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Abstract

We conjecture the existence of hidden Onsager algebra symmetries in two interacting
quantum integrable lattice models, i.e. spin-1/2 XXZ model and spin-1 Zamolodchikov–
Fateev model at arbitrary root of unity values of the anisotropy. The conjectures relate
the Onsager generators to the conserved charges obtained from semi-cyclic transfer ma-
trices. The conjectures are motivated by two examples which are spin-1/2 XX model
and spin-1 U(1)-invariant clock model. A novel construction of the semi-cyclic transfer
matrices of spin-1 Zamolodchikov–Fateev model at arbitrary root of unity values of the
anisotropy is carried out via the transfer matrix fusion procedure.
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1 Introduction

The Onsager algebra was used for the first time to solve two-dimensional Ising model with
zero magnetic field by Lars Onsager in his seminal paper in 1944 [1], which is considered to
be the herald of exactly solvable models in statistical mechanics.

Later the Onsager algebra has been used to study two-dimensional chiral Potts model, a
generalisation of Ising model and its quantum counterpart, ZN -symmetric spin chain [2–6].
Those models studied via the Onsager algebra are integrable and possess Kramers–Wannier
duality [7]. Later, Dolan and Grady used the self-duality of these models to construct infinitely-
many conserved charges without invoking their integrability [8]. The equivalence to the On-
sager algebra was later discovered by Perk [9]. This approach has led to deeper understanding
of the algebraic structure of the Onsager algebra and its relation to self-duality and integra-
bility [10–13]. A thorough and comprehensive summary of the mathematical structures of
the Onsager algebra is provided in [14]. Furthermore, an isomorphism between the Onsager
algebra and a non-standard classical Yang-Baxter algebra is obtained in [15]. Recently there
have been several influential results using the Onsager algebra to study the spectra of quan-
tum lattice models [16], the out-of-equilibrium dynamics of quantum states [17], and the
construction of quantum many-body scars [18], reigniting the interest on the applications of
the Onsager algebra in theoretical physics.

Meanwhile, the spectra of quantum integrable models at root of unity values of the
anisotropy have been investigated using Bethe ansatz techniques. The definition of the
parametrisation of root of unity value of the anisotropy is given in (16). Specifically, spin-1/2
XXZ model [19–22] at root of unity, a prototypical quantum integrable lattice model, has drawn
lots of attention. Due to the underlying quantum group structure at root of unity [23], the
spectra have exponentially many degeneracies. This phenomenon has been studied in [24–30].
More recently, the author and collaborators have constructed the Baxter’s Q operator for XXZ
model at root of unity and studied the spectra in terms of descendant towers [30], which

2

https://scipost.org
https://scipost.org/SciPostPhys.11.3.066


SciPost Phys. 11, 066 (2021)

elucidated the origin of the exponentially many degeneracies due to the existence of eigen-
states associated with exact (Fabricius–McCoy) strings. In particular, XX model, a special case
of XXZ model at root of unity, possesses the Onsager algebra symmetry [16] additionally, cf.
Sec. 4.1, and its spectrum has similar descendant tower structure as the spectra at other roots
of unity [30]. It is thus natural to consider the question whether XXZ models at arbitrary
roots of unity value of the anisotropy would possess similar Onsager algebra symmetries. The
difficulty of solving this problem is that the Onsager generators in XX model are expressed in
terms of local operators, while the generators at other roots of unity are not if they were to
exist, which are discussed in Secs. 3 and 4.2. Moreover, it has been shown that the spectra of
higher spin generalisations of XXZ model at root of unity, dubbed U(1)-invariant clock models,
have similar exponentially many degeneracies in terms of descendant tower structure, demon-
strated through the Onsager algebra symmetry of the U(1)-invariant clock models in [16]. This
provides further motivation to the current work. This article is set to compose two conjectures
about the explicit form of the Onsager generators of XXZ model and its spin-1 generalisation,
i.e. Zamolodchikov–Fateev (ZF) model, at arbitrary root of unity values of the anisotropy and
their relations to the conserved charges derived from semi-cyclic transfer matrices.

The structure of the article is as follows. First, we introduce the basic properties of Onsager
algebra in Sec. 2. We show an isomorphism between two (Onsager) algebras in the literature.
Second, we focus on the spin-1/2 case, i.e. XXZ model at root of unity. We construct the
semi-cyclic transfer matrix and the conserved charges thereof in Sec. 3. Motivated by the
example of XX model, the conjectures of hidden Onsager algebra symmetries in XXZ model
at arbitrary root of unity values of the anisotropy are given in Sec. 4. For the spin-1 case, we
construct the semi-cyclic transfer matrices for spin-1 ZF models at arbitrary root of unity values
of the anisotropy via transfer matrix fusion procedure in Sec. 5, which has not been reported
before. Using another example of the spin-1 U(1)-invariant clock model, we formulate similar
conjectures of hidden Onsager algebra symmetries in spin-1 ZF models at arbitrary roots of
unity in Sec. 6. We conclude the article with Sec. 7.

2 Onsager algebra

We use the notations in Onsager’s original paper [1] to define the standard presentation of
the Onsager algebra O. Consider the following infinite-dimensional Lie algebra O with basis
{Am,Gn|m, n ∈ Z}. The canonical generators satisfy the following relations,

[Am,An] = 4Gm−n, [Gm,An] = 2 (An+m −An−m) , [Gm,Gn] = 0. (1)

From the definition, we easily find out that

G−m = −Gm, ∀m ∈ Z. (2)

Next, we define another presentation of the Onsager algebra O′ with basis
{Ar

m|r ∈ {0,+,−}, m ∈ Z} [16]. These generators satisfy

A0
−m = A0

m, A±−m = −A±m,
�

Ar
m,Ar

n

�

= 0, m, n ∈ Z, r ∈ {0,+,−},
(3)

�

Ar
m,Ar

n

�

= 0, r ∈ {0,+,−};
�

A−m,A+n
�

= A0
n+m −A0

n−m, (4)

�

A−m,A0
n

�

= 2
�

A−n+m −A−n−m

�

,
�

A+m,A0
n

�

= 2
�

A+n−m −A+n+m

�

. (5)
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From (3), we observe that A±0 = 0. We illustrate in Appendix A that presentations O and O′

are isomorphic to each other, i.e. they are both presentations of Onsager algebra. Since O is
isomorphic to O′, we refer to the generators of presentation O′ as Onsager generators of O′.

As proven by Perk [9] and Davies [10], the Onsager algebra is equivalent to the Dolan–
Grady (DG) relations, which impose requirements only on the first two generators of O, i.e.

�

A0,
�

A0,
�

A0,A1

�

�

�

= 16
�

A0,A1

�

,
�

A1,
�

A1,
�

A1,A0

�

�

�

= 16
�

A1,A0

�

. (6)

Due to the isomorphism, the DG relations also impose certain relation between Ar
0 and Ar

1
(r ∈ {0,+,−}), which can be obtained using (A.1). We will use the DG relations as the defining
property of the existence of the Onsager algebra. Namely, once finding two operators that
satisfy the DG relations in certain physical systems, we can construct a family of operators
fulfilling the definition (1), which can be considered as a representation of the Onsager algebra
O. For example, in the case of one-dimensional transverse field Ising model, i.e. the quantum
counterpart of two-dimensional Ising model considered by Onsager, we have

A0→
N
∑

j=1

σz
j , A1→

N
∑

j=1

σx
j σ

x
j+1, (7)

satisfying the DG relations (6), thus being a representation of the quotient of Onsager algebra
O (1) [10].

Self-duality The DG relations (6) also imply the Kramers–Wannier self-duality [7], which
has been used to obtain the value of the phase transition point for models consisting of the
Onsager generators. Suppose that the operators A0 and A1 can be expressed in local terms,
i.e.

A0 =
N
∑

j=1

a0, j , A1 =
N
∑

j=1

a1, j . (8)

The Kramers–Wannier self-duality implies that the mapping a0, j → a1, j (and conversely
a1, j → a0, j) leaves the algebraic structure intact, which is obvious from the DG relations (6).
Let us consider a Hamiltonian H that can be expressed in terms of A0 and A1,

H= A0 +λA1, λ ∈ R, (9)

such as one-dimensional transverse field Ising model and chiral Potts model. Using Kramers–
Wannier self-duality, one could detect a phase transition at λ = 1 without solving the entire
system [7].

U(1)-invariant Hamiltonian In the remaining part of the article, we will focus on a specific
type of Hamiltonians that commute with both A0 and A1 of the Onsager generators of O, i.e.

[H,A0] = [H,A1] = 0. (10)

These models are referred as U(1)-invariant [16], because both operators A0 and A1 are con-
sidered as U(1) charges of the Hamiltonian. However, A0 and A1 do not commute with each
other, cf. (1).

From (1), it is easy to observe that H commutes with all generators in Onsager algebra,
�

H,Ar
m

�

= 0, r ∈ {0,+,−}, m ∈ Z. (11)

Two examples of U(1)-invariant Hamiltonians are spin-1/2 XX model and spin-1 ZF model
with anisotropy parameter η = iπ

3 or 2iπ
3 . These examples are U(1)-invariant clock models
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defined in [16]. These two cases will be examined in details in Secs. 4.1 and 6.1, respec-
tively. As explained in latter sections, we conjecture that spin-1/2 XXZ model and spin-1 ZF
model at arbitrary root of unity values of the anisotropy belong to the class of U(1)-invariant
Hamiltonians that possess hidden Onsager algebra symmetries.

A further discussion on the relation between the presentation O′ and sl2 loop algebra is
given in Appendix B.

3 Spin-1/2 case: semi-cyclic transfer matrices in XXZ model

We consider the N -site quasi-periodic (periodic with twistφ) spin-1/2 XXZ Hamiltonian which
can be expressed as

H(φ) =
N
∑

j=1

�

1
2

�

σ+j σ
−
j+1 +σ

−
j σ

+
j+1

�

+
∆

4

�

σz
j σ

z
j+1 − 1

�

�

. (12)

Here σ±j := (σx
j ± iσ y

j )/2, σαj = 1
⊗( j−1)⊗σα⊗1⊗(N− j) denotes the αth Pauli matrix acting at

site j and σ±N+ j = e±iφσ±j with 1≤ j < N . The Hamiltonian is hermitian provided the twist φ
and anisotropy parameter ∆ are real. The latter can be parametrised as

∆=
q+ q−1

2
= coshη, q = eη. (13)

The spin-1/2 XXZ Hamiltonian is integrable, allowing us to construct transfer matrices
that commute with the Hamiltonian. It can be considered as the Hamiltonian limit of the 6-
vertex model [31]. We use transfer matrices as the generating functions for infinitely many
conserved charges for the Hamiltonian. Moreover, transfer matrices can be written in terms
of Lax operator with auxiliary space labelled by a,

La j(u) = sinh u

�

Ka +K−1
a

2

�

⊗1 j + cosh u

�

Ka −K−1
a

2

�

⊗σz
j

+ sinhη
�

S+a ⊗σ
−
j + S−a ⊗σ

+
j

�

.

(14)

The operators in the auxiliary space a satisfy Uq(sl2) algebra [32],

K2
aS±a K−2

a = q±2S±a ,
�

S+a ,S−a
�

=
K2

a −K−2
a

q− q−1
. (15)

In this paper, we only consider the root of unity case, i.e.

η= iπ
`1

`2
, q = exp

�

iπ
`1

`2

�

, ε = q`2 = ±1, (16)

where `1 and `2 are coprimes. It is obvious that parameter q is a root of unity with q2`2 = 1.
In this case, we use the `2-dimensional semi-cyclic representation for the auxiliary space, ex-
plicitly given in Appendix C.3. The Lax operator is therefore denoted as Lsc. The semi-cyclic
Lax operator Lsc

a j(u, s,β) satisfies the following “RLL” relation,

Rsc
am(u− v, s,εβ)Lsc

an(u, s,ε2β)Lmn(v) = Lmn(v)L
sc
an(u, s,εβ)Rsc

am(u− v, s,ε2β), (17)

with β ∈ C. The “RLL” relation is first proven in Section 9 of [30], cf. Eq. (9.14) of [30].
Hilbert spaces m and n both correspond to C2, and R matrix Rsc

am(u) = Lsc
am(u+ η/2). When
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Figure 1: A pictorial illustration of semi-cyclic transfer matrix Tsc
a (u,β ,φ). The aux-

iliary space is denoted as a, while φ corresponds to the twist matrix. Different values
of parameter β in semi-cyclic representation are written explicitly next to each phys-
ical sites.

β = 0, the `2-dimensional semi-cyclic representation becomes `2-dimensional highest weight
representation, cf. Appendix A in [30].

Therefore, we define the monodromy matrix for a system with N sites and twist φ

Msc
s (u,β ,φ) = Lsc

aN (u, s,εNβ) · · ·Lsc
a j(u, s,ε jβ) · · ·Lsc

a1(u, s,εβ)Ea(φ), (18)

with twist operator Ea(φ) =
∑`2−1

j=0 eiφ j| j〉a〈 j|a acting in the auxiliary space. The twist φ
considered here is commensurate, cf. (21). As shown in [30], commensurate value of the
twist φ leads to the descendant tower structure and Onsager algebra due to the existence of
eigenstates associated with exact (Fabricius-McCoy) strings.

The transfer matrices are defined as

Tsc
s (u,β ,φ) = traMsc

s (u,β ,φ), (19)

depicted in Fig. 1.
Similarly, we define the transfer matrices Ts(u,φ) with auxiliary space being (2s + 1)-

dimensional unitary representation of Uq(sl2) when 2s ∈ Z>0, see Appendix C.2, i.e.

Ts(u,φ) = traMs(u,φ), Ms(u,φ) = LaN (u, s) · · ·La j(u, s) · · ·La1(u, s, )Ea(φ). (20)

A detailed discussion of the commutation relations between Ts(u,φ) and Tsc
s (u,β ,φ) can be

found in [30]. We would like to stress here that the “RLL” relation for the semi-cyclic transfer
matrices (17) is satisfied only when the twist φ is commensurate [30] which depends on the
parameters ε and N ,

εN = +1 ⇒ φ =
(2n− 2)π

`2
,

εN = −1 ⇒ φ =
(2n− 1)π

`2
,

1≤ n≤ `2, n ∈ N. (21)

It is worth emphasising that φ = 0 (with no twist) is commensurate when εN = +1, which has
been considered previously in [24–26]. Detailed derivations are shown in [30]. We assume
the twist φ is commensurate when defining the conserved charges below.

In addition to the generating functions for (quasi-)local charges [33–36] associated with
(2s+1)-dimensional spin-s representation (2s ∈ Z>0), cf. the constructions in [30], we define
two generating functions for quasilocal Z and Y charges,

Z(u,φ) =
1

2η
∂s logTsc

s (u,β ,φ)
�

�

s=(`2−1)/2,β=0 , (22)

and

Y(u,φ) =
1

2 sinhη
∂β logTsc

s (u,β ,φ)
�

�

s=(`2−1)/2,β=0 , (23)
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where the prefactors are chosen for later convenience in Sec. 2. The significance of the quasilo-
cality of conserved charges in the thermodynamic limit is beyond the scope of this work, and
we refer the readers to [37–39] for detailed discussions.

From the “RLL” relation, we could show that these two operators are in involution with
themselves respectively [30],

[Z(u,φ),Z(v,φ)] = [Y(u,φ),Y(v,φ)] = 0, u, v ∈ C, (24)

and they commute with the Hamiltonian

[Z(u,φ),H(φ)] = [Y(u,φ),H(φ)] = 0, u ∈ C. (25)

As for the commutation relations with transfer matrix with auxiliary space as (2s + 1)-
dimensional spin s representation, cf. Appendix C.2, we have

[Z(u,φ),Ts(v,φ)] = [Y(u,φ),Ts(v,φ)] = 0, ε = +1, 2s ∈ Z>0, u, v ∈ C; (26)

[Z(u,φ),Ts(v,φ)] = [Y(u,φ),Ts(v,φ)] = 0, ε = −1, s ∈ Z>0, u, v ∈ C,

[Z(u,φ),Ts′(v,φ)] = {Y(u,φ),Ts′(v,φ)}= 0, ε = −1, s′ ∈
Z>0

2
\Z>0, u, v ∈ C.

(27)

The anti-commutation between Y(u,φ) and Ts′(v,φ) when s′ is a half-integer might seem
confusing. The reason is that Y(u,φ) anti-commute with momentum operator when ε = −1,
that is Y(u,φ) is not translational invariant but 2-site translationally invariant which would
be clear in Sec. 4.1. This means acting by Y(u,φ) would change momentum of a state by π,
resulting in the anti-commutation relation in (27). Moreover, operators Z(u,φ) and Y(u,φ)
do not commute, which is closely related to the conjectured Onsager algebra, cf. Sec. 4.2.

Quasilocal Z and Y charges [36,40] can be obtained by expanding the generating functions
at u= u0, i.e.

Z(u,φ) =
∞
∑

n=0

(u− u0)
n Zn, Y(u,φ) =

∞
∑

n=0

(u− u0)
n Yn, (28)

where

ε = −1 ⇒ u0 =
η

2
; ε = +1 ⇒ u0 =

η− iπ
2

. (29)

The reason for the different values of u0 with respect to different ε values is given in Appendix
D.

Generating function Z(u,φ) is closely related to the Q operator and 2-parameter transfer
matrix for XXZ model at root of unity [30], while generating function Y(u,φ) is conjectured
to be the creation operator for exact (Fabricius–McCoy) strings in [30].

From (24), all Z or Y charges are in involution with each other,

[Zm,Zn] = [Ym,Yn] = 0, m, n ∈ Z≥0, (30)

and they can be expressed as

Zn =
1
n!
∂ n

u Z(u,φ)|u=u0
, Yn =

1
n!
∂ n

u Y(u,φ)|u=u0
, (31)

with the first terms
Z0 = Z(u0,φ), Y0 = Y(u0,φ). (32)
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4 Onsager algebra symmetry in spin-1/2 XXZ model at root of
unity

XX model (XXZ model with∆= 0) is a U(1)-invariant Hamiltonian that possesses the Onsager
algebra symmetry [16], cf. (11). We start this section by discussing the known results in the
XX case, which serves as the motivation for the conjectures in Sec. 4.2. We generalise the
results in the XX case by conjecturing the existence and properties of hidden Onsager algebra
symmetries for XXZ model at arbitrary root of unity.

4.1 Example: XX model

We illustrate the relation between Onsager generators and semi-cyclic transfer matrix
Tsc

s (u,β ,φ) using the example of spin-1/2 XX model. Twist φ considered here is always com-
mensurate, satisfying (21), namely φ ∈ {0,π} when system size N is even, and
φ ∈ {π/2, 3π/2} with system size N being odd.

The XX Hamiltonian is 1

HXX =
N
∑

j=1

h j , h j =
1
2

�

σ+j σ
−
j+1 +σ

−
j σ

+
j+1

�

, (33)

where the Onsager generators of algebra O′ are

Q0
0 =

1
2

N
∑

j=1

σz
j = Sz , Q±0 = 0, (34)

Q0
1 =

i
2

N
∑

j=1

�

σ+j σ
−
j+1 −σ

−
j σ
+
j+1

�

, Q+1 = −
i
2

N
∑

j=1

(−1) jσ+j σ
+
j+1,

Q−1 =
i
2

N
∑

j=1

(−1) jσ−j σ
−
j+1.

(35)

Using the isomorphism between O and O′, we express the Onsager generators of the standard
presentation O as

Q0 = Q0
0 +Q+0 +Q−0 , Q1 = Q0

1 +Q+1 +Q−1 . (36)

The Onsager generators of algebra O satisfy the DG relations
�

Q0,
�

Q0,
�

Q0,Q1

�

�

�

= `2
2

�

Q0,Q1

�

,
�

Q1,
�

Q1,
�

Q1,Q0

�

�

�

= `2
2

�

Q1,Q0

�

, (37)

with `2 = 2.

Remark. From the perspective of self-duality, we can equivalently choose

Q̃0 = Z0 + Y0 + Y†
0, Q̃1 =

1
2

N
∑

j=1

σz
j , (38)

which results in the same Onsager algebra. However, it is natural from the physics of the spin
chain to use the parametrisation in (34), (35) and (36). In this parametrisation, we choose
the U(1) charge Q0

0 as the magnetisation Sz , and Q±m have the physical meaning of changing
the states between different magnetisation sectors. The same parametrisation is used for the
higher-spin generalisation in Sec. 6.

1The twist φ is included in the Hamiltonian through the definition of σ±N+1, explained in the line below (12).
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Proof of (37). It is straightforward to check that generators (34) and (35) satisfy
�

Q0
0,Q0

1

�

= 0,
�

Q0
0,Q±1

�

= ±2Q±1 . (39)

The second equation is a simple consequence that operators Q±1 change the magnetisation by
±2. Hence, we have

[Q0,Q1] = 2
�

Q+1 −Q−1
�

. (40)

Applying the relation above twice, we obtain
�

Q0,
�

Q0,
�

Q0,Q1

�

�

�

= 4
�

Q0,Q1

�

. (41)

For the second equation in (37), we can compute the commutator explicitly, i.e.
�

Q1,
�

Q1,
�

Q1,Q0

�

�

�

= 2
�

Q1,
�

Q1,Q−1 −Q+1
�

�

=
�

Q1,
N
∑

j=1

σz
j −
�

σ+j σ
z
j+1σ

−
j+2 + (−1) jσ+j σ

z
jσ
+
j+2 + h.c.

�

�

= 4
�

Q1,Q0

�

.

(42)

It is straightforward to check that HXX is U(1) invariant, i.e. commuting with the Onsager
generators of O′ (and O),

�

HXX,Qr
m

�

= 0, r ∈ {0,+,−}, m ∈ Z. (43)

The relation to the canonical generators in Sec. 2 is of the form

Ar
m→ 2Qr

m, m ∈ Z, r ∈ {0,+,−}. (44)

The Onsager generators of O′ in terms of local spin operators are given in Appendix E.
What is truly striking here is that the generators Qr

1 can be identified with the Z and Y
charges Z0 and Y0, i.e.

Q0
1 = Z0, Q−1 = Y0, Q+1 = Y†

0. (45)

Proof of (45) We present a simple proof of (45) using direct calculation based on transfer
matrices. First, for the Lax operator with two-dimensional semi-cyclic representation (`2 = 2),
we have

Lsc
a j

�

iπ
4

,
1
2

,0
�

= iPa j , (46)

where permutation operator is defined as

Pa j =
1
2
(1a ⊗1 j +σ

z
a ⊗σ

z
j ) +σ

+
a ⊗σ

−
j +σ

−
a ⊗σ

+
j . (47)

The permutation operator Pab permutes the vector spaces a and b, i.e.

PabXa = XbPab, PabXb = XaPab, (48)

where Xa and Xb are operators acting on the vector spaces a and b respectively.
As for the transfer matrix, we have

T1/2

�η

2
, 0,φ

�

= iN traPaN · · ·Pa2Pa1Ea(φ) = iN E1(φ)P12P23 · · ·P(N−1)N , (49)
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making use of the property (48). Similarly, we have

1
2η
∂sT

sc
s

�η

2
,0,φ

�
�

�

�

s=1/2
=

iN−1

4

N
∑

j=1

E1(φ)P12P23 · · ·P( j−2)( j−1)

(σz
j+1 ⊗1 j −1 j+1 ⊗σz

j )P( j−1)( j+1) · · ·P(N−1)N ,

(50)

and

1
2 sinhη

∂βTsc
1/2

�η

2
,β ,φ

�
�

�

�

β=0
=

iN−1

2

N
∑

j=1

(−1) jE1(φ)P12P23 · · ·P( j−2)( j−1)

(σ−a ⊗σ
−
j )P( j−1)( j+1) · · ·P(N−1)N .

(51)

Combining with (49), we prove the two formulae in (45).
This relation has been pointed out in [16], and all operators Qr

n, Zn and Yn can be written
in terms of bilinear fermion operators, reflecting the free fermion nature of XX model. One of
the consequences is that there exists a closure condition for Onsager generators in XX model,
namely

Qr
n+2N = Qr

n, ∀n ∈ Z. (52)

The discussion of the physical meaning of the closure condition is postponed to Sec. 4.3. Since
there are infinitely many Qr

n, Zn and Yn, the relation between all of them needs to be elucidated.
In fact, all operators can be obtained recursively, and the first few read

Z1 =
1
1!

�

Q0
2 −Q0

0

�

, Z2 =
1
2!

�

2Q0
3 − 2Q0

1

�

, Z3 =
1
3!

�

6Q0
4 − 8Q0

2 + 2Q0
0

�

,

Y1 =
1
1!

�

Q−2 −Q−0
�

, Y2 =
1
2!

�

2Q−3 − 2Q−1
�

, Y3 =
1
3!

�

6Q−4 − 8Q−2 + 2Q−0
�

,
(53)

revealing a deep connection between the Onsager generators Qr
n and conserved charges Zn,

Yn. Relations between higher-order terms can be obtained recursively.

Derivation of (53) Instead of using the Lax operator directly which becomes cumbersome
when considering higher-order Z and Y charges, we present a derivation for the higher-order
Z and Y charges in terms of Onsager generators using boost operator approach [41–43]. The
boost operator in the XX models are defined as

BXX =
∑

j

BXX
j , BXX

j =
�

j +
1
2

�

1
2

�

σ+j σ
−
j+1 +σ

−
j σ
+
j+1

�

. (54)

The higher-order Z and Y charges are generated by commuting with boost operator (54),

Zm =
i
m

�

Zm−1,BXX
�

, Ym =
i
m

�

Ym−1,BXX
�

, (55)

with m ∈ Z>0. As for the validity of (55), we show a sketch of a proof that can be generalised
to the spin-s cases with `2 = 2s + 1 in Appendix F. Bearing this postulation in mind, we start
with a lemma,

i
�

Qr
m,BXX

�

= m
�

Qr
m+1 −Qr

m

�

, r ∈ {0,+,−}, (56)

where Qr
m are given in Appendix E. The proof of the lemma is straightforward after telescoping

the series. We demonstrate the proofs of Lemma (56) in Appendix G.
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Since we have already known that Z0 = Q0
1 in (45), we obtain higher-order relations by

applying (56) recursively,

Z1 =
i
1

�

Z0,BXX
�

= Q0
2 −Q0

0,

Z2 =
i
2

�

Z1,BXX
�

= Q0
3 −Q0

1 =
1
2!

�

2Q0
3 − 2Q0

1

�

,

Z3 =
i
3

�

Z2,BXX
�

= Q0
4 −

4
3

Q0
2 +

1
3

Q0
0 =

1
3!

�

6Q0
4 − 8Q0

2 + 2Q0
0

�

.

(57)

Similar expressions for Y charges are obtained analogously.
Moreover, we can write down a recursive expressions for the expansion of Zn and Yn in

terms of Onsager generators Qr
m, i.e.

Zn =
b(n+1)/2c
∑

j=0

cn
j Q0
(n+1)−2 j ,

Yn =
b(n+1)/2c
∑

j=0

cn
j Q−(n+1)−2 j , n ∈ Z,

(58)

where the coefficients are

cm
m+1 = c1

2 = 1, cm+1
x =

x − 1
m+ 1

cm
x−1 −

x + 1
m+ 1

cm
x+1. (59)

4.2 Conjectures on hidden Onsager algebra symmetries in spin-1/2 XXZ models
at root of unity

Motivated by the exact correspondence between the Onsager generators of O′ Qr
n and con-

served charges (Z and Y charges) in the XX case (q = exp(iπ/2) = i), cf. (45) and (53), it
is natural to generalise similar relations for the spin-1/2 XXZ model at arbitrary root of unity
(q = exp (iπ`1/`2)), despite that the operators Qr

n, Zn and Yn are no longer able to be ex-
pressed in local densities but quasilocal ones [33–36]. Another motivation to the following
conjectures is that the structure of descendant towers and exact (Fabricius–McCoy) strings are
of no difference between XX model and XXZ model at other root of unity. After numerically
verifying the relations, we are able to compose conjectures for the existence of the hidden On-
sager algebra symmetry in spin-1/2 XXZ model at arbitrary root of unity, which are as follows:

Conjecture I:
There exists a hidden Onsager algebra symmetry in spin-1/2 XXZ spin chain at root of unity
with commensurate twist (21). Spin-1/2 XXZ models at root of unity with commensurate
twist (21) are U(1) invariant, i.e.

�

H(φ),Qr
m

�

= 0, r ∈ {0,+,−}, m ∈ Z. (60)

The generators of the hidden Onsager algebra in the presentation O′ are obtained by means
of (44), i.e.

Q0
0 =

1
2

N
∑

j=1

σz , Q±0 = 0, (61)

Q0
1 = Z0 =

1
2η
∂s logTsc

s (u,β ,φ)

�

�

�

�

s=(`2−1)/2,u=u0,β=0
,

Q−1 = Y0 =
1

2 sinhη
∂β logTsc

s (u,β ,φ)

�

�

�

�

s=(`2−1)/2,u=u0,β=0
=
�

Q+1
�†

.
(62)
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We conjecture the identification between the canonical generators Ar
m and the generators Qr

m
for arbitrary root of unity to be of the form

Ar
m→

`2

4
Qr

m, m ∈ Z, r ∈ {0,+,−}. (63)

From the relation (36), the generators of the presentation O Qm are conjectured to satisfy the
DG relation

�

Q0,
�

Q0,
�

Q0,Q1

�

�

�

= `2
2

�

Q0,Q1

�

,
�

Q1,
�

Q1,
�

Q1,Q0

�

�

�

= `2
2

�

Q1,Q0

�

, (64)

with any `2 ∈ Z>0. Notice that the definition of semi-cyclic transfer matrix Tsc
s (u,β ,φ) depends

on the root of unity through ε = ±1.
Similar to (53), the higher-order Onsager generators are conjectured to be related to the

higher-order Z and Y charges.

Conjecture II:
In general, the higher-order Z and Y charges are functions of the higher-order Onsager gener-
ators such that

Zn =
�

`2

2

�n b(n+1)/2c
∑

j=0

cn
j Q0
(n+1)−2 j ,

Yn =
�

`2

2

�n b(n+1)/2c
∑

j=0

cn
j Q−(n+1)−2 j , n ∈ Z,

(65)

where cn
j ∈ N. The first three terms Zn and Yn, n ∈ {1, 2,3} can be expressed as

Z1 =
1
1!
`2

2

�

Q0
2 −Q0

0

�

, Z2 =
1
2!

�

`2

2

�2
�

2Q0
3 − 2Q0

1

�

,

Z3 =
1
3!

�

`2

2

�3
�

6Q0
4 − 8Q0

2 + 2Q0
0

�

,

Y1 =
1
1!
`2

2

�

Q−2 −Q−0
�

, Y2 =
1
2!

�

`2

2

�2
�

2Q−3 − 2Q−1
�

,

Y3 =
1
3!

�

`2

2

�3
�

6Q−4 − 8Q−2 + 2Q−0
�

.

(66)

Conjecture I (62) and Conjecture II (66) are proven for the case of XX model (`2 = 2),
illustrated in Sec. 4.1. Conjectures I and II, cf. (62) (as well as the identification between
the canonical generators Ar

m and the generators Qr
m in (63)) and (66) have been verified

numerically for cases whose roots of unity satisfy `2 = 3, 4,5 and all permitted values of `1
with system size N up to 12. The numerical evidence is convincing that Conjectures I and II
are true for arbitrary root of unity value of the anisotropy and system size.

4.3 Closure condition: free v.s. interacting

Let us assume that the conjectures above are true. One might wonder the question about the
physical difference between XX model and XXZ model at root of unity other than exp(iπ/2).
On the one hand, they all possess Onsager algebra symmetries, which are identical on the level
of algebraic structure; on the other hand, XX model permits a free fermionic description [16],
while XXZ model at other root of unity does not, due to its intrinsically interacting nature [20].
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The explicit forms of the Onsager generators of O Qm of different physical models in con-
sideration are regarded as different representations of the Onsager algebra. Even though the
algebraic structure of those generators for different models (1) is identical, the generators for
different models still have different properties. All the Onsager generators of O (and O′) for
XX model are bilinear in fermionic operators [16]. This can be seen by performing Jordan–
Wigner transformation for (E.1) and (E.2). It implies that for XXZ model at root of unity, the
representation associated with q = i has the free fermionic behaviour, resulting in the closure
condition (52) [16,17]. For other roots of unity q = exp

�

iπ `1
`2

�

6= exp (iπ/2), the closure con-
dition is no longer satisfied, since these models are interacting. This observation suggests that
we cannot transform all the nice properties and methods used for XX model to XXZ models at
other roots of unity.

Remark. Historically speaking, Onsager solved the partition function of two-dimensional
Ising model using both commutation relations between Onsager generators of O (1) and the
closure condition (52) [1]. Both of them are crucial to the exact solutions.

5 Spin-1 case: transfer matrix fusion

We can generalise the construction in the spin-1/2 case by considering the spin-1 generalisa-
tion of XXZ model (12), i.e. ZF model [44]. The spin-1 ZF model is the Hamiltonian limit to
the Izergin-Korepin 19-vertex model [45], leading to the construction of transfer matrix. The
N -site quasi-periodic ZF model reads

HZF(η,φ) =
N
∑

j=1

��

Sx
j S

x
j+1 + Sy

j S
y
j+1 + cosh(2η)Sz

jS
z
j+1

�

+ 2
h
�

Sx
j

�2
+
�

Sy
j

�2
+ cosh(2η)

�

Sx
j

�2i

−
∑

a,b

Aab(η)S
a
jS

b
j S

a
j+1S

b
j+1

�

,

(67)

where coefficients Aab = Aba take the values of

Ax x = Ay y = 1, Azz = cosh(2η), Ax y = 1, Axz = Ayz = 2 coshη− 1. (68)

The spin-1 operators are

Sx =
1
p

2





0 1 0
1 0 1
0 1 0



 , Sy =
1
p

2





0 −i 0
i 0 −i
0 i 0



 ,

Sz =





1 0 0
0 0 0
0 0 −1



 , S± = Sx ± iS−,

(69)

and Sαj = 1
⊗( j−1)
3 ⊗ Sα ⊗1⊗(N− j)

3 . The twist is encoded in the relation S±N+1 = e±iφS±1 .
The anisotropy parameter η can be re-parametrised in terms of q = expη. At root of unity

value q = exp
�

iπ `1
`2

�

with `1 and `2 being coprimes, we define parameter ε = q`2 = ±1.

When η = 0, i.e. the isotropic limit, HZF ∝
∑

j
~S j · ~S j+1 − (~S j · ~S j+1)2. This is known in

the literature as spin-1 Takhtajan–Babujian model [46–48], a spin-1 generalisation of spin-1/2
XXX model.

Spin-1 ZF model is integrable in the same way as spin-1/2 XXZ model, and its Lax oper-
ator can be obtained through the transfer matrix fusion relation [49, 50]. What has not been

13

https://scipost.org
https://scipost.org/SciPostPhys.11.3.066


SciPost Phys. 11, 066 (2021)

Figure 2: The semi-cyclic Lax operator of ZF model is expressed as a fusion of two
Lax operators of spin-1/2 XXZ model, cf. (70). Blue lines correspond to physical
Hilbert space with spin-1 representation of su2 algebra, which are obtained through
the fusion of two spin-1/2 representations denoted as black lines.

obtained previously is the semi-cyclic transfer matrix for ZF model with ε = −1. Here we
perform the transfer matrix fusion procedure for the semi-cyclic transfer matrix with arbitrary
ε = ±1 at root of unity.

The fusion procedure for Lax operator can be described pictorially in Fig. 2.
Equivalently, in terms of formulae, we express the semi-cyclic Lax operator Lsc

a j as

Lsc
a j(u, s,β) =

1

sinh2η
(1a ⊗M j)(1a ⊗Pmn)L

sc
am(u−η/2, s,εβ)

Lsc
an(u+η/2, s,ε2β)(1a ⊗M−1

j )(1a ⊗PT
mn),

(70)

where P operator projects operators in Hilbert space mn (spin-1
2 ⊗

1
2) to operators in Hilbert

space j (spin-1) and M operator fixes the normalisation of Lax operator, i.e.

Pmn =





1 0 0 0
0 1p

2
1p
2

0
0 0 0 1





mn

, M j =





1 0 0

0
p
[2]p
2

0
0 0 1





j

. (71)

Here q-number is defined as [x] = (qx − q−x)/(q− q−1).
When ε = +1, (70) reproduces the known result [16],

Lsc
a j(u, s,β) =







[ u
η −

1
2 + Sz

a][
u
η +

1
2 + Sz

a] S−a [
u
η −

1
2 + Sz

a]
�

S−a
�2

S+a [
u
η +

1
2 + Sz

a] S+a S−a + [
u
η +

1
2 + Sz

a][
u
η −

1
2 − Sz

a] S−a [
u
η −

3
2 + Sz

a]
�

S+a
�2

S+a [
u
η −

1
2 − Sz

a] [ u
η +

1
2 − Sz

a][
u
η −

1
2 − Sz

a]







j

. (72)

However, when ε = −1, relation (72) no longer holds. One should use (70) instead.
It is straightforward to show the RLL relation for the semi-cyclic Lax operator Lsc

a j(u, s,β),

Rsc
a j(u− v, s,β)Lsc

ak(u, s,β)L jk(v) = L jk(v)L
sc
ak(u, s,β)Rsc

am(u− v, s,β), (73)
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Figure 3: A pictorial proof of (73). We omit the M matrix parts in the Lax opera-
tor (70), which do not change the result.

where β ∈ C, and R matrix Rsc
a j(u) = Lsc

a j(u+ η/2). The proof is constructive and it is shown
in Fig. 3.

Via the fusion in Fig. 2, spin-1 ZF model can be seen as a fused spin-1/2 XXZ model with
even site. Hence, only the first condition of (21) remains for spin-1 ZF model. We have

ε = ±1 ⇒ φ =
(2n− 2)π

`2
, 1≤ n≤ `2, n ∈ N. (74)

We define the monodromy matrix accordingly

Msc
s (u,β ,φ) = Lsc

aN (u, s,β) · · ·Lsc
a j(u, s,β) · · ·Lsc

a1(u, s,β)Ea(φ), (75)

and semi-cyclic transfer matrix becomes

Tsc
s (u,β ,φ) = traM

sc
s (u,β ,φ). (76)

Precisely the same as the spin-1/2 case, we define two generating functions for quasilocal
Z and Y charges [50],

Z(u,φ) =
1

2η
∂s logTsc

s (u,β ,φ)
�

�

s=(`2−1)/2,β=0 , (77)

and

Y(u,φ) =
1

2sinhη
∂β logTsc

s (u,β ,φ)
�

�

s=(`2−1)/2,β=0 . (78)

More importantly, from the RLL relation (73), Z(u,φ) and Y(u,φ) satisfy identical relations
as their counterparts in spin-1/2 case, cf. Eqs. (24), (26) and (27). We shall not recite them
again here.

We expand the generating functions at spectral parameter u0 = η/2, i.e.

Z(u,φ) =
∞
∑

n=0

(u− u0)
n Zn, Y(u,φ) =

∞
∑

n=0

(u− u0)
n Yn. (79)

Identical to the spin-1/2 counterparts, Z or Y charges in spin-1 case are in involution with
each other respectively,

[Zm,Zn] = [Ym,Yn] = 0, m, n ∈ Z≥0. (80)

They are expressed as

Zn =
1
n!
∂ n

u Z(u,φ)|u=u0
, Yn =

1
n!
∂ n

u Y(u,φ)|u=u0
. (81)
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The first terms are
Z0 = Z (u0,φ) , Y0 = Y (u0,φ) , (82)

which are important when constructing Onsager generators, cf. Sec. 6.1.
It has been shown in [50] that for arbitrary root of unity, Z(u,φ) and Y(u,φ) are quasilocal

and thus Zm and Ym are quasilocal too. One special case is at η = iπ
3 or 2iπ

3 , with Zm and Ym
written in terms of local operators [16], which we will exploit in Sec. 6.1.

6 Onsager algebra symmetry in spin-1 ZF model at root of unity

We proceed in analogue to the spin-1/2 case. We start with an example of spin-1 ZF model
with η = iπ/3, which possesses the Onsager algebra symmetry in terms of operators with
local density in spite of its interacting nature. The construction below works for the case with
η= 2iπ/3 too, since the Hamiltonians with η and π−η are mapped to each other through a
unitary transformation [50]. This model is also known as spin-1 U(1)-invariant clock model
in [16]. Furthermore, we compose the conjectures for the hidden Onsager algebra symmetries
for spin-1 ZF model at arbitrary root of unity values of the anisotropy, similar to the spin-1/2
case.

6.1 Example: spin-1 U(1)-invariant clock model

We concentrate on the case of spin-1 U(1)-invariant clock model in this section. We introduce
three additional operators for later convenience,

τ=





1 0 0
0 ω 0
0 0 ω2



 , S+ =
2
∑

k=1

ek,k+1 =





0 1 0
0 0 1
0 0 0



=
�

S−
�†

, (83)

where ω= exp (2iπ/3) and matrix (eab)cd = δa
cδ

b
d .

We rewrite the Hamiltonian of spin-1 U(1)-invariant clock model, i.e. ZF Hamiltonian with
η= iπ

3 in terms of operators defined above up to a constant, i.e.

HZF(φ) = −
N
∑

j=1

2
∑

a=1

�

(−1)a
�

S−j S
+
j+1

�a
+ (−1)a

�

S+j S
−
j+1

�a

+
3− 2a

3
eiπa/3τa

j −
2
3

�

=
N
∑

j=1

h j , η=
iπ
3

,

(84)

h j = S−j S
+
j+1 +S+j S

−
j+1 −

�

S−j S
+
j+1

�2
−
�

S+j S
−
j+1

�2
−

1
2

�

Sz
j

�2
−

1
2

�

Sz
j+1

�2
, (85)

where S±j = 1
⊗( j−1)
3 ⊗ S± ⊗ 1⊗(N− j)

3 , τ j = 1
⊗( j−1)
3 ⊗ τ ⊗ 1⊗(N− j)

3 and S±L+1 = eiφS±1 . The
Hamiltonian (84) is the same as Eq. (2.9) in [16] up to a unitary gauge transformation, and it
can be seen as a generalisation of the spin-1/2 XX model [16]. The local term h j is expressed
in a symmetric way with respect to the jth and ( j+1)th terms in order to get the correct boost
operator, cf. (93).

As explained in [16], the Hamiltonian (84) is a U(1) invariant Hamiltonian that possesses
the Onsager algebra symmetry (11),

�

HZF(φ),Q
r
m

�

= 0, r ∈ {0,+,−}, m ∈ Z. (86)
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The Onsager generators of algebra O′ in terms of operators (83) are

Q0
0 =

N
∑

j=1

Sz
j , Q±0 = 0, (87)

Q0
1 =

N
∑

j=1

2
∑

a=1

ωa

1−ω−a

��

S−j S
+
j+1

�a
−
�

S+j S
−
j+1

�a�
, Q+1 =

�

Q−1
�†

,

Q−1 =
N
∑

j=1

2
∑

a=1

ωa

1−ω−a

�

S−j
�a �

S−j+1

�3−a
, ω= e2iπ/3.

(88)

The relation to Onsager generators of algebra O becomes

Q0 =Q0
0 +Q+0 +Q−0 , Q1 =Q0

1 +Q+1 +Q−1 . (89)

The Onsager generators of O satisfy the DG relations, i.e.
�

Q0,
�

Q0,
�

Q0,Q1

�

�

�

= `2
2

�

Q0,Q1

�

,
�

Q1,
�

Q1,
�

Q1,Q0

�

�

�

= `2
2

�

Q1,Q0

�

, (90)

with `2 = 3 in this case. Higher-order generators can be obtained through applying relations
(4) and (5) recursively. This Hamiltonian (84) is special, since the Onsager generators are in
fact local, instead of quasilocal in the generic cases.

Moreover, identical to the example in Sec. 4.1, the Onsager generators are expressed in
terms of Z and Y charges, which are able to be written in local densities when η= iπ/3,

Q0
1 = Z0, Q−1 = Y0, Q+1 = Y†

0. (91)

This relation is derived again using the explicit form of Lax operator, which is similar to the
derivation in Sec. 4.1.

This analogue are extended further. We find precisely the same relation as in spin-1/2
cases with finite system sizes N ∼ 10, cf. (66),

Z1 =
`2

2
1
1!

�

Q0
2 −Q

0
0

�

, Z2 =
�

`2

2

�2 1
2!

�

2Q0
3 −Q

0
1

�

,

Z3 =
�

`2

2

�3 1
3!

�

6Q0
4 − 8Q0

2 + 2Q0
0

�

,

Y1 =
`2

2
1
1!

�

Q−2 −Q
−
0

�

, Y2 =
�

`2

2

�2 1
2!

�

2Q−3 −Q
−
1

�

,

Y3 =
�

`2

2

�3 1
3!

�

6Q−4 − 8Q−2 + 2Q−0
�

,

(92)

with `2 = 3.

Derivation of (92) Similar to the XX case, we derive the higher-order Z and Y charges using
boost operator approach. However, the model is interacting and more terms are involved when
constructing the higher-order charges. Here we sketch the method and present explicit results
for Z1 and Y1 in Appendix H. The boost operator for spin-1 ZF model with η= iπ/3 is of form

BZF =
∑

j

BZF
j =

i
sinhη

∑

j

�

j +
1
2

�

h j . (93)
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After regrouping the elements, we have

BZF
j =

2
p

3

��

j +
1
2

�

S+j S
−
j+1 +

�

j +
1
2

�

S−j S
+
j+1 −

�

j +
1
2

�

�

S+j S
−
j+1

�2

−
�

j +
1
2

�

�

S−j S
+
j+1

�2
− j

�

Sz
j

�2
�

.
(94)

Higher-order Z and Y charges are postulated to be

Zm =
i
m

�

Zm−1,BZF
�

, Ym =
i
m

�

Ym−1,BZF
�

, (95)

identical to the XX case.
Due to the interacting nature, cf. Sec. 4.3, the closure condition (52) is absent for spin-1 ZF

model with η= iπ/3, or equivalently spin-1 U(1)-invariant clock model [16]. Hence, the On-
sager generators of O Qm obtained from (87) and (88) is an explicit interacting representation
of the Onsager algebra.

6.2 Conjectures on hidden Onsager algebra symmetries in spin-1 ZF models at
root of unity

Motivated by the spin-1/2 case in Sec. 4.2 and the example of spin-1 U(1)-invariant clock
model in Sec. 6.1, we arrive at exactly the same conjectures: (62), (65) and (66) with operators
acting on spin-1/2 physical Hilbert space replaced by the ones acting on spin-1 physical Hilbert
space. We shall not repeat the same equations here.

In the spin-1 case, Conjecture I (62) is proven for `2 = 3, while the identification between
the canonical generators Ar

m and the generators Qr
m (63), (66) and (65) are checked numeri-

cally, cf. Sec. 6.1. Conjectures I and II have been verified numerically for various cases when
roots of unity satisfy `2 = 3,4 and all permitted values of `1 with system size N up to 10.
Similar to the spin-1/2 case, the numerical evidence is convincing that Conjectures I and II are
true for arbitrary root of unity value of the anisotropy and the system size.

7 Conclusion and outlook

In this article we focus on the hidden Onsager algebra symmetry structure in spin-1/2 XXZ
model and its spin-1 generalisation, ZF model, at root of unity value of the anisotropy. By con-
structing the semi-cyclic transfer matrices and the generating functions for conserved charges,
we propose two conjectures for the hidden Onsager algebra symmetries in the aforementioned
models, motivated by two examples of spin-1/2 XX model and spin-1 U(1)-invariant clock
model (ZF model with η = iπ/3). It is straightforward to observe that one can obtain similar
results for higher spin generalisations of XXZ model at root of unity through transfer matrix
fusion procedure, exemplified in Sec. 5. Despite the credibility of the conjectures, it would be
interesting to prove them using quantum integrability, by means of the methods in [30, 51].
The conjectures also hint at the relation between the underlying quantum group structure of
those models at root of unity and Onsager algebra symmetry. Future investigations in this
direction would reveal possible connections between them.

For spin-1/2 XXZ model at root of unity, we have two sets of commuting charges Zm and Yn,
while they do not commute with operators in the other set. The non-commutability between
Zm and Yn has consequences in the thermodynamic limit, leading to oscillatory behaviour of
auto-correlation functions [52,53]. The relation between the oscillatory behaviour of correla-
tion functions in the thermodynamic limit to the hidden Onsager algebra symmetries in those
models still needs further consideration.
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Moreover, there are recent works on Onsager algebra and its q-deformation in XXZ model
with open and half-infinite boundary conditions [54, 55]. It would be of great interest to
understand the relation to the results in this article concerning the same model with quasi-
periodic boundary condition. There are several generalisations of the Onsager algebra that
have appeared in the literature [56–58], which are related to spin chains associated with
higher-rank symmetries. It would be of great interest to investigate the physical applications
for the generalisations of the Onsager algebra.
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A Isomorphism between O and O′

We start with the standard presentation of the Onsager algebra O. We construct the following
linear combinations of the generators Am and Gn satisfying O,

Ã0
m =

1
2
(Am +A−m) , Ã±m =

1
4
(Am −A−m)±

1
2

Gm, (A.1)

with m ∈ Z. It is straightforward to check that new generators Ãr
m satisfy precisely the presen-

tation O′ by checking relations (3), (4) and (5). It implies that O′ is a subalgebra of O.
We switch to the presentation O′. We construct again the following linear combinations of

the generators Ar
m satisfying O′,

Ãm = A0
m +A+m +A−m, G̃m = A−m −A+m, (A.2)

with m ∈ Z. Those new generators satisfy the definition of O (1). Thus it implies that O is a
subalgebra of O′.

Combining these two conclusions, we observe that O and O′ are isomorphic to each other.
They are both equivalent presentations of the Onsager algebra. We refer them to the presen-
tation O and the presentation O′ of the Onsager algebra, respectively.

B The Onsager algebra as a subalgebra of sl2 loop algebra

The Onsager algebra is also a subalgebra of the sl2 loop algebra L(sl2) [56]. This can be
demonstrated in a straightforward manner using the presentation O′. Before showing that O′

(as well as O due to the isomorphism) is a subalgebra of L(sl2), we start with the definition
of L(sl2) ∼= sl2 ⊗ C[t, t−1] with generators {e+m,e−m,fm|m ∈ Z} in Chevalley basis. C[t, t−1]
stands for the algebra consisting of all the Laurent polynomials with coefficients in the field of
complex numbers C. The sl2 generators satisfy

[e+,e−] = f, [f,e±] = ±2e±. (B.1)
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The generators of L(sl2) are thus

e±m = e± ⊗ tm, fm = f⊗ tm, (B.2)

with m ∈ Z. They satisfy the following relation,

[e+m,e−n ] = fn+m, [fm,e±n ] = ±2e±n+m. (B.3)

Using the generators of L(sl2), we construct the following generators

Ã0
m = fm + f−m, Ã±m = ±

�

e±m − e
±
−m

�

. (B.4)

Generators defined in (B.4) satisfy the definition of the presentation O′, cf. (3), (4) and (5),
using (B.3). Therefore, the presentation O′ and its isomorphism O are subalgebras of sl2 loop
algebra.

Remark. Spin-1/2 XXZ model at root of unity has been shown to possess the sl2 loop algebra
symmetries in [59, 60]. It might seem trivial to conjecture that spin-1/2 XXZ model at root
of unity possesses the Onsager algebra symmetry, since the Onsager algebra is a subalgebra
of the sl2 loop algebra. However, it is not the case. The reasons are as follows. The sl2 loop
algebra generators for XXZ model at root of unity are defined differently for each magnetisation
sectors Sz = m(mod`2). For different values of m, the sl2 loop algebra generators are different
[59]. For instance, the simplest example is when magnetisation satisfying Sz = 0(mod`2)with
q0 = exp

�

iπ `1
`2

�

. It is shown in Ref. [59] that operators

�

S±
�(`2) = lim

q→q0

1
[`2]q

�

S±
�`2 ,

�

S̄±
�(`2) = lim

q→q0

1
[`2]q

�

S̄±
�`2 (B.5)

are related to a representation of the algebra L(sl2) by making the following identification

e±0 =
�

S±
�(`2), e±1 =

�

S̄±
�(`2),

f0 = −f1 = −
�

− q0

�`2 Sz

`2
.

(B.6)

The definitions of operators S±, S̄± and q-number can be found in Appendix C. These genera-
tors only commute with the XXZ Hamiltonian and transfer matrices within the sector
Sz = 0(mod`2). For other sectors Sz 6= 0(mod`2), operators (B.6) are no longer the gen-
erators and there exist other operators in terms of S± and S̄± that commute with the XXZ
Hamiltonian and transfer matrices Ts within the specific sector only, which forms a represen-
tation of the algebra L(sl2). In short, the sl2 loop algebra symmetries proposed in Ref. [59,60]
depend on the magnetisation sectors.

However, the conjectures presented in this article apply to all the states within the physical
Hilbert space of N sites. In another word, the generators for the Onsager algebra symme-
tries are the same for any magnetisation sectors. This is the crucial difference between the
conjectures in this article and the preceding results in the literature. Already from here, we
observe that the Onsager algebra symmetries conjectured are of close relation to the sl2 loop
algebra symmetries for different magnetisation sectors discussed previously. We postpone this
discussions to investigations in the future.

C Representations of Uq(sl2)

In this appendix we briefly mention a few representations used in this article. For a mathe-
matical and complete treatment of the representations of the Hopf algebra Uq(sl2), we refer
the readers to [32].
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C.1 Global representation

The physical Hilbert space (C2)⊗N can be used to construct two global representations of
Uq(sl2), cf. (15). The coproduct can be defined in two ways,

S± 7→ S± ⊗K−1 +K⊗ S±, K 7→ K⊗K, (C.1)

or
S̄± 7→ S̄± ⊗K+K−1 ⊗ S̄±, K̄= K 7→ K⊗K. (C.2)

Counits and antipodes are defined accordingly, see e.g. Eqs. (1.2)–(1.4) in Ref. [23]. When
the Hilbert space is C2, S± = S̄±.

Explicitly, when the physical Hilbert space is C2, the representation is given by S± = σ±

and K = qσ
z/2. For the physical Hilbert space (C2)⊗N with N > 2 we obtain two (reducible)

representations acting the two coproducts above

S± =
N
∑

j=1

qσ
z
1/2 ⊗ · · · ⊗ qσ

z
j−1/2 ⊗σ±j ⊗ q−σ

z
j+1/2 ⊗ · · · ⊗ q−σ

z
N/2,

K= qSz
= qσ

z
1/2 ⊗ qσ

z
2/2 ⊗ · · · ⊗ qσ

z
N/2,

(C.3)

and

S̄± =
N
∑

j=1

q−σ
z
1/2 ⊗ · · · ⊗ q−σ

z
j−1/2 ⊗σ±j ⊗ qσ

z
j+1/2 ⊗ · · · ⊗ qσ

z
N/2,

K̄= qS̄z
= qσ

z
1/2 ⊗ qσ

z
2/2 ⊗ · · · ⊗ qσ

z
N/2 = K.

(C.4)

C.2 Unitary representations of Uq(sl2)

Similarly to the sl2 algebra, with any deformation parameter q, there exist (2s+1)-dimensional
unitary representation of Uq(sl2) algebra when spin satisfies 2s ∈ Z≥0.

We can express the representations in the (2s + 1)-dimensional vector space Va spanned
over {|n}2s

n=0 with 2s ∈ Z≥0. Specifically,

Sz
a =

2s
∑

n=0

(−s+ n)|n〉〈n|, Ka = exp
�

ηSz
a

�

=
2s
∑

n=0

q−s+n|n〉〈n|, (C.1)

S+a =
2s−1
∑

n=0

Æ

[2s− n][n+ 1]|n+ 1〉〈n|, S−a =
2s−1
∑

n=0

Æ

[2s− n][n+ 1]|n〉〈n+ 1|, (C.2)

with q-number [x] = (qx − q−x)/(q− q−1). These representations are called “unitary” due to
the fact that

�

S+a
�†
= S−a .

It is easy to verify that the (2s+1)-dimensional unitary representations satisfy the relation
(15) by direct calculation.

C.3 `2-dimensional semi-cyclic representation of Uq(sl2)

When we consider the algebra Uq(sl2) at root of unity q = exp
�

iπ `1
`2

�

, there always exists a
`2-dimensional semi-cyclic representation that satisfies the relation (15) [30,33].
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The `2-dimensional semi-cyclic representation, parametrised by complex spin s ∈ C and
semi-cyclic parameter β ∈ C, is defined on a `2-dimensional vector space Va spanned over
{|n〉}`2−1

n=0 . Explicitly we have,

Sz
a =

`2−1
∑

n=0

(−s+ n)|n〉〈n|, Ka = exp
�

ηSz
a

�

=
`2−1
∑

n=0

q−s+n|n〉〈n|, (C.1)

S+a = β |0〉〈`2 − 1|+
`2−2
∑

n=0

[2s− n]|n+ 1〉〈n|, S−a =
`2−2
∑

n=0

[n+ 1]|n〉〈n+ 1|. (C.2)

When parameter β = 0, the representation is no longer semi-cyclic, and it is called the
`2-dimensional highest-weight representation [30]. In that case, the Uq(sl2) relation (15) is
still satisfied.

D Choice of u0 in (29)

In (29) we expand the generating functions Z(u,φ) and Y(u,φ) at different spectral parameter
values for cases with ε = ±1. We would like to provide some details in this appendix. As usual,
the twist φ satisfies commensurate condition (21).

To begin with, we notice that when ε = +1,

Tsc
(`2−1)/2

�η

2
,0,φ

�

(D.1)

is not invertible (i.e. not full-ranked), while it is invertible when ε = −1. Meanwhile, transfer
matrices with ε = +1 are related to transfer matrices with ε = −1. We can see that from the
existence of a unitary gauge transformation U [30,61]

U= exp

 

iπ
N
∑

j=1

j
2
σz

j

!

, (D.2)

such that
UH(∆,φ)U† = −H(−∆,φ′). (D.3)

The twists are related as

φ′ =

¨

φ N even,

φ +π N odd.
(D.4)

We consider 2 transfer matrices, one with η (ε = exp(`2η) = −1) and the other one with
η′ = iπ−η (ε′ = exp(`2η

′) = +1). This implies that `2 is odd. When s = `2−1
2 and β = 0, we

have
UTsc

s (u, 0,φ,η)U† = Tsc
s (−u, 0,φ,η′). (D.5)

The above equation is satisfied only when s ∈ Z>0. This implies that `2−1
2 ∈ Z>0, i.e. `2 is

odd. Moreover, if φ with parameter η in (D.4) satisfies commensurate condition (21), φ′ with
parameter η′ in (D.4) also satisfies commensurate condition (21).

Therefore, if we were to define

Q0
1(η,φ) = Z0 =

1
2η
∂s logTsc

s (u,β ,φ,η)
�

�

s=(`2−1)/2,β=0,u=η/2 , (D.6)
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it is natural to define

Q0
1(η

′,φ′) = UQ0(η,φ)U†

=
1

2η′
∂s logTsc

s (u,β ,φ′,η′)
�

�

s=(`2−1)/2,β=0,u=−η/2 ,
(D.7)

satisfying the same algebraic relations after applying the unitary gauge transformation U. Sim-
ilar relations for Q±1 can be inferred.

In this case −η2 =
η′

2 −
iπ
2 , indicating (29). We have used the value of u0 defined in (29) to

numerically verify the conjectures in Sec. 4.2. For instance, for the cases of η= 2iπ/3, 2iπ/5
and 4iπ/5, the conjectures remain true with system size N up to 12.

E Onsager generators in XX case

In the case of XX model, we obtain analytically all the Onsager generators when the twist is
commensurate, cf. (21) by calculating the recursion relation analytically. The results are as
follows.

Q0
m =

i
2

N
∑

j=1

(−i)m−1σ+j σ
z
j+1 · · ·σ

z
j+m−1σ

−
j+m − im−1σ−j σ

z
j+1 · · ·σ

z
j+m−1σ

+
j+m, (E.1)

Q−m =
i
2

N
∑

j=1

(−i)m−1(−1) jσ−j σ
z
j+1 · · ·σ

z
j+m−1σ

−
j+m =

�

Q+m
�†

, (E.2)

where σ±N+k = e±iφ/2σ±k with 1 ≤ k < N . All generators are bilinear in fermionic operators
after Jordan–Wigner transformation [16].

From the formulae (E.1) and (E.2), we observe that

Q0
m+2N = Q0

m, Q±m+2N = Q±m, (E.3)

i.e. the closure condition in (52).

F Sketch of proof for the validity of boost operator approach

Boost operator approach can be used to obtain the (quasi-)local density of higher-order charges
with arbitrary auxiliary space [41]. In the derivation below, we do not assume any constraint
on the auxiliary space a. In practice, we consider the case when the densities of conserved
charges under consideration are local. For the semi-cyclic transfer matrix, it requires that
`2 = 2s + 1 when the physical spin is s. We demonstrate the validity considering s = 1/2
(`2 = 2), i.e. XX model. One can generalise the construction to higher-spin scenarios.

We start with the “RLL” relation for the semi-cyclic Lax operator,

Lsc
am(u, s,εβ)Lsc

an(u+ v, s,ε2β)Rmn(v) = Rmn(v)L
sc
an(u+ v, s,εβ)Lsc

am(u, s,ε2β), (F.1)

where the R matrix reads
Rmn(v) = Lsc

mn(v +η/2,1/2,0). (F.2)

The R matrix satisfies the following properties

Rmn(0) = sinhηPmn, R−1
mn(0) ∂vRmn(v)|v=0 =

1
sinhη

hm,n, (F.3)
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where the local terms for the Hamiltonian (33) are

h j, j+1 := h j , H=
∑

j

h j . (F.4)

We differentiate (F.1) with respect to spectral parameter v and take the limit v→ 0, yielding

Lsc
am(u, s,εβ)∂uLsc

an(u, s,ε2β)− ∂uLsc
am(u, s,εβ)Lsc

an(u, s,ε2β)

= −i
�

hm,n,Lsc
am(u, s,εβ)Lsc

an(u, s,ε2β)
�

,
(F.5)

where
lim
v→0
∂vLsc

am(u+ v, s,ε2β) = ∂uLsc
am(u, s,ε2β). (F.6)

Taking the following limit, m→ j, n→ j + 1, and β → ε j−1β , we obtain

Lsc
a j(u, s,ε jβ)∂uLsc

a( j+1)(u, s,ε j+1β)− ∂uLsc
a j(u, s,ε jβ)Lsc

a( j+1)(u, s,ε j+1β)

= −i
�

hm,n,Lsc
a j(u, s,ε jβ)Lsc

a( j+1)(u, s,ε j+1β)
�

.
(F.7)

In the following, we sketch the essential steps to obtain the boost operator. First, we
multiply on both sides of (F.7)

j−1
∏

k=1

Lsc
ak(u, s,εkβ), (F.8)

from the left and
N
∏

k= j+1

Lsc
ak(u, s,εkβ), (F.9)

from the right. Next, we take the trace over the auxiliary space a. Finally, we multiply by
( j + 1/2) on both sides and sum over j. By telescoping the sum on the left hand side, we
obtain

∂uTsc
s (u,β ,φ) = i

�

Tsc
s (u,β ,φ),B

�

, (F.10)

where the boost operator is of form

B =
∑

j

B j , B j =
1

sinhη

�

j +
1
2

�

h j . (F.11)

Here we also take the limit N →∞ to avoid the boundary terms.
From (F.10) we have

∂uZ(u) = i [Z(u),B] , (F.12)

∂uY(u) = i [Y(u),B] . (F.13)

Matching the coefficient for each order of um using (28), we have

Zm =
i
m
[Zm−1,B] , m ∈ Z>0, (F.14)

Ym =
i
m
[Ym−1,B] , m ∈ Z>0. (F.15)

Using the boost operator (F.11), we check that the local density for higher-order charges is
correct even in the presence of a diagonal twist with a finite system size. This procedure can
be generalised to higher-spin cases in the same manner.
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G Proof of Lemma (56)

Starting from (E.1), we calculate the commutator with the boost operator (54) for m≥ 2,

i
�

Q0
m,BXX

�

=
∑

j

j

�

(−i)m−1

2
σ+j−mσ

z
j−m+1 · · ·σ

z
jσ
−
j+1 −σ

+
j σ

z
j+1 · · ·σ

z
j+mσ

−
j+m+1 + h.c.

�

+ j

�

(−i)m−1

2
σ+j−mσ

z
j−m+1 · · ·σ

z
j−1σ

−
j −σ

+
j+1σ

z
j+2 · · ·σ

z
j+mσ

−
j+m+1 + h.c.

�

= m
∑

j

�

(−i)m−1

2
σ+j σ

z
j+1 · · ·σ

z
j+mσ

−
j+m+1 + h.c.

�

+m
∑

j

�

(−i)m−1

2
σ+j σ

z
j+1 · · ·σ

z
j+m−2σ

−
j+m−1 + h.c.

�

= mQ0
m+1 −mQ0

m−1,

(G.1)

where we have telescoped the series after the second equals sign.
Similarly, from (E.2), we have

i
�

Q−m,BXX
�

= m
∑

j

�

(−i)m−1

2
(−1) jσ−j σ

z
j+1 · · ·σ

z
j+mσ

−
j+m+1

�

+m
∑

j

�

(−i)m−1

2
(−1) jσ−j σ

z
j+1 · · ·σ

z
j+m−2σ

−
j+m−1

�

= mQ−m+1 −mQ−m−1,

(G.2)

for m≥ 2.
When m= 1, we obtain

i
�

Q0
1,BXX

�

=
1
2

∑

j

�

σ+j σ
z
j+1σ

−
j+2 +σ

−
j σ

z
j+1σ

+
j+2 −σ

z
j

�

= Q0
2 −Q0

0, (G.3)

i
�

Q−1 ,BXX
�

=
1
2

∑

j

(−1) jσ−j σ
z
j+1σ

−
j+2 = Q−2 −Q−0 . (G.4)

Therefore, we conclude that for all m ∈ Z>0,

i
�

Q0
m,BXX

�

= mQ0
m+1 −mQ0

m−1, (G.5)

i
�

Q−m,BXX
�

= mQ−m+1 −mQ−m−1. (G.6)

Taking the complex conjugate on (G.6), we obtain

−i
�

�

BXX
�†

,Q+m
�

= i
�

Q+m,BXX
�

= mQ+m+1 −mQ+m−1, (G.7)

which concludes the proof of Lemma (56).
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H Higher-order Z and Y charges in spin-1 case

We present the result for the charges Z1 and Y1 in local density terms explicitly for spin-1 ZF
model with η= iπ/3,

Z1 = i
�

Z0,BZF
�

=
2
3

∑

j

�

Sz
jS
−
j S
+
j+1 +S+j S
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−
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z
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z
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+S−j S
z
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+
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z
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−
j+2 +

�
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+
�
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�
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+
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�
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−
�

S−j
�2
{S−j+1,Sz

j+1}S
+
j+2 −

�

S+j
�2
{S+j+1,Sz

j+1}S
−
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i

=
3
2

�
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2 −Q

0
0

�

;

(H.1)

Y1 = i
�

Y0,BZF
�

=
2
3

∑

j

�

1
2

�
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z
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−
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z
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(H.2)

These two charges Z1 and Y1 are obtained using boost operator approach.
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