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Abstract

Inspired by topological data analysis techniques, we introduce persistent homology ob-
servables and apply them in a geometric analysis of the dynamics of quantum field theo-
ries. As a prototype application, we consider data from a classical-statistical simulation
of a two-dimensional Bose gas far from equilibrium. We discover a continuous spectrum
of dynamical scaling exponents, which provides a refined classification of nonequilib-
rium self-similar phenomena. A possible explanation of the underlying processes is pro-
vided in terms of mixing strong wave turbulence and anomalous vortex kinetics com-
ponents in point clouds. We find that the persistent homology scaling exponents are
inherently linked to the geometry of the system, as the derivation of a packing relation
reveals. The approach opens new ways of analyzing quantum many-body dynamics in
terms of robust topological structures beyond standard field theoretic techniques.
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1 Introduction

Over the past two decades the mathematical field of topological data analysis (TDA) has gained
considerable attention, accompanied by far-reaching theoretical and computational develop-
ments [1, 2]. Prominently, with the notion of persistent homology the TDA toolbox offers
a versatile and numerically fairly simply applicable tool to study topological features con-
tained in data, such as connected components, loops or voids [3–5]. In particular, persistent
homology associates length scales to such topological features, allowing for a numerical dis-
crimination of dominant features and possible noise in data. To accomplish this, simplicial
complexes such as so-called Čech complexes, Vietoris-Rips complexes or alpha shapes [6, 7]
are employed. Besides the mathematical investigations on persistent homology, very fruitful
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applications to physical systems include studies in astrophysics and cosmology [8–11], physi-
cal chemistry [12], amorphous materials [13], quantum algorithms [14–18] and the theory of
quantum phase space [19]. In particular, persistent homology has been successfully applied
to the detection of equilibrium phase transitions in statistical mechanics [20] as well as to the
identification of phases in lattice spin models [21].

In this work, we propose persistent homology observables for the analysis of the dynamics
of quantum many-body systems. As a prototype application, we consider a Bose gas far from
equilibrium. While there are many different ways of driving a Bose gas away from equilibrium,
it has recently been demonstrated experimentally that the subsequent relaxation dynamics
can exhibit universal properties that are insensitive to the details of the initial conditions and
system parameters [22–24]. Theoretical results based on field correlation functions indicate
that vastly different systems far from equilibrium may share very similar universal scaling
properties, ranging from post-inflationary dynamics in the early universe [25, 26], and ultra-
relativistic collision experiments with heavy nuclei [27–29], to ultra-cold quantum gases in the
laboratory [30,31]. In particular, quantum as well as classical statistical field theories appear
to belong to the same nonthermal universality class [32]. These similarities have to be tested
against refined analysis and classification schemes. We will exploit the multi-scale topological
information encoded in a family of alpha complexes and in associated persistent homology
groups in order to analyze self-similar scaling dynamics in position space variables.

More precisely, serving as a numerical testbed, we apply TDA techniques to the dynamics of
the single-component nonrelativistic Bose gas in two spatial dimensions, described by the time-
dependent Gross-Pitaevskii equation with quantum initial conditions. The latter exhibits a rich
phenomenology far from equilibrium, including various nonthermal fixed points associated
to regimes of weak and strong wave turbulence [33–35]. Focussing on the nonperturbative
strong wave turbulence regime, a vertex-resummed two particle-irreducible expansion scheme
has been successfully employed to obtain analytical predictions for relevant scaling exponents
[32,36]. The existence of corresponding nonthermal fixed points has been confirmed by means
of numerical lattice simulations [37]. In addition, the infrared nonthermal fixed point can
be dominated by vorticial excitations interacting anomalously with each other via 3-vortex
interactions [37, 38], that is, altering the universal scaling behavior. It has been conjectured
that this anomalous vortex kinetics is associated to the formation of Onsager vortex clusters
out of equilibrium via evaporative heating [39,40]. Recently, experimental evidence for scale-
invariant dynamics and Onsager’s model has been reported [41,42].

Guided by numerical results for the two-dimensional Bose gas, we reveal that at late times
far from equilibrium persistent homology observables can show self-similar scaling character-
istic to a nonthermal fixed point. We discover a continuous spectrum of dynamical scaling
exponents, depending on a filtration parameter to construct point clouds, which provides a re-
fined classification of nonequilibrium self-similar phenomena. The existence of such a scaling
exponent spectrum seems to indicate scaling species mixing, in our case between the strong
wave turbulence and the anomalous vortex kinetics nonthermal fixed points present in the
infrared of the particular Bose gas. The analysis is supplemented by a thorough investigation
of accompanying subtleties of the chosen persistent homology approach such as amplitude
redistribution-induced exponent shifts.

On the theoretical side, we define persistent homology observables. We introduce the no-
tion of a persistence pair distribution and its statistical asymptotics in order to infer self-similar
behavior of the latter. We reveal that the appearing scaling exponents probe the geometry at
hand, as indicated by a packing relation heuristically derived in this study.

This publication is structured as follows. We first describe the lattice simulations and dis-
cuss self-similar scaling for the occupation number spectrum in Sec. 2. With the Bose gas
simulations at hand, we introduce and study point clouds and persistent homology groups in
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Sec. 3. Rediscovering self-similarity, this exploration culminates in the existence of a scaling
exponent spectrum. In Sec. 4 we carry out the construction of persistent homology observ-
ables in the classical-statistical framework, introduce the asymptotic persistence pair distri-
bution and related geometric quantities and investigate a corresponding self-similar scaling
ansatz. We discuss amplitude redistribution-induced exponent shifts, persistences and Betti
number distributions in Sec. 5. Finally, in Sec. 6 we summarize, draw conclusions and issue
an outlook.

2 Self-similarity in occupation numbers

Laying the foundations for the introduction of persistent homology observables, we first dis-
cuss self-similar scaling in the two-dimensional Bose gas for the well-established occupation
number spectrum. The two-dimensional Bose gas is among the simplest systems to give rise
to different nonthermal fixed points and to allow for the fast and reasonable1 computation of
persistent homology observables. We start this section by introducing the lattice simulations.

2.1 Simulation prerequisites

The nonrelativistic Bose gas can be described by complex scalar fields ψ(t,x) depending on
time and space, in numerical simulations restricted to a spatial lattice and time-evolved in
discrete time-steps. We focus on the overoccupied regime, in which the classical-statistical
approximation is suitable [32]. Accordingly, at initial time t = 0 a number k of classical field
configurations is sampled from a Gaussian ensemble, computing their individual subsequent
dynamics according to the time-dependent Gross-Pitaevskii equation as described in Appendix
E. In the classical-statistical approximation expectation values of an observable are computed
as ensemble-averages of the observable evaluated for individual field configurations.

Given a field configuration ψ(t,x), we define the statistical two-point correlation function

F(t, t ′,x− x′) =
1
2
〈ψ(t,x)ψ∗(t ′,x′) +ψ(t ′,x′)ψ∗(t,x)〉, (1)

〈·〉 indicating evaluating the expectation value in the classical-statistical ensemble. Subse-
quently, with momentum denoted by p we define the occupation number spectrum f (t,p) via

f (t,p) + (2π)3δ(3)(p) |ψ0|2(t)≡
∫

d3 x e−ipxF(t, t,x). (2)

Due to spatial isotropy of expectation values in the system, the distribution function only de-
pends on the modulus of momenta, f (t, p) ≡ f (t, |p|). The term ∼ |ψ0|2(t) represents a
condensate occurring in the system.

We choose the initial occupation number spectrum to describe overoccupation up to a
characteristic momentum scale Q. To this end, initial field configurations are defined as

f (0,p) = f0Θ(Q− |p|), (3)

with f0 = 50/(2mgQ) in the simulations. Unlike a system in thermal equilibrium, where the
typical occupancy is of order unity at a characteristic temperature scale T , here we consider a
nonequilibrium system where the occupancy at a given characteristic scale Q is much higher
than unity. Any dimensionful physical quantity will be given in units of Q. We set the mass
m/Q = 8 and coupling Qg = 0.0625 throughout this work. Outside the box, no ‘quantum-half’

1Persistent homology groups of point clouds in one spatial dimension describe connected components present
in the data. In two spatial dimensions, topologically more interesting loop-like structures can be studied.
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is taken into account and no initial condensate is specified. Spatial coordinates are restricted
to a square lattice, Λ, consisting of a regular grid of N2 points within a volume L2 with peri-
odic boundary conditions. Throughout this work, the lattice spacing reads Qa = 0.0625, the
number of lattice sites N = 1536, such that

Λ= {(an1, an2) |n1, n2 ∈ {0, . . . , N − 1}}. (4)

If not stated differently, we average over k = 72 classical-statistical realizations to compute
classical-statistical expectation values. For further details on the numerical simulations we
refer to Appendix E.

2.2 Self-similarity in the occupation number spectrum

After a relatively short time interval with a quick redistribution of the initial mode occupancies,
the dynamics slows down and begins to indicate the vicinity of a nonthermal fixed point by
means of self-similarity. Self-similar scaling of the occupation number spectrum f (t,p) is
described by a scaling ansatz including two scaling exponents, α and β ,

f (t, p) = (t/t ′)α f (t ′, (t/t ′)β p). (5)

In the infrared regime, a thorough numerical analysis as described in Ref. [32] yields the
following scaling exponents,

β = 0.189± 0.011, α= 0.395± 0.025, (6)

choosing reference time Qt ′ = 1250, fitting momenta between p/Q = 0.07 and p/Q = 0.7 and
times between Qt = 1875 and Qt = 37500. Thus, α/β = 2.09± 0.18. In Fig. 1 occupation
number spectra are displayed in the infrared regime. By means of the residuals the correctness
of the extracted scaling exponents can be easily verified.

The results confirm the findings for box initial conditions in Ref. [38], in which the infrared
dynamics of a two-dimensional relativistic scalar field theory has been mapped to that of non-
relativistic complex scalar fields. The extracted scaling exponent β is in very good agreement
with the prediction for the anomalous vortex kinetics nonthermal fixed point in a nonrelativis-
tic single-component Bose gas, attributed to the specific dynamics of vortex defects and related
vortex interactions [37]. Additionally, α/β ≈ 2 indicates the transport of particle numbers to
lower momenta [32].

3 Persistent homology in a Bose gas

Given the lattice simulations of the nonrelativistic Bose gas described in the previous section,
we introduce a simple approach to construct point clouds from field configurations, namely as
sublevel sets of field amplitudes. A rather intuitive sketch of the construction of alpha com-
plexes and persistent homology groups from such point clouds is provided. In corresponding
far-from-equilibrium simulations we discover growing geometric structures and self-similar
scaling at large length scales. In particular, the existence of a scaling exponent spectrum is
revealed. By means of the mixing of scaling dynamics species we offer a possible route to
explain this finding.

3.1 Phenomenology of point clouds

Given a classical-statistical field realization ψ(t,x), an immense freedom of choice exists in
constructing point clouds, which are, generally speaking, finite sets of points in an arbitrary
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Figure 1: Occupation number distributions in the infrared. In black: The initial
unrescaled occupation number distribution.

Figure 2: Amplitudes (left) and phases (right) of an example field configuration at
time Qt = 3750.
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Figure 3: Amplitudes of an example field configuration and corresponding point
clouds. First column from the left: Spatially-resolved field amplitudes, |ψ(t, x , y)|.
Second to fourth column: Point clouds Xν(t) for the different ν̄-values indicated.
First row: Qt = 3750. Second row: Qt = 11250.

Euclidean space. We define a filtration function f to be a map from C to R used to generate
point clouds as subsets of the lattice Λ. We may construct point clouds as sublevel sets of
f (ψ(t, ·)), that is, at time Qt define them as {x ∈ Λ | f (ψ(t,x)) ∈ (−∞,ν]} for a filtration
parameter ν. In this work, point clouds are generated as sublevel sets of the field amplitude,
thus defining

Xν(t) := {x ∈ Λ | |ψ(t,x)| ≤ ν}. (7)

By means of this definition, the ensemble of classical-statistical field realizations translates for
each time Qt into an ensemble of point clouds. Numerically, we specify the filtration parameter
ν by means of the dimensionless variant ν̄,

ν̄ := ν/〈|ψ(t = 0)|〉vol, (8)

with the volume-averaged initial field amplitude

〈|ψ(t = 0)|〉vol =
1

N2

∑

x∈Λ
|ψ(t = 0,x)|. (9)

We want to emphasize that in experiments with cold atoms optical density images as given
by the square of the amplitudes displayed in Fig. 2 and used in the filtration protocol, Eq.
(7), form a typical observational quantity and can be easily accessed via absorption images.
Varying the filtration parameter ν̄ amounts to measurements up to the square root of corre-
sponding condensate densities, highlighting the physical significance of the employed point
cloud construction via Eq. (7).

Simulating on a spatial square lattice with constant lattice spacing, we want to stress that
to obtain finite point clouds by means of Eq. (7) the finiteness of the lattice is crucial. Else,
Xν(t) might consist of infinitely many points. The subsequent construction of persistent ho-
mology observables, described in detail in Sec. 3.2, is robust against perturbations of the lattice
points2. This renders the microscopic form of the lattice irrelevant for later numerical persis-

2Mathematically speaking, in a number of ways persistent homology groups are stable against perturbations
of corresponding input, cf. inter alia Refs. [43, 44]. This implies, that if points in Xν(t) are altered slightly, then
persistence diagrams of the sequence of alpha complexes of Xν(t) change only slightly, too.

7

https://scipost.org
https://scipost.org/SciPostPhys.11.3.060


SciPost Phys. 11, 060 (2021)

tent homology results. The constant lattice spacing and finite lattice volume solely amount to
a smallest and a largest length scale amenable to the investigated real-time dynamics.

In Fig. 2 amplitudes and phases of a single classical-statistical field realization are dis-
played. One may first note from the amplitudes on the left that in position space the system
comprises two major components: fluctuations in the bulk around a mean amplitude value
larger than zero and distinct minima with minimum values near to zero. While phases differ
locally only slightly in regions where minima are absent, around each minimum phase wind-
ings with shifts of ±2π occur. Thus, the minima can be identified with elementary vortex
nuclei.

In Fig. 3 at two different times we show spatially-resolved amplitudes and a variety of point
clouds computed from a single classical-statistical field realization. In point clouds Xν(t) as
defined by Eq. (7), at both times visualized we find clear manifestations of the aforementioned
two components appearing in amplitudes. Having approximately zero amplitude at the center
of their nuclei, vortices dominate the point clouds Xν(t) for small filtration parameters such
as ν̄ = 0.2. In the limit of ν̄ → 0 point clouds actually comprise mostly vortex positions
themselves, although the presence of points originating from bulk density fluctuations cannot
be excluded. Described by point vortex models, for this reason the low-ν̄ limit can be associated
to the incompressible limit of the theory. Increasing ν̄, in point clouds points first accumulate
around vortex nuclei but at moderately high values such as ν̄= 0.6 also occur in the bulk. The
higher ν̄ gets, the denser point clouds become, reducing the average distance between points.
Hence, studying point clouds at different ν̄-values effectively probes the system on different
length scales.

Comparing the two times displayed, we note that the number of vortices decreases with
time, or, equivalently, the average inter-vortex distance increases. In Fig. 3 point clouds at
ν̄= 0.2 reflect this behavior, becoming sparser in the course of time. Similarly, at higher values
of ν̄ the density of points in point clouds decreases in regions where vortices are absent. All
this indicates that in the temporal regime of the displayed times geometric structures in point
clouds continuously grow at large length scales.

Yet, one may notice that for ν̄= 0.6 and ν̄= 0.7 the number of points in the bulk decreases
faster compared to the decline in vortex numbers. This provides a first hint at the presence of
different components, whose dynamics differ in terms of “speed".

3.2 An introduction to persistent homology

To obtain a robust quantitative means of the topological structure present in a point cloud
Xν(t), persistent homology can be employed. Aiming at an intuitive treatment, with a point
cloud Xν(t) at hand as it appears in the Bose gas simulations we introduce relevant notions
from computational topology. From given input data we first define the Delaunay complex
and a notion of the size of a simplex. The so-called Delaunay radius function can then be used
to construct a nested sequence of subcomplexes, called alpha complexes, whose persistent
homology groups form our objects of interest and eventually provide multi-scale information
on the topological structure of the input point cloud. While we carry out constructions in two
spatial dimensions here, they generalize easily to higher dimensions.

In Appendix A we rigorously introduce relevant fundamental algebraic topology notions
and discuss the mathematical construction of persistent homology groups. For a general in-
troduction to algebraic topology we refer to Ref. [45]; for a thorough introduction to compu-
tational topology the interested reader may consult Refs. [2,5], for instance.
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3.2.1 Alpha complexes

Let Xν(t) be a point cloud as defined by Eq. (7). We construct persistent homology groups
from a nested family of simplicial complexes. A simplicial complex S on Xν(t) comprises the
set Xν(t) together with a collection S of subsets of Xν(t). The defining property of a simplicial
complex is that for all points x ∈ Xν(t), the vertex {x} ∈ S, and if τ ⊆ σ ∈ S, then τ ∈ S, i.e.
S is closed under taking subsets. The elements of S are called its simplices. Combinatorially,
this structure allows for the computation of various descriptors of its topology, in particular
the homology groups of S. We deliver details in Appendix A.1.

Let us construct the particular type of simplicial complexes employed in this work: alpha
complexes. Clearly, for any three points in Xν(t) that do not lie on a single straight line, a
unique circumsphere passing through the points exists. Any two points can be trivially iden-
tified with a zero-dimensional circumsphere. We shall assume that the points in Xν(t) are
in general position. This excludes, for example, the possibility that three or more points are
collinear or that four or more points lie on a single circle3. Then, any two or three points
in Xν(t) have a unique zero- or one-dimensional circumsphere passing through these points,
respectively4. We call a circumsphere empty, if all points of Xν(t) lie on or outside the sphere.

The Delaunay complex, Del(Xν(t)), can be defined to consist of all points in Xν(t) as well as
those edges and triangles whose circumspheres are empty [47]. Speaking about terminology, a
point is a zero-dimensional simplex, an edge between two points is a one-dimensional simplex
and a triangle is a two-dimensional simplex. As described in Ref. [46], for point clouds in
general position this procedure yields that the corresponding Delaunay complex is a simplicial
complex, allowing for the construction of homology groups as described intuitively below.

The Delaunay radius function Rad : Del(X ) → [0,∞) is defined to map every simplex to
the smallest radius of all its empty circumspheres. Intuitively, it provides a measure for the size
of a simplex. In Fig. 4d the Delaunay complex of an example point cloud Xν(t) as it appears
in the Bose gas simulations is displayed for ν̄= 0.6. Note that simplices of different Delaunay
radii are visually of distinct dominance, typically. Smaller simplices appear foremost around
local accumulations of points, while simplices of larger radii mainly make up the large-scale
structure between them.

Let Qr ∈ [0,∞) be some length scale. Capturing appearing structures of particular sizes,
from the Delaunay radius function we finally construct alpha complexes5 as its sublevel sets,

αr(Xν(t)) := {σ ∈ Del(Xν(t)) |Rad(σ)≤Qr}. (10)

For all 0 ≤ r ≤ s we find αr(Xν(t)) ⊆ αs(Xν(t)). To this end, we obtain what is called a
filtration of the Delaunay complex Del(Xν(t)), that is, a nested sequence of alpha complexes
little by little filling out all Del(Xν(t)),

; ⊆ αr1
(X ) ⊆ · · · ⊆ αrκ(X ) = Del(X ), (11)

with ri ≤ r j for all i < j.
Again referring to the example point cloud Xν(t), in Fig. 4 corresponding alpha com-

plexes of different radii Qr are displayed. Note that at a small radius such as Qr = 1.0 the
alpha complex mainly reflects the local accumulations of points in Xν(t). Topological struc-
tures such as holes are of tiny size and each connected component loosely corresponds to a
local accumulation of points. Besides seemingly random connected structures, at intermedi-
ate radii comparably large-scale holes appear in the alpha complexes, such as visible in the

3While different definitions of general position exist across the literature, we employ the one used in Ref. [46].
4In general spatial dimension d this would amount to any 2 ≤ j ≤ d + 1 points x i1 , . . . , x i j

having a unique
( j − 2)-dimensional circumsphere passing through all these points.

5Generically, alpha complexes are simplicial subcomplexes of the Delaunay complex [5].
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Figure 4: Alpha complexes of various radii Qr of the point cloud Xν(Qt = 3750) for
ν̄ = 0.6 as displayed in Fig. 3. Panel (a): Qr = 1.0. Panel (b): Qr = 3.0. Panel (c):
Qr = 7.0. Panel (d): Qr = 20.0.

Qr = 7.0 alpha complex displayed in Fig. 4c. At even larger radii, the full Delaunay complex
is recovered, in accordance with Eq. (11). Leading to the notion of persistent homology, it is a
crucial insight that independent connected components disappear at a certain radius, merging
with other components, and that holes only appear in alpha complexes of a certain radius and
disappear again at a higher radius.

3.2.2 Persistent homology and the persistence diagram

This intuitive picture can be turned into a mathematical concept: persistent homology. In
Appendix A.2, we provide a more rigorous introduction to it, while here we focus on capturing
its intuitive essence.

Alpha complexes of zero radius only consist of the vertices, that is, all points contained in
the point cloud Xν(t). Certainly, the number of connected components in the alpha complex
of zero radius equals the cardinality of Xν(t). Increasing the radius, at a certain value a first
edge between two vertices appears in the alpha complex. A previously independent connected
component dies. We call the minimum radius at which it is not present anymore in the corre-
sponding alpha complex its death radius. The radius rising further, more and more connected
components die, merging into a larger and larger complex. From a certain radius onwards,
only one connected component is present in the corresponding alpha complexes. In Fig. 4 the
process of connected components merging one by one into larger complexes can be observed
as the sequence of alpha complexes is traversed towards larger radii.

With radii increasing, in the sequence of alpha complexes holes begin to appear as is clearly
visible in Figs. 4b and 4c. The minimum radius at which an independent hole first appears
in the sequence of alpha complexes is called its birth radius. We say that it is born at its birth
radius. Successively, a given hole is filled out with triangles in alpha complexes of rising radii,
until from its death radius onwards the hole vanishes, being fully filled.

In fact, in simplicial homology independent connected components are described by zero-
dimensional homology classes and independent holes by one-dimensional homology classes. If
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Figure 5: Persistence diagram of one-dimensional homology classes for the sequence
of alpha complexes partially displayed in Fig. 4, Dgm1(Xν(t)).

the point clouds of interest lived in a higher-dimensional Euclidean space, one could continue
analogously to describe the birth and death of higher-dimensional homology classes. This
includes, for instance, independent enclosed voids represented by two-dimensional homology
classes. Homology classes of dimension `, appearing and disappearing again as the sequence
of alpha complexes is traversed, are collected in groups, the `-th persistent homology groups,
cf. Appendix A.2.

Summarizing the structure of `-th persistent homology groups, the `-th persistence diagram
Dgm`(Xν(t)), is defined to contain all birth radius-death radius pairs (rb, rd) of `-dimensional
homology classes appearing in the sequence of alpha complexes of Xν(t), taking respective
multiplicities into account for coinciding such pairs6. In Fig. 5 the persistence diagram of
one-dimensional homology classes is displayed for the sequence of alpha complexes partially
shown in Fig. 4. Certainly, in a persistence diagram all points lie above the diagonal rb = rd ,
since the death of any homology class happens at a higher radius than its birth. We find
that in the bottom-left of the diagram an accumulation of pairs is present, corresponding to
comparably small one-dimensional homology classes (holes). The partly vertical alignment of
points can be attributed to the homogeneity of the square lattice, on which Xν(t) resides. In
addition, we find a second accumulation of pairs in the top-right of the diagram, corresponding
to larger-size one-dimensional homology classes in corresponding alpha complexes. On these
length scales birth and death radii are approximately independent from the microscopic lattice
geometry.

3.2.3 Statistical measures: birth and death radii distributions

To obtain expectation values in the classical-statistical framework, ensemble-averages of quan-
tities describing persistence diagrams of individual classical-statistical realizations are required.
Persistence diagrams themselves are difficult objects to study statistically. Without modifica-
tions not even a statistical average can be defined unambiguously. Nevertheless, there exist
multifarious quantities suitable for a statistical treatment [48]. We introduce two of these here,
postponing the general description to Sec. 4.1. We explicitly construct classical-statistical
ensemble-averages. To this end, let X (i)ν (t), i ∈ N, be an ensemble of point clouds, all con-
structed from individual field realizations according to Eq. (7). Denote by
D(i)
`
(t) := Dgm`(X

(i)
ν (t)) the `-th persistence diagram of the i-th such point cloud. Let σ > 0

6The persistence diagram is a finite multiset of points in R2, also taking respective multiplicities into account.
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Figure 6: Birth and death radii distributions in the infrared. Columns 1 and 2: Death
radii of of zero-dimensional homology classes. Columns 3 and 4: Birth radii of one-
dimensional homology classes. Individual columns show data for the indicated filtra-
tion parameter, ν̄. Row 1: unrescaled distributions. Row 2: rescaled distributions.
The employed time-dependent scaling exponents are displayed in Fig. 8.

be a constant. We define the expectation values of the `-th distribution of birth radii and the
`-th distribution of death radii as

〈B`〉(t, rb) = lim
k→∞

1
k

k
∑

i=1

∑

(r ′b ,r ′d )∈D(i)
`
(t)

1
2πσ2

exp

�

−
(rb − r ′b)

2

2σ2

�

, (12a)

〈D`〉(t, rd) = lim
k→∞

1
k

k
∑

i=1

∑

(r ′b ,r ′d )∈D(i)
`
(t)

1
2πσ2

exp

�

−
(rd − r ′d)

2

2σ2

�

, (12b)

respectively. Note that these distributions are statistically well-behaved, such that averages
and the denoted limits exist [49]. The parameter σ is chosen sufficiently small, such that
numerical outcomes are independent from its particular value.

3.3 Growing geometric structures in persistent homology

Using a computational topology pipeline as described in Appendix B, we can numerically in-
vestigate birth and death radii distributions for different filtration parameters ν̄ in the afore-
mentioned Bose gas simulations. For large length scales, in Fig. 6 death radii distributions of
zero-dimensional homology classes and birth radii distributions of one-dimensional homology
classes are displayed at times between Qt = 3750 and Qt = 35625. Zero-dimensional per-
sistent homology classes are always born at radius Qrb = 0, turning the distribution of birth
radii of zero-dimensional homology classes trivial. The occurring oscillations in distributions
are due to statistical uncertainties, being computed from only a finite number of classical-
statistical samples.

We first discuss unrescaled variants of the displayed distributions. It is important to note
that in any of the distributions the maximum number of counts in birth and death radii dis-
tributions decreases with time. Simultaneously, the steep decline at largest radii in birth and
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death distributions constantly shifts to higher radii. Clearly, these are manifestations of geo-
metric structures in the system growing at large length scales as conjectured in Sec. 3.1 from
the point clouds themselves. Beyond this, the approximately constant form of the distributions
already provides a first hint at self-similar dynamics.

In first death radii distributions a clear peak is visible, in particular for ν̄= 0.2 as displayed
in Fig. 6, panel (a3). Point clouds for small ν̄-values being dominated by accumulations of
points around vortex nuclei, we expect this distinguished length scale to provide a measure
for the average inter-vortex distance. At higher ν̄-values such as ν̄ = 0.6 the peak is blurred
by means of bulk points entering corresponding point clouds.

3.4 Unveiling a spectrum of scaling exponents

Motivated by the approximately constant form of the distributions displayed in Fig. 6, we
examine whether they can be consistently described by a self-similar scaling ansatz. We say
that birth and death radii distributions scale self-similarly, if exponents η1,η′1 and η2 exist,
such that for all times t, t ′,

〈B`〉(t, rb) = (t/t ′)η
′
1−η2〈B`〉(t ′, (t/t ′)−η1 rb), (13a)

〈D`〉(t, rd) = (t/t ′)η1−η2〈D`〉(t ′, (t/t ′)−η
′
1 rd). (13b)

In Sec. 4.3 we deduce this particular form of scaling behavior from a scaling ansatz to a more
general quantity that describes persistent homology groups, the asymptotic persistence pair
distribution. Notice that in this scaling ansatz a possible dependence on the dimension ` of
homology classes is neglected, supported by numerics.

Using the numerical protocol described in Appendix G, scaling exponents are extracted
from birth and death radii distributions of one-dimensional homology classes. Given a time
Qtmin, birth and death radii distributions at times Qtmin, Qtmin + 625 and Qtmin + 1250 are
fitted simultaneously against distributions at reference time Qt ′ = 3750. A measure for the
quality of a self-similar description of the investigated distributions is provided by means of
residuals. For instance, for the distribution of birth radii residuals at time Qt are computed as

Res.(〈B`〉)(t, rb) :=
(t/t ′)η

′
1−η2〈B`〉(t ′, (t/t ′)−η1 rb)
〈B`〉(t, rb)

− 1. (14)

Indeed, distributions can be consistently rescaled by means of the scaling ansatz described
in Eqs. (13a) and (13b). This can be deduced from Fig. 6 with residuals of rescaled distri-
butions scattering approximately evenly around zero. Note that distributions of both zero-
and one-dimensional homology classes can be consistently rescaled with the same triple of
exponents, validating that in the scaling ansatz we neglected a possible `-dependence. How-
ever, filtration parameter- and time-dependent scaling exponents are necessary for a successful
rescaling.

In Fig. 7 we show the scaling exponents for a single minimum fitting time Qtmin, high-
lighting the size of error bars. Errors origin from a finite number of classical-statistical samples
taken into account and from fitting uncertainties. For values of ν̄® 0.4 the displayed exponent
values approximately lie around 0.2. A rise in values takes place for ν̄¦ 0.5, up to a maximum
value of approximately 0.8. Thus, we make the crucial observation that a continuous spectrum
of scaling exponents exists, depending on the filtration parameter ν̄.

Within error bars η1 equals η′1 at all ν̄-values investigated here. This provides numerical
evidence for that birth and death radii show the same dynamics at large length scales. In
addition, for all ν̄-values analyzed η2/η1 = 4 within the indicated error bars. This relation
results from the bounded packing of homology classes of a given size into the constant lattice
volume, as shown in Sec. 4.3.2.
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Figure 7: Persistent homology scaling exponents at Qtmin = 18750.

Figure 8: Persistent homology scaling exponents for different filtration parameters ν̄
and minimum fitting times Qtmin.

Comprehensively, results are summarized in Fig. 8, in which exponents are displayed in
the full (ν̄,Qtmin)-plane. The gradual shift of the peak in scaling exponents to higher ν̄-values
with increasing fitting time Qtmin is a result of the redistribution of amplitude values with time,
discussed in Sec. 5.1. The scattering of exponent values at larger ν̄-values is due to statistical
uncertainties.

3.5 Scaling species and exponents mixing conjecture

An observation such as the existence of a whole spectrum of scaling exponents at large length
scales requires an explanation. We conjecture that its appearance is linked to different dynam-
ical scaling species occurring in the infrared of the two-dimensional Bose gas.

First, note that momenta in the infrared regime correspond to large length scales. Hence,
if infrared dynamics is visible in quantities describing the persistent homology of alpha com-
plexes, it will show at correspondingly large birth and death radii. Vice versa, if ultraviolet
physics is visible in persistent homology, it will show up at comparably small birth and death
radii. To this end, we identify the regime of large birth and death radii in their distributions
with the infrared regime of the system. This offers the possibility of linking aforementioned
results to known momentum space dynamics of physical quantities.

In addition, for positive scaling exponents η1 = η′1 and η2 the scaling ansatz described by
Eqs. (13a) and (13b) corresponds to a blow-up of length scales as a power-law with exponent
η1, as we detail in Sec. 4.3. Hence, a comparison of the exponent η1 with scaling exponents
appearing in power-laws of further physical length scales is reasonable.

We restrict the following discussion to η1. For ν̄® 0.4, the exponent η1 meets the value of
1/5 associated to the anomalous vortex kinetics nonthermal fixed point [37,42] and confirmed
by the self-similar dynamics of occupation number spectra in the given simulations, Eq. (6).

14

https://scipost.org
https://scipost.org/SciPostPhys.11.3.060


SciPost Phys. 11, 060 (2021)

Point clouds, alpha complexes as well as birth and death radii distributions reflect the occurring
vortex dynamics for small ν̄, correspondingly. This is in accordance with the observation made
in Sec. 3.1 that for ν̄ ® 0.4 point clouds mainly comprise accumulations of points around
vortex nuclei.

The exponent η1 increases with ν̄ up to maximum values of between 0.7 and 0.9 depending
on Qtmin, cf. Fig. 8 — a value which is significantly different from 1/5. We take a small detour
to provide a physical interpretation for this phenomenon.

Collectively, the vortices show anomalous kinetics and dominate point clouds at low ν̄-
values: η1(ν̄ = 0.05) ≈ 0.2. It is well-known, however, that the two-dimensional nonrela-
tivistic Bose gas not only exhibits the anomalous vortex kinetics nonthermal fixed point with
β = 0.2, but also incorporates strong wave turbulence characterized by β = 0.5 [32,37,42,50].
If the vortices were absent or coupled strongly to sound excitations in the bulk, only self-similar
scaling with β = 0.5 would be visible, as argued for in Ref. [37]. Motivated by this, we in-
fer that in the configurations investigated it is sound excitations in the bulk that reflect strong
wave turbulence. Correspondingly, if bulk points enter point clouds, then birth and death radii
distributions might show scaling behavior deviating from η1 = 0.2. As can be seen in Figs. 3,
7 and 8 this is the case for growing ν̄-values and explains the increase of η1. With this admit-
tedly loose association of bulk points to strong wave turbulence and vortex nuclei points to
anomalous vortex kinetics in mind, we refer to the underlying phenomenon as scaling species
mixing in point clouds.

Yet, the maximum value of η1(ν) exceeds 0.5 significantly for all Qtmin. A heuristic geo-
metric explanation proceeds as follows. Restrict to the dynamics of a single classical-statistical
field configuration and corresponding point clouds Xν(t). Let Yν(t) ⊆ Xν(t) be associated to
anomalous vortex kinetics and Zν(t) ⊆ Xν(t) associated to strong wave turbulence in the bulk,
such that Xν(t) = Yν(t) ∪ Zν(t). The alpha complexes of Xν(t), αr(Xν(t)), however, do not
simply decay into αr(Yν(t)) and αr(Zν(t)). Instead, depending on the precise arrangements
of points in Yν(t) and Zν(t), there may be a lot of simplices contained in αr(Xν(t)) which
incorporate points of both Yν(t) and Zν(t). In addition, simplices that only consist of points in
Yν(t) or Zν(t) can be very different from the ones in αr(Yν(t)) and αr(Zν(t)). The construc-
tion of alpha complexes from Yν(t) and Zν(t) is a highly nonlinear process. Birth and death
radii distributions can reflect this behavior.

4 Persistent homology observables and self-similarity

In this section we embed alpha complexes and persistent homology descriptors into the classical-
statistical regime of quantum field theory (QFT). By means of functional summaries of persis-
tence diagrams, this leads to the definition of persistent homology observables. In quite a few
examples of these the same integral kernel appears, which we call the asymptotic persistence
pair distribution. This paves the way to a self-similar scaling approach for the asymptotic per-
sistence pair distribution, whose outgrowths for birth and death radii distributions are given by
Eqs. (13a) and (13b). In Sec. 3.4 this particular scaling behavior has been shown to describe
simulation outcomes well.

4.1 Persistent homology observables via functional summaries

Naturally, studying persistent homology in QFT requires a statistical treatment. Persistence
diagrams themselves, however, do not admit a clear notion of averages [48]. Instead, we pro-
pose to focus on so-called functional summaries, providing general statistically well-behaved
descriptors of persistence diagrams. In Sec. 4.2 we reveal that the investigated birth and death
radii distributions given by Eqs. (12a) and (12b) are corresponding examples.
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Let D be the space of persistence diagrams, that is, the space of finite multisets of points
within {(rb, rd) ∈ [0,∞)2 | rd ≥ rb}. Let F be a collection of functions, f : Ω → R for all
f ∈F , Ω being a compact space. Following Ref. [49], a functional summary is in full generality
any map from the space of persistence diagrams to a collection of functions, F : D →F .

Upon the classical-statistical approximation, expectation values of quantum observables
are computed as ensemble-averages of classical field configurations, which are time-evolved
via the corresponding classical equation of motion starting from fluctuating initial conditions.
The range of validity of this approximation is typically restricted to high occupation numbers
[32]. We propose to proceed analogously for functional summaries of persistence diagrams. To
this end, any such summary F may be evaluated on the level of individual field configurations
and its expectation value 〈F〉 computed as the ensemble-average. We assume that the range of
validity of this approach coincides with the well-known classical-statistical regime. Certainly,
for any functional summary F this proposal requires the existence of a corresponding linear
operator F , such that in the classical-statistical regime for any s ∈ Ω,

tr(ρ(t)F)(s) = 〈F〉(t, s), (15)

ρ(t) being the time-dependent density operator of interest, the trace taken over the corre-
sponding quantum theory Hilbert space and the right-hand side being computed via the afore-
mentioned evaluation scheme. However, the existence of such an operator F is a priori not
clear and will be discussed in a future work.

We need to assure that in the limit of averaging infinitely many individual functional sum-
maries of field configurations the statistical mean of the functional summary is recovered.
This is guaranteed for by a mathematical statement on the pointwise convergence of so-called
equicontinuous and uniformly bounded functional summaries, the details of which can be
found in Proposition 1 of Ref. [49]. For the sake of this statement we restrict our proposal
to functional summaries of persistence diagrams with these two fairly general conditions. By
means of the described classical-statistical evaluation scheme we refer to such functional sum-
maries as persistent homology observables.

We want to stress that this proposal is neither restricted to the computation of persistent
homology from equal-time alpha complexes, that is, alpha complexes computed from point
clouds constructed at individual instances of time as done in this work, nor to alpha complexes
themselves.

4.2 The asymptotic persistence pair distribution and geometric quantities

Let F : D → F be a functional summary in the above sense. We say that F is additive, if
F(D+ E) = F(D) + F(E) for any two persistence diagrams D, E ∈D . Here, D+ E denotes the
sum of multisets, that is, the union of D and E with multiplicities of elements in both D and E
added.

Let D(t) ∈ D be a persistence diagram computed at time t as specified in Sec. 3.2.2 and
F an additive functional summary. We then find for all s ∈ Ω,

F(D(t))(s) =
∑

(rb ,rd )∈D(t)

F({(rb, rd)})(s)

=

∫ ∞

0

dr ′b

∫ ∞

0

dr ′d F({(r ′b, r ′d)})(s)P(t, r ′b, r ′d), (16)

with the persistence pair distribution

P(t, r ′b, r ′d) :=
∑

(rb ,rd )∈D(t)

δ(r ′b − rb)δ(r
′
d − rd), (17)
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δ denoting the Dirac delta function.
Let (D(i)

`
(t))i∈N ⊂D be a classical-statistical ensemble of persistence diagrams describing `-

dimensional persistent homology classes at time t. We denote the persistence pair distribution
of D(i)

`
(t) by P

(i)
`
(t) and define the asymptotic persistence pair distribution, 〈P`〉, at any time t

implicitly, requiring that for any equicontinuous and uniformly bounded functional summary
F as in the above proposal,

∫ ∞

0

dr ′b

∫ ∞

0

dr ′d F({(r ′b, r ′d)})(s) 〈P`〉(t, r ′b, r ′d)

:= lim
k→∞

1
k

k
∑

i=1

∫ ∞

0

dr ′b

∫ ∞

0

dr ′d F({(r ′b, r ′d)})(s)P
(i)
`
(t, r ′b, r ′d), (18)

for arbitrary s ∈ Ω.
Functional summaries of relevance in this work include the distribution of birth and death

radii that have been defined in Eqs. (12a) and (12b), respectively. With an obstacle to be
described below, both can be computed as marginal distributions of 〈P`〉,

〈B`〉(t, rb) =

∫ ∞

0

drd 〈P`〉(t, rb, rd), (19a)

〈D`〉(t, rd) =

∫ ∞

0

drb 〈P`〉(t, rb, rd). (19b)

In addition, we define the persistence distribution, that is, the distribution of rd − rb,

〈P`〉(t, r) =

∫ ∞

0

drd 〈P`〉(t, rd − r, rd). (20)

Natural quantities to study are the `-th Betti numbers 〈β`〉(t, r). Intuitively, the zeroth Betti
number 〈β0〉(t, r) specifies the number of connected components minus one7 present in the
alpha complex of radius Qr and the first Betti number 〈β1〉(t, r) specifies the corresponding
number of holes. Being zero in the present work, higher Betti numbers count how many
nontrivial higher-dimensional homology classes are present in corresponding complexes. Betti
numbers can be computed from the asymptotic persistence pair distribution via

〈β`〉(t, r) =

∫ r

0

drb

∫ ∞

r
drd 〈P`〉(t, rb, rd). (21)

A mathematical obstacle appears with regard to definitions such as Eqs. (19a) and (19b).
A priori, the sets of functions 〈B`〉(t, rb), of 〈D`〉(t, rd), of 〈P`〉(t, r) and of 〈β`〉(t, r) are not
equicontinuous. However, only functional summaries which have this property are persistent
homology observables in the sense of Sec. 4.1. For all positive σ we define

ζσ(s) :=
1

p
2πσ2

exp

�

−
s2

2σ2

�

. (22)

By convolution with it at each time individually, sets of functions such as 〈B`〉(t, rb) can be
rendered equicontinuous8. In fact, this way Eqs. (12a) and (12b) for birth and death radii dis-
tributions arise from Eqs. (19a) and (19b). In everything that follows we omit the convolution

7We work with reduced homology groups. Thus, the zeroth Betti number actually counts the number of con-
nected components minus one.

8Indeed, for any σ > 0 a constant Cσ > 0 exists, such that for all possible functions 〈B`〉(t, rb),
∂ (〈B`〉 ∗ ζσ)(t, r)/∂ r = (〈B`〉 ∗ ζ′σ)(t, r)< Cσ, the prime indicating taking the first derivative. Here we employed
that in the lattice framework all functions such as 〈B`〉(t, rb) are uniformly bounded.
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procedure in notations. As mentioned previously, the convolution procedure is numerically ir-
relevant. In computations, convergence of persistent homology observables is numerically
verified, cf. Appendix F.

The average number of persistent homology classes is encoded in 〈P`〉, too,

〈n`〉(t) =
∫ ∞

0

drb

∫ ∞

0

drd 〈P`〉(t, rb, rd). (23)

Various length scales may be constructed from 〈P`〉. An interesting length scale is the average
maximum death radius 〈rd,`,max〉(t), which can be computed from the asymptotic persistence
pair distribution via9

〈rd,`,max〉(t) = lim
p→∞

�

∫ ∞

0

drb

∫ ∞

0

drd rp
d 〈P`〉(t, rb, rd)

�1/p

. (24)

Analogously, the average maximum birth radius can be computed. The average number of per-
sistent homology classes and the average maximum death (birth) radius constitute persistent
homology observables as constructed above.

4.3 Self-similar scaling approach

By means of the scaling behavior visible in birth and death radii distributions, in Sec. 3.4 we
have already begun the study of self-similarity in persistent homology observables in the vicin-
ity of a nonthermal fixed. Here, we introduce a more general scaling ansatz for the asymptotic
persistence pair distribution. We provide a heuristic packing argument relating the appearing
scaling exponents.

In Appendix D we provide a brief discussion on the relation between the self-similar scaling
ansatz described here and known notions of self-similar scaling appearing across the literature.

4.3.1 Scaling ansatz to the asymptotic persistence pair distribution

Let 〈P`〉(t, rb, rd) be a time-dependent asymptotic persistence pair distribution as it appears
in Eq. (18). We say that 〈P`〉(t, rb, rd) scales self-similarly, if exponents η1,η′1 and η2 exist,
such that for all times t, t ′,

〈P`〉
�

t, rb, rd

�

= (t/t ′)−η2 〈P`〉
�

t ′, (t/t ′)−η1 rb, (t/t ′)−η
′
1 rd

�

. (25)

Due to the time-dependence of 〈P`〉 derived geometric quantities become time-dependent,
too. Immediately, from Eq. (25) for birth and death radii distributions the scaling behavior
described by Eqs. (13a) and (13b) follows. Assuming η1 = η′1, the persistence distribution
scales as

〈P`〉(t, r) = (t/t ′)η1−η2〈P`〉(t ′, (t/t ′)−η1 r). (26)

The total number of persistence pairs scales as

〈n`〉(t) = (t/t ′)η1+η′1−η2〈n`〉(t ′) (27)

and the average maximum death radius as

〈rd,`,max〉(t) = (t/t ′)η1〈rd,`,max〉(t ′). (28)

9Given positive real numbers y1, . . . , ym, one obtains their maximum via
max{y1, . . . , ym}= limp→∞(

∑m
i=1 y p

i )
1/p. From this, the given formula derives.
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Though not explicitly given here, the average maximum birth radius scales the same way.
This provides evidence for the geometric intuition of persistence length scales blowing up or
shrinking in the course of time upon self-similar scaling.

Provided that η1 = η′1, the `-th Betti numbers scale as

〈β`〉(t, r) = (t/t ′)2η1−η2〈β`(t ′, (t/t ′)−η1 r). (29)

4.3.2 A heuristic packing relation

We assume that η1 = η′1 and consider a general spatial dimension d here. A fairly general
heuristic argument leads to the packing relation η2 = (2 + d)η1. Intuitively, the argument
encodes that only a finite number of persistent homology classes of a given size can be packed
into a constant volume V .

Let point clouds be dominated by a time-dependent length scale L(t). The d-dimensional
volume V in which the point clouds reside is kept constant. Heuristically, a number 〈nd−1〉(t)
of (d − 1)-dimensional persistent homology classes fits into V , with this number scaling as

〈nd−1〉(t)∼
V

L(t)d
, (30)

since the volume that each (d−1)-dimensional persistent homology class occupies generically
may scale as ∼ L(t)d . Inferring the scaling of length scales as described by Eq. (28), that is,
L(t)∼ tη1 , we find

〈nd−1〉(t)∼ t−dη1 . (31)

On the other hand, from Eq. (27) we obtain

〈nd−1〉(t)∼ t2η1−η2 . (32)

Hence,
η2 = (2+ d)η1, (33)

which shows that persistent homology observables represent in a direct fashion the geometry
at hand.

Of course, the assignment of occupied volumes to (d−1)-dimensional homology classes is
highly heuristic, bearing in mind that a homology class is an equivalence class of many cycles
within a simplicial complex, rendering any such mapping ambiguous. However, one may use
elements of the proof of the Wasserstein stability theorem for persistence diagrams, carried
out in Ref. [44], to deduce Eq. (33) more rigorously from physically reasonable assumptions.
In Appendix C we sketch the corresponding derivation, provided in detail in Ref. [51].

5 Exponent shifts, persistences and Betti number distributions

In this section the due explanation of temporal shifts of the scaling exponent spectrum observed
in Sec. 3.4 is given as well as numerical outcomes for persistence distributions and Betti
numbers. The latter provide further evidence for the suitability of the self-similar scaling ansatz
for the asymptotic persistence pair distribution, as given by Eq. (25).

5.1 Amplitude redistribution-induced exponents shifts

The scaling exponents displayed in Fig. 8 change in time for ν̄ ¦ 0.5. To discuss the ori-
gins of this effect, in Fig. 9 amplitude distributions are displayed for different times between
Qt = 3750 and Qt = 37500. As is clearly visible, amplitudes redistribute with growing times
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Figure 9: Distribution of amplitude-values at different times, averages taken across
classical-statistical sampling runs.

Figure 10: The average cardinality of point clouds varying with ν̄ at different times,
averages taken across classical-statistical sampling runs.

towards the peak at around |ψ(t)|/〈|ψ(t = 0)|〉vol ≈ 1.05. As indicated in Fig. 10, point
clouds Xν(t) with ν̄ ® 1.0 become sparser with time, that is, for a fixed ν̄ the cardinality of
point clouds decreases.

As deduced earlier, at low ν̄-values point clouds are dominated by accumulations of points
around vortex nuclei, while for ν̄ ¦ 0.4 points in the bulk enter point clouds. With point
clouds getting sparser in the course of time it is first bulk points to disappear from point clouds.
Accumulations of points around vortex nuclei remain, as can be seen from Fig. 11, in which
point clouds are displayed for different filtration parameters and times. Given the example
point cloud for ν̄= 0.5 at time Qt = 3750, we observe that it is made up from accumulations of
points (around vertices) mixed with random points in between, while at time Qt = 11250 the
point cloud consists of nothing but the accumulations. The behavior of point clouds at ν̄= 0.6
is similar, although the point cloud at Qt = 11250 still contains random points associated to
sound excitations between accumulations. Point clouds at ν̄ = 0.70 only get sparser but still
contain many bulk points.

The average maximum death radius of 1-dimensional persistent homology classes,
〈rd,1,max〉(t), is displayed for different ν̄-values in Fig. 12. Comparably large fluctuations
and outliners occur, since 〈rd,1,max〉(t) is very sensitive to particular geometric arrangements
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Figure 11: Example point clouds Xν(t) for different ν̄-values as indicated. Row (a):
time Qt = 3750. Row (b): Qt = 7500. Row (c): Qt = 11250.

of points in point clouds of individual classical-statistical samples. According to Eq. (28), if
the system’s asymptotic persistence pair distribution scales self-similarly in time and η1 = η′1,
then 〈rd,1,max〉(t)∼ tη1 . Indeed, 〈rd,1,max〉(t) shows power-law behavior within individual pe-
riods of time and confirms the shifts in scaling exponents as indicated by the results displayed
in Fig. 8, which have been deduced from birth and death radii distributions. For instance, for
ν̄= 0.6 a shift occurs between times Qt ≈ 9000 and Qt ≈ 13000.

Recently, the phenomenon of prescaling has been discovered, that is, the rapid establish-
ment of a universal scaling form of distributions long before the universal values of correspond-
ing scaling exponents are realized [52, 53]. Although we also study time-dependent scaling
exponents of constant-form distributions, we want to stress that in our case this is not a man-
ifestation of prescaling. Instead, it is an artifact of the sharp cutoff at the filtration parameter
to generate point clouds, rendering point clouds themselves and their persistent homology
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Figure 12: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values as indicated.
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Figure 13: Persistence distributions. Each column shows data for the indicated fil-
tration parameter, ν̄. The employed time-dependent scaling exponents are displayed
in Fig. 8. Insets show corresponding residuals.

groups sensitive to amplitude redistribution effects.

5.2 Persistence distributions

In Fig. 13 persistence distributions for different filtration parameters are displayed. Again,
fluctuations are due to statistical uncertainties. Distributions can be rescaled using time-
dependent scaling exponents as given in Fig. 8. To this end, we attribute the observed behavior
to the physics at large length scales. We want to emphasize that the persistence distributions
at a low filtration parameter such as ν̄= 0.2 show distinctly a power-law behavior at all times.
A power-law fit of the rescaled distributions for ν̄ = 0.2 reveals a scaling with persistence as
∼ (rd − rb)−ζ with10

ζ= 1.468± 0.021. (34)

The relation of the exponent ζ to known signatures of for example strong wave turbulence is
to date not clear to us.

5.3 Betti numbers as a consistency check

In Sec. 4.3 we derived that if the asymptotic persistence pair distribution scales self-similarly,
then Betti number distributions do so as well, described by Eq. (29). Having extracted scaling

10The power-law fit is first carried out for persistence values between Q(rd − rb)min = 0.3125 and
Q(rd − rb)max = 5.0 at each of the times Qt i = 3750,4375, . . . , 37500, individually, to obtain values for ζ(t i)
and its fitting error at time t i , ∆ζ(t i), i = 1, . . . , Ni . Subsequently, the value of ζ is defined to be the average of
the obtained exponents. Its error squared, ∆ζ2, is computed by means of standard error propagation as the sum
of the temporal error squared and the sum of all ∆ζ(t i)2/N 2

i .
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Figure 14: Betti number distributions for ν̄ = 0.2 are shown for dimensions ` as
indicated. The employed time-dependent scaling exponents are displayed in Fig. 8,
setting η′1 := η1. Insets show corresponding residuals.

exponents from birth and death radii distributions in Sec. 3.4, we investigate Betti number
distributions as a consistency check.

In Fig. 14 Betti number distributions for both zero- and one-dimensional homology classes
are displayed at ν̄= 0.2. For all times 〈β0〉(t, r) is a monotonically decreasing function, since
zero-dimensional persistent homology classes are born at zero radius and 〈β0〉(t, r) captures
only their death. We find a peak in unrescaled 〈β1〉(t, r), which, again, decreases in magnitude
and shifts to higher radii as an indication of growing geometric structures.

Approximately, Betti numbers display self-similar scaling behavior. However, residuals of
the rescaled 〈β0〉(t) increase at large radii and 〈β1〉(t) shows comparably large fluctuations.
Nonetheless, rescaled Betti number distributions confirm previously extracted exponents.

6 Conclusions

In the present study we proposed a novel class of observables, persistent homology observ-
ables, to study the dynamical behavior of quantum fields. Serving as a prototype application,
we investigated the self-similar dynamics at nonthermal fixed points in the classical-statistical
approximation. Accompanied by mathematical considerations that guarantee, for example, for
the convergence of averages, we studied functional summaries of persistent homology groups.
We found that the notion of an asymptotic persistence pair distribution is a suitable probability
measure for a self-similar scaling ansatz.

By means of simulations of the two-dimensional nonrelativistic Bose gas we revealed that
the self-similar scaling dynamics characterizing nonthermal fixed points is a phenomenon that
also appears in persistent homology observables. Crucially, this way we discovered a contin-
uous spectrum of scaling exponents, depending on a filtration parameter that appears in the
construction of point clouds. We provided a possible explanation in terms of scaling species
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mixing associated to two different dynamical processes: Strong wave turbulence and anoma-
lous vortex kinetics.

For all times investigated we found a power-law in persistence, possibly providing a direct
indication in persistent homology observables for the presence of a turbulent cascade. It is
currently unclear to us how to relate the deduced persistence power-law exponent to known
power-law exponents appearing in occupation number spectra, typically signaling strong wave
turbulence or hinting at topological defect structures [28,37,38].

Describing the wrapping of finite-size homology classes into a finite volume, by means of
a packing relation we argued that self-similarity in persistent homology observables reflects
the geometry at hand. Further exploring the relation between such geometric effects and
conserved quantities associated to transport processes at nonthermal fixed points would be
interesting, but lies outside the scope of this work.

Of particular relevance in the proposed persistent homology ansatz is the filtration func-
tion to generate point clouds from individual field configurations. We showed that already a
simple variant such as the amplitude of the complex-valued fields can give rise to interesting
observations. It is a feature of our analysis that the information on phase windings around
vortex nuclei is not necessary in order to show the existence of further dynamical components
beyond vortices. Nonetheless, we want to stress that at this point of the analysis scheme an
immense freedom of choice exists, rendering the persistent homology ansatz highly flexible.

Also without such a filtration procedure the proposed methods can be applied to for in-
stance point vortex models. Surpassing the present work, one does in principle not need a
lattice to construct persistent homology groups. Even for fields with an arbitrary smooth and
triangulable manifold as their domain there exist multifarious ways to construct persistent
homology groups [5].

Myriad of interesting further applications of persistent homology within QFT exist. With
regard to the recent experimental progress in handling ultracold quantum gases to simulate
quantum dynamics [22, 23, 31]: What can we learn from a thorough persistent homology
analysis of experimental data, including the investigation of different filtration functions? Can
relative homology groups give new geometrical insights into the relevant physical processes?

Certainly, paths to illuminate also include analytics. Inter alia, for different types of random
fields statistical statements could be made [54], and by means of integral geometry techniques
predictions for alpha complexes of a class of random point clouds have been derived [46].
Using similar methods, is it possible to obtain analytic predictions for alpha complexes and
their persistent homology in the context of quantum fields and path integrals?

Given the present study, we believe to have found a promising machinery to understand
emergent connectivity and clustering structures far from equilibrium beyond the language of
correlation functions via geometry and topology, providing a first step on the route of intro-
ducing persistent homology observables to QFT.
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A The mathematics of persistent homology

The first part of this appendix serves as an intuitive entry point to standard algebraic topology
concepts of relevance in this work. In the second part we construct persistent homology groups
more rigorously than in the main text, including structural aspects.

Physically speaking, in this appendix we assume that all quantities are dimensionless. To
this end, no factors of Q appear.

A.1 Relevant notions from algebraic topology

We introduce the notions of a simplicial complex, of chain groups and the boundary operator in
order to finally introduce standard homology groups. For a thorough introduction to algebraic
topology the reader may consult, for instance, Ref. [45].

Let K be a simplicial complex. An element σ ∈ K is a simplex of dimension `, if
card(σ) = ` + 1. Letting τ ⊆ σ, we call τ a face of σ, and, vice versa, σ a coface of τ.
The orientation of an `-simplex σ = {v0, . . . , v`} ∈ K , is an equivalence class of permutations
of its vertices, (v0, . . . , v`)∼ (vπ(0), . . . , vπ(`)) if sign(π) = 1. An oriented simplex is denoted by
[σ]. Geometrically, a simplex can be realized as the convex hull of `+ 1 affinely independent
points in Rd , d ≥ `. To this end, simplices of low dimension can be thought of as vertices,
edges, triangles or tetrahedra, respectively.

Subcomplexes of a simplicial complex are subsets L ⊆ K that are simplicial complexes,
too. A nested sequence of complexes, ; = K0 ⊆ K1 ⊂ · · · ⊆ Kk = K is called a filtration of the
complex K .

We call the free Abelian group on the set of oriented `-simplices of a simplicial complex
K the `-th chain group C`, where [σ] = −[τ] if σ = τ and σ and τ are oriented differently.
An element c ∈ C` is an `-chain, c =

∑

i mi[σi] with σi ∈ K and mi ∈ Z. We define the
boundary operator ∂` : C` → C`−1 to be the linear map defined by its action on a simplex
σ = [v0, . . . , v`] ∈ c,

∂`σ =
∑

j

(−1) j[v0, v1, . . . , v̂ j , . . . , v`], (A.1)

v̂ j indicating that v j is deleted from the denoted sequence. Intuitively, the boundary operator
maps an `-chain to its boundary, validating its nomenclature. A key feature is that ∂`◦∂`+1 = 0,
i.e. the boundary of a boundary is empty. Therefore the boundary operator connects the chain
groups into an exact sequence, the chain complex C∗,

· · · → C`+1
∂`+1−→ C`

∂`−→ C`−1→ . . . . (A.2)

To this end, the boundary group B` := im∂`+1 and the cycle group Z` := ker∂` are nested,
B` ⊆ Z` ⊆ C`.

The `-th homology group is then defined as H` := Z`/B`. Its elements are equivalence
classes of homologous cycles. Defined over a ring Z, homology groups are Z-modules. How-
ever, if defined over a field such as Z2 as done in the main text, homology groups become
vector spaces.

25

https://scipost.org
https://scipost.org/SciPostPhys.11.3.060


SciPost Phys. 11, 060 (2021)

Figure 15: An illustration of the definitions of birth and death of homology classes.
Picture inspired by Ref. [5].

A.2 The construction and structure of persistent homology groups

We carry out the construction of persistent homology groups for the sequence of alpha com-
plexes described in the main text, cf. Sec. 3.2.1. Let X ⊂ Rd be an arbitrary point cloud and
(αr(X ))r∈[0,∞) its sequence of alpha complexes. The sequence is nested, αr(X ) ⊆ αs(X ) for all
r ≤ s. X being finite, only finitely many different αr(X ) exist, which can be specified by means
of a finite set of different ri , i = 1, . . . ,κ. We abbreviate notations by means of αi := αri

(X )
for all i.

For all i ≤ j, the inclusion map ιi, j : αi → α j induces a homomorphism between homology

groups, ιi, j
`

: H`(αi)→ H`(α j), for each dimension ` = 0, . . . , d. To this end, the filtration of
alpha complexes yields a sequence of homology groups,

0→ H`(α1)→ ·· · → H`(ακ) = H`(Del(X )). (A.3)

Within this sequence, homology classes are born and later die again, when they become trivial
or merge with other classes. With this intuition in mind, we set

H i, j
`

:= im(ιi, j
`
), ∀ 0≤ i ≤ j ≤ κ, (A.4)

as well as
β

i, j
`
= dim(H i, j

`
), (A.5)

counting the number of homology classes that are born at or before ri and die after r j .
To make the notions of birth and death of a simplex rigorous, let γ ∈ H`(αi). We say that

γ is born at αi if γ /∈ H`(αi−1). If γ is born at αi , then it dies entering α j , if it merges with

an older class as going from α j−1 to α j , that is, ιi, j−1
`
(γ) /∈ H i−1, j−1

`
, but ιi, j

`
(γ) ∈ H i−1, j

`
. The

persistence of γ is defined as pers(γ) := r j − ri , if γ is born at αi and dies entering α j . For an
illustration of this definition we refer to Fig. 15.

Actually, this intuitive definition has a conceptual drawback [2]. Any two homology classes
that are born at the same birth radius rb, one of them merging with the other one at a radius
r > rb, only die jointly at the death radius of the resulting homology class with highest death
radius. A circumvention of this is provided by what is called the structure theorem of persis-
tence modules [3, 4]. It states that up to isomorphism the family ((H`(αi))i , (ι

i, j
`
)i≤ j) can be

described by its persistence diagram as defined in the main text, cf. Sec. 3.2.2. An equivalent
notion to the persistence diagram which regularly appears across topological data analysis
literature is that of a barcode.

26

https://scipost.org
https://scipost.org/SciPostPhys.11.3.060


SciPost Phys. 11, 060 (2021)

B The computational pipeline

A variety of software exists designed to provide user-friendly and fast routines for the gen-
eration of simplicial complexes and the computation of persistent homology [2]. We employ
the GUDHI library, which is a generic open source C++ library tailored to topological data
analysis and higher dimensional geometry understanding [55]. In particular, with the simplex
tree structure [56] it offers a handy data structure to store simplicial complexes. GUDHI em-
ploys the extensive CGAL library [57] to compute alpha complexes and uses a sophisticated
algorithm to compute persistent homology groups. To give a rough indication of its speed, on
a standard laptop alpha complexes of point clouds with approximately 100,000 data points
can be analyzed in a few minutes, including the computation of persistent homology groups
of all dimensions. For an overview of the computational cost of topological data analysis im-
plementations across software solutions we refer to Ref. [2].

In this work we apply GUDHI functions to point clouds generated from individual field
configurations according to Eq. (7). Obtaining persistent homology outcomes at various times
for each field configuration, ensemble-averages are taken. Due to the lack of statistics, a direct
analysis of the asymptotic persistence pair distribution 〈P`〉 is unfeasible. Instead, for the
k = 72 configurations investigated we have verified that the persistent homology observables
〈B`〉(t, rb), 〈D`〉(t, rd), 〈P`〉(t, r) and 〈β`〉(t, r) converged properly. In Appendix F we analyze
in detail the convergence behavior of persistent homology observables with k.

Of course, point clouds that are subsets of a regular lattice are generically not in general
position, which can result in their Delaunay complexes not being simplicial complexes. GUDHI
removes corresponding ambiguities by means of a built-in perturbation scheme for points out
of general position. Effects of this procedure are not visible.

While simulations take periodic boundary conditions into account, alpha complexes of
point clouds are computed non-periodically. Certainly, the toroidal topology of the lattice Λ
would have an effect on, for example, computed Betti numbers: The 2-torus has β0(T2) = 0,
β1(T2) = 2 and β2(T2) = 1, which would at all times and radii add to 〈β`〉(t, r). The dynamics
of point clouds and their persistent homology groups, however, would remain unaltered.

C Packing relation from bounded total persistence

In Sec. 4.3.2 we provided a heuristic argument leading to the packing relation between scaling
exponents in a self-similar scaling ansatz to the asymptotic persistence pair distribution,

η2 = (2+ d)η1. (C.1)

Actually, under physically reasonable assumptions this relation can be properly derived. Here
we outline this deduction. Details are provided in Ref. [51].

In Ref. [44] the notion of bounded total persistence has been introduced for the persistent
homology of sublevel sets of a Lipschitz function f : M → R with certain properties, M being
a connected, triangulable and compact metric space. For example, Lipschitz functions on the
d-torus or the plane [0, L]d , L > 0, have bounded total persistence. Given a point cloud
X ⊂ Rd such as the Xν(t) defined by Eq. (7), one can actually derive from the bounded total
persistence an upper bound on the number of points in the persistence diagram of the sequence
of alpha complexes. This upper bound scales with a particular length scale to the power of
−d.

A statistical treatment of point clouds and persistence diagrams is necessary in order to
define the asymptotic persistence pair distribution and the corresponding self-similar scaling
ansatz. To this end, functional summaries as described in Sec. 4.1 play a key role. Properties
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of point clouds, persistence diagrams and functional summaries such as self-averaging in the
limit of large volumes can be turned rigorous.

Eventually, one can obtain Eq. (C.1) from the upper bound on the number of points in
persistence diagrams. Central to the interpretation of Eq. (C.1) as describing the packing of
homology classes into a constant volume is this upper bound.

D Relating persistent homology exponents to correlation function
exponents

Typically, nonthermal fixed points and their properties are discussed in the framework of
fixed-order correlation functions, both theoretically and experimentally [22, 23, 32, 58–60].
The self-similar scaling behavior at nonthermal fixed points allows for a grouping of far-from-
equilibrium quantum systems into universality classes. Universality classes cover broad classes
of far-from-equilibrium initial conditions, large ranges of relevant parameters and even theo-
ries with very different degrees of freedom [32]. Being a natural surrounding for universality,
properties of nonthermal fixed points including scaling exponents have been derived within
the renormalization group [61,62]. To this end, length scales derived from scaling correlation
functions are expected to blow up or to shrink with a unique power-law in time.

If the asymptotic persistence pair distribution shows self-similar scaling as in Eq. (25), then
any length scale derived from it scales in time as a power-law with exponent η1, assuming
η1 = η′1. As an example consider the average maximum death radius, defined in Eq. (24)
and showing scaling as in Eq. (28). In light of this geometric analogy and the universality
of scaling exponents at nonthermal fixed points, we expect that self-similar scaling behavior
as extracted from correlation functions can typically be observed also in persistent homology
observables.

E Details on the nonrelativistic Bose gas simulations

This appendix is devoted to provide details of the numerical setup to simulate the
two-dimensional single-component nonrelativistic Bose gas in the classical-statistical regime.
The computational implementation is described in Ref. [32].

Correspondingly, in the atomic gas let a be the s-wave scattering length and n its density.
We define a diluteness parameter [32],

ζ=
p

na3, (E.1)

and assume that ζ � 1. A characteristic coherence length may be defined inversely via the
momentum scale

Q =
p

16πan. (E.2)

The average density, n, can be computed from the distribution function, f (|p|), p being the
momentum, via

n=

∫

dd p
(2π)d

f (|p|). (E.3)

For the validity of the classical-statistical approximation as well as extreme nonequilibrium
conditions to trigger dynamics towards a nonthermal fixed point, we require a large charac-
teristic mode occupancy, f (Q)� 1. Then, the dynamics becomes essentially classical and can
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Figure 16: Birth and death radii distributions and persistence distributions in the
infrared varying with time, displayed for ν̄-values and numbers of samples to average,
k, as indicated.

be described by the time-dependent Gross-Pitaevskii equation for a nonrelativistic complex
bosonic field, ψ,

i∂tψ(t,x) =
�

−
∇2

2m
+ g|ψ(t,x)|2

�

ψ(t,x). (E.4)

Fluctuating initial conditions, f (p), are generated as samples of a Gaussian distibution
with a width as described in Eq. (3). Each realization is evolved according to the discretized
Gross-Pitaevskii equation, numerically solving the equation on a spatial lattice using a split-
step method [32].

F Numerical convergence of persistent homology observables

In this appendix we provide results for how the different persistent homology observables of
interest in the main text converge with the number of classical-statistical samples, k, increas-
ing.

In Fig. 16 we display birth and death radii distributions as well as persistence distributions
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Figure 17: Betti number distributions in the infrared varying with time, displayed for
ν̄-values and numbers of samples to average, k, as indicated.

for two values of ν̄, at different times within the persistent homology observables’ self-similar
scaling regime and for different values of k. It is clearly visible that occurring fluctuations
decrease with k increasing.

In Fig. 17 we display Betti numbers. In particular 〈β0〉(t, r) converged very well for k = 72.
〈β1〉(t, r) converges later with the number of samples taken into account, since distributions
are computed from fewer persistent homology classes with corresponding properties. Yet, ad-
ditional samples do not alter the overall shape of 〈β1〉(t, r) anymore, solely reducing occurring
statistical fluctuations.

As observed in Sec. 5.1, the average maximum death radius, 〈rd,1,max〉(t), is a quantity that
is very sensitive to particular geometric arrangements of points in analyzed point clouds. Re-
sembling this effect, in Fig. 18 we display 〈rd,1,max〉(t) for different n and ν̄. Clearly, occurring
oscillations drastically reduce with k increasing. Up to a few outliners, regions of approximate
power-law behavior converged properly for k = 72 as studied in the main text.

To sum up, different persistent homology observables converge differently fast with the
number of classical-statistical samples, k, taken into account in averaging. Corresponding
differences among their convergence behavior can be easily understood geometrically.

G Numerical protocol to extract persistent homology scaling ex-
ponents

Key to the analysis of results in our nonrelativistic Bose gas testbed in Sec. 3.4 is the extraction
of persistent homology scaling exponents from approximately self-similar birth and death radii
distributions. This appendix serves as a description of the applied protocol to accomplish this
task.
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Figure 18: The average maximum death radius of 1-dimensional persistent homology
classes varying with time, displayed for ν̄-values and numbers of samples to average,
k, as indicated.

We first define rescaled variants of the birth and death radii distributions,

〈B`〉 resc(t, rb) = (t/t ′)η2−η′1〈B`〉(t, (t/t ′)−η1 rb), (G.1a)

〈D`〉 resc(t, rd) = (t/t ′)η2−η1〈D`〉(t, (t/t ′)−η
′
1 rd). (G.1b)

Distributions at later times are compared with those at the reference time t ′, chosen to be
the time at which the self-similar evolution sets in. However, we could equally well have
chosen any other reference time within the self-similar scaling regime. Denote by tk > t ′,
k = 1, . . . , Ncom, all corresponding comparison times. If birth and death radii distributions
were evolving perfectly self-similar following Eqs. (19a) and (19b), we would find

∆〈B`〉(t, rb) = 〈B`〉 resc(t, rb)− 〈B`〉(t ′, rb) = 0, (G.2a)

∆〈D`〉(t, rd) = 〈D`〉 resc(t, rd)− 〈D`〉(t ′, rd) = 0. (G.2b)

Numerically, even for the correct triple of exponents (η1,η′1,η2) this is only approximately
true due to statistical uncertainties as well as systematic errors entering since systems typically
only enter the vicinity of a nonthermal fixed point. We optimize scaling exponents by means
of minimizing occurring deviations, quantified by

χ2(η1,η′1,η2) = χ
2
b(η1,η′1,η2) +χ

2
d (η1,η′1,η2), (G.3a)

χ2
b(η1,η′1,η2) =

1
Ncom

Ncom
∑

k=1

∫ rmax

rmin
drb∆〈B`〉(tk, rb)2

∫ rmax

rmin
drb 〈B`〉(t ′, rb)2

, (G.3b)

χ2
d (η1,η′1,η2) =

1
Ncom

Ncom
∑

k=1

∫ rmax

rmin
drd∆〈D`〉(tk, rd)2

∫ rmax

rmin
drd 〈D`〉(t ′, rd)2

. (G.3c)

Lower and upper limits of integration in the appearing expressions are set to Qrmin = 1.5
and Qrmax = 25.0 for all ν̄ ≤ 0.7 and Qrmin = 1.0 and Qrmax = 10.0 for ν̄ = 0.8. A priori,
the given expressions for χ2

b/d(η1,η′1,η2), are equally sensitive to the behavior at all scales of
radii, increasing the weight of data points whose deviations are large. Linear interpolations
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are employed to obtain birth and death radii distributions at rescaled birth and death radii,
respectively.

Minimizing deviations as measured by χ2(η1,η′1,η2), the optimal triple (η̃1, η̃′1, η̃2) is ob-
tained. Analogously to Refs. [32,63], a likelihood function is defined as

W (η1,η′1,η2) =
1
N exp

�

−
χ2(η1,η′1,η2)

2χ2(η̃1, η̃′1, η̃2)

�

, (G.4)

N being a normalization constant such that
∫

dη1 dη′1 dη2 W (η1,η′1,η2) = 1. (G.5)

Marginal likelihood functions are obtained upon integrating over two of the exponents, for
instance,

W (η1) =

∫

dη′1 dη2 W (η1,η′1,η2). (G.6)

We fit marginal likelihood functions with Gaussian distributions to estimate corresponding
standard deviations, ση1

,ση′1 and ση2
, the means still being given by η̃1, η̃′1 and η̃2.

To derive time-dependent persistent homology scaling exponents, we apply the described
fitting procedure with a fixed reference time Qt ′ for Ncom = 3 times, simultaneously: Qtmin as
indicated in the main text as well as Qtmin + 625 and Qtmin + 1250. Repeating this procedure
for different Qtmin, we obtain time-dependent scaling exponents.
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