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Abstract

Many recent tensor network algorithms apply unitary operators to parts of a tensor net-
work in order to reduce entanglement. However, many of the previously used iterative
algorithms to minimize entanglement can be slow. We introduce an approximate, fast,
and simple algorithm to optimize disentangling unitary tensors. Our algorithm is asymp-
totically faster than previous iterative algorithms and often results in a residual entan-
glement entropy that is within 10 to 40% of the minimum. For certain input tensors, our
algorithm returns an optimal solution. When disentangling order-4 tensors with equal
bond dimensions, our algorithm achieves an entanglement spectrum where nearly half
of the singular values are zero. We further validate our algorithm by showing that it can
efficiently disentangle random 1D states of qubits.
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Figure 1: Given a tensor Ak,ab (blue) with dimensions (χ1χ2)×χ3×χ4, where χ1 ≤ χ3
and χ2 ≤ χ4, our algorithm outputs a unitary tensor Ui j,k (green) that roughly mini-
mizes the entanglement across the red line.

1 Introduction

Many recent tensor network algorithms [1–7] rely on the application of unitary (or isome-
try) tensors in order too reduce the short-ranged entanglement and correlations within the
tensor network. Examples of such algorithms include: MERA [8–10], Tensor Network Renor-
malization [11–13], Isometric Tensor Networks [14] and 2D DMRG-like canonical PEPS algo-
rithms [15,16], purified mixed-state MPS [17], and unitary tensor networks [18–20]. Optimiz-
ing these unitary tensors is a difficult task, and many of the algorithms applied in the previously
cited literature are CPU intensive, although there has been recent progress [20–22].

One popular approach is to optimize one tensor at a time while holding other tensors
constant [10, 11, 15, 16, 20, 23, 24]. However, convergence can be slow, especially when a
good initial guess for U is not used.

Another approach (used in Refs. [14, 17]) is to iteratively minimize the entanglement
entropy [defined later in Eqs. (10)] across part of the tensor network, as depicted in Fig. 1.
However, these iterative methods are also very CPU intensive. An iterative first-order gradient
descent algorithm can converge very slowly, especially when narrow valleys are present in
the entanglement entropy cost function 1. Convergence is even more challenging for Renyi
entropies Sα with α ≤ 1/2 due to |λ|2α singularities for small singular values λ, which can
even prevent convergence to a local minima in the limit of infinitesimal step size for many
algorithms. Applying a second-order Newton method can require less iterations. However, for
large bond dimensions χ the CPU time and memory requirements grow rapidly as O(χ12) and
O(χ8), respectively, with e.g. χ = 16 requiring roughly 40 CPU core hours and 34 GB of RAM
just to diagonalize and store the Hessian for a single iteration.

In this work, we introduce a simple and asymptotically faster algorithm to calculate a
reasonably good disentangling unitary tensor. That is, given a (χ1χ2)×χ3×χ4 tensor (blue in
Fig. 1) with three indices where χ1 ≤ χ3 and χ2 ≤ χ4,2 we provide an algorithm to efficiently
calculate a χ1 × χ2 × (χ1χ2) unitary3 tensor (green) such that the entanglement is roughly
minimized across the dotted red line.

The CPU time of our algorithm scales as O(χ3
1χ

2
3 +χ

6
1 ) when χ1 = χ2 and χ3 = χ4.4 This

CPU complexity is as fast or faster (when χ3 � χ1) than the complexity O(χ3
1χ

3
3 ) for com-

puting the singular values of A across the dotted red line, which are needed to calculate the
entanglement entropy across the dotted red line. This makes our algorithm asymptotically
faster than just a single step of any iterative algorithm that attempts to minimize the entan-
glement entropy. For χ1 = χ2 = χ3 = χ4 = 16, our algorithm only requires only about 10ms
of CPU time.

1Increasingly narrow valleys occur for the tensors in the later rows of Tab. 1
2In Appendix B, we generalize the algorithm to be applicable when χ1 > χ3 or χ2 > χ4.
3Here, unitary means that

∑

k Ui j,kU∗i′ j′ ,k = δii′δ j j′ and
∑

i j Ui j,kU∗i j,k′ = δkk′ .
4See Appendix A for more complexity details.
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We describe our algorithm in Sec. 2, and then benchmark it against iterative optimization
of the entanglement entropy in Sec. 3. In Sec. 4, we show that our algorithm is capable of
efficiently disentangling random initial states.

2 Algorithm and Intuition

Algorithm 1: Fast tensor disentangling algorithm [25]
Input: tensor Ak,ab with dimensions (χ1χ2)×χ3 ×χ4 , where χ1 ≤ χ3 and χ2 ≤ χ4
Output: unitary tensor Ui j,k with dimensions χ1 ×χ2 × (χ1χ2)

1 rk← random vector of length χ1χ2

2 α(3)∗a ,α(4)b ← dominant left and right singular vectors 5 of (r · A)ab

3 V (3)ai ← from truncated SVD
∑

b Ak,ab α
(4)
b ≈ (U

(3) ·Λ(3) · V (3)†)ka ,
where V (3) is a χ3 ×χ1 semi-unitary

4 V (4)b j ← from truncated SVD
∑

a Ak,ab α
(3)
a ≈ (U

(4) ·Λ(4) · V (4)†)kb ,

where V (4) is a χ4 ×χ2 semi-unitary

5 Bk,i j ←
∑

ab Ak,abV (3)ai V (4)b j

6 Ui j,k← Gram-Schmidt orthonormalization of (B†)i j,k ,
with (i, j) grouped via the ordering described in main text

The algorithm is summarized in Algorithm 1. Below, we explain the algorithm in detail
along with the underlying intuition.

To gain intuition, we will consider a simple example where the input tensor Ak,ab is just a
tensor product of three matrices:

Ak,ab ∼ M (1)k1a1
M (2)k2 b2

M (3)a2 b1
(1)

~k

a

b

A

M
(2)

M
(1)

M
(3)

where we are grouping the indices k = (k1, k2) and similar for a and b. Then it is clear that
an ideal unitary Ui j,k should decompose Ak,ab as follows:

(U · A)i j,ab ∼ M (1)ia1
M (2)j b2

M (3)a2 b1
(2)

~
i

j

a

b

U A

M (2)

M (1)

M (3)

since this minimizes the entanglement across the cut shown in Fig. 1.
Note that Ui j,k does not have any dependence on M (1), M (2), or M (3). Rather, Ui j,k only

needs to be a basis that matches the index i with M (1) and j with M (2). The indices a and b
give us a handle on this basis since M (1)k1a1

only depends on a (and not b), and similar for M (2)k2 b2
.

However, the desired basis is obscured by M (3)a2 b1
, which also depends on a and b. Therefore,

the intuition behind our algorithm will be to project out M (3) so that Ui j,k can be computed.
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Step (1) of the algorithm begins by choosing a random vector rk of length χ1χ2. (2) Then
compute α(3)∗a and α(4)b : the dominant left and right singular vectors 5 of (r · A)ab.

For the simple example, r · A will be a tensor product of two matrices: M (3) and La1 b2
=

∑

k1k2
M (1)k1a1

rk1k2
M (2)k2 b2

. This implies that α(3)a and α(4)b will each be a tensor product of two
vectors:

α
(3)
(a1a2)

,= β (3)a1
γ(3)a2

, α
(4)
(b1 b2)

,= γ(4)b1
β
(4)
b2

, (3)

where β (3)∗a1
and β (4)b2

(and γ(3)∗a2
and γ(4)b1

) are the dominant left and right singular vectors of

La1 b2
(and M (3)a2 b1

), respectively. This allows us to isolate M (1)k1a1
by multiplying Ak,ab by α(4)b :

∑

b

Ak,ab α
(4)
b ∼

∑

b1 b2

�

M (1)k1a1
M (2)k2 b2

M (3)a2 b1

��

γ
(4)
b1
β
(4)
b2

�

(4)

~k

a

α(4) β(4)

γ(4)

M
(1)

A

(3-4) Calculate the following truncated SVD 5:
∑

b

Ak,ab α
(4)
b ≈ (U

(3) ·Λ(3) · V (3)†)ka , (5)

∑

a

Ak,ab α
(3)
a ≈ (U

(4) ·Λ(4) · V (4)†)kb , (6)

where only the largest χ1 and χ2 singular values are kept in the first and second lines, respec-
tively. Thus, V (3) and V (4) are χ3×χ1 and χ4×χ2 semi-unitary matrices (i.e. V (3)† ·V (3) = 1).

For the simple example, the matrices V (3) and V (4) only depend on the thin SVD of
M (1) = U (1) ·Λ(1) · V (1)† and M (2) = U (2) ·Λ(2) · V (2)†:

V (3)(a1a2),i
= V (1)a1,iγ

(3)
a2

, V (4)(b1 b2), j
= V (2)b2,iγ

(4)
b1

(7)

up to an unimportant tensor product with a vector γ(3) or γ(4). This allows us to project out
M (3) in the following step, as seen in the bottom right of Eq. (8).

(5) Compute:

Bk,i j =
∑

ab

Ak,abV (3)ai V (4)b j (8)

~k
i

j

V (3)

V (4) V (2)

V (1)

γ(3)
γ(4)

M (1)

M (2)

A

(6) Let Ui j,k be the Gram-Schmidt orthonormalization of the rows of (B†)i j,k.6 If χ1 ≤ χ2, then
the (i, j) indices should be grouped via the ordering (i, j)→ χ2i + j so that (U · B)i j,i′ j′ = 0 if

5The singular value decompositions of a matrix M takes the form M = UΛV †, where Λ is a diagonal matrix of
singular values in decreasing order. The columns of U and V are the left and right singular vectors, respectively.
The first column of U and V are the dominant left and right singular vectors. The truncated SVD results from
keeping only the first χ columns of U and V , and only the first χ rows and columns of Λ.

6If the rows (indexed by i, j) of (B†)i j,k are not linearly independent, then the remaining orthonormal vectors
can be chosen randomly.
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χ2i + j > χ2i′ + j′, else the ordering (i, j)→ χ1 j + i should be applied so that (U · B)i j,i′ j′ = 0
if χ1 j + i > χ1 j′ + i′.7

For the simple example, due to the direct product structure of V (3) and V (4) shown in
Eq. (7), Bk,i j takes the form shown in the bottom right of Eq. (8). Importantly, M (3) only affects
Bk,i j by a multiplicative constant so that the indices i and j give us a good handle on how to
split the index k. If Bk,i j were unitary, which would be the case if M (1) and M (2) are unitary,
then we could take U = B† to minimize the entanglement across the cut as in Eq. (2). Since
Bk,i j is generally not unitary, we instead use a Gram-Schmidt orthonormalization of (B†)i j,k.
This produces the desired result [Eq. (2)] for the simple example (up to trivial multiplication
of unitary matrices on i and j of Ui j,k).

Without loss of generality, let χ1 ≤ χ2. Gram-Schmidt orthonormalization has the advan-
tage that (as previously mentioned) (U · B)i j,i′ j′ = 0 if χ2i + j > χ2i′ + j′, which results in at
least 1

2χ1(χ1−1) zero singular values of eBii′, j j′ = (U ·B)i j,i′ j′ due to 1
2χ1(χ1−1) rows of zeroes

in the matrix eB. When χ1 = χ3 and χ2 = χ4, V (3) and V (4) are unitary, and therefore U ·A also
has at least 1

2χ1(χ1 − 1) zero singular values (i.e. nearly half of the total χ2
1 singular values).

More generally, U · A has at least

1
2χ1(χ1 − 1)−max(χ1χ3,χ2χ4) +χ

2
2 , for χ1 ≤ χ2 (9)

zero singular values [out of min(χ1χ3,χ2χ4)] across the cut in Fig. 1. Note that Eq. (9) applies
to general tensors Ak,ab, i.e. not just the particular form in Eq. (1).

Eq. (9) can be understood by defining eV (3) and eV (4) as any unitary matrices with eV (3)ai = V (3)ai

for i ≤ a and eV (4)b j = V (4)b j for j ≤ b. Note that eV (3) is a χ3 ×χ3 unitary while V (3) is a χ3 ×χ1

semi-unitary. Then eAii′, j j′ = Ui j,kAk,abeV
(3)
ai′
eV (4)b j′ is a χ1χ3 ×χ2χ4 matrix with 1

2χ1(χ1 − 1) rows

that each have χ2
2 out of χ2χ4 entries equal to zero. Since the rows are not entirely zero, there

will be χ2χ4−χ2
2 less zero singular values than than 1

2χ1(χ1−1). Furthermore, if χ1χ3 > χ2χ4,
then eA has more rows than columns, which will further decrease the number of zero singular
values by χ1χ3 −χ2χ4, resulting in Eq. (9).

If χ1 = χ3 and χ2 = χ4, then V (3) and V (4) in Eq. (8) are just unitary matrices. Therefore
V (3) and V (4) only change the basis of vectors that are Gram-Schmidt orthogonalized in step
6. One could then consider skipping steps 1-5 and instead input Bk,i j = Ak,i j to step 6. The
ansatz in Eq. (1) would still be optimally disentangled in this case. However, since the output of
Gram-Schmidt depends on the initial basis, the resulting disentangling unitary will be different
in general. Indeed, the resulting disentangling unitary will typically be significantly worse for
general input tensors Ak,i j .

8

The algorithm is not deterministic since rk is random, which helps guarantee the tensor
product structure in Eq. (3) by splitting possibly degenerate singular values. Thus, it could
be useful to run the algorithm multiple times and select the best result. Also note that the
(statistical) result of the algorithm is not affected if A is multiplied by a unitary matrix on any
of its three indices. As such, it is not useful to rerun the algorithm on U ·A (rather than just A)
in an attempt to improve the result.

7In some cases, it could be useful to try both orderings and return the best resulting unitary.
8For the χ1 = χ2 = χ3 = χ4 = 2 tensors that we consider in Tab. 1, skipping steps 1-5 results in an entanglement

Sfast that is about 20 to 35% larger (on average).
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3 Performance

Throughout this section, we assume χ1 = χ2 and χ3 = χ4. In Tab. 1, we show how well our
algorithm minimizes the Von Neumann entanglement entropy:

S = −
∑

i

pi log pi , where pi =
λ2

i
∑

j λ
2
j

, (10)

where λi are the singular values of U · A across the red line in Fig. 1 [i.e. singular values of
(U · A)i j,ab when viewed as a (χ1χ3) × (χ1χ3) matrix with indices (ia) and ( j b)]. We also
investigate the truncation error that results from only keeping the first χ singular values:

εχ =
χ1χ3
∑

i=χ+1

p2
i . (11)

In the first four rows, we investigate random χ2
1 × χ3 × χ3 tensors of complex Gaussian

random numbers. We then consider random tensors with fixed singular values λi = 1/i or
λi = 2−i , which are generated using

A(k1k2),ab =
χ2

1
∑

i=1

λi Wk1a,iVk2 b,i , (12)

where W and V are random unitaries (e.g.
∑

k1a Wk1a,iW
∗
k1a, j = δi j). In the final three rows,

we generate tensors using

A(k1k2),ab =
χ2

1
∑

i=1

µi v(1)k1
v(2)k2

v(3)a v(4)b , (13)

where v(n) are normalized random complex vectors. The later types of tensors have more
structure and are (in a sense) less dense than the previous types.

We find that our fast algorithm performs best for more structured tensors (lower rows in
the table) and exhibits the greatest speed advantages for larger χ and more structured tensors.
The fast algorithm typically results in an entanglement Sfast within 10 to 40% of the global
minimum Smin (which we approximate by running a gradient descent algorithm on several
different initial unitaries for each input tensor). In the 5th column of Tab. 1, we show how
much longer (on average) it takes the gradient descent algorithm to optimize down to the
entanglement Sfast reached by our fast algorithm; we find speedups ranging from 20 to 20,000
times as the bond dimension is increased from 2 to 16.

In the final two columns, we find that our fast algorithm achieves a truncation error to
bond dimension χ1 that is within a factor of two of what is obtained by minimizing S1. In
Fig. 2, we study the truncation error in more detail. We find that if we truncate to a large
enough bond dimension, our fast algorithm achieves a smaller truncation error than what is
obtained by minimizing S1. Both algorithms greatly reduce the truncation error from original
random tensor A (which we reinterpret as a tensor with four indices instead of three).

4 Wavefunction Disentangle

We further validate our algorithm by studying how well it can disentangle a random wavefunc-
tion of 10 qubits. 9 That is, starting from a wavefunction of 210 complex Gaussian-distributed

9See Ref. [33] for an MPS approach to wavefunction disentangling.
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Table 1: For various kinds of tensors A [defined in Eqs. (12)-(13)], where U · A has
dimensions χ1×χ1×χ3×χ3, we list: rough CPU time of our fast algorithm; roughly
how much faster this is (on average) than a gradient descent algorithm of the entan-
glement entropy that halts at the entanglement Sfast reached by our fast algorithm;
how close the resulting entanglement entropy Sfast of our fast algorithm is compared
to the minimum Smin; the same but for a random unitary (for comparison); the trun-
cation error εfast

χ1
[Eq. (11)] to bond dimension χ1 for our fast algorithm; and the

same for the unitary that minimizes the entanglement to Smin (for comparison). The
last four columns show means and the two-sided deviations to the 16th and 84th

quantiles (e.g. a normal distribution would be shown as µ+σ−σ.)

tensor χ1 χ3 time speedup Sfast

Smin − 1 Srand

Smin − 1 εfast
χ1

ε
min S1
χ1

random 2 2 0.5ms 30x 24+15
−10% 130+80

−40 % 2.8+3
−2 % 1.0+1

−.5 %
random 2 4 0.5ms 20x 8+4

−3 % 17+5
−5 % 32+4

−4 % 27+3
−3 %

random 4 4 0.5ms 100x 34+5
−4 % 121+11

−11 % 13+2
−1 % 7.3+.7

−.7 %
random 16 16 10ms 2000x 50+.2

−.3 % 155+.8
−.5 % 36+.2

−.2 % 22+.1
−.04%

λi = 1/i 2 2 0.5ms 35x 22+15
−10% 150+90

−40 % 2.4+2
−1 % 1.1+1

−.5 %
λi = 1/i 4 4 0.5ms 140x 34+8

−7 % 203+20
−18 % 6.4+.9

−.8 % 4.1+.5
−.5 %

λi = 1/i 16 16 10ms 2000x 57+2
−2 % 373+4

−5 % 11+.2
−.2 % 4.8+.05

−.05%

λi = 2−i 2 2 0.5ms 40x 24+20
−10% 260+90

−50 % 1.9+2
−1 % 0.9+1

−.4 %
λi = 2−i 4 4 0.5ms 160x 43+14

−10% 320+50
−40 % 3.0+.7

−.6 % 1.4+.2
−.2 %

λi = 2−i 16 16 10ms 3000x 77+3
−4 % 735+23

−18 % 2.7+.1
−.1 % 0.5+.01

−.01%

µi = 1/i 2 2 0.5ms 120x 30+30
−8 % 200+150

−70 % 1.0+1
−.5 % 0.3+.4

−.1 %
µi = 1/i 4 4 0.5ms 300x 19+8

−5 % 139+26
−17 % 3.0+.8

−.6 % 1.5+.4
−.3 %

µi = 1/i 16 16 10ms 20,000x 8+3
−1 % 161+5

−2 % 3.0+.1
−.1 % 1.7+.1

−.1 %

random numbers, we repeated apply our algorithm to different parts of the wavefunction, see
inset of Fig. 3, to reduce the amount of entanglement across any cut of the wavefunction. Thus,
we take A(ki ,ki+1),(a1···ai−1)(bi+2···bn) = ψa1···ai−1ki ki+1 bi+2···bn

in Fig. 1 for
i = 1,3, . . . , n − 1 and then i = 2, 4, . . . , n − 2 to calculate the two layers of unitaries shown
in the inset of Fig. 3, for which n = 10.10 We show how much entanglement is left after a
given number of layers of unitaries. We compare data from our fast disentangling algorithm
to gradient descent of the entanglement entropy S [Eq. (10)].

When the circuit depth is small, our fast algorithm disentangles at a slightly slower rate
per circuit layer, but much faster per CPU time. When the circuit depth is larger and the
wavefunction has little entanglement left, our algorithm performs better than minimizing the
entanglement entropy. Gradient descent of S gets stuck at larger depth due to narrow valleys
in the cost function S, which result in very small (< 10−8) step sizes causing our gradient
descent algorithm to halt.

We also compare against initializing the gradient descent of S algorithm with the result
of our fast disentangling algorithm. This is shown in blue in Fig. 3, and achieves the best
disentangling rate in both limits, while also speeding up the gradient descent algorithm by a
factor of two.

After 500 layers consisting of 2250 2-qubit gates, our fast algorithm removed almost all
of the entanglement. An arbitrary 2-qubit gate can be implemented using three CNOT gates

10At the edges where i = 1 or i = n− 1, we will not have χ1 ≤ χ3 and χ2 ≤ χ4. Therefore we use the extension
in Appendix B for these two cases.
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0.010

0.100

1

ϵχ

before disentangling

fast disentangle

minimal entanglement

Figure 2: The truncation error [Eq. (11)] to bond dimension χ where U · A has di-
mensions 4× 4× 4× 4 and the tensor A is Gaussian random. Similar to Tab. 1, we
also show the two-sided deviations to the 16th and 84th quantiles. We see that our
fast algorithm outperforms the minimal entanglement disentangler for χ ≥ 8 and
has zero truncation error for χ ≥ 10, which is consistent with the 6 zero singular
values predicted by Eq. (9).
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Figure 3: The residual entanglement after applying layers of unitary operators to a
random 10-qubit wavefunction for various algorithms. The residual entanglement
is the maximum entanglement across any left/right cut of the wavefuntion. We ap-
ply each method to the same three random wavefunctions, resulting in three nearly
overlapping lines for each method. We also show the amount of CPU time used for
each method to obtain the data shown. (inset) Two layers (i.e. depth=2) of unitaries
acting on the wavefunction.
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along with 1-qubit gates [26–28]. Therefore, the fast algorithm’s circuit of 2250 2-qubit gates
can be implemented using only 6750 CNOT gates. For comparison, it is possible to exactly
disentangle an n = 10 qubit state using a circuit of 9 × 2n+1 ≈ 18,000 nearest-neighbor 2-
qubit CNOT gates along with many 1-qubit gates [29,30].

5 Conclusion

We have introduced, provided intuition for, and benchmarked a fast algorithm to approxi-
mately optimize disentangling unitary tensors. Example Python, Julia, and Mathematica code
can be found at Ref. [25].

We expect our algorithm to be useful for tensor network methods that require disentan-
gling unitary tensors. Due to its speed, our fast method can allow for simulating significantly
larger bond dimensions than previously possible. The advantages of larger bond dimensions
could outweigh the disadvantage of the non-optimal disentangling unitaries that our algorithm
returns. Nevertheless, if more optimal unitaries are required, our fast algorithm can still be
useful as a way to initialize an iterative algorithm.

For future work, it would be useful to consider an ansatz of tensors that are a tensor product
of our ansatz Eq. (1) with a GHZ state (i.e. Ak,ab = 1 if k = a = b else 0). Such tensors are the
generic form of stabilizer states with three indices (up to unitary transformations on the three
indices) [31,32]. Although these tensors can be optimally (and relatively easily) disentangled
using a Clifford group unitary, our fast algorithm performs very poorly on these tensors.
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A CPU Complexity

The CPU complexity of our algorithm is

O
�

(χ1χ2)
2(χ3 +χ4) +χ1χ2χ3χ4 min(χ1,χ2) + (χ1χ2)

3
�

, (14)

where we continue to assume χ1 ≤ χ3 and χ2 ≤ χ4. The first term results from steps 3, 4, and
5 in our Algorithm 1; the second term comes from step 5; and the final term results from step
6.11 When χ1 = χ2 and χ3 = χ4, this reduces to O(χ3

1χ
2
3 +χ

6
1 ).

11We assume that the dominant singular vectors of an m × n matrix M can be calculated in time O(mn) for
step 2. This can be done for an m × n matrix (where m ≥ n) with SVD Mm×n = Um×nΛn×nV †

n×n by e.g. ap-
plying the Lanczos algorithm to obtain the first singular vectors of M †M = VΛ2V † and M M † = UΛ2U†, or
�

0 M
M † 0

�

= Y
�

Λ 0
0 −Λ

�

Y † where Y = 1p
2

�

U U
V −V

�

(m+n)×2n

, for which the eigendecompositions reveal the

SVD decomposition. For steps 3 and 4, we assume that the truncated SVD of an m × n with m ≤ n matrix that
returns only the first k ≤ m singular vectors can be calculated in time O(m2n). The final complexity in Eq. (14)
would not change if the truncated SVD only required O(mkn) time. The precision of these SVD steps is not critically
important, and a fast O(mkn) SVD method [34] can be safely applied if desired.
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Remarkably, this is as fast or faster than computing a single SVD of A [viewed as a (χ1χ2)×
(χ3χ4) matrix] or even just computing U · A, which both scale as O[(χ1χ2)2(χ3χ4)].

B χ1 > χ3

The algorithm can be extended to handle χ1 > χ3 as long as χ2 ≤ χ ′4, where we define

χ4→3 = dχ1/χ3e , χ ′4 = dχ4/χ4→3e . (15)

dχ1/χ3e denotes the ceiling of χ1/χ3. If both fractions are integers, then χ2 ≤ χ ′4 is equivalent
to χ1χ2 ≤ χ3χ4. If instead χ2 > χ4, then this appendix can be applied after swapping χ1↔ χ2
and transposing the last two indices of A. Therefore, this appendix extends our algorithm so
that it can be applied as long as either χ2 ≤ d

χ4
dχ1/χ3e

e or χ1 ≤ d
χ3

dχ2/χ4e
e (although χ1χ2 ≤ χ3χ4

is often sufficient12). This χ1 > χ3 case algorithm appears to result in an optimal disentangling
unitary for the ansatz in Eq. (1) if one of the dimensions of M (3) is 1.

Suppose χ1 > χ3 and χ2 ≤ χ ′4. The algorithm proceeds as follows:
(1) Calculate the SVD:

Ak,ab =
∑

i

U (1)ka,iλ
(1)
i V (1)∗bi . (16)

(2) Split the index i of V (1) into two indices: i → (a′, b′) where i = (a′ − 1)χ ′4 + b′ and
1 ≤ a′ ≤ χ4→3 and 1 ≤ b′ ≤ χ ′4. If χ4 < χ4→3χ

′
4, then append columns of zero vectors to V (1)

before splitting the index. This results in a new χ4 ×χ4→3 ×χ ′4 tensor eVb,a′b′ .
(3) Perform a (slightly modified) fast disentangling Algorithm 1 on

A′k,(aa′)b′ =
∑

b

Ak,abeVb,a′b′ , (17)

where the second index of A′k,(aa′)b′ is the grouped index (a, a′). The fast disentangling algo-
rithm is modified in step 6: the (i, j) indices should always be grouped using the ordering that
would be chosen if χ1 ≤ χ2.
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