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Abstract

We study the entanglement entropy of free fermions in 2d in the presence of a partially
transmitting interface that splits Minkowski space into two half-spaces. We focus on the
case of a single interval that straddles the defect, and compute its entanglement entropy
in three limits: Perturbing away from the fully transmitting and fully reflecting cases,
and perturbing in the amount of asymmetry of the interval about the defect. Using these
results within the setup of the Poincaré patch of AdS2 statically coupled to a zero temper-
ature flat space bath, we calculate the effect of a partially transmitting AdS2 boundary on
the location of the entanglement island region. The partially transmitting boundary is a
toy model for black hole graybody factors. Our results indicate that the entanglement is-
land region behaves in a monotonic fashion as a function of the transmission/reflection
coefficient at the interface.
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1 Introduction and summary

1.1 Entanglement entropy for 2d free fermions

Entanglement entropy is an important quantity not just for finite or discrete quantum sys-
tems [1] but also for continuum quantum field theories and holography [2,3]. In the contin-
uum setting, however, entanglement entropies are notoriously hard to calculate and only few
exact results exist. Lucky exceptions are provided by 2d conformal field theories [4] and the
2d free fermion [5, 6]. The 2d free fermion system is a particularly fruitful playground since
not only the entanglement entropy, but exact expressions for the modular Hamilotonian of
multicomponent regions can be computed [6–8]. In particular, the recent papers [7,8] consid-
ered entanglement entropy and modular Hamiltonians for the 2d free fermion in the presence
of a boundary or defect. In [8], the intervals that were considered were symmetric about a
semitransparent defect that separates 2d flat space into two half-spaces.

We extend this repertoire of results by computing the entanglement entropy of 2d free
fermions in the presence of a semitransparent defect, but allowing for the region under con-
sideration to be asymmetric about the defect. Let px0, x1q be flat coordinates on 2d Minkowski
space, and let the defect be located at x1 “ 0. The t be the transmission coefficient through
the defect, and let r “ 1´ t be the reflection coefficient. Let us focus on a single interval
r´L´, L`s that straddles the defect (and so L´ and L` are both positive real numbers). We
are not able to compute the entanglement entropy of this interval in general, but we obtain
results in three limits:

1. When the defect is almost completely transmitting, so that r is small.

2. When the defect is almost completely reflecting, so that t is small.

3. When the interval is almost symmetric about the defect, so that γ“
L´´L`

L´`L`
is small.

These results are presented in section 2.4, see equations (2.41), (2.42) and (2.43). To the best
of our knowledge, these formulas were not known before. In order to obtain these results, we
have used the method of [5] and used the results in [9–11] for free fermion determinants in
the presence of a boundary with non-translation invariant boundary conditions. This method
can be used to obtain the entropies of any region, and most of our formal setup carries over
to the more general case, but we focus on the particular application at hand to obtain explicit
results.

Intuitively, the entropy should increase monotonically with the transmission coefficient t
since the defect acts as a coupling between left and right, and hence the increasing coupling
increases the entanglement entropy. Our results (2.41), (2.42) and (2.43) are consistent with
this intuitive behavior.
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Earlier results on von Neumann entropy in the presence of interfaces include [12–14]. See
section 3.2.1 of the review [4] for pointers to a few more results. See, for example, [15] for a
study of the boundary entropy in holography.

1.2 Entanglement islands and graybody factors of black holes

Recent progress in the black hole information paradox has involved the semiclassical computa-
tion of the von Neumann entropy of Hawking radiation, reproducing the Page curve [16,17].
The main player is the existence of a nontrivial Quantum Extremal Surface (QES) [18] at
times larger than the Page time, whose generalized entropy tracks the shrinking area of the
black hole horizon. The entanglement wedge of the Hawking radiation after the Page time
contains a disconnected region deep in the gravitating spacetime, dubbed the entanglement
island in [19].

Reference [20] exhibited the presence of entanglement islands in much simpler contexts
that also play a role in avoiding an entropy paradox that exists in the eternal Schwarzschild
geometry, due to Mathur [21]. By now, the presence of entanglement islands is well established
in a wide variety of settings [22–40]. It has also been established that the nontrivial QES arises
because spacetime wormholes dominate the computations of Rényi entropies [41,42]. See the
recent reviews [43, 44] for more on the black hole information problem and an overview of
recent progress.

It is well-known that there are graybody factors in Hawking radiation [45]. It is hard to
include graybody factors in the computations of the von Neumann entropy of bulk matter
fields, and thus in the setups of [17, 20], which couple a flat space bath to AdS space, the
interface is taken to be fully transparent. This is rightly so, since graybody factors are not
expected to affect the qualitative features of the Page curve. The paper [16] contained a
qualitative discussion of graybody factors. The effect of graybody factors is also implicitly
included in the higer-dimensional doubly-holographic setup of [22]. However, one would like
to be more computationally explicit about graybody factors.

We take up this challenge in this paper in what is perhaps the simplest example of an en-
tanglement island: the static zero temperature setup in section 2 of [20]. It was shown that
when a zero-temperature AdS2 black hole is coupled to flat, non-gravitating half-space via
a fully transparent boundary, the QES of the boundary of AdS2 does not lie at the Poincaré
horizon, but lies at a finite value of the Poincaré radial coordinate. In other words, the entan-
glement wedge of the flat space region contains an entanglement island: the region between
the Poincaré horizon and the QES.

In this work, instead of taking the AdS2-flat space interface to be fully transparent, we
take it to have a transmission coefficient t and a reflection coefficient r “ 1´ t. This is a toy
model for graybody effects in the atmosphere of a black hole. In the fully transparent case,
reference [20] found a nontrivial QES and an entanglement wedge. In the fully reflecting case,
the QES is at the Poincaré horizon: this is easy to see, since the AdS2 and flat space regions
are not coupled at all in this case, the entanglement wedge of the boundary of AdS2 better be
the entire Poincaré patch of AdS2.

We take the bulk matter to be 2d free fermions, and use our results (2.41), (2.42) and
(2.43) for the entanglement entropy of free fermions in the presence of a defect to see how
the QES moves as we vary the reflection coefficient. What we find is that if we perturb away
from fully transmitting case, the QES moves towards the Poincaré horizon from its location
in [20]. If we perturb away from the fully reflecting case, the QES moves from the Poincaré
horizon towards the boundary of AdS2.

In brief, our results support the hypothesis that the location of QES behaves monotonically
and smoothly interpolates between its locations at t “ 1 (the fully transmitting case) and t “ 0
(the fully reflecting case).
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As future work, it would be interesting to extend our results to the islands in the eternal
Schwarzschild geometry at finite temperature [20] and also the evaporating case [16, 17].
We suspect that the location of the QES behaves monotonically with the strength of graybody
effects in all these cases. Independently of the motivation from black hole physics, it would
also be valuable to go beyond the limits we have considered obtain exact results for the 2d
free fermion von Neumann entropy and the modular Hamiltonian for a general set of intervals
in the presence of a defect.

In section 2, we outline the computation of the entanglement entropy of free fermions in
the presence of a semitransparent interface and present the results. The details are contained
in appendix A and B. In section 3, we recap the zero temperature entanglement island of [20]
and show that the entanglement island behaves monotonically with the strength of graybody
effects.

2 Entanglement entropy of free fermions with a semitransparent
interface

The 2d massless Dirac fermion is a simple theory where one can explicitly compute not just
the entanglement entropies of a region consisting of multiple intervals, but also the associated
modular hamiltonians [5–8].

To study the entanglement problem in the presence of a defect, we take the fermions to
live on the line, with the defect placed at x1 “ 0. We denote the region x1 ą 0 by Ω` and the
region x1 ă 0 by Ω´. Fields living in the respective half-planes will carry a` or´ superscript.
The defect is only partially transparent, with a transmission coefficient t. We will be more
precise in specifying the boundary conditions below.

We take the γ-matrices to be in the Weyl basis,

γ0
Lor “

ˆ

0 ´i
´i 0

˙

, γ1 “

ˆ

0 i
´i 0

˙

, γ˚ “ γ
0
Lorγ

1 “

ˆ

´1 0
0 1

˙

. (2.1)

Here γ˚ denotes the chirality matrix and it is diagonal in the Weyl basis. The Dirac operator is

iγµLorBµ “

ˆ

0 B0´B1
B0`B1 0

˙

. (2.2)

The two-component fermions are taken to have components

ψ“

ˆ

ψR
ψL

˙

. (2.3)

The equation of motion says that ψL is only a function of x0 ` x1, which represents a left-
moving wave, hence the subscript L for ψL; a similar logic applies for ψR.

From now on, we work in Euclidean signature using the convention x2 “ ix0. The ordering
of the Euclidean coordinates will be px1, x2q. For future use, we also note that

γ2 “ iγ0
Lor “

ˆ

0 1
1 0

˙

. (2.4)

The boundary condition imposed at the defect is
ˆ

ψ`R p0, x2q

ψ´L p0, x2q

˙

“ S

ˆ

ψ`L p0, x2q

ψ´R p0, x2q

˙

, (2.5)
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Figure 1: Setup for the fermion problem with a semitransparent interface. The in-
terface or defect is located at x1 “ 0, and the regions x1 ă 0 and x1 ą 0 are denoted
by Ω´ and Ω`, respectively. At x1 “ 0 the fermion fields are related by the S-matrix
in (2.5). For the entanglement computation we consider an interval r´L´, L`s that
straddles the defect at x1 “ 0.

where S is the unitary scattering matrix

S“

ˆ

c1 c2
c3 c4

˙

“

ˆ

c1 ´eiφc˚3
c3 eiφc˚1

˙

. (2.6)

These boundary conditions are energy conserving, and preserve one copy of Virasoro algebra
after folding the plane along the defect. As can be seen in figure 1, the modes ψ`R and ψ´L are
outgoing from the defect, whereas ψ`L and ψ´R are incoming. The quantity t “ |c2|

2 “ |c3|
2

is interpreted as a transmission coefficient, while r “ 1´ t “ |c1|
2 “ |c4|

2 is interpreted as a
reflection coefficient. The purely transmitting and the purely reflecting S matrices are

St “

ˆ

0 1
1 0

˙

, Sr “

ˆ

1 0
0 1

˙

. (2.7)

It will be helpful to rewrite the boundary condition (2.5) as

Bψp0, x2q “ 0 , (2.8)

where

B“

¨

˚

˚

˝

1 ´c1 ´c2 0
´c˚1 1 0 ´c˚3
´c˚2 0 1 ´c˚4

0 ´c3 ´c4 1

˛

‹

‹

‚

, ψp0, x2q “

¨

˚

˚

˝

ψ`R p0, x2q

ψ`L p0, x2q

ψ´R p0, x2q

ψ´L p0, x2q

˛

‹

‹

‚

. (2.9)

Note that B is a Hermitian matrix with rank two.
We consider the fermions to be in their ground state and focus on the reduced density

matrix ρA of a given subset A Ă R. We specify A as a collection of disjoint intervals rui , vis

with i P t1, . . . , pu. We will mostly be interested in the case of a single interval r´L´, L`s that
straddles the defect (both L´ and L` are positive real numbers). See figure 1 for the setup.
We intend to compute the entanglement entropy SpAq given by

SpAq “ ´TrpρA logρAq “ lim
nÑ1

SnpAq , (2.10)

where SnpAq is the Rényi entropy,

SnpAq “
1

1´ n
logTr

`

ρn
A

˘

. (2.11)
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2.1 Decoupling the replicas with gauge fields

We use the replica trick to compute Tr
`

ρn
A

˘

. Our treatment closely follows [5]. The trace of
ρn
A

is given by the functional integral Zrns on the replica manifold,

Trρn
A
“

Zrns
Zr1sn

, (2.12)

where Zr1s serves as a normalization factor that sets TrρA “ 1.
When evaluating this trace for a fermionic field, we need to introduce a minus sign in

the path integral boundary condition connecting the fields between the first and last replica
copies [46]. Moreover, there is an additional factor of´1 for every copy because of non-trivial
Lorentz rotation around the points ui and vi which is present in the Euclidean Hamiltonian
when expressing Trρn

A
as a path integral [47]. Thus, we get an overall factor of p´1qn`1 when

connecting the fields along the first and last cuts.
Instead of dealing with the fields on the non-trivial replica manifold, we can work on a

single plane by using the n-component field

~ψ“

¨

˚

˝

ψ1pxq
...

ψnpxq

˛

‹

‚
, (2.13)

where ψ j is the fermion field on the jth sheet of the replica manifold. The vector ~ψ is not
single valued: If we go in a circuit around ui , the vector ~ψ gets multiplied by the matrix

T “

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 0 1

p´1qn`1 0 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‚

, (2.14)

whereas if we go in a circuit around vi , it gets multiplied by T´1.
We can diagonalize T by performing a unitary transformation. Note that the eigenvalues

of T are e2πik{n with k P t´ n´1
2 ,´ n´1

2 `1, . . . , n´1
2 u. After this unitary transformation we end

up with the decoupled fields ψk living on a single plane. The fields ψk are multivalued and
get multiplied by e2πik{n when encircling ui , and by e´2πik{n when encircling vi . Note that this
unitary transformation acts identically on the components of ~ψ, so the boundary condition for
ψk is still

Bψkp0, x2q “ 0 . (2.15)

We can get rid of the multivaluedness ofψk by introducing an external gauge field Ak,µpxq.
The gauge field is vortex-like near the end-points of the intervals:

¿

ui

Ak “´
2πk

n
,

¿

vi

Ak “
2πk

n
, (2.16)

where the integrals are over closed contours encircling ui or vi . These holonomies are captured
by the field strength

Fk,12pxq “ ´
2πk

n

p
ÿ

i“1

´

δp2qpx´ uiq ´δ
p2qpx´ viq

¯

. (2.17)
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where ui “ pui , 0q and vi “ pvi , 0q. Requiring that Aµk vanishes at infinity, we get the explicit
formula

Ak,µpxq “
k
n
εµν

p
ÿ

i“1

ˆ

px´ uiq
ν

|x´ ui|
2
´
px´ viq

ν

|x´ vi|
2

˙

, (2.18)

where we use the standard ε12 “´ε21 “ 1.
In presence of the gauge field, the fermion action is

Ikrψk,ψk; Aks “

ż

Ω`

d2 xψ
`

k γ
µ
`

Bµ` iAk,µ

˘

ψ`k `

ż

Ω´

d2 xψ
´

k γ
µ
`

Bµ` iAk,µ

˘

ψ´k . (2.19)

The functional integral factorizes into

Zrns “
pn´1q{2
ź

k“´pn´1q{2

Zk , (2.20)

where Zk is the functional integral over tψk,ψku with the background gauge field Ak given by
(2.18) and with boundary conditions (2.15); the matrix B is given in (2.9).

2.2 Computing the functional integral Zk

In this section, we outline the calculation of the functional integral (the details are in the
appendices)

Zk “

ż

Dψ
`

k Dψ`k Dψ
´

k Dψ´k exp

ˆ

´

ż

Ω`

d2 xψ
`

k

`

{B ` i{Ak
˘

ψ`k ´

ż

Ω´

d2 xψ
´

k

`

{B ` i{Ak
˘

ψ´k

˙

,

(2.21)
with the background gauge field Ak given by (2.18) and with boundary conditions (2.15);
the matrix B is given in (2.9). An essential fact is that the chiral anomaly in two dimensions
completely determines the dependence of the functional integral on the gauge field [48].1

A general gauge field in two dimensions can be expressed as a sum of a gradient and a curl

Ak,µ “ Bµηk ´ εµν BνΦk . (2.22)

For the gauge field profile in (2.18), we can choose

ηkpxq “ 0, Φkpxq “ ´
k
n

p
ÿ

i“1

log
|x´ ui|

|x´ vi|
. (2.23)

Note that Φk „
1
|x| as |x| Ñ 8.2 Given a background gauge field of the form (2.22), we can

decouple the fermions ψ`k from the background gauge field Ak by a change of variables which
is a combination of gauge and chiral transformations

ψ`k “ exp piηk ` γ˚Φkqχ
`

k . (2.24)

Essentially, we are changing variables from ψ`k to χ`k in the functional integral. The change
in the fermionic measure under this transformation is nontrivial

Dψ
`

k Dψ`k “ J`k Dχ`k Dχ`k , (2.25)

1 An equivalent method is to bosonize the fermions.
2 This decomposition of the gauge field as the sum of a gradient and a curl is not unique. In Appendix B, we use

a different decomposition which allows us to easily calculate the results in the purely reflecting case.
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where J`k is the Jacobian of the transformation. For fermions living on the full line, the result
for this Jacobian is well-known [48]. In case of manifolds with boundaries, we need to be
careful about possible boundary contributions.

To separate the bulk and boundary contributions, we divide the positive real line into two
intervals p0,ε`q and pε`,8q. For the interval pε`,8q, we can obtain the bulk contribution
using the result for closed manifolds [48],

`

J`k
˘

bulk “ exp

ˆ

´
1

2π

ż

Ω`pε`q

d2 x BµΦkpxqB
µΦkpxq

˙

, (2.26)

where Ω`pε`q “ tpx1, x2q : x1 ą ε
`u. The boundary contribution is [11]

`

J`k
˘

bdry “ exp

ˆ

´
1

4ε`

ż

R
dx2Φkp0, x2q

˙

. (2.27)

A similar treatment can be done for the fermions on Ω´ to get the full Jacobian

Jk “ exp

ˆ

´
1

2π

ż

Ω`pε`qYΩ´pε´q

d2 x BµΦkpxqB
µΦkpxq ´

ˆ

1
4ε`

`
1

4ε´

˙
ż

R
dx2Φkp0, x2q

˙

,

(2.28)
with ε´ ă 0. Once we do the sum over k, the boundary terms will vanish (since Φk is linear
in k) and henceforth they will be omitted.3 Taking the limit ε`,ε´Ñ 0, we get

Jk “ exp

ˆ

´
1

2π

ż

Ω
d2 x BµΦk B

µΦk

˙

. (2.29)

This is the result for the Jacobian on the entire plane in [48].
The integral in (2.29) is easily evaluated by substituting Φk from (2.23), integrating by

parts once and using the fact that ∇2Φ is a sum of delta functions. The result is

Jk “ exp

ˆ

´
2k2

n2
Ξptuiu, tv juq

˙

, (2.30)

where [5]

Ξptuiu, tv juq :“
ÿ

i, j

log |ui ´ v j| ´
ÿ

iă j

log |ui ´ u j| ´
ÿ

iă j

log |vi ´ v j| ´ p logε . (2.31)

Here, we have introduced the short-distance cutoff ε to split the coincidence points |ui ´ ui|,
|vi ´ vi| Ñ ε, and the sum over i, j is over all the intervals comprising the region A.

So far, we changed variables from ψk to χk (2.24) in the functional integral and obtained
the Jacobian for this transformation. Since the Jacobian (2.30) is independent of χk, the
functional integral can be expressed as

Zk “ Jk
rZk , (2.32)

where rZk is the path integral over χk, now without any gauge fields

rZk “

ż

Dχ`k Dχ`k Dχ´k Dχ´k exp

ˆ

´

ż

Ω`

d2 x χ`k {Bχ
`

k ´

ż

Ω´

d2 x χ´k {Bχ
´

k

˙

. (2.33)

This integral gives a nontrivial contribution to the partition function (that depends on the
interval endpoints ui and vi) because of the boundary conditions obeyed by χk. Using the

3 We can also choose ε` “´ε´, and then this term automatically vanishes.
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definition of χk in (2.24) and the boundary condition (2.15) for ψk, we see that the boundary
condition for χk is

B

ˆ

eγ˚Φkp0,x2q 0
0 eγ˚Φkp0,x2q

˙

χkp0, x2q “ 0 , (2.34)

where we have combined the two-component objects χ`k and χ´k into a four component object
χk along the lines of the second relation in (2.9). We can rewrite this boundary condition as

B

¨

˚

˚

˝

eHkpx2q 0 0 0
0 1 0 0
0 0 eHkpx2q 0
0 0 0 1

˛

‹

‹

‚

χkp0, x2q “ 0, with Hkpx2q :“´2Φkp0, x2q . (2.35)

The computation of the functional integral (2.33) subject to the boundary condition (2.35)
is given in Appendix A. The main idea is to use a theorem due to Forman [9], which was also
used in [10,11], in order to relate the fermion determinant with the position-dependent bound-
ary condition (2.35) to the fermion determinant with the much simpler boundary condition
Bχkp0, x2q “ 0. In the process, one still needs to compute the trace of an infinite matrix, and
we have been unable to solve this problem in general. We have however been able to obtain
results in the three limits described in the introduction. We will present our new results in
section 2.4, but let us first review the known results about the fully transmitting and the fully
reflecting cases.

2.3 Review: The purely transmitting and the purely reflecting cases

The purely transmitting case. In the purely transmitting case corresponding to St in (2.7),
the boundary condition in (2.35) is equivalent to Bχkp0, x2q “ 0, so rZk “ Zr1s. Thus, the en-
tropies come purely from the Jacobians Jk given in (2.30) [5]. The result for the von Neumann
entropy is

SpAq “
1
3
Ξptuiu, tv juq (fully transmitting) , (2.36)

where Ξ was defined in (2.31). This is just the result of [5]. For a single interval r´L´, L`s,
the answer has the familiar logarithmic expression dependence,

Spr´L´, L`sq “
1
3

log
L`` L´
ε

(fully transmitting) . (2.37)

The purely reflecting case. In the purely reflecting case corresponding to Sr in (2.7), we
can compute the functional integral by using a different decomposition for the gauge field in
terms of ηk and Φk. This calculation is done in Appendix B. If none of the intervals intersects
the defect, we get

SpAq “
1
3
ξ
´

tu`i u, tv
`

j u

¯

`
1
3
ξ
´

tu´i u, tv
´

j u

¯

(fully reflecting) , (2.38)

with ξ defined as

ξ
`

tuiu, tv ju
˘

:“ Ξ
`

tuiu, tv ju
˘

´
1
2

ÿ

i, j

log

˜

|ui ` v j||vi ` u j|

|ui ` u j||vi ` v j|

¸

. (2.39)

Here, u`i , v`i refer to the endpoints in the right half-planeΩ`, and u´i , v´i refer to the endpoints
in the left half-plane Ω´. For a single interval on one side of the boundary, one can check that
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the the reflecting answer reduces to the transmitting answer if the interval is far from the
boundary.

For the interval r´L´, L`s, which is our case of interest, the entropy is

Spr´L´, L`sq “
1
6

log
2L´
ε
`

1
6

log
2L`
ε

(fully reflecting) . (2.40)

Notice that the entropy in the fully reflecting case is a sum of entropies on the left and right
side of the defect, since the two half-planes are completely decoupled.

We now turn to our results for the entropy with nonzero reflection and transmission coef-
ficients.

2.4 Results for von Neumann entropy

We will consider entanglement entropies for the case of a single interval r´L´, L`s that strad-
dles the defect4 (so we have L´ ą 0 and L` ą 0), since this is what will be important for the
application in section 3. The details can be found in the appendices.

1. When the defect is almost fully transmitting, so that r is small, we get

Spr´L´, L`sq “
1
3

log
L`` L´
ε

`
r
8

˜

1`
L2
´
` L2

`

L2
´´ L2

`

log
L`
L´

¸

`Opr2q . (2.41)

2. When the defect is almost fully reflecting, so that t is small, we get

Spr´L´, L`sq “
1
6

log
4L`L´
ε2

`
t
8

˜

1`
L2
´
´ 6L´L`` L2

`

2pL´´ L`q
a

L´L`
tan´1

˜

L´´ L`
2
a

L´L`

¸

¸

`Opt2q .

(2.42)

3. Keeping r and t general, but assuming that γ“
L´´L`

L´`L`
is small, we get

S
`

r´L´, L`s
˘

“
1
3

log
L`` L´
ε

´
r
6

ˆ

γ2`
γ4

2
`
γ6

3
`
γ8

4

˙

`
r t
30

ˆ

γ4

2
`
γ6

2
`

65γ8

144

˙

`
r t
42

„

pr ´ tq
ˆ

γ6

6
`
γ8

4

˙

´
γ8

72



`
r tpr ´ 5tqp5r ´ tq

30

ˆ

γ8

144

˙

`O
`

γ10
˘

.

(2.43)

Note that the infinite series in γmultiplying r resums to´1
6 logp1´γ2q “ ´

1
6 log

4L´ L`

pL``L´q
2 ,

which, when r “ 1, converts the purely transmitting result 1
3 log

L``L´

ε to the fully re-

flecting result 1
6 log

4L` L´

ε2 . All other terms are proportional to r t and thus vanish at the
two extremes.

It is also straightforward to check that the Oprq term in (2.41) and the Optq term in (2.42)
vanish when γ “ 0, reproducing the result in [8] that the entropy of a symmetrically located
interval is not affected by the reflection and transmission coefficients.5 Furthermore, the Oprq

4 The entanglement entropies for the interval rL´, L`s (with L´ ą 0) can be obtained from the following results

using S
`

rL´, L`s
˘

“ S
`

r´L´, L`s
˘

`
1
3 log

L`´L´

L``L´
. This relationship follows because the contribution to the en-

tropy coming from rZk are equal in the two cases. That happens because Φk on the boundary is the same in both
cases.

5 More generally, this happens since the Φk in (2.23) vanishes on the interface when the region A is symmetrically
placed with respect to the interface.
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Figure 2: Left: Setup for the QES calculation for a partially reflecting AdS2 boundary.
In the gray region gravity is dynamical and we will consider the Poincaré patch with
its horizon drawn in orange. This region is glued along a the AdS2 boundary to a
flat space region on the right. The free fermion matter lives in both the AdS2 and
flat space regions, but there is partial reflection at the interface, with transmission
coefficient t (and reflection coefficient r “ 1´ t). This is a toy model to capture
the graybody effects in the black hole atmosphere. A candidate entanglement wedge
r´a, bs is shaded orange and its complement in shaded blue. Right: The dual SYK +
wire system. The fundamental computation we are doing is of the entropy and the
entanglement wedge of the interval r0,bs in this non-gravitational description.

term in (2.41) is always negative and the Optq term in (2.42) is always positive, supporting
the intuitive results that the entanglement is the largest when the defect is fully transmitting.

As future work, it would be interesting to determine exact entanglement entropy (and, if
possible, the modular Hamiltonian) outside the various limits that we have considered.

3 Entanglement islands with graybody factors

In this section, we will apply our results for the von Neumann entropy to the zero tempera-
ture entanglement island calculations of [20]. The new component is the introduction of a
reflection/transmission coefficient at the interface between AdS2 and flat space. We will first
quickly review the setup (see figure 2) and then show that the entanglement island behaves
in a monotonic fashion as a function of the reflection/transmission coefficient.

The gravitational theory is taken to be AdS-JT gravity coupled to matter, whose action is
given by [49]

Irg,φ,ψs “ φ0`
1

4π

ż

d2 x
?

gφ pR` 2q ` ICFTrg,ψs , (3.1)

where we have put 4GN “ 1, the constant φ0 gives the extremal entropy, and we have omitted
the Gibbons-Hawking boundary term. The CFT matter action is given by ICFT and we take
the matter fields ψ to not couple to the dilaton. For the gravity variables, we put the usual
boundary conditions guu|bdy “ 1{ε2 and φ|bdy “ φr{ε.

Using coordinates px0, x1qwith x1 ă 0, the zero temperature solution of JT gravity is given
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by

ds2 “
´pdx0q2` pdx1q2

px1q2
, φ “

φr

´x1
. (3.2)

The JT boundary conditions imply that the AdS2 boundary is at x1 “ ´ε. We now couple
the AdS2 region to half of 2d flat-space, which is non-gravitating. The matter fields are taken
to be free fermions and they propagate on both the AdS and the flat space regions, but we
choose the boundary conditions for them so that they see a partially transmitting interface at
x1 “´ε, see equation (2.5). This is how our work differs from the previous papers [17,20].

As emphasized in [20], one should think of the entropies as being fundamentally defined
in a candidate dual description that does not involve gravity. This will look something like
an SYK model coupled to a wire. The transmission coefficient encodes some property of the
coupling between the SYK model and the wire, and the zero temperature equilibrium geometry
corresponds to the ground state of the coupled Hamiltonian.

The goal is to compute the entanglement wedge of the region r0,bs in the SYK+wire de-
scription. A candidate for a QES is the point px0, x1q “ p0,´aq in the AdS2 region (with
a ą 0). The entanglement wedge of r0,bs will be the region p´a˚, bq where a˚ is the location
of the QES. We need to compute the generalized entropy functional Sgen of a region r´a, bs
that is partially in the bath region and partially in the gravity region, see figure 2. For this, we
need the dilaton profile given in (3.2) and also an expression for the entropy of bulk matter
fields in the semiclassical description, which were obtained in the previous section.

The generalized entropy of the interval r´a, bs is given by

Sgenpaq “ φ0`
φr

a
` c SDirac, flatpr´a, bsq ´

c
6

log a , (3.3)

where the second term corresponds to the entropies we computed in section 2 and the final
term comes from the Weyl factor in the metric (3.2) at the left end-point of the interval r´a, bs.
As already noted, the boundary conditions on the matter fields preserve one copy of the Vi-
rasoro algebra, so the Weyl factor term takes into account the fact that the interface is now
between AdS space and flat space, rather than between two flat half-spaces. We have also
taken c copies of the free Dirac fermion system, and as usual c is taken to be large so that the
entropy coming from fluctuations in the gravity sector can be ignored. Let us define a quantity
k with dimensions of length as

k :“
6φr

c
. (3.4)

Extremizing Sgenpaq with respect to a gives us the location a˚ of the QES. As before, we spe-
cialize to three cases:

1. When the reflection coefficient r is small, we use (2.41) for SDirac, flat and we get

a˚prq “ a0` r
3a2

0

`

a4
0 ´ b4´ 4a2

0 b2 logpa0{bq
˘

4pa0´ bq2
`

pa0` bq2pa0` 2kq ´ 2a3
0

˘ `Opr2q , (3.5)

where a0 is the location of the island in the purely transmitting case [20],

a0 “ a˚pr “ 0q “
1
2

´

b` k`
a

b2` 6bk` k2
¯

. (3.6)

It is also instructive to look at the extreme limits for b in this expression.

a‹ “
6φr

c
` r

9φr

2c
`Opb, r2q (small b) , (3.7)

a‹ “
ˆ

b`
12φr

c

˙

` r
12φr

c
`Opb´1, r2q (large b) . (3.8)
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We would like to argue that the second term in (3.5) in always positive, so that the QES
moves from its location a0 in the fully transmitting case towards the Poincaré horizon,
where it lies in the fully reflecting case. It is easy to plot the second term of (3.5) as
a function of b and k and check that it is positive, but we would like to give a more
illuminating argument. First, note that a0 ą b, which as observed in [20] is a condition
that is imposed by the Quantum Focusing Conjecture [50]. The function S1genpaq at full
transmission is positive to the left of the QES, and negative to the right of the QES. We
noted in section 2.4 that the correction term in (2.41) is negative definite and has a
maximum value of 0 when L´ “ L`, or a “ b in the notation of this section. These facts
dictate that the QES can only move leftwards from a0.

2. When the transmission coefficient t is small, we use (2.42) for SDirac, flat and we get

a˚prq “
ˆ

1024 bk2

9π2

˙

1
3

t´
2
3 `Opt0q . (3.9)

The QES goes to infinity as t Ñ 0. In the fully reflecting case, the QES is at the Poincaré
horizon: the AdS2 and flat space regions are not coupled at all in this case, and so the
entanglement wedge of the boundary of AdS2 better be the entire Poincaré patch of
AdS2.

Note that since a˚ is getting large, we might worry that the coefficient of the Optq term
in the bulk entropy formula (2.42) is getting large. However, the overall size of the Optq
term at the extremization point is seen to be t

2
3 , which is small. In general, entropies

cannot grow faster than linearly in the interval size, and so, if the expansion in t is well-
behaved, we do not expect large powers of L´ to show up at higher orders in (2.42).

3. Taking b to be very large, we expect, as in [20], that the quantity a˚´b
a˚`b is small. Keeping

terms up to order γ2 in (2.43), we find

a˚prq “ b
ˆ

1`
1

1´ r
2k
b
`O

ˆ

k2

b2

˙˙

. (3.10)

This matches with the small r result (3.5) in the common domain of validity, but we
should not trust the exact form of this answer in the r Ñ 1 limit, since γ is getting large
in that limit.

To summarize, within the particular setup and the various limits that we have considered,
we have shown that the location of the QES (and thus the size of the entanglement island)
is a monotonic function of the transmission strength of the interface between the gravitating
region and faraway flat space region. It would be interesting to extend our results to various
other setups in which islands are known to exist, for instance in the T ą 0 non-evaporating
setup in [20]. It would also be nice to find way to incorporate explicitly-tunable greybody
factors in the setup of double-holography [19], especially in higher dimensions [22]. Our
prejudice is that such monotonicity should always hold. In the case of an evaporating black
hole, specifically using the setup of [17], one should see the QES move from inside the horizon
towards the horizon as one turns on graybody effects. This has to do with the fact that when
the black hole is evaporating, the matter fields are taken to be in the Unruh state, and not the
Hartle-Hawking state. That changes the formulas for the matter entanglement entropy. In this
situation, if the interface is fully reflecting, the QES would be at the black hole horizon. When
we turn on a coupling between the AdS and the bath regions, thus making r ă 1, the QES
moves inwards, as discussed in [16,17].
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A Dirac determinant on the half-plane with non-translation invari-
ant boundary conditions

In this appendix, we will compute the functional integral

rZ “
ż

Dχ`Dχ`Dχ´Dχ´ exp

ˆ

´

ż

Ω`

d2 x χ` {Bχ`´
ż

Ω´

d2 x χ´ {Bχ´
˙

, (A.1)

where the fermionic fields satisfy the boundary conditions

B eHpx2qχp0, x2q “ 0 , (A.2)

with the matrices

B“

¨

˚

˚

˝

1 ´c1 ´c2 0
´c˚1 1 0 ´c˚3
´c˚2 0 1 ´c˚4

0 ´c3 ´c4 1

˛

‹

‹

‚

, Hpx2q “

¨

˚

˚

˝

Hpx2q 0 0 0
0 0 0 0
0 0 Hpx2q 0
0 0 0 0

˛

‹

‹

‚

, (A.3)

and the vector χ will be specified shortly. The matrix B has rank two. We fold the left half
plane, Ω´, to the right half-plane, Ω`. This folding changes the coordinate x“ px1, x2q P Ω´
to x :“ p´x1, x2q P Ω`, so we have the transformation for derivatives pB1,B2q Ñ pB1,B2q “

p´B1,B2q and for the fermionic fields χ´R pxq Ñ χ´L pxq, χ
´
L pxq Ñ χ´R pxq. In this folded geom-

etry, the Dirac operator is i{B ‘ i{B. In contrast to (2.9), after the folding, the fermion field has
components in the following order:

χ “

¨

˚

˚

˝

χ`R
χ`L
χ´L
χ´R

˛

‹

‹

‚

, (A.4)

with all fields having a position argument belonging to the right half plane Ω`.
We also remind the reader that for the application needed in the main text, Hkpx2q “

´2Φkp0, x2q and Φkpxq is given in (2.23). The main tools needed to compute the partition
function are described in references [9–11].

The fermion path integral (A.1) can be written as the functional determinant detpi{B ‘ i{Bq,
subject to the boundary condition (A.2). To compute this determinant we will employ a the-
orem by Forman [9]. The idea is to consider a one-parameter family of boundary conditions
labelled by τ such that τ “ 0 corresponds to the boundary condition Bχp0, x2q “ 0, and
τ “ 1 corresponds to the boundary condition (A.2) that we are interested in. This gives rise
to a family of functional determinants

rZpτq “ detpi{B ‘ i{BqBUpτq , Upτq :“ eτHpx2q , (A.5)

where the subscript labels the modified boundary condition BUpτqχ “ BeτHpx2qχ “ 0. For-
man’s theorem (theorem 2 of [9], see also [10]) states that6

d
dµ

log
rZpτ`µq
rZpµq

“
d

dµ
log detΦµpτq . (A.6)

6 Please note that the operator Φµpτq has nothing to do with the function Φkpxq.
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We will explain the definition of the operator Φ below.

The Dirac operator i{B ‘ i{B is given in the Weyl basis ((2.1) and (2.4)) by

i{B ‘ i{B “

¨

˚

˚

˝

0 ´B1` iB2 0 0
B1` iB2 0 0 0

0 0 0 B1` iB2
0 0 ´B1` iB2 0

˛

‹

‹

‚

. (A.7)

We will denote the elements of the kernel of this operator by χ and we take them to satisfy a
fake boundary condition on the far-right side of the half-plane

BχpL, x2q “ 0 , (A.8)

with L " 1. This boundary condition is arbitrary and is chosen for convenience, following [10].
Notice that we maintain translation symmetry along the line x1 “ L in this fake problem (in
contrast to the actual boundary condition (A.2) where the function Hpx2q explicitly depends on
x2). We further compactify x2 on a large circle of length T , and impose antiperiodic boundary
conditions χpx1,´T{2q “ ´χpx1, T{2q. The elements of the kernel of (A.7) satisfying the
boundary condition (A.8) and having definite Matsubara frequencies wn “ p2n` 1qπ{T with
n P Z can be easily found

χAnpx1, x2q “
e´iwn x2

a

2 coshp2wn Lq

¨

˚

˚

˝

e´wnpx1´Lq

c˚1 ewnpx1´Lq

c˚2 ewnpx1´Lq

0

˛

‹

‹

‚

, χBnpx1, x2q “
e´iwn x2

a

2coshp2wn Lq

¨

˚

˚

˝

0
c˚3 ewnpx1´Lq

c˚4 ewnpx1´Lq

e´wnpx1´Lq

˛

‹

‹

‚

.

(A.9)

Note that tχAn,χBnu satisfy the orthonormality condition 1
T

şT{2
´T{2 dx2 χ

:

I p0, x2qχJp0, x2q “ δI J ,
with I P tA, BuˆZ. The vectors in (A.9) when evaluated on the true boundary x1 “ 0 will not
satisfy the boundary condition (A.2). Now we ask the question: By how much do χIp0, x2q fail
to satisfy the true boundary condition (A.2)? This will be proportional to BUpτqχIp0, x2q. We
now pick a fixed basis of functions on the line x1 “ 0 that also satisfy Brχ “ 2rχ.7 Explicitly,
these are

rχAnpx2q “
e´iwn x2

?
2

¨

˚

˚

˝

1
´c˚1
´c˚2

0

˛

‹

‹

‚

, rχBnpx2q “
e´iwn x2

?
2

¨

˚

˚

˝

0
´c˚3
´c˚4

1

˛

‹

‹

‚

. (A.10)

With the two sets of vectors defined in (A.9) and (A.10), the matrix hpτq is defined to have
matrix elements

hI Jpτq :“
1
T

T{2
ż

´T{2

dx2 rχ
:

I px2qB eτHpx2q χJp0, x2q , (A.11)

with I , J P tA, Bu ˆZ. The intuition is that the matrix h measures the failure of χJpx1, x2q to
satisfy the correct boundary condition (A.2) for our problem. The quantity Φµpτq in (A.6) is
defined via [9–11]

hpµ`τq “ Φµpτqhpµq . (A.12)

Our goal is to calculate rZ at τ“ 1. Let us take a τ derivative of Forman’s result, (A.6),

d
dµ

d
dτ

log
rZpµ`τq
rZpµq

“
d

dµ
d

dτ
Tr log

`

hpµ`τqh´1pµq
˘

. (A.13)

7 Since the vector BUpτqχIp0, x2q is of the form Bp¨q, and B has eigenvalues 0 and 2, it lies in the subspace that
has eigenvalue 2 under B. Thus the inner product of BUpτqχIp0, x2q and rχJ measures the amount by which the
boundary condition is violated.
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On the LHS the τ derivative kills log rZpµq, whereas the RHS can be simplified by using
d

dτ Tr log Apτq “ Trp 9ApτqA´1pτqq and cyclicity of the trace. So (A.13) simplifies to

d2

dτdµ
rZpµ`τq “

d
dµ

Tr

ˆ

dhpµ`τq
dτ

h´1pµ`τq

˙

. (A.14)

Notice that the µ derivatives can now be traded for τ derivatives and, after setting µ“ 0, we
end up with the differential equation

d2

dτ2
log rZpτq “

d
dτ

Tr

ˆ

dhpτq
dτ

hpτq´1
˙

. (A.15)

To solve for rZpτq, we integrate this twice and hence we need the value of rZ 1pτ “ 0q. We
claim that rZpτq is an even function of τ so rZ 1pτ “ 0q “ 0. This is because the boundary
condition for rZp´τq is equivalent to

B

¨

˚

˚

˝

1 0 0 0
0 eτHpx2q 0 0
0 0 1 0
0 0 0 eτHpx2q

˛

‹

‹

‚

χp0, x2q “ 0 , (A.16)

upto an overall phase factor. This can be converted to the boundary condition for rZpτq by
interchanging the fermionic fields χ`Ø χ´. The action remains unchanged under this inter-
change, so rZp´τq “ rZpτq. Hence we find,

log

˜

rZp1q
rZp0q

¸

“

1
ż

0

dτTr

ˆ

dhpτq
dτ

hpτq´1
˙

. (A.17)

Note that rZpτ“ 0q “ Zrn“ 1s, with Zrns being the original path integral over theψ variables
in the main text. This is because when n “ 1, the gauge field is zero, and so Zrn “ 1s and
rZpτ“ 0q are both free fermion path integrals with the same boundary conditions.

So now our goal is to compute Trp dh
dτ h´1q, and then do the integral on the right hand side

of (A.17). A major difficulty is that h is an infinite matrix and its determinant or traces must
be regularised. Our strategy is to find explicit expressions for the matrix elements of h, take
the large L limit and then construct the inverse and compute Trp dh

dτ h´1q. The final result is
given in (A.46).

Computing the matrix elements of h is straightforward. In the large L limit, using (A.11),
we get for instance,

hAm,Anpτq “

?
2

T

T{2
ż

´T{2

dx2 eipwm´wnqx2

#

eαpx2q if wn ą 0

´|c1|
2´ |c3|

2eαpx2q if wn ă 0
, (A.18)

where, for brevity and following [11], we defined

αpx2q :“ τHpx2q . (A.19)

Other similar calculations give us the matrix

hpτq “
?

2

¨

˚

˚

˝

reαs`` ´|c3|
2reαs`´ 0 c1c˚3 re

αs`´
reαs´` ´|c3|

2reαs´´´ |c1|
2 1 0 c1c˚3 re

αs´´´ c1c˚3 1
0 c˚1 c3re

αs`´ 1 ´|c1|
2reαs`´

0 c˚1 c3re
αs´´´ c˚1 c3 1 0 ´|c1|

2reαs´´´ |c3|
2 1

˛

‹

‹

‚

, (A.20)
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where the row and column indices are valued in tA, Bu ˆ t`,´u “ tA`, A´, B`, B´u and
each entry in (A.20) is itself an infinite matrix with rows and columns indexed by the positive
integers. Essentially, because the positive and negative frequencies behave differently, as in
(A.18), we need to treat them separately. Also, following [11], we have introduced a square-
bracket notation for the matrix elements in the Matsubara basis

r f sm,n “
1
T

T{2
ż

´T{2

dx2 eipwm´wnqx2 f px2q . (A.21)

It is important to note that this is a Toeplitz matrix since r f sm,n “ r f sm´n.
The derivative dh{dτ and the inverse h´1 can be obtained using the identities given in

appendix B of [11]. After a brute force explicit calculation, we find that the h´1 is composed
of the block matrices

?
2 ph´1qA`,A` “ pre

αs``q
´1rMs`` , (A.22)

?
2 ph´1qA`,A´ “´|c3|

2preαs``q
´1rMs``re

αs`´pre
αs´´q

´1 , (A.23)
?

2 ph´1qA`,B` “ 0 , (A.24)
?

2 ph´1qA`,B´ “ c1c˚3 pre
αs``q

´1rMs``re
αs`´pre

αs´´q
´1 , (A.25)

?
2 ph´1qA´,A` “

`

|c1|
21` |c3|

2preαs´´q
´1
˘

rN s´´re
αs´`pre

αs``q
´1 , (A.26)

?
2 ph´1qA´,A´ “´

`

|c1|
21` |c3|

2preαs´´q
´1
˘

rN s´´ , (A.27)
?

2 ph´1qA´,B` “ 0 , (A.28)
?

2 ph´1qA´,B´ “
c1

c3

`

|c1|
21` |c3|

2preαs´´q
´1
˘

rN s´´´
c1

c3
1 , (A.29)

?
2 ph´1qB`,A` “´c˚1 c3re

αs`´pre
αs´´q

´1rN s´´re
αs´`pre

αs``q
´1 , (A.30)

?
2 ph´1qB`,A´ “ c˚1 c3re

αs`´pre
αs´´q

´1rN s´´ , (A.31)
?

2 ph´1qB`,B` “ 1 , (A.32)
?

2 ph´1qB`,B´ “´|c1|
2reαs`´pre

αs´´q
´1rN s´´ , (A.33)

?
2 ph´1qB´,A` “ c˚1 c3

`

1´ preαs´´q´1
˘

rN s´´re
αs´`pre

αs``q
´1 , (A.34)

?
2 ph´1qB´,A´ “´c˚1 c3

`

1´ preαs´´q´1
˘

rN s´´ , (A.35)
?

2 ph´1qB´,B` “ 0 , (A.36)
?

2 ph´1qB´,B´ “´1` |c1|
2
`

1´ preαs´´q´1
˘

rN s´´ , (A.37)

where we have defined

rMs`` :“
`

1´ |c3|
2reαs`´pre

αs´´q
´1reαs´`pre

αs``q
´1
˘´1

, (A.38)

rN s´´ :“
`

1´ |c3|
2reαs´`pre

αs``q
´1reαs`´pre

αs´´q
´1
˘´1

. (A.39)

Using dh
dτ and h´1 so computed, we get

τTr

ˆ

dh
dτ

h´1
˙

“|c1|
2 Tr

`

rαs´`re
αs`´pre

αs´´q
´1rN s´´

˘

` |c1|
2 Tr

`

rαs`´re
αs´`pre

αs``q
´1rMs``

˘

. (A.40)

We can simplify this further by using the following identities for quantities that appear in the
definitions (A.38) and (A.39)

reαs`´
`

reαs´´
˘´1

reαs´`
`

reαs``
˘´1

“ 1´
`

re´αs``
˘´1 `

reαs``
˘´1

, (A.41)

reαs´`
`

reαs``
˘´1

reαs`´
`

reαs´´
˘´1

“ 1´
`

re´αs´´
˘´1 `

reαs´´
˘´1

, (A.42)
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and perform a binomial series expansion, to get8

τTr

ˆ

dh
dτ

h´1
˙

“

8
ÿ

p“0

p´1qp`1|c1{c3|
2p`2 Tr

`

rαs´`re
αs``

`

re´αs``re
αs``

˘p
re´αs`´

˘

`

8
ÿ

p“0

p´1qp`1|c1{c3|
2p`2 Tr

`

rαs`´re
αs´´

`

re´αs´´re
αs´´

˘p
re´αs´`

˘

(A.43)

“ τ
d

dτ
Tr log

`

1` |c1{c3|
2reαs´´re

´αs´´

˘

(A.44)

“ τ
d

dτ
Tr log

`

1´ |c1|
2reαs´`re

´αs`´

˘

. (A.45)

Recalling that r “ |c1|
2 is the reflection coefficient and αpx2q “ τHpx2q, we get

Tr

ˆ

dh
dτ

h´1
˙

“´
d

dτ

8
ÿ

m“1

rm

m
Tr
´

`

reτHpx2qs´`re
´τHpx2qs`´

˘m
¯

. (A.46)

Substituting (A.46) into (A.17) and doing the τ integral, we get the result for the functional
determinant

log

˜

rZp1q
rZp0q

¸

“´

8
ÿ

m“1

rm

m
Tr
``

reHs´`re
´Hs`´

˘m˘
. (A.47)

Notice that the lower limit of the integral in (A.17) at τ “ 0 does not contribute on the right
hand side, because the indices of the matrices reαs´` and re´αs`´ are purely off-diagonal and
so r1s`´ and r1s´` vanish.

We were unable to evaluate the expression on the right hand side of (A.47) in general.
Thus, we will focus on computing the functional determinant rZk for the case needed in section
3, which is a single interval r´L´, L`s across the defect. We will proceed in two different ways:

1. In appendix A.1 we only consider the linear in r term in (A.47) and obtain an expression
for a general interval r´L´, L`s. The result is given in (A.56).

2. In appendix A.2 we assume that γ :“
L´´L`

L´`L`
is small. This says that the interval is almost

symmetric about the defect, and so we are perturbing away from the symmetrically
placed interval considered in [8]. We obtain the Rényi and the von Neumann entropies
as a power series expansion in γ, the results are given in (A.67) and (A.68).

A.1 Perturbing away from the fully transmitting case

The goal of this section is to obtain the first order term in r in the von Neumann entropy of
the interval r´L´, L`s, perturbing away from the fully transmitting case r “ 0.

The coefficient of the linear in r term in (A.47) is

Tr
`

reHs´`re
´Hs`´

˘

“
ÿ

ně0,lă0

ż

dy1dy2

T2
e

2πi
T ppy1´y2qpl´nqqeHpy1q´Hpy2q (A.48)

“´

ż

R2

dy1dy2

4π2

eHpy1q´Hpy2q

py1´ y2q
2

, (A.49)

8 One needs to use identities of the form reαs´´re
´αs´´`re

αs´`re
´αs`´ “ 1, see appendix B of [11] for more

on such relations.
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where we have taken the T Ñ8 limit and the contours of integration for y1 and y2 are such
that ℑy1 ă 0 and ℑy2 ą 0, so the geometric series in (A.48) converges. If we now expand
in powers of H, we see that only terms at second order or higher will contribute, because for
the constant and first order term, there is always one integral that vanishes after we close the
contour in the respective half planes (the y1 integral is closed in the lower half plane and the
y2 integral in the upper half plane).

Let us denote the Oprq term in (A.47) by f p1qk (with k being the replica index), then

f p1qk “ r
ż

R2

dy1dy2

4π2py1´ y2q
2

´

eHkpy1q´Hkpy2q´ 1´Hkpy1q `Hkpy2q

¯

. (A.50)

To compute the entropy, we plug in the expression for Hk from (2.35) and (2.23), which we
write as Hk “´2Φk “

k
n logφ, with

φpyq “
y2` L2

´

y2` L2
`

. (A.51)

We now sum over k and take the n“ 1 limit,

Sp1q “ lim
nÑ1

1
1´ n

pn´1q{2
ÿ

k“´pn´1q{2

f p1qk “ r
ż

R2

dy1dy2

4π2py1´ y2q
2

ˆ

1´
1
2

φpy1q `φpy2q

φpy1q ´φpy2q
log

ˆ

φpy1q

φpy2q

˙˙

.

(A.52)
Because of the logarithm in (A.52), we get branch cuts in the complex y1 and y2 planes. Let us
assume, without loss of generality, that L´ ą L`. Since y1 integration contour has a negative
imaginary part, we deform the contour in the lower half plane and pick up a discontinuity from
the branch cut that runs from y1 “´iL´ to y2 “´iL`. The discontinuity of the integrand of
(A.52) is

´
iπ

L2
´´ L2

`

2y2
1 y2

2 ` 2L2
`

L2
´
` pL2

`
` L2

´
qpy2

1 ` y2
2 q

4π2py1´ y2q
2py2

1 ´ y2
2 q

, (A.53)

which when integrated over y1 from y1 “´iL´ to y1 “´iL` gives

´
1

16πpL2
´´ L2

`qy
3
2

˜

L2
´

L2
`
π2´ 2L´L`pL´´ L`qy2` pL

2
´
` L2

`
qπy2

2 ´ 2pL´´ L`qy
3
2

`πy4
2 ` ipL2

´
` y2

2 qpL
2
`
` y2

2 q log

ˆ

py2` iL`qpiL´´ y2q

py2´ iL`qpiL´` y2q

˙

¸

.

(A.54)

Now, we need to do the y2 integral, whose contour has a small positive imaginary part and can
be deformed in the upper half-plane. The discontinuity comes from the logarithm in (A.54)
and equals

´
1
8

pL2
´
` y2

2 qpL
2
`
` y2

2 q

pL2
´´ L2

`qy
3
2

. (A.55)

Integrating this over y2 from y2 “ iL` to y2 “ iL´ gives

Sp1q “
r
8

˜

1`
L2
´
` L2

`

L2
´´ L2

`

log
L`
L´

¸

. (A.56)

Thus, to Oprq, the entropy is given by

Spr´L´, L`sq “
1
3

log
L`` L´
ε

`
r
8

˜

1`
L2
´
` L2

`

L2
´´ L2

`

log
L`
L´

¸

`Opr2q . (A.57)
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Higher order terms in the reflection coefficient can be computed in a similar way, but involve
more integrals and a more complicated branch cut structure.

A.2 Perturbing in the asymmetry

In this appendix, we will perform a different approximation. While still working with a sin-
gle interval r´L´, L`s that straddles the defect, we will compute the functional integral rZk
perturbatively in the asymmetry parameter

γ“
L´´ L`
L´` L`

“
L´´ L`

2L
, (A.58)

where 2L “ L´` L` is the length of the interval.
We start with the following series expansion for Hk,

Hkpyq “ ´2Φkp0, yq “
2k
n

ÿ

jPodd

piγLq j

j

ˆ

1
py ` iLq j

´
1

py ´ iLq j

˙

. (A.59)

The advantage of this expansion is that at any finite order in γ, we have poles in the complex
plane instead of branch cuts.

The m“ 1 term of (A.47) is given by

Tr
`

reHk s´`re
´Hk s`´

˘

“
1
T2

T{2
ż

´T{2

dy1dy2
eHkpy1q´Hkpy2q

sin2pπpy2´ y1q{Tq
, (A.60)

where ℑy1 ă 0 and ℑy2 ą 0 as mentioned earlier.
To evaluate these integrals, we will use the residue theorem. We close the contour for

y1 in the lower half-plane and for y2 in the upper half-plane. This ensures that the only
residues come from the pole at y1 “´iL for the y1 integral and the pole at y2 “ iL for the y2
integral. We also get some contribution from integrals that were used to close the contours in
the complex plane but these contributions vanish in the T Ñ8 limit.

In the limit T Ñ8, we have the leading order result in γ

Tr
`

reHk s´`re
´Hk s`´

˘

“
k2

n2
γ2τ2`Opγ4q . (A.61)

It is worth mentioning that the final answer must be even in γ. This is indeed the case for the
above calculation.

In general, we want to compute Tr
``

reHk s´`re
´Hk s`´

˘p˘
. In the T Ñ 8 limit, this is

given by a contour integral

Tr
``

reHk s´`re
´Hk s`´

˘p˘
“
p´1qp

π2p

8
ż

´8

2p
ź

i“1

dyi
eHkpy1q´Hkpy2q`¨¨¨`Hkpy2p´1q´Hkpy2pq

py2´ y1q . . . py2p ´ y2p´1qpy1´ y2pq
, (A.62)

where ℑy1,ℑy3, . . .ℑy2p´1 ă 0 and ℑy2,ℑy4, . . .ℑy2p ą 0. We close the contours for
y1, y3, . . . y2p´1 in the lower half plane and the contours for y2, y4, . . . y2p in the upper half
plane. This ensures that the contour does not enclose the poles coming from the yi`1 ´ yi
terms in the denominator.

For Hk given in (A.59), each factor of γ corresponds to exactly one pole in the complex
plane. Therefore, at order γ j

#py1q `#py2q ` . . .#py2pq “ j , (A.63)
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where #pyiq denotes the total number of poles (with multiplicity) for the yi variable in the
numerator eHkpy1q´Hkpy2q`¨¨¨`Hkpy2p´1q´Hkpy2pq. If j ă 2p, there is at least one variable that has
no pole in the entire complex plane. If we do the contour integral over this variable first,
the result is zero. Therefore, Trp

`

reHk s´`re
´Hk s`´

˘p
q only contributes non-trivially starting

at Opγ2pq.
To summarize, the γ j term in log

`

rZk{Zr1s
˘

vanishes if j is odd. If j is even, we get a
non-zero contributions to the γ j term from Trp

`

reHk s´`re
´Hk s`´

˘p
q only if p “ 1, 2, . . . j{2.

Using (A.61), we have the full result at order γ2,

log
rZk

Zr1s
“ ´γ2 k2

n2
r `O

`

γ4
˘

, (A.64)

so the Rényi entropy is

Sn
`

r´L´, L`s
˘

“
n` 1

6n

„

log
L`` L´
ε

´
γ2r
2



`O
`

γ4
˘

. (A.65)

Similarly, we can determine the contribution at higher orders in γ,

log
rZk

Zr1s
“r

k2

n2

ˆ

γ2`
γ4

2
`
γ6

3
`
γ8

4

˙

` r t
k4

n4

ˆ

γ4

2
`
γ6

2
`

65γ8

144

˙

´ r tpr ´ tq
k6

n6

ˆ

γ6

6
`
γ8

4

˙

` r t
k6

n6

γ8

72
` r tpr ´ 5tqp5r ´ tq

k8

n8

γ8

144
`O

`

γ10
˘

.

(A.66)

We can now easily do the sum over k to get the Rényi entropies and also take the nÑ 1 limit
to get the entanglement entropy.

Sn
`

r´L´, L`s
˘

“
n` 1

6n

„

log
L`` L´
ε

`
r
2

ˆ

´γ2´
γ4

2
´
γ6

3
´
γ8

4

˙

`
pn` 1qp7´ 3n2q

240n3

„

r t
ˆ

γ4

2
`
γ6

2
`

65γ8

144

˙

`
pn` 1qp31´ 18n2` 3n4q

1344n5

„

r tpr ´ tq
ˆ

γ6

6
`
γ8

4

˙

´ r t
γ8

72



`
pn` 1qp381´ 239n2` 55n4´ 5n6q

11520n7

„

r tpr ´ 5tqp5r ´ tq
γ8

144



`O
`

γ10
˘

,

(A.67)

S
`

r´L´, L`s
˘

“
1
3

log
L`` L´
ε

´
r
6

ˆ

γ2`
γ4

2
`
γ6

3
`
γ8

4

˙

`
r t
30

ˆ

γ4

2
`
γ6

2
`

65γ8

144

˙

`
r t
42

„

pr ´ tq
ˆ

γ6

6
`
γ8

4

˙

´
γ8

72



`
r tpr ´ 5tqp5r ´ tq

30

ˆ

γ8

144

˙

`O
`

γ10
˘

.

(A.68)

It is worth mentioning that the series multiplying r adds up to´1
6 logp1´γ2q “ ´

1
6 log

4L´ L`

pL``L´q
2 ,

so these terms linearly interpolate between the purely transmitting limit, r “ 0, and the purely
reflecting limit, r “ 1. All the other terms vanish at these two limits, and represent the devia-
tion from this linear interpolation.
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B Purely reflecting case and perturbations away from it

In this appendix we provide a direct evaluation of the functional integral and Rényi entropy
for the purely reflecting boundary condition. We also discuss perturbations away from this
limit.

In section 2, we ended up with the functional integral Zk in (2.21) after doing the replica
trick and decoupling the replicas by introducing a gauge field. Then, we decoupled the fermion
from the background gauge field by performing a combination of gauge and chiral transfor-
mations in (2.24). In section 2.2, we performed a single transformation on the entire plane
Ω“ Ω`YΩ´. This enabled us to compute the result in the purely transmitting case directly.

Instead of performing the gauge and chiral transformations given by (2.23), we now per-
form different transformations on the two half-planes. For later convenience, we take the
Φ-functions for the two half-planes to satisfy Φ˘k p0, y2q “ 0. It is easy to obtain such a Φk
using the method of images

Φ`k pxq “ ´
k
n

p`
ÿ

i“1

log

˜

|x´ u`i ||x´ vi
`
|

|x´ v`i ||x´ ui
`
|

¸

, (B.1)

with a similar expression for Φ´k pxq. Here, A` “
Ťp`

i“1ru
`

i , v`i s refers to the subset of A on the

positive real axis and A´ “
Ťp´

i“1ru
´

i , v´i s refers to the subset of A on the negative real axis.
The η-functions can be obtained using (2.18) and (2.22),

η`k pxq “ ´
k
n

»

–

p`
ÿ

i“1

˜

tan-1 x2

x1` u`i
´ tan-1 x2

x1` v`i

¸

`

p´
ÿ

i“1

˜

tan-1 x2

x1´ u´i
´ tan-1 x2

x1´ v´i

¸

fi

fl ,

(B.2)

with a similar expression for η´k pxq.
The Jacobian for the transformation (2.24) with this choice of Φk and ηk is

log J`k “´
2k2

n2
ξ
´

tu`i u, tv
`

j u

¯

, log J´k “´
2k2

n2
ξ
´

tu´i u, tv
´

j u

¯

, (B.3)

where we have defined

ξ
`

tuiu, tv ju
˘

“ Ξ
`

tuiu, tv ju
˘

´
1
2

ÿ

i, j

log

˜

|ui ` v j||vi ` u j|

|ui ` u j||vi ` v j|

¸

. (B.4)

The quantity Ξ was defined in (2.31) [5]. The functional integral thus becomes Zk “ J`k J´k
r

rZk,
where

r

rZk “

ż

Dζ
`

k Dζ`k Dζ
´

k Dζ´k exp

ˆ

´

ż

Ω`

d2 x ζ
`

k
{Bζ`k ´

ż

Ω´

d2 x ζ
´

k
{Bζ´k

˙

. (B.5)

Since Φ˘k p0, x2q “ 0, the boundary condition for the transformed fermionic field ζk “

expp´iηk ´ γ˚Φkqψk is

B

¨

˚

˚

˚

˝

eirHkpx2q 0 0 0

0 eirHkpx2q 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‹

‚

ζkp0, x2q “ 0 , with rHkpx2q :“ η`k p0, x2q ´η
´

k p0, x2q . (B.6)
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In the purely reflecting case corresponding to Sr in (2.7), the boundary condition in (B.6)
is equivalent to Bζkp0, x2q “ 0, and so so r

rZk “ Zr1s. Thus, the Rényi entropy is

SrpAq “
1
3
ξ
´

tu`i u, tv
`

j u

¯

`
1
3
ξ
´

tu´i u, tv
´

j u

¯

. (B.7)

This expression agrees with the results in [7] and, as expected, breaks up into a sum of two
terms that just depend on A` and A´ respectively.

With a nonzero transmission coefficient, a calculation similar to that in appendix A gives
us the result analogous to (A.47)

log
r

rZk

Zr1s
“ ´

8
ÿ

p“1

t p

p
Tr
´

`

reirHk s´`re
´irHk s`´

˘p
¯

. (B.8)

Again, we restrict ourselves to computing the functional determinant rrZk which corresponds to
a single interval across the defect, A“ r´L´, L`s.

Similar to appendix A.1, can compute the Optq piece in the von Neumann entropy by
perturbing away from the fully reflecting case. The result is

Sp1q “ t
ż

R2

d y1d y2

4π2py1´ y2q
2

ˆ

1´
1
2

φpy1q `φpy2q

φpy1q ´φpy2q
log

ˆ

φpy1q

φpy2q

˙˙

, (B.9)

where

φpxq “
px ´ iL´qpx ` iL`q

px ` iL´qpx ´ iL`q
. (B.10)

Using a similar contour deformation argument as in A.1, we find,

Sp1q “
t
8

˜

1`
L2
´
´ 6L´L`` L2

`

2pL´´ L`q
a

L´L`
arctan

˜

L´´ L`
2
a

L´L`

¸¸

. (B.11)

The full answer for the entropy to order t2 is then

Spr´L´, L`sq “
1
6

log
4L`L´
ε2

`
t
8

˜

1`
L2
´
´ 6L´L`` L2

`

2pL´´ L`q
a

L´L`
arctan

˜

L´´ L`
2
a

L´L`

¸¸

`Opt2q .

(B.12)
We can also do a small γ expansion similar to that in appendix A.2. We just quote the final

result

S
`

r´L´, L`s
˘

“
1
6

log
4L`L´
ε2

`
t
6

ˆ

γ2`
γ4

2
`
γ6

3
`
γ8

4

˙

`
r t
30

ˆ

γ4

2
`
γ6

2
`

65γ8

144

˙

`
r t
42

„

pr ´ tq
ˆ

γ6

6
`
γ8

4

˙

´
γ8

72



`
r tpr ´ 5tqp5r ´ tq

30

ˆ

γ8

144

˙

`O
`

γ10
˘

.

(B.13)

This matches with (A.68) at the appropriate order in γ.
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