have defined the Lie derivative along X% (x) as $x, and decomposed the back-
ground fields as well into average and difference combinations such that n; 5, = n,, £h/2n,,,
hy2uy = hpyy £1/2hg,,, and A, 5, = A, £1/2A,, up to leading order in fi. These average
background fields can be identified with the classical Aristotelian background fields of sec-
tion 2.2.1. We can also identify a frame velocity v/’ and inverse spatial metric h” on the
physical spacetime as the averages v’ = (vi‘ + vé‘ )/2 and K" = (h‘f Y+ h‘; ")/2. These satisfy
the conditions (13) at leading order in f.

Similarly, the hydrodynamic fields 8*(x) and Ag(x) are obtained by pushforward of *(o)
and A (o) such that®

BHx) = Ho(x))o X (0(x)),  Ag(x)=A (o(x))+ “(0(x))dup,(0(x)).  (43)

Additionally, the classical hydrodynamic fields introduced in section 2, namely, the normalised
fluid velocity u"(x) obeying u*N,, = 1, the local temperature T (x), and the chemical potential
u(x) are defined as’

1 __ P
kT = goovam T BN

B*(x)B,,(x) + Ap(x)

BAEON ()
(44)

u(x) =

which are gauge-invariant and do not depend on the stochastic fields.

It is necessary to make sure that the Schwinger-Keldysh spacetime symmetries (35) are
correctly implemented in the physical spacetime. This can be done by requiring the resulting
EFT to be invariant under “average” coordinate and gauge transformations using o(x) and
p,(x), i.e.

xP— x™(x), 0, (x) > @ (x)—A(x) . (45a)

Under such transformations the “average” background structures and hydrodynamic fields
transform according to

8 v dxP ox°

Nrp,(x) Nru( ) rv(x) r,uv(x) - Hruv( /) = EPm erpa(x) >
Bm(x) B, ()= S (B () + A
/ ax/M(o-) v /ot
BHG) = BH() = ———= (), Ap(x) o Ap(x) = Ap(x) — B¥(x)9,A(x),  (45b)
while the “difference” stochastic parts transform as
ox” oxP 9x°
a,u,v(x) - Na,“,( ) = mNav(x) 5 auv(x) - Ha,“,( ) = EP m apa(x) >
ox”
Ba(x) = By, (x') = =0 Bay (x) (450)

Let us introduce the compact notation @, ; = (N, Hy. qv> Br,qu) and 98 = (B, Ag), which are
essentially the physical spacetime versions of ; 5 and B. In terms of these, the hydrodynamic
effective action (38) can be rewritten in physical spacetime language leading to

S[<I>r,<1>a;93]=Jdd“xwr£[<1>r,<1>a;%] , (46)
8If we pick the frame “(0) = f,6* and A = Py, one obtains the physical spacetime counterparts

ﬁﬂ = ﬁOarX# and Aﬁ = ﬁo(ﬂo + a‘r@r)
These definitions of the hydrodynamic fields are not boost invariant, since we are dealing with boost-agnostic
hydrodynamics. The relation to Galilean and relativistic hydrodynamic fields is presented in section 5.
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with y, = det(n,,n,,+h,,,). The action is manifestly invariant under worldvolume and phys-
ical spacetime symmetries. However, it does need to satisfy the Schwinger-Keldysh constraints

S*[®,,84; Bl =—S[®,,—P,; B], (47a)
S[®,,%,=0;8]=0, (47b)
ImS[®,,d,; B]>0, (47¢)

S[®,, g5 B]=S[2,, %, B], (47d)

where the KMS conjugation follows from
¢, =09, +0(1), &,=09,+i064%,+0O(h), B=0%8+0(). (48)

The operator 64 denotes a Lie derivative along " combined with a gauge shift along Ag,
ie. 64N, , = $gN,y, 64H,,, = $gH,,,, and 6 4B,, = $4B,, + J,Ag. As a reminder, ©
is a discrete symmetry transformation that the theory might enjoy such as T, PT, or CPT (see
table 1). We can define the “r/a” variants of the hydrodynamic operators by varying the action
with respect to “a/r” background fields according to

1
58S = J ditly yr[pﬁ‘5Aa“ —elong, + (vﬁ‘n;’ + E’c’;“’) Shayy
1
+ptoA,, —eldn,, + (vﬁn;’+ ET’;”) 5hrm} . (49)

The “r” operators are understood as the physical hydrodynamic observables, while the “a”
ones as the associated stochastic noise counterparts. Out-of-equilibrium thermal correlations
functions of these operators can be computed by varying the Schwinger-Keldysh generating
functional which takes the form

expW[op,,p,]= J DX, DX, Dy, Dy, exp(iS[®,,®,; B]) , (50)
where ¢r,a = (_nr,ap,> hr,apw;Ar,a;_L)-

3.3 Schwinger-Keldysh effective action

Based upon the considerations of the previous subsection, it is possible to find the explicit
structure of the effective action entering in eq. (50). The procedure is directly analogous to
that of Galilean fluids [11]. KMS conjugation acts on the building blocks of the effective ac-
tion according to 8 — 0%, &, —» 09, &, —» 0P, 4+ i©0 5P, for the hydrodynamic fields
% = (", Ag) and the invariants @, ; = (N, 4, 1/2H, g1y, By, qu)- Thus the most general effec-
tive action for hydrodynamics without boosts is given by a set of totally-symmetric multi-linear
operators D,,(o,...) made out of ®, and 4, allowing m number of arguments from the vector
space spanned by i6 z®, and ®,. In particular, the minimal Lagrangian for classical hydrody-
namics is given by

L="D(®,) +iDy(®g, B, +i5 5®,) + D3(®,+56 8., 8y, 8,415 59,) + O(H) , (51)

where the D,,(o,...) operators satisfy the following constraints (see [11] for more details)

1
D1(65%,) = ‘/—Y_au (V7 NY)  for some vector N}, (52a)
r
D1(®,), Dy(®,,%,), Ds3(®,,P,,P,) are®-even, (52b)
D2(<I>,¢)|leadmg order = 0 for arbitrary & = (N,,,1/2H,,,,B,) . (52¢)
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These constraints are consistent with the second law of thermodynamics (28); see [11] for
a derivation. In the next section, we will provide the explicit form of the operators D; ,. As
we are focusing in first order corrections, we do not provide the form of D5 as this operator
contributes with second order and higher correction terms in the gradient expansion. Since in
this work we are not interested in the most generic stochastic contributions, we have skipped
the operators D,,..5 in our discussion, as these do not contribute to the classical equations of
hydrodynamics without boosts; see [23] for a detailed discussion.

4 One-derivative boost-agnostic hydrodynamics

In this section, we discuss charged boost-agnostic hydrodynamics up to first order in the deriva-
tive expansion. We start by writing down the most generic classical constitutive relations for
the system allowed by the adiabaticity equation (second law of thermodynamics) discussed
in section 2.3. We then proceed to write down the explicit effective action for one-derivative
hydrodynamics utilising the machinery from section 3. We will briefly discuss how these are
related to the more familiar constitutive relations of Galilean and relativistic hydrodynamics
in section 5. As a simple application of these results, in section 6 we study fluctuations around
an equilibrium state in boost agnostic hydrodynamics.

4.1 Classical constitutive relations

We want to work out the most generic constitutive relations that satisfy the adiabaticity equa-
tion (33), truncated at first order in the derivative expansion. Focusing on the parity-even
sector, the solutions can be classified into three classes: (1) hydrostatic (hs; Class Hg) that
survive in a hydrostatic configuration, i.e. when we set 6 zn, = 6gh,, = 644, = 0; (2)
non-hydrostatic non-dissipative (nhsnd; Class D) that vanish in an hydrostatic configuration,
but do not contribute to entropy production quadratic form A; and finally (3) dissipative (diss;
Class D) that also vanish in a hydrostatic configuration, but contribute non-trivially to entropy
production.!®

4.1.1 Hydrostatic transport

The hydrostatic sector is completely characterised by the free-energy density
N =p—Fov*3,u—Fv"3,T —F,»"3,1i° . (53)

This is the most generic hydrostatic scalar that can be made out of the constituent fields at one-
derivative order. Here p(T,u,ii?) and Fo12(T,u, i 2) are arbitrary functions of zeroth order
scalars. It is easy to check that

f u(«/_Nﬁ“)—F‘S%(«/_N)

:N(V“(st%nu + EhHVS%huv) + 5N 5N 5N

GA,

“7 8n, Shyy P

OIn the parity-odd sector, there can be additional contributions coming from global anomalies (Class A) and
transcendental anomalies (Class Hy). These contributions are entirely fixed up to a few constants. See e.g. [38]
for a discussion.
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The variational derivatives have been performed at constant f# = u"/T and Ag = (u—u"A,)/T.
Here @% denotes a total derivative term generated during the Euler-Lagrange procedure.
Comparing this with eq. (33), we can read out

=NB'+0),, Ap=0,

5N 5N N 5N
.U u "
Tos = 5a,” ehs__E_Nvu’ s = ?5hpe Zhuphvash FNRE

(55)
Explicitly, we find

E)F F
—LuMro,T —Qu“vla;ﬁz +0(8%),
8,u au

JF, 1
b =nut— —2uMy o u+ —2 Fov*
Jhs on A Ve L (VT Fovt)u?
eﬁs =eut+pu —WFOu“vAQA,u + %6& (ﬁFov’l)u“
Y

T L, 202
— wFlu“v’lﬁ,lT + ﬁ(’}l (ﬁFlv’l)u“ —szu“vlaxuz + ﬁﬁx (ﬁszl) ut +0(8%),

OF oF,
m = p it — (Za—ﬁgii“\/L — Foh“’l) oHu— (Z—u” 2 —Flh‘“l) o T

oii2
23—F*u —F,h** |3 T (VT Fv?) i +0(8%)
aazu V U ﬁ A YoV Ju B
uy SUSY uv __ aF e uv 7L aF i uv A
The = PU'T"+ph Zﬁu + Foh"Y |v* o, u— Za—u Y+ Fh"Y |v*o, T
(23 200" + F hW) Aakﬁ2+ial(ﬁszl)ﬁ“ﬁ”+O(82), (56)
FER JT
and 1
Gx/ k—v“ (Fou O+ Fru*d, T + Fou’ 8,112 ) (57)
Bl

where we have used the identity 6 gv" = —v¥v"§ gn, — h#**v¥§ zh,., and defined

(OF, OF ,0F,
Wgp =1 — u .
E= Ve TR, o2

The readers can convince themselves that these are the most generic parity-preserving hydro-
static constitutive relations allowed by the adiabaticity equation. In the uncharged limit, that
is, when Fy = 0 and F; ;, = F »(T, i12), the hydrostatic contributions (58) agree with those
in [27].1

If the underlying microscopic theory respects a discrete ® symmetry, such as T, PT, or
CPT, this will need to be imposed on the free-energy density \. For instance, for ® = T or
© = PT, all three one-derivative coefficients must vanish, i.e. Fy; 5 = 0. On the other hand
for © = CPT, we can only state that F ; , must be odd functions of the chemical potential u.
Note that if j* corresponds to the particle number current, it does not make sense to discuss
CPT.

(58)

4.1.2 Non-hydrostatic non-dissipative transport

Next we have the non-hydrostatic non-dissipative transport made out of linear combinations of
084y, 6 gn,, and 6 gh,,, that satisfy eq. (33) with Apygng = 0. Recall that due to our thermo-
dynamic frame-fixing condition, all the dependence on these can only appear via their spatial

The comparison requires using the identification (134) and flipping v — —v* to match the conventions of [27].
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components in eq. (31). Inspecting eq. (33), it immediately follows that n,, jl’f hend = nueg hend =
nﬁ hsng = 0- For the remaining contributions, we find

Y LY Aulpo)
Jnhsnd 0 Dje Dj'c( ) 593Ap
‘ = o
eghsnd = _kBT _D}Oeu 0 Dgfp _5%np 5 (59)
N M a 1
Tﬁlj:snd _DfT(PW) _Dfﬂ.gPW) Dfrl;V)(pg) Eaﬁhpo
where
D]Ijlep - 601PHP +§01ﬁuﬁp 5
DHPT) = 2050, PHP A7) + 5oy 1M 01P U7 + 5t PP
Dg,gpo-) = 2612PH(pﬁU) +§12ﬁ”ﬁpﬁo +,§13ﬁuppo- 5
BUPT) = 5y, (040" PPT — PGP 1), (60)

Here i* = @i*/|ii] and P*¥ = h*” — 1), with [ii] = v/@i2. The transport coefficients appearing
here are arbitrary functions of T, u, and ii2. The coefficient matrix in eq. (59) is antisymmetric,
which ensures that there is no contribution to A ;¢.4-

As for the discrete symmetries ©, Onsager’s relations require that the constitutive relations
in eq. (59) are even under ©. With ® = T or © = PT, the entire non-hydrostatic non-dissipative
sector is set to zero. On the other hand for © = CPT, all the transport coefficients appearing
here must be odd functions of u.

4.1.3 Dissipative transport

The dissipative sector is quite similar to the non-hydrostatic non-dissipative sector, but with

the coefficient matrix being symmetric, leading to entropy production. We again find that

woo_ e u .
Mulgiss = Mu€diss = Tdiss — 0, along with

oY up up ulpo)
Jaiss Dj; Dje DJ'T( ) 084p
o
Egiss = _kBT D_feu ) Dé:ep ) ?gf)i ) _5% Tlp 5 (61)
uv p(uy p(uy uv)(po 1
Tdiss D].T DET DTT 55%hpa
with
D;-)Ljp = Uoop‘up +500ﬁ‘uﬁp ,
Dﬁ:‘p = UOlp‘up +501ﬁ‘uﬁp ,
Dgep = Ullp‘up +511ﬁ“ﬁp s
D;JT(PO') = 2002P“(pﬁ0) +502ﬁ“ﬁpﬁa + Hogﬁuppo- 5
Dé{gpo) = ZUlzpu(pﬁU) +512ﬁ“ﬁpﬁo +513ﬁ'uppa 5
DE_!?)(PU) = 2 (pP(Hp v)o _ ﬁpl”pPU) + 4022ﬁ(up Ve ;o)
+ 5o 0V IP AT + 595 (PHYIPAC + UM PPO) + 545 PHYPPO (62)
The associated entropy production quadratic form is given by
5aA T r pee DHP pHpo) S5.A
Bp nn ne nm Brp
Agiss = kg T 1_535np Dﬁeu fof D:‘:,Spa) 1_5ggnp >0. (63)
E693}1p0 DrflJT(CW) DZ&W) Di(#[v)(pa) j593hpa
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Imposing the positivity constraint merely requires that the dissipative coefficient matrix is
positive semi-definite. Explicitly, this leads to

5 S 5 S
00 01 02 03 Yoo o1 Vo2

5 5 5 5
or T P PSS bor by 012 |20, t=0, (64)
S02 S12 S22 523

Upo2 D12 U2
503 $13 S23 9533

where the positive semi-definiteness of a matrix means that all its eigenvalues are positive
semi-definite.

The discrete symmetry © requirements here work opposite to the non-hydrostatic non-
dissipative sector. With ® = T or ©® = PT symmetry, the dissipative sector transport coefficients
are left invariant, while with ® = CPT symmetry, all the dissipative transport coefficients must
be even functions of u.

Therefore, we have a total of 30 coefficients at one-derivative order: 4 hydrostatic (includ-
ing the ideal order pressure p), 9 non-hydrostatic non-dissipative, and 17 dissipative transport
coefficients. We note that this counting differs from that of [29].}2 In the (uncharged) limit
in which the U(1) current is removed, we have that

Fo =091 =801 = 0oy = g2 = 803 = Voo = S0 = Vo1 = S01 = 502 = Vo2 =Vo3 =0 . (65)

This amounts to a total of 17 transport coefficients: 3 hydrostatic (including ideal order pres-
sure), 4 non-hydrostatic non-dissipative, and 10 dissipative transport coefficients, agreeing
with the counting of [27] when focusing in special case in which the additional U(1) is not
present. A precise comparison is given in appendix A.2.

4.1.4 Entropy current

The free-energy current associated with the one-derivative order constitutive relations above
is simply given as
N“=N/5“+®x[. (66)

Note that there is no contribution to N* due to dissipative and non-dissipative non-hydrostatic
constitutive relations. Correspondingly, the entropy current is given as

uM u” u” ut W
sP=N— + kg0, + —n, e —v¥—m,— —h, " — =j*
T BN T " T T Av TJ
= sgan +sﬁon—can ’ (67)
where N
D u” u” u .
sgan - ?u,u + ?nve,u - V‘u?nv - ?hlvT‘uv - ?]M 5 (68)

is known as the canonical entropy current, while

ut
Sﬁon—can = (N_p)? + kB@xf
P
= ? (Foﬁlal‘u + FlﬁlalT + Fzﬁlaxﬁz)
a -
- (Fov* 8,1+ F1v*3,T + Fyv*0,ii%) | (69)

is known as the non-canonical part of the entropy current.

12The authors in [29] counted 9 non-dissipative transport coefficients and 20 dissipative transport coefficients.
Further discussion on this can be found in appendix A.2.
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4.2 Explicit effective action

We implement the following derivative counting in the EFT. The hydrodynamic fields ¥, Ag
and the noise fields X%, ¢, are taken to be O(8°). On the other hand, the average background
fields n,,, h;,,, A, are treated at 0(2%), while their difference partners Nays Rapys Aqy at
O(81). In compact notation, this means that ®,, % are O(8°), while ®,, 6 5®, are O(d1).
Note that the classical constitutive relations are given by a variational derivative of the effective
action with respect to the “a” type background fields. Therefore, the derivative order of the
effective action must be one more than that of the constitutive relations. It follows that one-
derivative hydrodynamics is entirely characterised by the operators D; (o) truncated at one-
derivative order and D,(o,0) truncated at zeroth order; Ds(o,0,0) only contributes to two-
derivative constitutive relations and higher.

Due to eq. (52) we know that D, (o) is the most generic operator such that D;(6 5®,) is
a total derivative. Recalling that in the statistical limit ®. = (—n,,,,1/2h,,,A.,) + O(f), we
see that this requirement is precisely the adiabaticity equation. The most generic solution is
therefore characterised by the adiabatic (hydrostatic + non-hydrostatic non-dissipative) con-
stitutive relations. Explicitly

1
2 LU v i 0
Dl(q}ﬂ) - ]hs+nhsndBaM ehs+nhsndNaH + (V nhs + 2 Ths+nhsnd) HGPW : (70)

On the other hand, D, (o, o) needs to be most generic symmetric positive semi-definite bilinear
operator. The contribution from the same to the effective action is given as

T [ pke DHP Du(po)

Bau Jjj je JT( o) Bap+i5%Arp
iDy(®y, B, +i5 5®,) = ikgT 1—Nau Dt Dif D& 1—Nap—l_5%nrp
L
2Hap) \ D2W e ple?) | \aHapo + 30 8Mrpo
(71)

The ©-requirements on various constitutive relations discussed in the previous subsection fol-
low from here by demanding that both D; and D, operators are ©-even, in accordance with
the Schwinger-Keldysh requirements in eq. (52).

In flat spacetime, with ® = T or ® = PT discrete symmetry (that leads to vanishing of
hydrostatic and non-hydrostatic non-dissipative sectors), the effective Lagrangian for one-
derivative order boost-agnostic hydrodynamics takes the form

L=n0,p, +nu'dp, —€d,X.—(e+p)u'dX. +pu'd Xy +(pw/u' +ps&'t) 93X qi
T ik ik i(kl)
9 %a Dj D D

jT

i o W
OcPat 150k T

. ki ik i(kl i 1
+ikgT | —0iX, Die D D) —0Xq ~ 19T |- (72)
8iXaj D]]:EU) DZ;(_U) Dgllj.)(kl) O X g + kl—Bﬁle

We will use these considerations in section 6 to study linearised fluctuations.

5 Special limits

The spectrum of transport coefficients for a boost-agnostic fluid is quite rich. We have a total of
30 coefficients at one-derivative order. For a clearer picture of these coefficients, it is helpful to
make contact with the special cases of fluids respecting Galilean or Lorentz boost symmetries.
In both these instances, the spectrum only contains the thermodynamic pressure p in the hy-
drostatic sector and 3 dissipative transport coefficients: shear viscosity ), bulk viscosity ¢, and
thermal/electric conductivity /o . In particular, there are no allowed one-derivative terms in
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the hydrostatic or non-hydrostatic non-dissipative sectors. We will also discuss fluids respect-
ing anisotropic Lifshitz scaling symmetry, in which case the transport coefficients reduce to: 3
hydrostatic (including pressure p), 6 non-hydrostatic non-dissipative, and 13 dissipative. The
temperature dependence of all these 22 coefficients is fixed by the scaling symmetry.

5.1 Galilean fluids

Galilean (Milne) boost symmetry acts on the background fields according to (see, e.g. [11])

1
n, —n,, hw—>hw—2n(uwv)+nun,,1/)2, Ay —>Au+m(1pu—§nuw2),
i Y L h*” — h*Y, (73)

for arbitrary parameters " satisfying 1*n, = 0, with the definitions v, = h,,2)", and
P2 = h,,tp?. Here m is an arbitrary constant signifying mass per unit charge/particle.
These are essentially the rules governing how the background sources must change when we
move to a different frame of reference given by v* — v#+1p#. Using the (equilibrium) effective
action variation in eq. (15), this leads to the Milne boost Ward identity

m, =mhy,j". (74)

The hydrodynamic fields in the representation ", Ag correspond to the local thermodynamic
frame and hence do not transform under boosts. However u*, T, u fields can potentially
transform, which can be derived using their definitions in eq. (30). We find

uM — ut, T —T, ‘u—>,u+mﬁ“1,bu—%1p2. (75)

It is convenient to define the boost-invariant Galilean chemical potential ug, = u + m/2 i
All the transport coefficients in a Galilean fluid are functions of T and p,,. The equation of
state is given as p(T,u, ) = p(T, Ugar)- Using the thermodynamic relations (10), one then
derives

dp =sdT +ndugy , €gal = IS+ Ugan —p , p=mn, (76)

where we have identified the Galilean internal energy density €4, = €—1/2p ii2. The relation
p = mn can be understood as the “Galilean equation of state”.

Constitutive relations for Galilean hydrodynamics in curved space-time are already known;
see for instance [ 11] and references therein. Their translation to the boost-agnostic representa-
tion discussed in this paper is quite straightforward because the language and hydrodynamic
frame that we have employed for boost-agnostic fluids is quite similar to the one used for
Galilean hydrodynamics. The complete set of one-derivative order constitutive relations are
given as

M= ﬂuu,

et = (egal + %pﬁz)u“ +pi* + T*k h*"5 4n,,
1
— (2nhPWRM7 + (¢ - gn)WhPU)avE (6 5hpe — 21,0 5N0)),
™= p it

T = p UMY — (2nhPWRM7 + (L — 20) R¥RP9) 1, = (8 ghyo — 21,6 5Nyy) - (77)

N
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Note that the constitutive relations are already in the density frame (27). The mapping of ideal
order thermodynamic coefficients is already given above. At one-derivative order, we find

F0:F1:F2:0,

§01 = 802 = 503 = 512 =513 =833 =g =0 =012 =0,

500 = S01 = S02 = 803 = Voo =VYo1 =Vp2 =V,
512 d—1 513 2 2
522_H_C+ZTTL 23 H_C—gﬂ, s33=(+ a@a—" >
_ v
511:TK+112(C+2dd—17]), U]lzTK+u27), Uzzzﬂ:t:n. (78)

We see that the hydrostatic and non-hydrostatic non-dissipative sectors are entirely absent.
The coefficients appearing in the charge/mass current in the dissipative sector are also absent
due to the Milne boost Ward identity (74). The remaining 10 non-zero dissipative coefficients
are determined in terms of 1, {, and «.

5.2 Relativistic fluids

Our generic discussion of boost-agnostic fluids is also capable of handling relativistic hydro-
dynamics. However, the discussion is considerably more involved than the Galilean case ow-
ing to the inherent non-linearity of relativistic hydrodynamics. Lorentz boost symmetry can
be imposed by requiring the theory to be invariant under the transformation of background

sourcesl3

1

1
n ﬁnM—c—z(lpM—ansz), hw—>hm—2nw1/),,)+nunv1/)2, Ay~ AL

m
vH — o apH h*” — hMY + iz (Zv(“I/)”) + 1/)“1/)”). (79)
c

When implemented on the action variation (15) at the linear level, this imposes the center-of-

energy conservation by setting
1
— v
T, = 2 h,€e”. (80)
The relativistic metric sources can be defined as

8uv :_Cznunv"‘huv > gh =—vM" /2 + hHY (81)

which are invariant under the above transformations. In particular /—g = c,/y. In relativistic
theories, one typically works with an energy-momentum tensor T', and charge current J*.
These are related to our Aristotelian quantities as

et =—-THy", T, = nHTPl‘)hpv , T = h“p TP ho", P =Jm. (82)

It can be explicitly checked that the relativistic conservation equations V:flT‘f, = F,,J°,

VlrflJ ¥ =0, where Vifl is the covariant derivative associated with g,,,, reduces to the respec-
tive boost-agnostic versions stated in eq. (18). Similar to the Galilean discussion, requiring
B, Ag to be invariant, we can derive the transformation of the hydrodynamic fields as

T p

1 (= 12’“_) 1—>M12’ ut — 1—>u 1.992)°
1- 5 (@, — 392) 1- 5 (@, — 39?) 1‘?2(““%—51#())
83

T —

*These can be derived using the reverse logic and noting that the relativistic metric g, and inverse metric g"”
are invariant and related to the Aristotelian sources as in eq. (81). Milne boosts (73) follow from the Lorentz
boosts (79) by identifying A:fl =mc’n, +Aial and taking ¢ — oo.
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We can define the relativistic versions of hydrodynamic fields according to

uﬁel = Yuu“ ’ Trel = YuT s Urel = Yulb (84)

where y, = 1/+4/1—12/c? is the Lorentz factor. Note that gmurelurel —c2. The equation of
state of a relativistic fluid is expressed as p(T, u, i%) = p(T,ep, Ure))- We find the thermodynamic
relations

2

e+ Y
P S(eratp). (85)

C2

dp = sreldTrel + nreldnurel > €rel = Trelsrel + Urelrel — P » P =
where relativistic proper densities are defined as n,, = 1/7,, ;o] = $/Yy, and €,,] = € — p 2.
The “relativistic equation of state” is given as € + p = p c?.

The constitutive relations for a relativistic fluid in the Landau frame (T",)gisstt)y =
Jdlss 1&uv = 0, are given as (see e.g. [51])

1
T‘;) gpv = _(erel + prel)urel rel +p g,uv — trel (znAp('uAV)U + (g - %H)AMVA'OU) 5593&00 P
JH = nrelurel —Tq0 A*7E 4A,, . (86)

Expressing these according to the definitions (84), (85), and (82), we find
2 r?
=t =Ty, o (AW+Y —yHy? 428 (“'”’))5%A,,,
c?
1
e = (erel tp az) u+pit =T (_zv“u + h“) N3P x
c
. i 1 a 2. . .,
E [5%}1;}0 _ZH(U (5%71;)) - C_2V 6<%hp)7t) — C_2uPuUV 6%n1:| ,

T - 1 2
nM—puM_C—u nHIPo = [5%h — 21 (5%%)— v 5@hp)x) Czupu vlaggnx] ,

uy _ o T +ph‘”— Tnuvpa x

1 R 1 2
3 [5%}1,30 —2i(, (5%%)— —v 5@hp),t) — Si,lo Mé@nl} : (87)
Here, we have defined
2
NPT = 2y nAPBAY 4y (C—2mARAPT, AR =per 4 ey (sg)

C

In section 4, we obtained the generic constitutive relations in the boost-agnostic representa-
tion. However, these results were presented in the thermodynamic density frame and not the
Landau frame. To make contact between (87) and the explicit transport coefficients discussed
in section 4, we need to perform a frame transformation to the density frame. Before doing
this explicitly, one can already infer that

FO = Fl = Fz =0 5
§o1 =802 =803 =513 =513 =533 =0 =gy =015 =0,
S01 =611 =512 =513 =0g1 =011 =012 =0. (89a)
These follow from the fact that relativistic fluids, like their Galilean counterparts, do not have

any transport coefficients in the hydrostatic and non-hydrostatic non-dissipative sectors at one-
derivative order. Also, certain coefficients in the dissipative sector are zero due to the Lorentz
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boost Ward identity (80). The remaining 10 coefficients are non-trivially related to n, {, o
according to

1 _ 1
So0 = Y—a%(l — a1)2 (C + de—ln) + Y_(l + a2)20 ,

u u
(1—a1)2a3 d—1 (]. +a2)a2
Sgp —— §+2—7] — 0O
Yz% ( d ) YﬁaS

2

503 = _(1 - al)a3 (C_ %T)) + (]. - al)alag (C + 2%1”) — —(1 + az)azo_

a3
(1—ay)? d—1 a3
522=—3(§+ZT’)’))+ 3 50,
YL! ua3

2
523:(1;01)(4,_%”)_(1—:‘1)0‘1 (¢ +2920)+ % o,

2
u u ut3

2

a
533 =1 (¢ gin) —2rua (€= §n) +vad (C+ 297 0) + 70
3

n
boo = Tu0 + 7,a3M, D2 = —a37, 032 = 7. t=ryun, (90)
u

where we have defined the thermodynamic coefficients

R @ (0p , yun 3p)
uz (ap 1 ap ) e (ae,el + €+p Ongg

2
=Y, = = =
V=Y \ 3¢ Tl aln| 1_£(3P +m_9p)’
2\ O€r ' €+p Ong
9 @ yun 9p "
LU n dp 2 e+p Onyg _ nld 1
A=Y, o= — , a3 =Yy— - 9D
c2e+pdn _@(9p  Yun 9p €+p
2\ O€ ' €+p Ong

Further details about this derivation can be found in appendix A.2.

5.3 Lifshitz fluids

The final example we want to consider is that of a Lifshitz fluid, which is invariant under
anisotropic scaling of spacetime coordinates t — A*t, x' — Ax'. Covariantly, we can define
the Lifshitz symmetry as its action on the background sources

—z -2
n,—A7’n,, h,, = A"h,,, Ay — Ay

v — AFH Y — A2RH7 (92)
Plugging these into the variational expression eq. (15), we can derive the Lifshitz Ward identity

™h,, =z€en, , (93)

which is the covariant version of the respective identities introduced in [27,29]. Demanding
the partition function or effective action to be invariant under this scaling leads to the scaling
behaviour of the conserved currents

et = Ad+2zeu , T o= ldﬂ.u , Y Ad+z+2,c.,uv , ]-,u N ld+zj“ ) (94)

u

Requiring that ¥, Ag remain invariant, results in the scaling properties of the hydrodynamic
fields
ut — A*ut T - AT, u— AU . (95)
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Note that #i2 — 127272 and a* — A{*. This implies that the scalar ratios u/T and ©i2/T2%/*
are scale invariant. Implementing this for ideal fluids, one can infer that the equation of state
of a Lifshitz fluid takes the form

p(T,p, 82 = TV p(u/T,8 /T 7). (96)
This leads to the thermodynamic identity
pi2+pd=ze, 97)

which can also be derived directly using eq. (93).
As for the one-derivative order transport coefficients, the scaling behaviour goes as

u(T, w, @2) = T/ ¢(u/T,82/T* %), (98)

where the weight factor w, for the various coefficients is given by

d+z for v=p,
d—z for v=F,F;,
d—2z+2 for v=F,,
d—2 for v =1vgyg,8q ,
wy={d+2—2 for v=uvqy,50 001,500 (99)

d+2z—2 for V=011,511>
d—1 for v =1v¢,,502,503 > 902,502,503 >
d+z—1 for v=015,512,513,012,512,513,

L d for v =1t,099,599,593,533,593 .

We have included the ideal order pressure for completeness. However, not all of these co-
efficients are independent. Firstly, the derivative corrections must satisfy the Lifshitz Ward
identities (93). In particular, in the density frame, this implies that the non-hydrostatic cor-
rections (including both dissipative and non-hydrostatic non-dissipative) must satisfy that
" h,, = 0.'* Furthermore, one-derivative scalars in the hydrostatic free energy density

nhs
(53) can only come via the scale-covariant combinations

=2
wa, (%), v“@u(#) . (100)

Similarly, all the non-hydrostatic data must appear in combinations

Zz

0 gA Yl

6%n

ws n,h??6 zh 593hw—§hwhp”5%hpa . (101)

po >

This leads to 8 constraints among the transport coefficients: 1 in the hydrostatic sector, 3 in
the non-hydrostatic non-dissipative sector, and 4 in the dissipative sector, namely

(z—-Di* u
Fp=—22"""F - ZF
1 % T 2 T 0

S0y = —(d —1)5¢3 , §1p=—(d —1)53, 593 =0,
502 = —(d —1)sp3 , 515 =—(d —1)sy3, 599 =—(d—1)sy3=(d—1)%s33 .  (102)

“The condition is slightly more non-trivial in the Landau frame employed in [27,29]: © " h,, =z €l n,.
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In the uncharged limit (65), the total number of transport coefficients after Lifshitz scaling
agrees with that of [27]. Scale invariant Galilean fluids are compatible with z = 2 Lifshitz
symmetry. An easy way to see this is that requiring g, = u+m/2 i to scale homogeneously
forces us to set z = 2. The thermodynamic equation of state, in this case, leads to €4, = d /2 p.
Comparing the Galilean coefficients (78) to eq. (102) we read out that { = 0. Similarly, scale
invariant relativistic fluids are compatible with z = 1 isotropic scaling symmetry, since the
relativistic hydrodynamic fields in (83) should scale homogeneously. The equation of state
becomes €,,; = d p, while at the one-derivative order we again find { = 0 by imposing the
Lifshitz constraints (102) on eq. (90).

6 Linearised fluctuations

In section 4, we determined the explicit effective action and all transport coefficients appearing
at first order in the derivative expansion for boost-agnostic fluids. In this section we study fluc-
tuations around equilibrium anisotropic states and determine the mode structure. We ignore
hydrostatic and non-hydrostatic non-dissipative contributions; these can also be systematically
switched off by imposing T or PT symmetry. We also turn off the background fields and the
resultant effective action is given in eq. (72). Additionally, for simplicity, we do not turn on all
dissipative transport coefficients but instead consider small deviations away from Galilean con-
stitutive relations. We begin by obtaining the linearised equations and later study the possible
modes in a 3+1 dimensional fluid living in flat spacetime.

6.1 Linearised equations

We want to perturb the Lagrangian (72) around an equilibrium anisotropic state with non-zero
fluid velocity u'.!> The equilibrium configuration is characterised by

t=t, ol=x', =0, X! =X.=9p,=0, (103)

with constant temperature T = T, constant chemical potential u = u,, and constant non-zero
spatial velocity u' = u!, as well as constant energy density, pressure, and charge density. In
order to understand fluctuations around this state, we consider small perturbations of the parti-
cle/charge density 6 n, energy density 6 ¢, momentum density 6 7t; and the stochastic variables
oX!, 5Xf1, and 6 ,. The variation of the Lagrangian (72) under these small perturbations and
underlying assumptions becomes

i
SL=¢lK O, + E%GU%’ , (104)

15Ref. [27] considered the isotropic case with u' = 0.
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where we have introduced the operators

[ on 0P,
Se ! —56X!
Or=|dign, | %= | wsx: |
\P/&m; PisX,
( |ﬁ|§—§§u |ﬁ|§—’;@u (zﬁj%+ﬁ)% ﬁéAj
;| 175k, RIS, (eRPsm+w)d, WO
M =1 ai?+p) 5 2(pi*+p) 5 = 2(pi+p) A P
%n au %6 81! 2| | 55{2 au |u| j
\ 223 ) 2071288 Pylald,
t’00‘?2 +5005:u2 Uo1é’2 +501?u2 t’025:32 + 502 Auz (002"‘503)%15:]‘
Gy — 9 Um?z +501<?HZ U11‘?2 +5115:u2 t’12?2 +512 Au2 (012+513)?u‘?j
kBT 00282 +5ogay2 01282 +5128y2 02282 +52’% ; (022+523)3u3j
(002+503)0,0;  (0124513)0,0;  (020+623)0,0;  (s33+5=3t) 8:0; + Pi(1 9% +95,82)
Td(u/T)/dn To(u/T)/d€ 2T|7|0(u/T)/ 37> o \!
3 1/TdT/dn 1/TAT/de 2/T|#|0T /37> 0
X1 = T|#|10(Tp™Y)/on T|#|O(T'p~1)/de 2T7‘r’28(T_1p_1)/87‘f2+% O ’
0 0 0 Pi/p
1 _
KIJ = —5fat - MIJ - ﬁGIK(X l)KJ . (105)

Here we have defined i = n/p and w = (e + p)/p, and introduced the differential operators
3, =18, 0! = pu d;, and 92 = pi 9;0;. It can be explicitly checked that the susceptibility
matrix y;; is symmetric. All quantities appearing in M;”, G,;, and y;; should be understood as
being evaluated in the equilibrium configuration; we have dropped the subscript “0” for clarity.
Varying the perturbed Lagrangian with respect to the stochastic variables cpé, one obtains the
linearised equations of motion. We will now use these to find the mode structure.

6.2 Mode structure

Since the linearised equations are given by K;”©; = 0, it is possible to find the dispersion
relations by looking at the zeros of det(K;”). In 3+1 dimensions, we find a pair of sound modes
(with a different velocity along or opposite the fluid flow), one number-density diffusion mode,
one shear mode along the fluid velocity, and another shear mode transverse to the fluid velocity.
Assuming plane-wave perturbations, in general, the modes have the following structure

o —uik; = v*(0)k — ér;(e)kz,
w—u'k; =—iDy(0)k?,  w—u'k;=—iD;(0)k?,  w—u'k; =—iDy(8)k%.  (106)

Here 6 is the angle between u' and k', () is the attenuation constant, and Dy 1,(0) are
diffusion constants. Explicitly, we find that the velocity of sound vSi(O) are the solutions of the
quadratic equation

vsi(G)z+X|ﬁ|c059vsi(9)+Yﬁ2c0329 +7Z=0, (107)
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for which the functions X, Y, Z are not particularly illuminating. The general solution is given
by

1l ap ap = 3p ap Vs,1 2
vi(0) =+ J vZo (1 — || cos? 6 (% + Zpﬁ)) + |ii|? cos2 6 (E + zﬁ + 7)

—%cos@vs,l,
(108)
where we have defined
dpn  dpw dpn Jdpw ( ap ap 5 0 )
= t e, TP V1= ot o= — [ 14 2= 4202 —2p :
50 \Janp Jde g Y1 dnp Jdep oe " “Pare Il
(109)

The pair of sound modes in eq. (108) propagate with different speeds due to the presence of
a non-zero equilibrium fluid speed |t|. The two speeds are equal if we impose the Galilean
or relativistic equations of state discussed in section 5. Hence, the distinction between the
parallel and anti-parallel sound speeds, v." # v_ is an imprint of broken boost symmetry. In
the isotropic case [ii| — 0, the two sound speeds are again equal to each other and reduce to
the results of [28].

In turn, the diffusion constants D ;(6) are solutions of the quadratic equation

Dy1(0)*+A(0)Dy1(0)+B(6)=0 , (110)

for which the functions A(0) and B(6) are some cumbersome functions of the thermodynamic
variables, while the transverse shear diffusion constant D,(6) is simply given by

D2(9)=i+022—_tc0329 . (111)
PP

In order to provide an analytically tractable example of Dy 1(6) and the attenuation constant
I;(8), we consider slight departures away from the transport properties of a Galilean fluid,
characterised only by three transport coefficients at first order, namely, x, 7, { (see section 5).
This is still a non-trivial example because we are taking into account the modified thermody-
namics due to the absence of a boost symmetry. In this special case, we can split the attenua-
tion and diffusion constants into Galilean contributions and corrections due to the absence of
boosts in a small velocity expansion such that

I,(6) = Tga(0) +1°Ty(6) , Do,1(6) = Do 15a(6) + 11> Do 14(6) (112)
where, focusing on the case of 8 = 1t/2, the Galilean contributions are given by

al(n) K 3p(8T +8_T )+3§+4n 9 _(a_pn_i_a_py)

Y (e , _(¢opn
g\ 2 pv 2e\an" " 2e” 3p Vs gal onp Odep

T nk (0pdT JpadT T 0]
o(Z)= 25 (2T 22T (7)o s
08l \ g V2o \Onde dedn Lel\o )™ p (113)

If one imposes Galilean thermodynamics as in section 5, one obtains the diffusion and atten-
uation constants presented in [11]. On the other hand, the corrections due to the absence of
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a boost symmetry are given by
T 1 3p ap ap
(5) o5 )
) p3vs4 [ ae e\ an" T Be

op (9dp ap ap ap
#2055 (Gan G0+ 52 (1x52 =)

3 3 ap 0
+p3v§gal( ol _,, p)+2p3 7P 9P (aT +8—Tw)], (114)

Jde Je o 7t2 Jde 2\ dn Jde

o 9 9 dpdp apap)( 5 Op 0dp (aT aT ))
Doul=)=— Sl S St A T BT =
0’“(2) nx[np Vs’gal(an de Jedn gl ge  ge\an  de”
ap (ST 8_T )(apap 8p3p)

on 8eW dnde Jdedn

ap op )(8p8T 8p8T)

e B L el il

+36( K@e K 863n+3n86 )
op (dpadT E/‘paT)(aT ap (6T oT ))
4 2
_ —_— —_ 2 _ —_

e 86(8n de dean)\ e e a2\ 5" T 5"

ap aT ap oT -1
X v:galp?’ (%n(n—xp%)+%(nw+l<p—nn)) , (115)

LAY ap ap T dp , 0T 0dp oT
Dl,u(g)—n 28_’2 P T}EW ’l’]p+m<pa 3e +Kp E—i_an n__er

(G2 (ke 5e=2r(n-50w0))
+8n (36 Té’e —2T (" aer

_ (3_T+2T3_P+2 3_T)( _oT ))
P\ Ge a2 Pz )\ 5P

op op ( ap oT ) ap( (3T ))
— = (=EnT (T 4 kp=——n |+ T==|(wn+xp| =—n—-T
86(8nn K@e Kpae N de wnTKp 8nn
+ (3_T+2 3_T)(W + K a—Tn)
P\\Ge T*Pom2 )\ T P35,
ap oT ap ET)
+T( a7z "PGe TP s G, ﬂ

ap oT ap( 8T))_1
T|n=—n— + == +nkp— : 116
X p (na (n pae) e wn +nkp an (116)

As one can explicitly observe, the longitudinal shear diffusion constant D;(60) receives correc-
tions due to a non-vanishing fluid velocity, while the transverse shear diffusion constant D,(6)
in eq. (111) does not. This is again an imprint of the broken boost symmetry.

We would like to point out that the linear mode analysis presented above has been done
at finite equilibrium fluid velocity u' = uf), and yet we do not encounter any additional gapped
unphysical poles in the upper-half complex « plane. This is in contrast to the Landau and
Eckart frames typically employed in relativistic hydrodynamics, that are unstable in a finite
fluid-velocity state; see [30,31]. This affirms that the density frame introduced in this paper
is a stable hydrodynamic frame, applicable to hydrodynamic theories with arbitrary boost
symmetry structure — Galilean, Lorentzian, or absence thereof.
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7 Outlook

The main goal of this paper was to formulate a Schwinger-Keldysh effective field theory for
hydrodynamics without boosts. The formal construction, presented in section 3, was based on
the recently developed EFT for Galilean hydrodynamics [11]. In the process of building this
EFT, we provided a spacetime covariant framework for hydrodynamics without boosts and
a rigorous offshell analysis of the independent transport coefficients together with the con-
straints that need to be satisfied for the second law of thermodynamics to hold (see eq. (64)).
An accurate counting of transport coefficients reveals that there are 4 hydrostatic coefficients
(including the ideal order pressure), 9 non-hydrostatic non-dissipative coefficients, and 17
independent dissipative transport coefficients. Thus, boost-agnostic hydrodynamics is char-
acterised by a total of 30 independent transport coefficients up to first order in a gradient
expansion.

Part of this work, specifically section 4, can also be seen as an extension of the covariant
formulation of [26,27] to include an additional particle/charge current. In the uncharged
limit, our results agree with those of [27]. As such, we provided a general covariant frame-
work for treating simultaneously Lorentzian, Galilean, and Lifshitz fluids; the respective boost
and scaling limits were performed in section 5. In addition, we studied the general spectrum
of linear modes around an anisotropic finite-velocity state as an application of this theory
in section 6. This analysis revealed specific imprints of the absence of boost invariance that
were previously unknown. In particular, in 3+1 spacetime dimensions, we found a pair of
sounds with different velocities depending on whether the sound wave propagates along the
equilibrium fluid velocity u(i) or opposite to it. Furthermore, the shear modes, which usually
have multiplicity 2 in Galilean or relativistic fluids, now split into a shear mode along the
fluid velocity and another transverse to it. Such imprints are clear smoking guns for potential
experimental realisations of hydrodynamic systems without boost invariance, and were not
visible when fluctuating around isotropic equilibrium states as in [28]. In relation to this, we
note that we have provided our results in a new hydrodynamic frame that is linearly stable,
irrespective of the boost symmetry in place, making the system of equations of motion and con-
stitutive relations ideal for performing numerical simulations without running into unphysical
artefacts.

Besides a unified framework that can treat different physical systems on the same footing,
one of main goals of this work was to set the stage for future non-trivial extensions. As re-
vealed in the introduction, systems of interest with broken boost symmetry exhibit intertwined
patterns of symmetry breaking that can include spontaneous/explicit translation symmetry
breaking, superfluidity, or liquid crystal phases. One of our main motivators are the hydrody-
namic theories of flocking, such as the Toner-Tu model [21]. In such settings, not only is the
boost symmetry explicitly broken, but there are also additional non-conserved driving forces
responsible for the activity that breaks the spacetime translation symmetry. As far as we are
aware, though widely used, such models lack a rigorous derivation in terms of an effective
field theory or even a complete classical understanding and characterisation of the allowed
transport. Another system of interest is that of quantum matter exhibiting charge density
wave phases [19], in which, besides the absence of a boost symmetry, spatial translations are
also typically broken explicitly and spontaneously. Schwinger-Keldysh EFT provides a route
for understanding these systems, as it offers a controlled framework for symmetry breaking,
moving away from classical hydrodynamics, and exploring its consequences (see e.g. [52] for
an ideal order non-dissipative discussion). It will also be interesting to explore the purely
non-equilibrium non-classical stochastic effects arising from the EFT analysis, such as those
reported in [23], in the context of broken boost scenarios. We leave these explorations for
future work.
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A natural extension of this work is to consider the case of spontaneous breaking of Lorentz
boost symmetry, and more generally, of Poincaré symmetry. This is directly relevant for con-
densed matter systems where a classification of phases of matter has been partially provided
in [13]. Such extension would result in a finite temperature version of the same and, as the
world is Lorentz invariant, would be highly relevant to pursue for real-world applications.

In the absence of any controlled experiment that could probe all 30 transport coefficients,
it would be interesting to understand better the phenomenology and mode structure of fluids
without a boost symmetry. To this aim, it would be relevant to understand whether holographic
models, in the spirit of [1], exhibiting explicit Lorentz boost symmetry breaking could be con-
structed. An analysis of the black hole spectrum of quasinormal modes within such models
would provide reasonable theoretical input for the equation of state and transport coefficients,
allowing to better probe the physics of these systems.
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A Frame transformations and comparison with previous works

In this appendix we discuss frame transformations in boost-agnostic hydrodynamics in detail
and discuss the translation of our results to those of [27,29]. We give a general procedure
to convert constitutive relations in arbitrary frame to our density frame. The analysis can
equivalently be adapted to arrive at other hydrodynamic frames.

A.1 Generalities of hydrodynamic frame transformation

We know that the hydrostatic part of the constitutive relations, in particular the leading deriva-
tive order ideal fluid, can be generated from a hydrostatic generating functional. To wit, we
can start from a free energy density A/ and use the variational formulae

1
Y

where “0” denotes the ideal part of the constitutive relations. Here h,, and n denote variations
with respect to hydrodynamic fields, that do not contribute if we replace 6 — 0 4, leading to
the adiabaticity equation. This form is particularly useful because it allows us to directly read
out the equations of motion associated with the hydrostatic part of the constitutive relations.
Employing gauge and diffeomorphism invariance of N, the equations of motion (18) can be
re-expressed as

1
5 (V7P) = o 6Au— oo, + 5 (2v¥my +747) Shy, + 0,68 +n(5A +A,E5B4), (117)

1 1
—85(/TW)=003%), —
Y Y
This form of the equations of motion was already derived for ideal fluids in eq. (23). Note that
this is only the hydrostatic part of the equations of motion and will admit derivative corrections.
But it will be useful for us in our discussion of frame transformations. Using eq. (117), the

55 (VThy)+n8z4,=0(0%). (118)
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equations of motion can also be expressed as

1 5jP 5ef 18(2vP g +1P%)
ﬁ5$(ﬁn)=ﬁ5%@o—ﬁ5%np+i 5;’\[5 0= 5 5h,, =0(8%),
1 5jg 565 16(2vpng+rga)
— 85 (VT(hy+nAY))= =644, ——-54n,+ = S ghye =0(8%).
u
ﬂ%(Yu u 5ﬁ Bp 5ﬁu93p 2 5[5H Bltpo ( )

(119)

For explicit computations, it is convenient to instead work with u*, T, u, in terms of which we
can recast these as

566’ 1 5(2vpng+rga)

12 1 7 5 5A
T 6(;4_/’3T) T 5%M/pr) T5( ap(uc{T) - B0
OJo. 9% o@vimo +7, ) — = 2
5T 5T T 5T Ogny 0(07). (120)
lhfi lhT 5el lhTE(ZvPTcg+Tg) %5%}1/)0
TWo@ /T) T /Ty T''w~ 6us/T)
We define the matrices
1 n8jk 1 ny5el 1 s} 1 h‘;é‘jé 1 h’;563 1 57h°
T 5(p/T) T 5(p/T) T 5(p/T) T o(u/T) T o(u/T) T o(u/T)
— n,6j4 n ey omy — ;64 h5 6€g o7
x T5TA T5TA TWA > XS TaTA TaTl T
. . g
1pt n,6j; 1pt n,6e; lpc Smy 1pt 55} 1pt h} e 1pt 5th
T"udwc/T) T "udéw/T) T "'udw*/T) T"uéws/T) T "ué?™/T) T ‘uéur/T)
(121)
Here y is the same susceptibility matrix defined in section 6. Let us also define
o> oW - ap 0p »p=
oot p g, uP F,hP? — . ufu’
1, dfimp dwzp dPppo _ 9P npro
M_X Xs = Paeld PaeU . 3eh euu
L Ok mp L AP L OW o mp AP “_u(_ap po _ 2p -'p-‘p) )
171 37 s + fihy, 171 37 Ul + why, 5 8|n|h i’ U + 2 h“

(122)
Here we have used w =€+ p, i =n/p, and w = (e + p)/p. This allows us to re-express the
equations of motion (119) as

VpégaAp 5%Ap
—VvPEgn, | =—M 1—593np +0(8?). (123)
VP 6 ghy 56 8ho0

On the other hand, one-derivative order frame transformations of the hydrodynamic fields
u*, T, and u act as

) 1 8jh 5jy 1 8jy
jH T—é(,ugTu) Tg_Ti T 5(;12T) T6(u/T)
_ 111 € € 1 € l
o e’ - Thp E(M/OT) Ta_TO T 5(uk(/)r) roT
oy V) 4 puy 1p2 s(2vm+7h") s(2vtnl+7h”) 1p2 w TSP /T)
Tp  o(u/T) oT TV p  &@H/T)

(124)
Using the decomposition of the constitutive relations into hydrostatic “hs” and non-hydrostatic
“nhs” pieces (where “nhs” contains both “diss” and “nhsnd”), the density frame is defined as

uo_ v u
n.U«]nhs - nN nhs — 7Tnhs =0. (125)

Denoting the respective corrections in the generic frame with tilde, we get

T5(u/T) Mo
+6T | =—x | miéh, |- (126)
T&(uP/T) fh

33


https://scipost.org
https://scipost.org/SciPostPhys.11.3.054

Scil SciPost Phys. 11, 054 (2021)

The superscript “T” denotes a transpose and “—T” an inverse transpose. The non-hydrostatic
corrections in the thermodynamic density frame can be written out explicitly as

aY U = A

Jnhs h AJnhs nl]nhs

u _ U o~A g7 ~A

€ohs | = h 2€nhs M MA€hs (127)
uv ~ Uy ~A

Tnhs Tnhs nnhs

To obtain a mapping between the respective transport coefficients, we need to do a final
manipulation requiring the usage of the equations of motion. We start by decomposing the
generic frame non-hydrostatic constitutive relations as

i cle e\ [ 64,
& |=—ker| c e @ || 5,m, 128)
24+ cie e ¢ |\ 35,m,,

Note that the coefficient matrix is asymmetric because it contains both “diss” and “nhsnd”
pieces. Let us decompose it further into space and time parts

nunpér‘f,f n“npér‘fep n“nphgé’#f(rpo)
@TT = nunphgéf,f nunpéff n,n 6’5‘,&”") s
nuhgnpé,(#lv)p nuhﬁnpéé’;”)p nuhﬁnphgé#;[”)(”")
[ maACh mACE mARICRPT
Ers=| nuhARZCEL  n RACEE n,hACEPT |,
\ b hACE P RORA TP RD AT CE )
[ hen,Chp hen, Che hen,ht ChP o)
Esp=| Rin RICED  hon,CEE hen,CLP
\Phyn, CEMP hehin, CL7P hehbn, bt €5
[ henACh heh? Che hehAhE ChP
Gss=| heRARTICED  hORACEE henAclPr) (129)

\RRhRACEDP herlnA GNP hahfrtnz CU P

This explicitly results in the compact expressions

n‘ujrlfhs . Vp5%Ap . 693Ap

nuéghs :—kBT Q:TT —Vp5$np —kBT Q:TS 1_6'%np ,
i VP8 5h g 15 ghpy

VAN ) VPO a4, ) 534,

h‘;ighs =—kgT Csp | —vPSzn, | —ksT &g 1—5ggnp . (130)
Thhs vp5c%hPU ia%hpo

Plugging these into eq. (127) and using the equations of motion, we get

4
it N 594,
| =gy [ TM) (G s\ (M| son . (131)
hs 1 Csr Cgs 1 1 P
; L
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All in all, the transformation from a general frame to the density frame is given by the trans-
formation of non-hydrostatic transport coefficients

T /- -
_(—M Crr Crs\(—M
Q_( 1 ) (QST @55)( 1 ) (132)

where ¢ is related to combinations of dissipative and non-hydrostatic non-dissipative coeffi-
cient matrices from section 4, in particular

Dl DR +DL DI+ DY)
c=| pi—pg p? S NS

D#T(fpa)—br%“v) Dggpo)_Dg(EM) D%V)(po) +D7(#TV)(p0)

A.2 Landau frame

To discuss the constitutive relations in Landau frame, it is convenient to define a covariant
energy-momentum tensor [27,29] for boost-agnostic fluids

TH =—etn, +vin, + 74y, , (134)

where 7, =h,,7”. This energy-momentum tensor satisfies the conservation equations
1
n A _ . n A
(vu +Fv ) TH, = Fy ! = Fy, e = 8.k,

1 1 .
= ﬁau (ﬂ T“v) +eMd,n, — > (VHrP + mfyt + M), , = F,,j" . (135)
In addition, we have the charge current j* that still satisfies the same conservation equation as
given in eq. (18). The thermodynamic density frame that we have employed in this work can
be expressed as nu(T“ wnhs = 0, 1, jﬁ ns = 0, where “nhs” collectively denotes dissipative and
non-dissipative non-hydrostatic contributions. By contrast, we can define the thermodynamic

Landau frame as (T")u” =0, n“jffhs = j“iiu/cz, leading to'®
1

uwoo_ U= [V S woo_ Loy o
Mu€hs = Tnnstu h »Enhs = Vnnsty Mulnhs = c2 JnnsUp (136)
Equivalently, this amounts to working with
1. R
h“véggAv'i' C_Zuuvv5£Av 5 5%h“v—ZU(“6%nv) 5 (137)

as the set of independent non-hydrostatic data.

The hydrostatic constitutive relations are still the same as section 4.1.1, but the non-
hydrostatic non-dissipative and dissipative constitutive relations in the thermodynamic Landau
frame are given as follows. Firstly, we have the non-hydrostatic non-dissipative densities

nyJcnd y 0 C%Djl'fﬁuﬁp clzD]Hrfﬁu V98 5As
ny€ana | = —keT | =z D0l T, T, 0 0 —v95 5N,
7r[ghsnd —Clzl:)jn'ul_ip 0 0 vagﬁhpa
0 ADRG, ADIYUR) [ 5y,
—kpT | —Df¥1, DLE°m,i,  DEEd, || —5anm, |, (138)
b BEE, b ) \3Bahn

16The thermodynamic Landau frame agrees with the true Landau frame used in [27, 29], defined as
Thu” = (e—p i2)ut, n,j*=n+ C%j“ﬁ”, only in the non-hydrostatic sector. The Landau frame definition of [29]
has an arbitrary function B in the U(1) sector, which we have taken to be (1—1i?/c?)™!. Since c is an arbitrary pa-
rameter at this stage, not having specialised to relativistic fluids, we can recover the generality of [29] by choosing
¢ appropriately.
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and non-hydrostatic non-dissipative fluxes

jll;}qsnd - 0 ND}qu l_ip ND}U;f v958 %AG
Eppnd | = ke T —C%fovﬁvﬁp —D,?#”ﬁ,,ap —Dgé”av —;105%n0
nhsnd —C%DfTuvﬁp —Dgﬁvﬁp _Dggv v 5%hpa
o Ba, B\ (54
kT | —BEPE, BEPOE, BEFCa, || —Sam, |, (139)
D pEeTa, DT J\30at

where we have defined the transport coefficient matrices
Sup = 2 AUA
D = 01 P*P + 50, 070°
DIP? = 250, PHP 07 + 5op0 0P A7 + 50501 PP,
DMPT = 20, PHP07) 4 5,,0"0P 17 + 5,304 PP,

DHIPT = 5,5 (1*0"PP7 — PH1P117). (140)

On the other hand, in the dissipative sector we have the densities

. 1aUPs = 1 AU~ » 1 RUO-
My T o {Ojuuuup c{lz i Uplp czﬁ i Uy, V98 A,
-y _ 1 - o - - - o
nLediSS =—kgT clejn u,u, Drrpu,t, Drru, V90 zN,
~ =P SO~ = up o
T nhsnd c_ZDjn Up Dmrup DﬂTTE v 6=%hPU
1 [jup= 1 {UPT = - 1 {UPo -
CZN?)]'J Uy CZND"OTU Uplo CZNI‘)/bTG Uy S%AP
—kgT Di”pﬁ“ DTLnguU szpgu 1—5ggnp , (141)
Djn Drr Uy Drz §5<%hpcr
and fluxes
1 RUp = X up - < up
e =D ; ) o
Jg o ol sl | [ ot
. - o - = - o
e%s =—kgT C—ZD].T Uy, Dpr u,u, Dp:u, —v?d gn,
7 1 Xpuv— = puy X puy o
7 diss C_2Dj»; Uy Dr: Up Drz v 595hPCT
pHe HHPo G preo 5.4
jj J‘L’ o 1;‘7 Bp
div-» ~UVOOT » - ~ UVOO -
—kgT | D;p Uy Drr  tyilly Der —Ogn, | . (142a)
= ouUY = UVPO = UVpo 1
D]’T DTT Uy DTT 5699hpa

The coefficient matrices in the dissipative sector are given as

D;:Ljp = EOOP,UP +,§00ﬁ'uﬁp N
T z AU
DjTL' = UOIP“’p +501u“up B
D#ﬁ = tlllp'up +§11ﬁ“ﬁp ,

D-';‘LTPU = ZBOZP‘L(pﬁG) + gozﬁ‘uﬁpﬁo— + 5031:\IMPPO—,

D%ﬁo‘ == 2612P'u(pﬁ0) +§12ﬁuﬁpﬁ0 +§13a,upp0',

@gfvpff =2 (pp(up v)o _ dil prpU) + 4622ﬁ(“P M)p ;o)
+ 5o UM UP T + 59g (PH7UP U + MU PPY) + 545 PHVPPY (143)

We can use the generic procedure chalked out in the previous subsection to map the ther-
modynamic Landau frame coefficients to the thermodynamic density frame used in the bulk
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of the paper. The coefficient coupling to the traceless tensor remains unchanged during the
map

t=1 (144)
However, in the vector sector, we find
boo = Boo + A*B11 — 2oy,
bo1 = [UlBog + Wby — b5t — Wy,
bog = Do + filti|011 — fib15 — [d|0g1
b1y = BBy + WByy — 2Wh1oldl,
b1 = [U|0gy + W(i[b1, — (W + ﬁz) 012,
Dop = By + 12017 — 2[[B1,
o1 = |l7|t:’oz —ﬁt:’12|ﬁ| —1/?/501 >
bz = t:’oz - ﬁt:’u - |ﬁ|l=’01 >
B1g = |0y, — (W + %) 015 - (145)

The mapping in the scalar sector is much messier to write down explicitly. We instead use the
matrix representation for clarity; we first isolate the scalar part of the M matrix as

=1 Of =1 O 9p _ 9p 2 Ip
gt R R
s _ L =1 0w p _9p =2 p
M” = |7;|A € |g|ﬁe 2 868 Eeu ge (146)
- n A = w A p _ P =2 = p
|7 3 TR |7‘C|—|ﬂ|+W 3T~ 2l + 2|ii] 7]
We define the coefficient matrices in the Landau frame
c 500 2%01 2501 . ; 251 2501
NS — s~ =2~ >~ NS — -z
QTT — | @fm Usn [t]81; |> ©TT — | T2 0 0 >
Wgoy sy 35, 0 0
2501 IUls11 S11 2501
|l ~ 2 - |l ~ |l ~ T |l = |d] =
. 2500 722502 2502 2503 - 0 2502 2502 2503
5 =~ =9~ -~ >~ 5 - == -2 -2 -
Drs |ils; U651 |dlS1n [Ul513 | Ors = | —ltlser U512 |UN|512 |l£|513 ’
501 |tl§15 512 513 —501 lils1y 512 513
800 dl502 8oz Bos 0 lilsoe 502 So3
=~ =2~ =~ =~ - -
~s _ | [tlBoy U%Bny il |i]3a3 = _ | —ltlsez 0 0 lilsys
Des =1 - e - - , D= _= 0 0 =
S0 [UlBay  Exp 523 502 B u 523
503 ltl5y3 B3 533 —S03 ISy —8o3 0
(147)
and in the density frame
S00 S02 502 503 0 So2 502 503
5 5 5 5 - —5 0 5 5
@25 _ | %02 %11 %12 S13 , @ZS _ 502 o (1)2 13 | (148)
S02 S12 S22 523 —S02 512 523
503 913 S23 933 —Sp3 —S13 —Sz3 O
The mapping is given in terms of these as
5 _ QS _ s\Ts _ ays Tass s\T s 5
Dgg =Dy (M*®) D (CDTS) M® + (M*) DM,
s A _ s\TAs Ns \Tpgs s\T s 5
Dgs =Dy (M*®) CDTS+(CDTS) M® + (M*) DM (149)
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In section 5.2, we have used this procedure to obtain the mapping for a relativistic fluid in
the Landau frame to the density frame. The transport coefficients for a relativistic fluid in the
Landau frame are given as

501 = 502 = 803 = 8§12 = 813 = 533 = Vg =0y =015 =0,

2
o 3 o o o
500 = 7,0 S01 = 8p2 =503 =0,

2 4
. _ . _Cc . 5 d—1 . _C . 3 2 . 2
5227 (b2 = b =y (¢+2%n), G = L (¢—31), 83 =74 (C"‘mn),
c? ¢t 3 y
Yoo = YuO, b1 = 0p2 =0, 09y = ﬁl’u =m0 =T t=v.m. (150)

We can use the formulas mentioned above to recover the respective transport coefficients in
the density frame reported in eq. (90). While performing the mapping, it is useful to note that
the relativistic equation of state implies the identities

1 9p g 0p _ @y Op 1 9p
a_p _ Ya J€rel 2 O€e c2 €+p Onyg 3_p _ Yu 0Nl
de 11 9p _ @ y,n 9p ’ on q_#9p _@ym dp °
c2 dee 2 €+p Ongg c2 Dep €2 €+p Onyg
P _1( dp Yun __0p )
p \O€rel | 2(e+p) Ongg N €+
L=tm Topies, w=—Eoc (151)
om2 q_@9p _@ym 9op o)

A.3 Comparison to previous works

The Landau frame dissipative and non-dissipative non-hydrostatic transport coefficients ap-
pearing above can be related to the ones discussed in the uncharged case in eq. (5.6) of [27]

asl7
NHS NHS NHS
z _f _ 5 = 5 = _ NHS
12= S 512 = S 513 = S 523 =S85
| |t |t
~ ~ f] ~ f3 ~
t=—t, 011=—5, t’12=_ﬁ: b =—f2,
N S1 S4 Sg - - -
§1=—=, Sp=—=, Sp3=—7, S99 =—Sy, BSy3=—Sp, B533=-—s3. (152)
u ] ]

9 non-hydrostatic non-dissipative and 17 dissipative coefficients reduce to 4 and 10 respec-
tively in the uncharged case, as reported by [27]. In addition, three hydrostatic coefficients
Fy 1 2 reduce down to just two F; ,, as commented upon in section 4.1.1.

The comparison of our work to the analysis of [29], on the other hand, is considerably more
involved.'® Firstly, comparison with the constitutive relations, given in eq. (2.24) of [29], can
only be done in the limit ¢ — o0 in the thermodynamic Landau frame definition in eq. (136),
or equivalently B — 0in eq. (2.23) in [29]. For B # 0, the basis of independent non-hydrostatic
data used in [29] is not compatible with the off-shell formalism because the resultant dissipa-
tion matrices in eq. (142) are asymmetric. Specialising to the ¢ — oo case, we can find the
mapping of the transport coefficients 7, ¢, &, a, ¥, 7, 71,23 appearing in eq. (2.24) of [29]

7The dissipative coefficient t has been called t in [27] and is negative semi-definite. We use the notation t
to avoid sign confusion with our convention of positive semi-definite dissipative coefficients. The mapping of
transport coefficients with [27] requires that we flip v — —v*.

18We thank the authors of [29] for aiding us in this comparison.
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to the ones introduced by us; in the non-hydrostatic non-dissipative sector we find'’

- _ (Y = (Y Y Y - | Y1
501:Y_(_4+Y18)u2: 502=—|u|(£+ﬁ+h9+ﬁ); 503:——(}’20——7),

2T 2T 2T 2 2 T
= . Y3 Y7 > - (73 = o (V11
515 = |df (Yz"‘E—Ylo—?), 513=|u|(5+}’16); 593 =11 (—2 +Y15),
~ _ ~ - Y14 ) = - (Y7 )
Vo1 =7, gy = — — + s 0y =— — 4+ s 153
01=Y 02 | (ZT Y22 12 | 5 Ys ( )

and in the dissipative sector

az

. _ - - Y4 . - _ R
500:0_?7/21, 501:_a+(§_Y18)u2 ) 5y = T+ 207y,
- - (Y12 |, V14 Yzo) - | ( Y17)
= LR — = =—— 4+ =L
502 lu'(ZT 5T Y19 5 ) 503 D) Y20 T )
. - Y3 Y7) - - (Y3 )
= +=t+y0+ 2, = |i| [ = -
§1p = |d (Yz 5 Y10 D) §13 = |d 5 Y16
- = d_l _ Y11 - = 2 _
5 = +2— +ﬁ2 (__ ) > S =(+——— 5
23=C¢ d n 5 Y15 33=¢ d(d_l)n
~ - = ~ _ - ~ - = ~ = Y14 ~ = Y7
Voo =0, o1 =—Q, v =17, oo = [t ﬁ—Yzz > o = [t E—Ys s
. . = d—1_ .
0oy =275, Sy =C+ ZTTI + U2 (4rg + 279 +7111) 5 t=n. (154)

The three remaining coefficients yg—2vs, Y13 —2Ys, Y23 —2Y 22 from [29] do not appear in the
maps above. They will, however, get non-trivial contributions in the hydrostatic sector from
Fy 15 in section 4.1.1. We do not perform this detailed analysis here.

The authors in [29] introduced a different set of dissipative coefficients by 5, for the
entropy-production quadratic form A in eqgs. (2.33)-(2.39), and hydrostatic coefficients ¢; 5 4
for the non-canonical entropy current sho. .. in egs. (2.30)-(2.32). The relation to the afore-
mentioned 7, {, &, a, 7, 7, Y1,..23 coefficients is presented by the authors in a companion
notebook. They also find 2 constraints

blS = b14 5 bzo + b21 = 2b19 . (155)

It should be noted that a complete analysis of the second law constraints is not provided
in [29]. It should also be noted that 9 non-dissipative non-hydrostatic coefficients, given in
eq. (2.48)-(2.56) of [29], do not show up in the non-canonical entropy current or entropy
production. To map the by _ 51, €1 24,5 coefficients to our formalism, it is easier to work in the
thermodynamic density frame. Mapping the A’s in the two frameworks, we find that the 20
independent by 14, bye,. 20 coefficients map to 17 dissipative coefficients

500 %01 S02 %03
1 AT 0 $01 511 S12 513 A O _
kgT \ O 1] 502 s12 S22 823 |\O0 1

S03 $13 923 9533

by + by v? by + by 2 be|V| + by |V|® + 2bg|V| be|V|

by + b3v? by + bsv? biol¥]+ b1y |VIP + 2b1, [V byolV
bel¥| + by |F|> +2bg|B|  byol¥| + by [P +2b12|F|  2bys + big + byy¥* +2b1g¥2 + 4b1g7%  byg + b1gV?
be |V byl big + b1gV? bis + %bm

“The signs of the coefficients vy, v, v, in 1% in eq. (2.24) of [29] are incorrect, as they violate the Landau
frame conditions. We are unable to reproduce the non-hydrostatic combinations reported in egs. (2.48)—(2.56)
in [29].
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1 Yoo Yo1 Vo2 by by bg
T

ﬁA bo1 011 by [A=| Dby by bio e

B Doz D12 V2o bg biy bis+ DbV
1
——+t=bq,, 156
kpT 14 (156)

where
—u/T 1 0
A= 1/T 0o 0], (157)

—idl/T 0 1

is the transformation matrix arising from converting ;(u/T), 6;(1/T), 6;(u;/T) basis to 5, T,
0;u, O;u; basis in [29]. The comparison also leads to 3 equality constraints?’

by = bg, bi3=bys, byo = big , (158)

which can be thought of as arising from requiring entropy production to be non-negative. To
map the hydrostatic ¢, , 4 g coefficients, we note that the non-canonical entropy current from
egs. (2.30)-(2.32) of [29] is given by

50 =& ukaa? +¢, (ukak% + mlé‘tﬁz) + &, 0.k,

non-can

i iz a@2 _ xaoix (kg i ig ok
Snon-can — U €10,U” — 40U + g (u Jut —u'du )

+ Moy d,ut + Exult (m4uk8kii2 + ukﬁk% + (my +my)d,i* + mgakuk) , (159)

where m; ;34 are some known thermodynamic parameters. This can be compared to our
eq. (69), in the absence of background fields, using the equations of motion, and up to a total-

P : 0 0 i i i
derivative shift of the entropy current s —s + 0. X", Spon-can — Snon.can — 9tX ' for

i non-can non-can
some X' that leaves the divergence of the entropy current invariant. This relates 3 independent

C1,2,4 coefficients to 3 hydrostatic coefficients F ; 5 according to

- Y
F():CZ—TN_X_T_ 5
ou
Fo=—Fe —rx — 1Y
1— T 2 aT >
1 ayYy
Fy=Té& —Tmyéy—-TpX —T— , 160
2 1 1625 1p E?) (160)
where
1 #?0 0
X—2m152 ——u——p— 2 _{) 5
p p Oe o2
. . e+pdp ndp qzé’p)
Y=¢ —2u2mc(1——————— 161
4 12 p Jde pon on2 (161)
We also get a constraint?!
68=0' (162)

1n eq. (2.33) of [29], the authors write the dissipation matrix in terms of 3,T, d;u, and d;u;, however, only
the symmetric derivatives of u' are non-hydrostatic and can contribute to dissipation. This leads to the said 3
constraints.

21An easy way to understand this constraint is by noting that the contribution to entropy-divergence coupled to

Cg does not vanish in equilibrium, and hence must be set to zero.

40


https://scipost.org
https://scipost.org/SciPostPhys.11.3.054

To summarise, [29] reports a total of 29 coefficients in the constitutive relations &, a, ¥, T,
71,..23 (related to our formalism according to eqs. (153) and (154)). Ref. [29] also classifies
20 possibly dissipative coefficients by 14, by, 20 in the entropy production quadratic form, 4
possibly hydrostatic coefficients ¢ 5 4 g in the non-canonical entropy current, along with 9 non-
hydrostatic non-dissipative coefficients that do not contribute to the non-canonical entropy
current or to entropy production. The ensuing second law analysis was not performed in
[29]. Accounting for the second law, we find 3 constraints among the coefficients b’s, given
in eq. (158), and one constraint among the coefficients ¢’s, given in eq. (162). Thus, the
final number of independent transport coefficients consists of 17 dissipative, 9 non-dissipative
non-hydrostatic, and 3 hydrostatic.

SciPost Phys. 11, 054 (2021)

B Interaction vertices

In this appendix, we record the effective Lagrangian that accounts for interactions between
hydrodynamic and stochastic degrees of freedom. Taking into account only the ideal order
part of the Lagrangian from eq. (72), and expanding to cubic order in fluctuations, we obtain
the three-point interaction Lagrangian given by

1. 1 ; '
['3 = E)/;lnanzai(pa + E}/leeéezaﬁoa + Y:‘l65n56 81«,0(1

k5ni5nj8k(pa

T

+ yﬁljn5n 5Tri3j<pa + )/?7_[56 5niaj% + }fiﬂj
1 . 1 . .
- Ea;nénzainl - Ea’“(‘}ezainl —al 6nded X,

i t i j t ijk t
—a) onom0iX, —al 6edm;0;X, —al 6m;6m;0X,

n

1 .. 1 .. .
+ Eﬂgﬁnzanai + Eﬂé166628ani + ﬁlje(Sn o€ anai

+BURSN 57, X g + BIKS € 51 0, X oy + BINS 65 9 X g - (163)

T

Here we have defined the following coupling structures

d%h

2%h i
Ve _panae

Yle,g = P@Ul >

i _ azﬁui ui
Ynn_panz 5 ]

2

i o‘n ;5 Of i
— 9,2
Yy =2p u'v) + —oY, re

ond 2 on
2 A

3(72)2

ijk _ o3
mr_zp

, 0% B

all =2
=P 5 aqe on

2/\
o =2p°

82p—1

on?

3(72)2

.
ﬂ’llj”_p on?
il = 2,007

ne onde

41

22w . M,

aeez ﬁu , a

ij IWcij —
u'w! + oY, a;. =2p

L/ Lj j —
u'n! + oY, Bl=

24 A
2 91 uiuj+@5ij
ded 72 de

uuuk +p—f(5”uk + 205k |
o2

i *w
= ut,
ne panae
2.A A
2 OTW iy Wi
ded it2 de
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o2

aZp—l o 32p B
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gk 20 5 0%p7! 22 s

ﬁ,llfﬁk E)p 5§10y +2p ﬁp_,zu wuk + ZP—E/’ 8p_,2ul51k ,

p i
gk 20 22p~t d%p

ﬁé]ﬁk p ap 510 k)+2p anu uJu +2pm 5Jk

pik = Lgikgit 4 %5”5“ - ﬁ(4u(i5j)(kul) +5tukul)
o) it i

82p aZp—l )

+2p2 3(*2)2"[ Wk +2p mulu]ukul (165)

This procedure can analogously be iterated to obtain higher derivative and higher-point inter-
actions (see [11] for the discussion in Galilean case). We leave the analysis of the effects of
(163) on hydrodynamic equations of motion and correlation functions to future work.
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