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Abstract

The spin-
1
2 Heisenberg XXZ chain is a paradigmatic quantum integrable model. Although

it can be solved exactly via Bethe ansatz techniques, there are still open issues regarding
the spectrum at root of unity values of the anisotropy. We construct Baxter’s Q operator
at arbitrary anisotropy from a two-parameter transfer matrix associated to a complex-
spin auxiliary space. A decomposition of this transfer matrix provides a simple proof
of the transfer matrix fusion and Wronskian relations. At root of unity a truncation
allows us to construct the Q operator explicitly in terms of finite-dimensional matrices.
From its decomposition we derive truncated fusion and Wronskian relations as well as
an interpolation-type formula that has been conjectured previously. We elucidate the
Fabricius–McCoy (FM) strings and exponential degeneracies in the spectrum of the six-
vertex transfer matrix at root of unity. Using a semicyclic auxiliary representation we give
a conjecture for creation and annihilation operators of FM strings for all roots of unity.
We connect our findings with the ‘string-charge duality’ in the thermodynamic limit,
leading to a conjecture for the imaginary part of the FM string centres with potential
applications to out-of-equilibrium physics.
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1 Introduction

To study the dynamics of a quantum many-body system, it is of vital importance to know the
full spectrum, i.e. all eigenstates of the Hamiltonian. For instance, with the knowledge of the
spectrum it is possible to calculate the density matrix, which is the central object to study the
entanglement properties of many-body systems [1]. Furthermore, one can use the spectrum to
study the quantum quench problem, a paradigmatic example of out-of-equilibrium dynamics
following the logic of the Quench Action [2,3]. The spectrum of quantum Hamiltonian is also
closely related to the partition function of the corresponding classical statistical physics model,
which can be used to detect phase transitions [4].

However, it is very difficult to obtain the full spectrum, especially for strongly interacting
systems. Some models can be mapped into a free fermion (parafermion) model through a
non-local mapping [5–8], resulting in relatively simple spectra. However, generally such a
construction does not exist for an interacting many-body system.

Fortunately, there are strongly interacting models amenable to exact methods. Using quan-
tum integrability [9, 10] it is possible to obtain the spectrum. For these models, the transfer
matrices are the generating functions of the conserved (quasi-)local charges that contribute
to the dynamics in the thermodynamic limit. In this setting the generalized Gibbs ensemble
(GGE) [11] has proven a crucial tool to study quench problems in integrable models [12], with
a close relation to the transfer matrix approach. For quantum integrable models Bethe-ansatz
techniques provide an exact characterisation of the spectrum. The eigenvalues of the transfer
matrix are obtained via a set of rapidity parameters whose physical values, called Bethe roots,
obey the Bethe equations [13]. The latter follow in a straightforward way from a difference
equation known as Baxter’s TQ relation [9,14–16]. The problem of determining whether the
solutions of the Bethe equations provide a complete set of eigenstates has drawn attention in
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both mathematics and physics [17–24].1 The results in this article can help to understand the
completeness at root of unity by describing and illustrating different structures present in the
spectrum.

It is in principle possible to obtain the full spectrum of the spin-1
2 XXZ chain at root of unity

by solving Baxter’s TQ relation. The main problem is that there are (a large number of) de-
generate eigenstates of the transfer matrix, which cannot be easilly interpreted as solution to
the (functional) TQ relation [25–29]. One of the difficulties specific to the root of unity case,
is that given a solution of the TQ relation which corresponds to an eigenstate, it is possible to
multiply the Q function by certain polynomial factors left undetermined by the TQ relation,
which provide other solutions called descendants. When these new solutions turn out to corre-
spond to true eigenstates, they can be interpreted as the presence of bound states called ‘exact
strings’ (Fabricius–McCoy strings) that do not scatter with other excitations [16,20,30–36]. In
Ref. [32], Fabricius and McCoy proposed to organise the descendants into irreducible repre-
sentations of the loop algebra of sl2, cf. [37–39]. They can be obtained by acting with creation
operators on highest weight states. These representations have dimension 2n and are char-
acterised by a degree-n polynomial called the Drinfeld polynomial which, unlike the regular
eigenvalues of the Q operator, shows when the descendants are present.

In this article, we propose an operatorial approach to this problem. Namely, building on
Refs. [36, 40] we define a two-parameter transfer matrix that is used to construct the Q op-
erator, i.e. the solution to the matrix TQ relation. Once the Q operator is obtained, all the
physical solutions to Bethe equations can be extracted as the zeroes of the eigenvalues, in-
cluding the solutions associated to exact strings. Baxter found a Q operator for the six-vertex
model by directly solving the matrix TQ relation [9]. Our Q operator is closer to that proposed
by Korff [33]. It can be easily implemented on a laptop for system size N ≤ 16 when the
denominator `2 of the root of unity is less than 10. We illustrate with several explicit examples
the appearance of Fabricius–McCoy strings as well as Bethe roots at infinity. In addition, we
prove in an elementary way some conjectured results in Refs. [32,34,41]. Closely related to the
Q operator, we obtain a second solution of the TQ relation corresponding to the polynomial P
of Pronko and Stroganov [25]. The eigenvalues of the P and Q operators both contain factors
associated to Fabricius–McCoy strings. The product of these factors coincides with the Drinfeld
polynomial of [32,39], see also Section 8.5. In this setting, the degeneracy of the loop-algebra
multiplets is recovered from the different ways to decompose the Drinfeld polynomial into
two factors belonging to Q and P, respectively, cf. Section 7.1. We present conjectures for the
creation and annihilation operators for eigenstates associated to the degeneracies in Section 9.

Furthermore, we find that the existence of Fabricius–McCoy strings is closely related to the
quasilocal Z charges [42–44] that lie at the origin of the fractal structure of the spin Drude
weight in the spin-1

2 XXZ model at root of unity [45]. The ‘string-charge duality’ [46], a
functional relation that links the root density of bound states to the generating functions of
conserved charges based on the thermodynamic Bethe ansatz, can be illustrated by considering
the spectrum with Fabricius–McCoy strings at root of unity. In addition, we give a conjecture
about the string centres of Fabricius–McCoy strings based on the string hypothesis.

Outline. We start in Section 2 with some examples to illustrate the problems that one encoun-
ters at root of unity. The main body of the paper can be divided into two parts. Sections 3–6
deal with the formalism. After a short introduction to the framework of the quantum inverse
scattering method in Section 3, we define the two-parameter transfer matrices and derive

1 The Bethe ansatz has been proven to be complete for the XXZ spin chain with generic inhomogeneities and
twist [18]. At a practical level these results are sufficient as one can calculate physical quantities for the inhomo-
geneous model and take the homogeneous limit at the end. In this work we focus on the homogeneous XXZ spin
chain. We do not address completeness at a rigorous level here.
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their factorisation properties in Section 4. These results allow us to construct the Q operator
explicitly as well as transfer matrix fusion and Wronskian relations for arbitrary anisotropy
parameter ∆ in Section 5. In Section 6 we prove the truncated transfer matrix fusion and
Wronskian relations at root of unity, leading to an interpolation formula that has been previ-
ously conjectured in Refs. [32,34,41].

Sections 7–10 deal with the applications to understanding the spectrum of the XXZ spin
chain (and six-vertex model) at root of unity. Equipped with the exact form of the Q operator,
we demonstrate the descendant tower structure with numerous examples in Sections 7–8.
We present a conjecture for the Fabricius–McCoy string creation and annihilation operators in
Section 9. Discussions on the thermodynamic limit of solutions with Fabricius–McCoy strings
follow in Section 10.

We conclude in Section 11. Some technical details are provided in the Appendices.

2 Motivation

Before we start with the technical part, let us describe features that motivate our study of the
spectrum of the XXZ spin chain at root of unity.

2.1 XXZ spin chain

Consider the quasiperiodic spin-1
2 Heisenberg XXZ spin chain of N sites, with Hamiltonian

H=
N−1
∑

j=1

�

1
2

�

σ+j σ
−
j+1 +σ

−
j σ

+
j+1

�

+
∆

4

�

σz
j σ

z
j+1 − 1

�

�

+
eiφ

2
σ+N σ

−
1 +

e−iφ

2
σ−N σ

+
1 +
∆

4

�

σz
N σ

z
1 − 1

�

.

(2.1)

Here σ±j := (σx
j ± iσ y

j )/2 and σαj = 1
⊗( j−1)⊗σα⊗1⊗(N− j) denotes the αth Pauli matrix acting

at site j. The Hamiltonian is hermitian provided the twist φ and anisotropy parameter ∆ are
real. The latter can be parametrised as

∆=
q+ q−1

2
= coshη , q = eη . (2.2)

We will be particularly interested in case where q is a root of unity, i.e.

η= iπ
`1

`2
, q2`2 = 1 , (2.3)

for `1,`2 ∈ Z>0 coprime. We will sometimes write

ε := q`2 ∈ {±1} . (2.4)

The root-of-unity case is important for the gapless (massless) regime −1<∆< 1.
By partial isotropy (2.1) commutes with Sz =

∑N
j=1σ

z
j/2, so we can fix the magnetisation

Sz = 1
2 N − M , 0 ≤ M ≤ N . Away from the isotropic point, ∆ 6= ±1, the usual (sl2) ladder

operators
∑

j σ
±
j are no longer relevant. Instead, the modification (q-deformation)

S± =
N
∑

j=1

qσ
z
1/2 · · ·qσ

z
j−1/2σ±j q−σ

z
j+1/2 · · ·q−σ

z
N/2 , qσ

z/2 = diag(q1/2, q−1/2) , (2.5)
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will have a role to play, although they do not commute with H in general either.2 These
operators obey a variant of the relations of Uq(sl2), quantum sl2:

[Sz ,S±] = ±S± ,
�

S+,S−
�

= [2Sz]q , [x]q :=
qx − q−x

q− q−1
. (2.6)

Here the q-deformed integer applied to x = 2Sz is understood via qx = exp(η x), cf. (2.5).
Note that the representation (2.5) breaks the symmetry of (2.1) under parity, i.e. spatial reflec-
tion. We will also encounter the parity-conjugate (opposite) representation of Uq(sl2), which
we denote by S̄z = Sz and S̄± = S±|q 7→q−1 . We call such representations on the spin-chain
Hilbert space (C2)⊗N ‘global’. See Appendix A for more about Uq(sl2) and its representations.

The XXZ spin chain is exactly solvable by Bethe ansatz [50–54]. Here one seeks eigenvec-
tors |{um}Mm=1〉 parametrised in a clever way that involve M unknown parameters um ∈ C. We
will outline the algebraic Bethe ansatz, i.e. the construction of |{um}Mm=1〉 through the quantum
inverse scattering method, in Section 3. The outcome is that |{um}Mm=1〉 is an eigenvector of
(2.1) provided the rapidities um solve the Bethe equations

�

sinh(um +η/2)
sinh(um −η/2)

�N M
∏

m′(6=m)

sinh(um − um′ −η)
sinh(um − um′ +η)

= e−iφ , 1≤ m≤ M . (2.7)

Its (twisted) momentum and energy are

p = φ +
M
∑

m=1

pm , E =
M
∑

m=1

Em , (2.8)

where the (quasi)momentum and (quasi)energy associated with the mth Bethe root are

pm = i log
sinh(um −η/2)
sinh(um +η/2)

,

Em = cos(pm)−∆=
sinh2η

2 sinh(um +η/2) sinh(um −η/2)
.

(2.9)

Here the momentum is defined such that eip is the eigenvalue of the (twisted, right) translation
operator, see Appendix B.2. The Bethe equations (2.7) can be rewritten as

eiN pm

M
∏

m′(6=m)

S(pm, pm′) = e−iφ , 1≤ m≤ M , (2.10)

where the scattering phase for two Bethe roots is

S(pm, pn) = −
ei(pm+pn) − 2∆ eipn + 1
ei(pm+pn) − 2∆ eipm + 1

=
sinh(um − un −η)
sinh(um − un +η)

. (2.11)

By slight abuse of notation we will denote the final expression by S(um, un).
Let us stress that, more precisely, by ‘Bethe roots’ we will mean the roots of the Q func-

tion, i.e. the eigenvalue of Baxter’s Q-operator, see Section 5.5. Each set {um} of Bethe roots
in the strip −π/2 < Im u ≤ π/2 3 specifies an eigenstate. The distribution of Bethe roots in

2 One gets Uq(sl2) symmetry by changing the boundary terms in (2.1) to obtain ‘open boundaries’ [47, 48] or
nonlocal twists arising from ‘braid translations’ [49]. Alternatively, at special values of the twist in (2.1) the q-
deformed ladder operators act as a sort symmetry [47]. Namely, if Hk := H|φ=kiη then S±H2±(N−2M) = H±(N−2M) S±

on vectors with Sz = 1
2 N −M .

3 Note that u+ iπ ≡ u since sinh(u+ iπ) = −sinh u and there is an even number of such factors in the Bethe
equations (2.7) and eigenvalues (2.8)–(2.9).
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the complex plane is crucial to understand the thermodynamic properties of integrable sys-
tems, leading to thermodynamic Bethe ansatz (TBA). As we will see in Section 10 the study
of the spectrum at finite system size N may already shed light on the origin of string-charge
duality [46] which is important to study dynamics in the thermodynamic limit.

The main question that we set out to understand is what is the structure of the spectrum of the
XXZ spin chain at root of unity? Despite of its exact characterisation this is not yet understood
systematically. In the following two subsections we discuss phenomena that motivate our
study. Although we focus on the spin-chain perspective, note that these phenomena are equally
relevant for the root-of-unity case of the six-vertex model, whose transfer matrix gives rise to
the XXZ Hamiltonian (2.1), see Section 3.

2.2 Bethe roots at infinity

When ∆ = ±1 the spectrum exhibits degeneracies reflecting the model’s isotropy (sl2-
invariance). Although there are additional degeneracies in the spectrum of H due to par-
ity invariance, the latter are lifted when taking into account the momentum — or any other
parity-odd charge generated by the transfer matrix, or indeed the transfer matrix itself. Let us
focus on the degeneracies in the joint spectrum and return to isotropy. The lowering operator
∑

j σ
−
j of sl2 can be thought of as adding a magnon with vanishing quasimomentum; indeed,

it can be shown that a Bethe-ansatz vector has highest weight iff pm 6= 0mod 2π [10]. The
isotropic limit of (2.9) (rescale um   ηum and let η→ 0) shows that pm = 0 corresponds to
um = ±∞. That is, for the XXX spin chain Bethe roots at infinity signal descendant states.

Now switch on the anisotropy parameter ∆ 6= ±1. Then
∑

j σ
±
j are no longer symmetries,

so one might expect there to be no more Bethe roots at infinity. However, numerical solutions
of the Bethe equations (e.g. via the recipe from Appendix C.1) show that infinite Bethe roots
are in fact present for the XXZ spin chain.

To see when Bethe roots at infinity occur we turn to the Bethe equations (2.7). Write n±∞
for the number of Bethe roots at ±∞, so that of course n+∞+n−∞ ≤ M . Note that pm→∓iη
for um → ±∞, while S(um, un)→ e∓2η as long as un is finite or goes to ∓∞. Let us assume
that the roots at +∞ do not scatter (S = 1) amongst each other, and likewise for those at
−∞. Then the Bethe equation for the infinite root um = ±∞ becomes [20,30,55]

exp
�

±
�

N − 2 (M − n±∞)
�

η
�

= exp(−iφ) . (2.12)

Let us examine the possible values of n±∞ ∈ N in each regime of the XXZ spin chain.
For η ∈ R, i.e. in the gapped regime (|∆|> 1), and twist φ ∈ R the only solutions are

φ = 0 , n+∞ = n−∞ =
2M − N

2
. (2.13)

This implies that physical solutions with Bethe roots at infinity only exist when M > N/2
(‘beyond the equator’) and N is even, and that the infinite Bethe roots come in pairs.

Next consider the gapless regime (|∆| < 1). When η ∈ i (R\πQ), so not at root of unity,
there are more possibilities to allow for Bethe roots at infinity, as long as the twist φ is tuned
to an (even or odd, depending on the parity of N) integer multiple of iη:

n±∞ =
2M − N ∓ iφ/η

2
. (2.14)

In particular, the number of roots at +∞ and −∞ do not coincide if φ 6= 0. Finally, at root
of unity η= iπ`1/`2 the condition becomes

n±∞ =
2M − N ∓ iφ/η+ 2πi k±/η

2
, k± ∈ Z . (2.15)
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In this case there is an additional condition that we will discuss momentarily, see (2.17).
The meaning of n±∞ 6= 0 for the XXZ model can be understood from the algebraic Bethe

ansatz (see Section 3): Bethe roots at infinity correspond to applications of the lowering opera-
tors of the global Uq(sl2) algebra (see Appendix A.1). Namely, when N is even and φ vanishes,
each eigenstate beyond the equator (say at M ′ > N/2) is obtained from a Bethe eigenvector
at M = N − M ′ < N/2 by M ′ − N/2 = N/2− M applications of the parity-invariant product
S− S̄−. Up to an overall factor the result is the spin-reverse of the Bethe vector we started with.
That is, we find that

|{vm′}M
′

m′=1〉 ∝
�

S− S̄−
�N/2−M |{um}Mm=1〉 ∝

N
∏

k=1

σx
k |{um}Mm=1〉 . (2.16)

If N is odd the XXZ spin chain is still invariant under a global spin flip, reversing ↑↔↓ ev-
erywhere, but there are no infinite roots and we have not been able to find a simple relation
between the Bethe roots {vm′}M

′

m′=1 and {um}Mm=1 on the two sides of the equator.
At root of unity we have to be a little more careful since S− and S̄− are nilpotent. Here an

additional requirement is needed to ensure that (2.16) is nonzero:

0≤ n+∞ ≤ `2 − 1 , 0≤ n−∞ ≤ `2 − 1 . (2.17)

In particular, in the periodic case (φ = 0) there is at most one nonzero solution to (2.15) in
the range (2.17), leaving only three possible scenarios:

n+∞ = n−∞ ; n+∞ > n−∞ = 0 ; n−∞ > n+∞ = 0 . (2.18)

The machinery that we shall develop in Sections 4–6 will help to understand the structure
present in the spectrum due to such infinite Bethe roots. The conclusion (2.18) will be useful
in Section 8.1 when we discuss applications to the spectrum of the XXZ model.

2.3 Fabricius–McCoy strings

At root of unity — including, but certainly not limited to, the free-fermion point ∆ = 0,
η = iπ/2 — the spectrum of the XXZ spin chain has many degeneracies [37]. Fabricius and
McCoy realised [30,31] that this is related to solutions to the Bethe equations (2.7) that con-
tain exact `2-strings. An earlier work of Baxter [16] has shown similar solutions in the 8-vertex
model (XYZ model). A Fabricius–McCoy (FM) string consists of `2 Bethe roots that are equally
spaced (in the imaginary direction, chosen in the interval (−iπ/2, iπ/2] as explained in Foot-
note 3 on p. 6) around a string centre αFM ∈ C:

um = α
FM +

2 m− 1− `2

2`2
iπ , 1≤ m≤ `2 . (2.19)

This describes a bound state, which as a whole does not scatter with other Bethe roots:

`2
∏

m=1

S(um, um′) = 1 , `2 < m′ ≤ M . (2.20)

A FM string is not only ‘transparent’ in scattering, but has vanishing energy; indeed, it does not
carry any local charge generated by transfer matrix T1/2(u), except that it may carry momen-
tum π as we explain Section 8. It actually carries a specific type of quasilocal charges called
the Z charges [42,43,45]; the physical implications of this will be discussed in Section 10.2.

When any FM string is present amongst the Bethe roots for a given eigenstate, it is not
possible to determine the location of the string centre αFM by solving the (functional) TQ
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relation using method in Appendix C.1. In Ref. [31] the authors derive an equation for the
string centres; we find (see Section 8.5) that its solutions correspond to eigenvectors of H that
are not eigenvectors for the Q operator (cf. the following example), and in particular the FM
strings obtained following [31] do not correspond to zeroes of the Q function. In this article
we present a way that enables us to determine αFM in a way that remedies this. A conjecture
for the imaginary part of the FM string centres is given in Section 10.2.

Example. To preview the kind of results we are able to get with our methods consider a ho-
mogeneous spin chain with N = 6, φ = 0 and ∆ = 1/2 = cos(π/3) so `1 = 1 and `2 = 3.
At M = 3 there are two degenerate states with the same eigenvalues of Ts(u), 2s ∈ Z>0 .
These eigenvalues moreover coincide with those of |↑↑↑↑↑↑〉 and |↓↓↓↓↓↓〉 up to a sign. Using
the techniques from Section 6 we find that the two degenerate states have FM strings whose
centres we can determine exactly:

um = α
FM
1 + (m− 2)

iπ
3

,

vm = α
FM
2 + (m− 2)

iπ
3

,
αFM

1,2 = ±
log(10+ 3

p
11)

6
+

iπ
6

, 1≤ m≤ 3 , (2.21)

where the Bethe roots are found analytically using the truncated two-parameter transfer matrix
that we will introduce in Section 6.

The degeneracies signal some symmetry acquired by the XXZ spin chain at root of unity.
Namely, in this case a there is a representation of the loop algebra of sl2 [37–39]. In short:
although the `2th powers of S± and S̄± vanish one can regularise these operators to obtain
generators of the loop algebra. Its lowering operators produce eigenvectors that correspond
to the FM string (2.21). In fact, the eigenspace is spanned by any two out of the four vectors

lim
η→iπ/3

(S−)3

[3]q!
|↑↑↑↑↑↑〉 , |{u1, u2, u3}〉 ,

lim
η→iπ/3

(S̄−)3

[3]q!
|↑↑↑↑↑↑〉, |{v1, v2, v3}〉 .

(2.22)

(Here [3]q!= [3]q [2]q.) That is, the Bethe vectors on the right in (2.22) are nontrivial linear
combinations of the two ‘loop descendants’ on the left. In particular, the latter are not eigen-
vectors of the two-parameter transfer matrix T̃(x , y) that we will introduce in Section 6.2, and
hence neither of the Q operator.

3 Basics of the QISM

Let us briefly review the quantum inverse scattering method (QISM). We start with the Lax
operator associated to a single spin-1

2 site. Consider an auxiliary space Va, which is an irre-
ducible representation of Uq(sl2). Let us work with generators S±a along with Ka = qSz

a . In
terms of this formulation the commutation relations (2.6) read

Ka S±a K−1
a = q±1 S±a ,

�

S+a ,S−a
�

=
K2

a −K−2
a

q− q−1
. (3.1)
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Figure 1: Graphical representation of the transfer matrix with N sites. The (cyclic)
thick red line is the auxiliary space and the black lines represent the spin-1

2 spaces.
The twist operator is labelled by φ.

Although the sites of the spin chain will always have spin 1
2 , we will consider various repre-

sentations Va, summarised in Appendix A.2. The Lax operator on Va ⊗C2 is

La j(u) = sinh(u)
Ka +K−1

a

2
+ cosh(u)

Ka −K−1
a

2
σz

j + sinh(η)
�

S+a σ
−
j + S−a σ

+
j

�

=
1
2

�

eu Ka − e−u K−1
a 2 sinh(η)S−a

2sinh(η)S+a eu K−1
a − e−u Ka

�

j

=

�

sinh
�

u+ηSz
a

�

sinh(η)S−a
sinh(η)S+a sinh

�

u−ηSz
a

�

�

j
,

(3.2)

where the matrix acts on the spin-1
2 representation at site j and the entries are operators on

the auxiliary space. Importantly, the Lax operator obeys the RLL relations

Rab(u− v)La j(u)Lb j(v) = Lb j(v)La j(u)Rab(u− v) (3.3)

on Va ⊗ Vb ⊗C2, where Vb
∼= Va is a second copy of the auxiliary space. We will parametrise

the entries of the R-matrix in such a way that the algebraic Bethe ansatz immediately gives the
usual Bethe equations, which requires the shift by η/2 in (3.3). In case the auxiliary space is
the spin-1

2 representation the R-matrix which can be expressed as

Rab(u) =







sinh(u+η) 0 0 0
0 sinh u sinhη 0
0 sinhη sinh u 0
0 0 0 sinh(u+η)







ab

, (3.4)

and the Lax operator (3.2) is given by the same matrix with u  u−η/2.4

Now consider N spin-1
2 sites, each with its own (local) Lax operator La j(u). The mon-

odromy matrix (global Lax operator) on Va ⊗ (C2)⊗N is5

Ma(u,φ) = LaN (u) · · ·La2(u)La1(u)Ea(φ) , (3.5)

where we included φ through the twist operator Ea(φ). We will only consider diagonal
twists, so that the R-matrix commutes with Ea(φ)Eb(φ). When Va is the spin-1

2 irrep we have
Ea(φ) = diag(eiφ , 1); see Appendix B.1 for the other representations that we will use. It is
easy to show (using the ‘train argument’) that the monodromy matrix obeys the RLL relations
(3.3) too. There are several things we get out of this setup.

First of all we can construct the Hamiltonian (2.1) and its symmetries. The transfer matrix
T is the trace of monodromy matrix Ma over the auxiliary space

T(u,φ) = tra Ma(u,φ) , (3.6)

4 When Va is two-dimensional the Lax matrix (3.2) is symmetric in the sense that PLP = L, with P the permu-
tation on C2 ⊗C2. This allows us to reverse the roles of a and j in (3.2). One obtains the matrix in (3.4) with u
replaced by u−η/2 using S±a = σ

±
a and Ka = exp(ησz

a/2) = diag(eη/2, e−η/2).
5 Inhomogeneity parameters can be effortless included as usual. Since we are interested in the spectrum of the

homogeneous spin chain we omit the inhomogeneities from the start to keep the notation light.
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provided this trace can be taken — which is not obvious when Va is infinite dimensional; we
will get back to this. The RLL relations6 imply that this is a one-parameter family of commuting
operators,

[T(u,φ),T(v,φ)] = 0 , for all u, v ∈ C . (3.7)

As a consequence any expansion in u generates a hierarchy of commuting operators that do
not depend on u. Particularly important charges are obtained by taking logarithmic derivatives
with respect to the spectral parameter u:

I( j) = −i
d j−1

du j−1
logT(u,φ)

�

�

�

u=η/2
. (3.8)

In particular, when the auxiliary space has spin 1
2 — the transfer matrix of the six-vertex model

— this includes the twisted translation operator ( j = 1) and the XXZ Hamiltonian (2.1) ( j = 2),
see Appendix B.2. More generally, when Va

∼= C2s+1 is the spin-s irrep of Uq(sl2) with s ≥ 1
the resulting conserved charges are quasilocal [42,43,45].

Next, the spectrum of the transfer matrix with Va
∼= C2, and in particular the XXZ spin

chain, can be characterised via the algebraic Bethe ansatz. Keeping Va
∼= C2 the monodromy

matrix can be written as a matrix in auxiliary space,

s = 1/2 : Ma(u,φ) =

�

A(u) B(u)
C(u) D(u)

�

a

�

eiφ 0
0 1

�

a
, (3.9)

with entries that act on the spin-chain Hilbert space (C2)⊗N . Let us stress that this point of
view is opposite to that in (3.2), where we were thinking of the Lax operator as a 2×2 matrix
on the physical space associated to site j, with entries that were operators on the auxiliary
space. When Va = C2 and N = 1 the two perspectives happen to coincide, see Footnote 4 on
p. 10.

The operators on the diagonal in (3.9) give rise to the (twisted) transfer matrix,

s = 1/2 : T(u,φ) = eiφA(u) +D(u) . (3.10)

The operators in the off-diagonal entries of (3.9) are used for the algebraic Bethe ansatz.
Namely, let |Ω〉 = |↑↑· · ·↑〉 be the pseudovacuum state, killed by C(u). A routine computation
using the RLL relations shows that

|{vm}Mm=1〉=
M
∏

m=1

B(vm) |Ω〉 (3.11)

is an eigenvector of (3.10) with eigenvalue

T (u, {vm}Mm=1,φ) = eiφ sinhN (u+η/2)
M
∏

m=1

sinh(vm − u+η)
sinh(vm − u)

+ sinhN (u−η/2)
M
∏

m=1

sinh(u− vm +η)
sinh(u− vm)

(3.12)

provided the parameters {vm} satisfy the Bethe equations (2.7). The energy and momentum
in (2.8)–(2.9) follow from (3.8).

Remark. When the spectrum of transfer matrices of a system at root of unity contains eigen-
states associated with FM strings, the construction (3.11) is not enough to obtain all the eigen-
states [20,30,31]. However, it is still possible to label the eigenstates as |{u j}Mj=1〉where {u j}Mj=1

6 A more general construction of the R matrix is given in Section 4.3, cf. Eq. (4.23).
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are interpreted as the zeroes of the eigenvalue of the Q operator constructed in Section 6.2,
see also Sections 5.5 and 6.6. We will use this definition to label all the eigenstates of the
Q operator. In the absence of FM strings they can be explicitly constructed via the algebraic
Bethe ansatz (3.11); for the case with FM strings see our conjectures in Section 9.

3.1 Transfer matrices

By varying the dimension of the auxiliary space one obtains different transfer matrices. In
general, for a choice of auxiliary space Va, local Lax operator La j(u) on Va ⊗ C2 and twist
operator Ea(φ) on Va one gets a monodromy matrix and corresponding transfer matrix as in
(3.5)–(3.6). In (3.9)–(3.10) we encountered the example where Va = C2 is a spin-1/2 space,
yielding the (‘fundamental’) s = 1/2 transfer matrix of the six-vertex model.

In order to remember which auxiliary space is used in the definition of a particular transfer
matrix we will from now on decorate each T (with e.g. a subscript, superscript, tilde) to keep
track of the choice of Va that was traced over; here we deviate from the usual meaning of
subscripts that we used so far. That is, if Va is some Uq(sl2) irrep R then we will write

TR(u,φ) = tra

�

LaN (u) · · ·La2(u)La1(u)Ea(φ)
�

, Va = R . (3.13)

For example, from now on T1/2 denotes the fundamental transfer matrix (3.9)–(3.10). We
will need the following choices of R, whose details can be found in Appendix A.2:

• The unitary spin-s representation with s ∈ 1
2 Z≥0. Here Vs = C2s+1. We denote the

monodromy and transfer matrices by Ms and Ts. This generalises the case s = 1/2
considered so far, and leads to the quasilocal charges mentioned above.

• The highest-weight spin-s representation with ‘complex spin’ s ∈ C. We denote its trans-
fer matrix by Thw

s .

– For generic q (not at root of unity) this representation is infinite dimensional. One
has to take care that the trace in (3.6) makes sense in this case.

– If s ∈ 1
2 Z≥0 it can be truncated to a (2s+1)-dimensional (sub)representation. The

result coincides with the unitary spin-s representation up to a gauge transformation
(conjugation). In particular, having taken the trace over the auxiliary space, the
truncated transfer matrix is equal to Ts. See Section 5.1.

– At root of unity both the lowering and raising operators of the complex-spin highest-
weight representation become nilpotent, allowing for another truncation to a `2-
dimensional subspace for any s ∈ C. We will denote this truncated transfer matrix
by T̃s. It will be introduced in Sections 6.1–6.2 .

Let us already stress an important difference between the two truncated transfer matrices.
Since `2 varies wildly as η = iπ `1

`2
runs through iπQ the spectrum of the truncated transfer

matrices T̃s, with `2-dimensional auxiliary space, will not be continuous in η. This is illustrated
in Appendix E.2. Instead, the transfer matrices Ts for s ∈ 1

2Z have spectra that vary smoothly
with η.

A generalisation (obtained by fusion in the auxiliary spaces) of the RLL relations (3.3)
guarantees that each of the above transfer matrices commute amongst themselves, like in
(3.7), as well as with each other (for different s, s′). As a result, they share the eigenvectors
produced by the algebraic Bethe ansatz (3.11).

The transfer-matrix fusion relations are a system of equations that show how the higher-
spin transfer matrices Ts can be constructed from T1/2. This is usually proven by fusion, taking
the tensor product of several spin-1

2 representations (putting several monodromy matrices on
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top of each other) and projecting onto the spin-s submodule, see e.g. [56, 57]. We will get
back to the fusion relations in Section 5.3 and 6.4.

3.2 Q operators

There have been numerous endeavours to understand the relations between the different
transfer matrices and how they can be used to characterise all eigenstates of the XXZ spin chain.
The most famous of these was found by Baxter in the 70s [14–16], where he constructed the Q
operator that satisfies the matrix TQ relation (with respect to T1/2) for the eight-vertex model,
which is closely related to the XYZ spin chain. A similar construction can be performed for the
six-vertex model and the XXZ spin chain [9]. The eigenvalues of the Q operator are called Q
functions, and their zeroes are precisely Bethe roots, i.e. solutions to the Bethe equations (2.7),
yielding eigenvectors via the Bethe ansatz as in (3.11). Baxter constructed the Q operator by
solving the matrix TQ relation directly. For the purpose of numerically obtaining Bethe roots
it is much easier to solve the functional TQ relation, i.e. the relation between the eigenvalues
of T1/2 and the Q operator. We summarise how this works in Appendix C.1. At root of unity,
however, the functional TQ relation is not enough to determine the full spectrum.

In the following sections we will construct the Q operator explicitly and prove the matrix
TQ relation and the transfer matrix fusion relation. We use a new approach that is based on
the factorisation and decomposition of transfer matrix Thw

s associated to an auxilary space that
is an infinite-dimensional complex-spin representation [40]. This construction works for any
anisotropy parameter ∆ ∈ R. In the case of root of unity we prove truncated fusion relations
for the transfer matrices T̃s using the same method. These truncated fusion relations will in
turn allow us to prove a conjecture of [32,34,41]. This enables us to construct the Q operator
explicit at root of unity, and elucidate the exponential degeneracies, which are closely related
to the FM string from Section 2.3 but cannot be resolved via the functional TQ relation.

4 Factorisation of Thw
s

We start with an important technical result: the spin s ∈ C highest-weight transfer matrix
gives rise to a two-parameter transfer matrix that admits a useful factorisation. In this and the
following sections we consider arbitrary q; we will specialise to root of unity later.

4.1 Factorisation of Lax operator

The factorisation of the spin-chain transfer matrix has a long history starting with the chiral
Potts model [58,59]. In particular it was used for the XXX model [60], for the XXZ chain [61]
and for the XXZ chain with nonconservative boundary conditions [40]. We follow here the
approach of [40].

Before we start to prove the factorisation of the transfer matrix Thw
s we need to study the

factorisation of the Lax operator when the auxiliary space Va is an infinite-dimensional complex
spin-s representation. Although for Thw

s we are interested in the ‘half-infinite’ highest-weight
(Verma) module, see (A.9) in Appendix A.2, our starting point is a bigger space. Although
the monodromy matrix can be defined using this internal space, its trace cannot be taken as
discussed in Appendix B.1 and needs to be truncated. Let Va be the infinite-dimensional Hilbert
space with orthonormal basis |n〉a, n ∈ Z. It decomposes as a direct sum Va = V+a ⊕V−a , where
V+a is spanned by |n〉a with n ≥ 0, which is the space that we are after, while V−a is the span
of |n〉a with n < 0. For this auxiliary space we will implicitly assume that the trace in (3.6) is
only over V+a .
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Let us write |n〉〈n′|a := |n〉a a〈n′| for the matrix basis. Consider the following operators:

Wa =
∞
∑

n=−∞
qn |n〉〈n|a , Xa =

∞
∑

n=−∞
|n+ 1〉〈n|a . (4.1)

If we think of Va as the sequence space `2 by identifying |n〉a with the sequence δn with
entries (δn)i = δni then Xa is the right shift. The two operators (4.1) form a Weyl pair,
Wa Xa = q XaWa. In other words, Wa counts the weight and Xa raises it. We will also use
the adjoint X†

a =
∑

n|n〉〈n+ 1|a. On Va it is the inverse of Xa. In particular X†
a commutes with

Xa on Va.
The half-infinite space V+a is preserved by both of (4.1), but not by X†

a. The role of the
latter is taken over by the adjoint of the restriction Xa|V+a , which we denote by

Ya =
∞
∑

n=0

|n〉〈n+ 1|a . (4.2)

On V+a we have Ya Xa = 1 while Xa Ya =
∑

n>0 |n〉〈n|a 6= 1. Together, (4.1) and (4.2) can be
used to give a highest-weight representation of Uq(sl2) on V+a with spin s ∈ C:

on V+a :

Ka = q−s Wa =
∞
∑

n=0

qn−s |n〉〈n|a ,

S+a =
q2s+1 W−1

a − q−2s−1 Wa

q− q−1
Xa =

∞
∑

n=0

[2s− n]q |n+ 1〉〈n|a ,

S−a = Ya
Wa −W−1

a

q− q−1
=
∞
∑

n=0

[n+ 1]q |n〉〈n+ 1|a .

(4.3)

See also Appendix A.2.
Now we turn to the Lax operator La j(u, s) associated to a site j. Let us introduce two

‘spectral parameters’ x and y as simple combinations of u and s,

x := u+
2s+ 1

2
η , y := u−

2s+ 1
2

η , (4.4)

that will be convenient when deriving the transfer matrix fusion relations. Starting with the big
auxiliary space Va the Lax operator can be decomposed into a product of operators separating
the dependence on these spectral parameters (see also appendix B of Ref. [62]):

La j(u, s) =
1
2

�

X†
a 0

0 1

�

j
u j(x)

�

Wa 0
0 W−1

a

�

j
vj(y)

T

�

Xa 0
0 1

�

j
, (4.5)

where the two by two matrices u(x) and v(y) are defined as

u(x) =

�

1 −1
−e−x+η/2 ex−η/2

�

, v(y) =

�

e y−η/2 e−y+η/2

1 1

�

. (4.6)

The factorisation (4.5) coincides with the one introduced in [61]. To understand (4.5) we
compute the product on the right-hand side. The result is

La j(x , y) =
1
2

�

e y+η/2 Wa − e−y−η/2 W−1
a X†

a (Wa −W−1
a )

(ex−y W−1
a − e−x+y Wa)Xa ex−η/2 W−1

a − e−x+η/2 Wa

�

j
, (4.7)

where we simplified the top-left entry using Wa Xa = q XaWa and X†
a Xa = 1. Importantly, the

four matrix elements preserve the subspace V+a . This is obvious for all but the top-right entry,
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for which the point is that X†
a (Wa −W−1

a ) |n〉a = (q
n − q−n) |n − 1〉a has vanishing prefactor

when n = 0. Thus the effect of the restriction is to replace X†
a by Ya. In view of (4.3) and

q = eη we recognise the entries of (4.7) as

on V+a :

eu Ka = e y+η/2 Wa , e−u Ka = e−x+η/2 Wa ,

2 sinh(η)S+a = (e
x−y W−1

a − e−x+y Wa)Xa ,

2 sinh(η)S−a = Ya (Wa −W−1
a ) .

(4.8)

This shows that the right-hand side of (4.5) is the same as that in (3.2). The point of this
discussion is to show that (4.5) can be used instead of (3.2) when computing the transfer
matrix provided that we restrict the trace to V+a . This will be useful in Section 4.2.

4.2 Intertwiners

For convenience let us denote the product on the right-hand side of (4.5) by La j(ux ,vy). Ex-
changing ux and vy we instead obtain

La j(vy ,ux) =
1
2

�

e y+η/2 Wa − e−y−η/2 W−1
a X†

a (e
x−y W−1

a − e−x+y Wa)
(Wa −W−1

a )Xa ex−η/2 W−1
a − e−x+η/2 Wa

�

j

= La j(ux ,vy)
T .

(4.9)

In the second line the transpose is both in the auxiliary space and in the physical space; note
that (on the auxiliary space) XT

a = X†
a while the diagonal operator WT

a =Wa is symmetric.
This time the matrix elements clearly preserve V−a , which allows us to consider their action

on the quotient V/V−a
∼= V+a . Practically this just means that we treat all |n〉a with n< 0 as zero.

We can thus view (4.9) as acting on V+a by substituting Ya for X†
a in (4.9). Then we construct

the monodromy matrix as in (3.5) and finally take the trace over V+a as in (3.6) to obtain the
transfer matrix. Let us show that the result is the same when we first take the product of (4.9)
as in (3.5) and then restrict to V+a to take the trace. Let P+a denote the orthogonal projection
of Va onto V+a . Consider P+a times a product of the matrix elements of (4.9). Since the latter
preserve V−a we can replace each factor in the product by P+a times that factor without changing
the result. Therefore, the restricted trace of such a product in V+a amounts to trace the product
of the projected matrix elements and the effect is to replace X†

a by Ya in (4.9).
It is straightforward to intertwine La j(ux ,vy) with La j(vy ,ux) when both are viewed as

acting on V+a :
Fa(x , y)La j(ux ,vy) = La j(vy ,ux)Fa(x , y) , (4.10)

where the solution for the intertwiner is

Fa(x , y) = Fa(x − y) =
∞
∑

n=0

�

(x − y −η)/η
n

�−1

q
|n〉〈n|a

�

(x − y −η)/η
n

�

q

=

�

2s
n

�

q
=

n
∏

k=1

sinh[(2s+ 1− k)η]
sinh(kη)

.

(4.11)

Note that Fa(x , y) only depends on x − y = (2s+1)η, and not on the original spectral param-
eter u. It is well defined for generic values of this quantity, namely for x − y /∈ ηZ⊕ 2πiZ.
To verify that Fa(x , y) does the job compare (4.7) and (4.9). It is clear that the intertwining
relation holds for the entries on the diagonal. For the remaining two entries (which are related
by transposition) the relation follows from

�

2s
n+ 1

�

q
[n+ 1]q =

�

2s
n

�

q
[2s− n]q .
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Now we introduce a copy Vb
∼= Va with its own spectral parameter u′ and spin s′ ∈ C, or

equivalently x ′, y ′ as in (4.4). Consider the product La j(ux ,vy)Lb j(vy ′ ,ux ′). We can construct
an intertwiner Gab(y, y ′) that interchanges vy and vy ′ in this product:

Gab(y, y ′)La j(ux ,vy)Lb j(vy ′ ,ux ′) = La j(ux ,vy ′)Lb j(vy ,ux ′)Gab(y, y ′). (4.12)

To solve this we first consider the big space Va ⊗ Vb and write the Lax operators as products
like in (4.5). We look for Gab(y, y ′) = g y,y ′(Xa X†

b) in the form of a power series g y,y ′ in

Zab := Xa X†
b. This commutes with X†

a on the left and with Xb on the right. Further using
Zab W±1

a = q∓1 W±1
a Zab and W±1

b Zab = q∓1 Zab W±1
b (4.12) reduces to

�

g y,y ′(q−1 Zab) 0
0 g y,y ′(q Zab)

�

j
vj(y)

T

�

Zab 0
0 1

�

j
vj(y

′)

= vj(y
′)T
�

Zab 0
0 1

�

j
vj(y)

�

g y,y ′(q−1 Zab) 0
0 g y,y ′(q Zab)

�

j
.

(4.13)

Using (4.6) this reduces to the functional equation

g y,y ′(q z) (1+ z e−y+y ′) = g y,y ′(q
−1z) (1+ z e y−y ′) , (4.14)

which is solved by

g y,y ′(z) =
∞
∑

n=0

�

(y − y ′)/η
n

�

q
zn ,

�

(y − y ′)/η
n

�

q
=

n
∏

k=1

sinh[y − y ′ − (k− 1)η]
sinh(kη)

. (4.15)

Since Xa X†
b preserves the subspace V+a ⊗V−b the intertwiner does so too. Restricting to V+a and

passing to the quotient Vb/V
−
b
∼= V+b , we replace X†

b by Yb. Then the relation (4.12) is obeyed
on V+a ⊗ V+b with

Gab(y, y ′) =
∞
∑

n=0

�

(y − y ′)/η
n

�

q
(XaYb)

n . (4.16)

Similarly, we define an intertwiner Hab(x , x ′) which interchanges ux and ux ′:

Hab(x , x ′)La j(vy ,ux)Lb j(ux ′ ,vy ′) = La j(vy ,ux ′)Lb j(ux ,vy ′)Hab(x , x ′) . (4.17)

This time the roles of Va and Vb are reversed and we seek a power series in X†
a Xb. Proceeding

as before, now taking the quotient Va/V
−
a
∼= V+a and restricting Vb to V+b , we find

Hab(x , x ′) =
∞
∑

n=0

�

(x − x ′)/η
n

�

q
(Ya Xb)

n . (4.18)

4.3 Two-parameter transfer matrix

Now we reparametrise the transfer matrix with infinite-dimensional complex spin-s auxiliary
space as a two-parameter transfer matrix:

T(x , y,φ) := Thw
s (u,φ) . (4.19)

The important parameters are x , y and u, s, related by (4.4); the twist φ is just a spectator.
Due to the existence of the intertwiners this two-parameter transfer matrix satisfies

T(x , y,φ)T(x ′, y ′,φ) = T(x ′, y,φ)T(x , y ′,φ) = T(x , y ′,φ)T(x ′, y,φ) , (4.20)
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and in particular forms a family of commuting operators,

T(x , y,φ)T(x ′, y ′,φ) = T(x ′, y ′,φ)T(x , y,φ) . (4.21)

The proofs of (4.20) are routine, using a variation of the argument that establishes (3.7).
Since it might nevertheless be instructive to see it in the present setting let us show the first
equality in (4.20). We start with site j, for which the preceding implies

Fa(x
′, y)−1 Hab(x , x ′)Fa(x , y)La j(ux ,vy)Lb j(ux ′ ,vy ′)

= La j(ux ′ ,vy)Lb j(ux ,vy ′)Fa(x
′, y)−1 Hab(x , x ′)Fa(x , y) .

By the ‘train argument’ this readily extends to the two-parameter monodromy matrix:

Fa(x
′, y)−1 Hab(x , x ′)Fa(x , y)Ma(x , y)Mb(x

′, y ′)

=Ma(x
′, y)Mb(x , y ′)Fa(x

′, y)−1 Hab(x , x ′)Fa(x , y) .
(4.22)

Now assume that Hab(x , x ′) is invertible; this is true so long as x − x ′ /∈ −ηZ≥0 ⊕ 2πiZ. We
multiply from the left by Fa(x , y)−1 Hab(x , x ′)−1 Fa(x ′, y) and take the trace over V+a ⊗V+b . By
the cyclicity of the trace the conjugation by Fa(x ′, y)Hab(x , x ′)−1 Fa(x , y)−1 drops out on the
right-hand side, and we arrive at the desired equality.

More precisely, Fa is well defined for s /∈ 1
2Z≥0⊕ 2πiZ, and we furthermore need x − x ′ /∈

−ηZ≥0 ⊕ 2πiZ to ensure that Hab is invertible. Thus the preceding argument establishes
the first equality in (4.20) only for almost all values of x , y . However, the Lax operator, and
therefore the two-parameter transfer matrix, are continuous in these two spectral parameters.
Thus the conclusion holds in full generality by continuity. (The situation is analogous in the
standard proof of commutativity of ordinary transfer matrices from the RLL relations; there
the R matrix is only invertible for almost all values of the spectral parameter.)

The exchange of y and y ′ is shown analogously. Let us note that, together, the intertwiners
give rise to an R matrix

Rab(x , y; x ′, y ′) := Pab Fb(x , y)−1 Gab(y, y ′)Fb(x , y ′)× Fa(x
′, y)−1Hab(x , x ′)Fa(x , y) ,

(4.23)
where Pab is the permutation operator between the auxiliary spaces V+a and V+b . Using the
properties of the intertwiners one can show that this is the R matrix for which the Lax opera-
tor (4.5) satisfies the RLL relation,

Rab(x , y; x ′, y ′)La j(ux ,vy)Lb j(ux ′ ,vy ′) = Lb j(ux ′ ,vy ′)La j(ux ,vy)Rab(x , y; x ′, y ′) . (4.24)

Via the train argument this gives a direct proof of the commutativity (4.21). A more detailed
investigation of the properties of this R matrix is beyond the scope of the present paper.

4.4 Factorisation of two-parameter transfer matrix

The property (4.20) implies that the two-parameter transfer matrixT(x , y,φ) can be factorised
into two parts that only depend on the spectral parameter x or y , respectively. Namely,

T(x , y,φ) = Qy0
(x ,φ)Px0,y0

(y,φ) , (4.25)

where

Qy0
(x ,φ) := T(x , y0,φ) , Px0,y0

(y,φ) := T(x0, y,φ)T(x0, y0,φ)−1 , (4.26)
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provided that T(x0, y0,φ) is invertible. We will return to this invertibility (for the truncated
case) in Section 7.4. It further allows us to change the value of y0 at will: note that

Qy1
(x ,φ) = Qy0

(x ,φ)T(x0, y1,φ)T(x0, y0,φ)−1 . (4.27)

Let us therefore suppress the dependence on y0. A similar argument applies to Px0,y0
(y,φ),

whose dependence on x0, y0 will from now on be suppressed too.
According to (4.20) the operators (4.26) commute with themselves (at different values of

the spectral parameter) and with each other:
�

Q(x ,φ),Q(x ′,φ)
�

= 0 , x , x ′ ∈ C ,

[Q(x ,φ),P(y,φ)] = 0 , x , y ∈ C ,
�

P(y,φ),P(y ′,φ)
�

= 0 , y, y ′ ∈ C .

(4.28)

5 Matrix TQ relation and transfer matrix fusion relation

It is time to harvest the fruits of our labour. We will show that Q from (4.26) is nothing but
Baxter’s Q operator, satisfying the matrix TQ relation with twist φ, see (5.10). Moreover, P
obeys a very similar matrix ‘TP relation’, see (5.11). In particular, in the periodic case (φ = 0)
Q,P are 2 linearly independent solutions of the matrix TQ relation. We will furthermore derive
the transfer matrix fusion relations as well as an interpolation formula that expresses the half-
integer spin transfer matrix in terms of Q operators. As in the previous section q is arbitrary.

5.1 Decomposition of highest-weight transfer matrix

In order to demonstrate that the Q operator in (4.26) is indeed the same as Baxter’s Q oper-
ator, satisfying matrix TQ relation, we shall use a decomposition [40, 60, 63–66] of the two-
parameter transfer matrix T(x , y,φ), when specialising the complex spin to 2s ∈ Z≥0. Recall
from Section 4.1 that the auxiliary space is spanned by |n〉 for n≥ 0; this is what we denoted
by V+a in Section 4.1. When 2s ∈ Z≥0 we can decompose it as V+a′ ⊕ Va′′ , where V+a′ is the span
of all |n〉 with n > 2s, while the finite-dimensional piece Va′′ is spanned by |2s〉, · · · , |1〉, |0〉.
The latter is certainly preserved by the diagonal operator Ka as well as by S−a , whose block-
triangular form is shown in Fig. 2. Since 2s ∈ Z≥0 the operator S+a preserves Va′′ too. Indeed, as
[2s−n]q = 0 for n= 2s the coefficient of |2s+1〉〈2s|a in S+a vanishes: this entry is marked in red
in Fig. 2. That is, all of Ka,S±a are of block lower triangular form. The (2s+1)×(2s+1) blocks
that act on Va′′ differ from the unitary spin-s representation by a simple gauge transformation
(conjugation).

Now we go towards the transfer matrix. Since the Lax operator is built from Ka,S±a ,
see (3.2), for 2s ∈ Z≥0 it assumes a block lower triangular form with respect to the decompo-
sition V+a′ ⊕ Va′′ too. Let us indicate its block structure, paralleling that in Fig. 2, by

La j =

�

La′ j 0
La′ ′′ j La′′ j

�

. (5.1)

Here we can think of La′ j as a square infinite matrix acting on V+a′ , La′′ j as a square matrix on
Va′′ , and (for want of a better notation) La′ ′′ j as a rectangular matrix sending V+a′ to Va′′; all
with entries that are operators acting at site j. For the monodromy matrix we consider more
sites. Note that the blocks on the diagonal only ‘talk’ amongst themselves:

La j Lak =

�

La′ j La′k 0
La′ ′′ j La′k + La′′ j La′ ′′k La′′ j La′′k

�

. (5.2)
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Figure 2: The decomposition of S−s (left) and S+s (right) in the infinite-dimensional
highest-weight auxiliary space V+a′ ⊕ Va′′ for s ∈ 1

2 Z≥0. The ∗ represent non-zero
entries. The square orange (pink) block acts on V+a′ (resp. Va′′), while the rectangular
blue block maps V+a′ to Va′′ . Note that we order the basis decreasingly, · · · , |1〉, |0〉, cf.
Appendix A.2.

Thus the monodromy matrix inherits the block triangular form

Ma =

�

Ma′ 0
Ma′ ′′ Ma′′

�

. (5.3)

By taking the trace we obtain the transfer matrix

Thw
s = tra Ma = tra′ Ma′ + tra′′ Ma′′ . (5.4)

Since the unitary spin-s representation differs from that on Va′′ by a gauge transformation,
tra′′ Ma′′ is nothing but the transfer matrix Ts for spin s ∈ 1

2Z≥0. As V+a′
∼= V+a moreover

tra′ Ma′ is another complex-spin highest-weight transfer matrix! Accounting for the twist and
the correct value of the new complex spin we arrive at the decomposition

Thw
s (u,φ) = ei(2s+1)φ Thw

−s−1(u,φ) + Ts(u,φ) . (5.5)

5.2 Generalised Wronskian and matrix TQ relation

By (4.4) and (4.19) we can rewrite (4.25) as

Thw
s (u,φ) = Q

�

u+
2s+ 1

2
η,φ

�

P
�

u−
2s+ 1

2
η,φ

�

. (5.6)

In these terms the decomposition (5.5) reads

Ts(u,φ) = Q
�

u+
2s+ 1

2
η,φ

�

P
�

u−
2s+ 1

2
η,φ

�

− e(2s+1)iφQ
�

u−
2s+ 1

2
η,φ

�

P
�

u+
2s+ 1

2
η,φ

�

.
(5.7)

This is the generalised Wronskian relation. Let us consider some examples.
For s = 0 the operator T0(u,φ) is a scalar, which is independent of the twist according to

our choice of the latter (see Appendix B.1). Thus it can be denoted as T0(u) = sinhN (u). We
therefore obtain the Wronskian relation

T0(u) = Q
�

u+
η

2
,φ
�

P
�

u−
η

2
,φ
�

− eiφQ
�

u−
η

2
,φ
�

P
�

u+
η

2
,φ
�

. (5.8)

Note that T0(u) is independent of the twist φ while Q and P in the right-hand side do depend
on φ.
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When s = 1/2 we obtain a relation for the fundamental (six-vertex) transfer matrix:

T1/2(u,φ) = Q(u+η,φ)P(u−η,φ)− e2iφQ(u−η,φ)P(u+η,φ) . (5.9)

Multiplying both sides by Q(u,φ) and using (5.8) to get rid of the P operator we find

T1/2(u,φ)Q(u,φ) = T0(u−η/2)Q(u+η,φ) + eiφ T0(u+η/2)Q(u−η,φ) . (5.10)

We have recovered Baxter’s matrix TQ relation [9]!
If we instead multiply by P(u,φ) and use (5.8) to eliminate the Q operator we analogously

obtain a matrix ‘TP relation’

T1/2(u,φ)P(u,φ) = eiφ T0(u−η/2)P(u+η,φ) + T0(u+η/2)P(u−η,φ) . (5.11)

Note the different positions at which the twist eiφ appears in (5.10) and (5.11). More precisely,
the TP relation for the rescaled operator eiφu/η P(u,φ) is nothing but the TQ relation with
opposite twist −φ. In the periodic case, φ = 0, the Q and P operators are two solutions to
the matrix TQ relation (5.10) that are linearly independent as their Wronskian, the right-hand
side of (5.8), is nonzero (T0 6= 0).

5.3 Transfer matrix fusion relations

Interestingly, the decomposition of the two-parameter transfer matrix T(x , y,φ) further allows
us to derive the transfer matrix fusion relations [56, 57, 67, 68]. As the name suggests these
are typically derived by fusion in the auxiliary space (tensoring auxiliary spaces and projecting
onto any irrep via suitably related spectral parameters). In the present setup the simple deriva-
tion goes as follows.7 We multiply both sides of (5.7) from the left by T1/2(u±

2s+1
2 η,φ) and

apply (5.10)–(5.11). Collecting terms with the same T0 and using (5.7) for each we obtain

T1/2

�

u±
2s+ 1

2
η,φ

�

Ts(u,φ) = eiφ T0

�

u± (s+ 1)η
�

Ts−1/2

�

u∓
η

2
,φ
�

+ T0

�

u± sη
�

Ts+1/2

�

u±
η

2
,φ
�

.
(5.12)

These two equations, one for the upper signs and one for the lower signs, are the transfer
matrix fusion relations. Taken together for all half-integer values of the spin s the functional
form of these relations, i.e. the analogous relations for the eigenvalues Ts, comprises a system
of difference relations called a T-system. Together with a reformulation known as the Y-system
it is of vital significance for physical applications like the thermodynamic Bethe ansatz. See
Ref. [69] for a thorough review and further references.

5.4 Interpolation formula

When s ∈ 1
2Z≥0 the transfer matrix Ts can be expressed in terms of Q; let us derive this in our

framework. Rewrite (5.7) as

Ts(u)

Q
�

u+ 2s+1
2 η

�

Q
�

u− 2s+1
2 η

� =
P
�

u− 2s+1
2 η

�

Q
�

u− 2s+1
2 η

� − e(2s+1)iφ P
�

u+ 2s+1
2 η

�

Q
�

u+ 2s+1
2 η

� . (5.13)

The meaning of the fractions for multiplication with the inverse is unambiguous since the
operators involved all commute. Specialising to s = 0 we likewise rewrite (5.8) as

T0(u)
Q(u+η/2)Q(u−η/2)

=
P(u−η/2)
Q(u−η/2)

− eiφ P(u+η/2)
Q(u+η/2)

. (5.14)

7 The reader might find it convenient to abbreviate f (α) := f (u+αη) in these computations.
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We translate the arguments of (5.14) by kη, multiply by eikφ and sum over k from 0 to 2s.
The telescoping sum on the right-hand side yields the right-hand side of (5.13). In this way
we obtain the interpolation-type formula [56,57]

Ts(u) = Q
�

u+
2s+ 1

2
η

�

Q
�

u−
2s+ 1

2
η

�

×
2s
∑

k=0

eikφ
T0

�

u+ (k− s)η
�

Q
�

u+ (k− s+ 1/2)η
�

Q
�

u+ (k− s− 1/2)η
� .

(5.15)

5.5 Structure of the eigenvalues of Q and P

Let us now study the properties of the Q and P operators, and their eigenvalues, on their re-
spective spectral parameters. It is convenient to use multiplicative spectral parameters r := ex

and t := e y . As always we start from the Lax operator, which we here write as

La j(x , y) =

�

L11
a (x , y) L12

a (x , y)
L21

a (x , y) L22
a (x , y)

�

j

. (5.16)

We start with the dependence on t. Let us say that a Laurent polynomial f (t) is a ‘trigonometric
polynomial of degree n’ if tn f (t) is a polynomial in t2 of degree n. From (4.7) we see that
L11

a ,L21
a are trigonometric polynomials of degree one in t while L12

a ,L22
a are independent of t. It

follows that on a vector with Sz = N/2−M the two-parameter monodromy matrixMa(x , y,φ)
acts by a matrix whose entries are trigonometric polynomials of degree N −M in t. Thus the
same holds for the two-parameter transfer matrix T(x , y,φ). Regarding r we see that L11

a ,L12
a

are both degree zero while L21
a ,L22

a are trigonometric polynomials in r of degree one. This
means that when acting to the left on (the dual of) the M -particle subspace, Ma(x , y) has
entries that are trigonometric polynomials in r of degree M . As before this carries over to
T(x , y,φ). Since the latter moreover preserves the value of M this remains true when acting
to the right as well. The upshot is the operator T(x , y,φ) acts on the M -particle subspace, with
Sz = N/2−M fixed, by a matrix with entries that are trigonometric polynomials of degree M
in r and degree N −M in t. In terms of the Q and P operators the conclusion is that, on this
subspace, Q(x ,φ) acts by a matrix consisting of trigonometric polynomials in r of degree M ,
and P(y,φ) likewise by a matrix of trigonometric polynomials in t of degree N − M . These
properties are inherited by the eigenvalues since the (joint) eigenvectors are independent of
r, t in view of the commutativity (4.28).

Let us make this a little more concrete. By the commutativity of all transfer matrices the
joint eigenvalues of the Q and P operator are given by the algebraic Bethe ansatz. For any
on-shell Bethe state, i.e. (3.11) — see also the remark following that equation — subject to the
Bethe equations (2.7), we have

Q(u,φ) |{um}Mm=1〉=Q(u, {um}Mm=1,φ) |{um}Mm=1〉 . (5.17)

Baxter realised that the TQ equation determines the eigenvalues Q in familiar terms. Namely,
by the above it is a trigonometric polynomial of degree M in t := eu. Let us denote the zeroes
by tm:

Q(u,φ) = cst×
M
∏

m=1

�

t−1
m t − tm t−1

�

. (5.18)

According to the matrix TQ relation (5.10) the eigenvalues obey the functional TQ relation

T1/2(u,φ)Q(u,φ) = T0(u−η/2)Q(u+η,φ) + eiφ T0(u+η/2)Q(u−η,φ) . (5.19)
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Picking u so that t = tm is a zero of Q, the left-hand side of (5.19) vanishes. Recalling that
T0(u) = sinhN (u) the result reduces to the Bethe equations (2.7) in multiplicative form, allow-
ing us to identify tm = eum as the multiplicative version of the Bethe roots. That is, the zeroes
of the eigenvalues of the Q operator are precisely the Bethe roots [9].

This observation is used in the numerical recipe for finding the Bethe roots in Appendix C.1.
In the presence of any Bethe root at infinity, which does occur for XXZ as reviewed in Sec-
tion 2.2, the form of the eigenvalues has to be modified a little. Indeed,

um→ +∞ : tm→∞ , t−1
m t − tm t−1→ t−1 ,

um→−∞ : tm→ 0 , t−1
m t − tm t−1→ t .

(5.20)

Therefore, Bethe roots at infinity show up in the eigenvalues of the Q operator: if we rearrange
the u j so that the infinite roots are last then

Q(u,φ) = cst× tn−∞−n+∞ ×
M−n−∞−n+∞

∏

m=1

�

t−1
m t − tm t−1

�

. (5.21)

One can similarly show that the eigenvalues of the P operator P are of the form (5.21)
but with M replaced by N − M . The functional version of the TP relations (5.11) gives rise
to Bethe-type equations for the N − M zeroes of the eigenvalues P(v,φ) for an M -particle
eigenvector:

�

sinh(vn +η/2)
sinh(vn −η/2)

�N N−M
∏

n′(6=n)

sinh(vn − vn′ −η)
sinh(vn − vn′ +η)

= eiφ . (5.22)

These are precisely the Bethe equations for a Bethe state |{vn}N−M
n=1 〉 of the XXZ model with

opposite twist −φ. Note that the algebraic Bethe ansatz (3.11) only uses the pseudovacuum
|↑ · · · ↑〉 and the B operator B(u), which is independent of the twist φ, cf. (3.9). Therefore,
the off-shell Bethe state |{vm}N−M

m=1 〉 does not depend on the twist either; the latter only enters
on shell, i.e. upon imposing the Bethe equations. When we impose (5.22) the Bethe vector
|{vn}N−M

n=1 〉 is not an eigenstate of Ts(u,φ), but rather of Ts(u,−φ). In particular, in the periodic
case (φ = 0) it can be interpreted as a Bethe vector beyond the equator (if M < N/2, so that
N −M > N/2). A detailed calculation is presented in Appendix C.3.

6 Truncated transfer matrix at root of unity

Now we specialise the anisotropy parameter to a root of unity (2.3). Here the infinite-dimensi-
onal auxiliary space V+a has a finite-dimensional subspace Ṽa, whose size depends on the root
of unity, and which is preserved by Uq(sl2). Truncating to Ṽa allows for another decomposition
of the two-parameter transfer matrix that leads to a proof of a conjecture of [32, 34, 41] and
to truncated fusion relations.

Importantly, the truncation enables us to construct the Q operators explicitly, only using
finite-dimensional matrices at all intermediate steps. In practice we can do this for all eigen-
vectors a spin chain with N ≤ 16 and thus obtain the full spectrum of the XXZ spin chain with
arbitrary twistφ, revealing the conditions for the appearance of exponential degeneracies that
have been observed before [20]. As we will see later this has significant consequences for the
thermodynamic limit.
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Figure 3: The decomposition of S−a (left) and S+a (right) at root of unity with `2 = 3,
where ∗ represents non-zero elements of the matrices. As in Fig. 2 the bottom-right
entry corresponds to |0〉〈0|.

6.1 Truncation and intertwiners at root of unity

At root of unity η = iπ `1
`2

the matrix elements of the Lax operator (4.7) in the auxiliary space
acquire the periodicity:

a〈k+ `2|La j |m+ `2〉a = ε × a〈k|La j |m〉a , (6.1)

where we recall that ε = q`2 = eiπ`1 . As the periodicity suggests, only a finite part of the
Lax operator is really relevant: we can truncate the auxiliary space to a finite-dimensional
subspace. This goes via a variation of the construction from Section 5.1, as follows.

We decompose the infinite-dimensional highest-weight Uq(sl2)-module V+a as V+a′ ⊕ Ṽa′′ ,
where V+a′ is the span of |n〉a with n≥ `2 and Ṽa′′ be the span of |n〉a for 0≤ n≤ `2−1. At root
of unity we have [`2]q = 0 so one of the entries of S−a vanishes as illustrated in Fig. 3. This time
all generators of Uq(sl2) preserve the infinite-dimensional subspace V+a′ . We are interested in
the finite-dimensional subspace Ṽa′′ . Like in Section 4.2 we can get there by taking the quotient
Ṽa′′
∼= V+a /V

+
a′ . In this way we get a finite-dimensional representation of Uq(sl2) on Ṽa′′ , see

also Appendix A.2. More concretely, all of Ka, S±a are block upper triangular with respect to the
decomposition V+a = V+a′ ⊕ Ṽa′′ , see again Fig. 3. This property is inherited by the Lax operator

La j =

�

La′ j La′′ ′ j
0 L̃a′′ j

�

, (6.2)

where La′ j can be viewed as an infinite square matrix on V+a′ , La′′ ′ j as an `2 ×∞ rectangular
matrix mapping Ṽa′′ to V+a′ , and L̃a′′ j as an `2 × `2 matrix on Ṽa′′ . The entries of each of these
are 2× 2 matrices acting at site j. The truncation to the `2-dimensional space Ṽa′′ amounts to
treating all |n〉a with n≥ `2 as zero.

Now focus on the `2-dimensional auxiliary space Ṽa, where we drop the double prime. To
describe the truncated Lax operator L̃a j more explicitly define

W̃a =
`2−1
∑

n=0

qn |n〉〈n|a, X̃a =
`2−2
∑

n=0

|n+ 1〉〈n|a, Ỹa =
`2−2
∑

n=0

|n〉〈n+ 1|a . (6.3)

Replacing all operators on the auxiliary space in the factorised formula (4.5) by these truncated
versions yields an expression with the same structure as (4.7):

L̃a j(x , y) =
1
2

�

e y+η/2 W̃a − e−y−η/2 W̃−1
a Ỹa (W̃a − W̃−1

a )
(ex−y W̃−1

a − e−x+y W̃a) X̃a ex−η/2 W̃−1
a − e−x+η/2 W̃a

�

j
, (6.4)
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which coincides with the right-hand side of (3.2). This time, however, all four matrix entries
are finite matrices, with size depending on the value `2 of the root of unity. Notice that the
truncation allows us to keep s ∈ C arbitrary.

The truncated intertwiners are

F̃a(x , y) =
`2−1
∑

n=0

�

(x − y −η)/η
n

�−1

q
|n〉〈n|a ,

G̃ab(y, y ′) =
`2−1
∑

n=0

�

(y − y ′)/η
n

�

q

�

X̃aỸb

�n
,

H̃ab(x , x ′) =
`2−1
∑

n=0

�

(x − x ′)/η
n

�

q

�

ỸaX̃b

�n
.

(6.5)

The intertwining relations are as before, where the truncation L̃a j(vy ,ux) = L̃a j(ux ,vy)T to Ṽa
arises by restriction (rather than taking a quotient).

6.2 Decomposition of two-parameter transfer matrix at root of unity

The truncated Lax operator (6.4) can be used to construct monodromy matrices that yield trun-
cated two-parameter transfer matrices T̃(x , y) = T̃s(u,φ) where x , y were defined in (4.4).
These truncated two-parameter transfer matrices coincide with the “Qs(expηu)” obtained by
Korff in Ref. [34], who conjectured that they form a two-parameter family of commuting ma-
trices. Since s ∈ C is unrestricted, the spectral parameters x , y , which were defined in (4.4),
are now really just two free parameters. Using (6.5) as before we see that it obeys exchange
relations just as in (4.20):

T̃(x , y,φ) T̃(x ′, y ′,φ) = T̃(x ′, y,φ) T̃(x , y ′,φ) = T̃(x , y ′,φ) T̃(x ′, y,φ) , (6.6)

and in particular forms a family of commuting operators,

T̃(x , y,φ) T̃(x ′, y ′,φ) = T̃(x ′, y ′,φ) T̃(x , y,φ) . (6.7)

As in Section 4.4 the truncated two-parameter transfer matrix therefore factorises as

T̃(x , y,φ) = Q̃y0
(x ,φ) P̃x0,y0

(y,φ) , (6.8)

where the truncated Q and P operators are defined as

Q̃y0
(x ,φ) := T̃(x , y0,φ) , P̃x0,y0

(y,φ) := T̃(x0, y,φ) T̃(x0, y0,φ)−1 . (6.9)

We once more suppress the dependence on x0, y0; we will get back to this in the remark in
Section 7.4.

In terms of T̃s(u,φ) the factorisation takes the form

T̃s(u,φ) = Q̃
�

u+
2s+ 1

2
η,φ

�

P̃
�

u−
2s+ 1

2
η,φ

�

. (6.10)

6.3 Truncated Wronskian and TQ relations

Repeating the arguments from Section 5.1 for an arbitrary complex spin s ∈ C we have the
decomposition of the highest-weight transfer matrix at root of unity

Thw
s (u,φ) = ei`2φ Thw

s−`2
(u,φ) + T̃s(u,φ) , (6.11)
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where up to the twist factor, Thw
s−`2
(u,φ) coincides with the matrix Thw

s (u,φ) restricted to the
basis |m+ `2〉 with m≥ 0. With (6.1), we simplify the decomposition (6.11) into

T̃s(u,φ) =
�

1− εN ei`2φ
�

Thw
s (u,φ) . (6.12)

When 2s ∈ Z≥0, the decompositions (5.5) and (6.12) yield a decomposition of Ts in terms
of T̃s:

�

1− εN ei`2φ
�

Ts(u,φ) =
�

1− εN ei`2φ
�

�

Thw
s (u,φ)− ei(2s+1)φ Thw

−s−1(u,φ)
�

= T̃s(u,φ)− ei(2s+1)φ T̃−s−1(u,φ) .
(6.13)

This argument relies on the convergence of the trace defining Thw
s (u,φ) and requires |eiφ |< 1.

In Appendix D we give another proof of this relation valid for an arbitrary twist.
From (6.10) we obtain the truncated Wronksian relation

�

1− εN ei`2φ
�

Ts(u,φ) = Q̃
�

u+
2s+ 1

2
η,φ

�

P̃
�

u−
2s+ 1

2
η,φ

�

− ei(2s+1)φ Q̃
�

u−
2s+ 1

2
η,φ

�

P̃
�

u+
2s+ 1

2
η,φ

�

.
(6.14)

When 1− εN ei`2φ = 0, i.e. for commensurate twist

εN = +1 : φ =
(2n− 2)π

`2
,

εN = −1 : φ =
(2n− 1)π

`2
,

1≤ n≤ `2 , (6.15)

the left-hand side of (6.14) vanishes. Comparing (6.15) to the conditions (2.15) for the exis-
tence of Bethe roots at infinity we see that when (6.15) is satisfied there exist certain numbers
M of down spins for which (2.15) is satisfied too.

Proceeding exactly as before we obtain TQ and TP relations that look the same as (5.10)–
(5.11), now involving truncated matrices

T1/2(u,φ) Q̃(u,φ) = T0(u−η/2) Q̃(u+η,φ) + eiφ T0(u+η/2) Q̃(u−η,φ) , (6.16)

and

T1/2(u,φ) P̃(u,φ) = eiφ T0(u−η/2) P̃(u+η,φ) + T0(u+η/2) P̃(u−η,φ) . (6.17)

6.4 Truncated fusion relations

Proceeding as in Section 5.3, but using (6.10) instead of (5.7), we readily obtain fusion-like
relations for T̃s:

T1/2

�

u±
2s+ 1

2
η,φ

�

T̃s(u,φ) = eiφ T0

�

u± (s+ 1)η
�

T̃s−1/2

�

u∓
η

2
,φ
�

+ T0(u± sη) T̃s+1/2

�

u±
η

2
,φ
�

.
(6.18)

In analogy to the cases of general q, we will call these the truncated fusion relations. However,
we stress that in the present case the internal auxiliary spaces have the same dimensions `2
for all truncated transfer matrices in (6.18), unlike for the fusion relations (5.12).
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6.5 Interpolation formula: proof of a conjecture

Fabricius and McCoy [32], Korff [34], and more recently De Luca et al. [41]— see Eq. (S22) in
the supplementary material of Ref. [41] — conjectured that the complex spin transfer matrix
eigenvalues can be expressed in terms of Q̃, similarly for the situation of half-integral spin
representations from Section 5.4. In our notation, after introducing the dependence on the
twist, the formula reads

T̃s(u) = Q̃
�

u+
2s+ 1

2
η

�

Q̃
�

u−
2s+ 1

2
η

�

×
`2−1
∑

k=0

eikφ
T0

�

u+ (k− s)η
�

Q̃
�

u+ (k− s− 1
2)η

�

Q̃
�

u+ (k− s+ 1
2)η

� .
(6.19)

We can prove this using arguments like those leading to (5.15). Rewrite (6.10) as

T̃s(u)

Q̃
�

u+ (s+ 1/2)η
�

Q̃
�

u− (s+ 1/2)η
� =

P̃
�

u− (s+ 1/2)η
�

Q̃
�

u− (s+ 1/2)η
� , (6.20)

where we introduce a common factor on both sides for convenience. We also cast (6.14)
specialised to s = 0 in the form

�

1− εN ei`2φ
� T0(u)

Q̃(u+η/2) Q̃(u−η/2)
=

P̃(u−η/2)
Q̃(u−η/2)

− eiφ P̃(u+η/2)
Q̃(u+η/2)

. (6.21)

Translating u by (k− s)η, multiplying both sides by eikφ and summing over k from 0 to `2−1,
we get

�

1− εN ei`2φ
�

`2−1
∑

k=0

eikφ
T0

�

u+ (k− s)η
�

Q̃
�

u+ (k− s+ 1/2)η
�

Q̃
�

u+ (k− s− 1/2)η
�

=
P̃
�

u− (s+ 1/2)η
�

Q̃
�

u− (s+ 1/2)η
� − ei`2φ

P̃
�

u+ (`2 − s− 1/2)η
�

Q̃
�

u+ (`2 − s− 1/2)η
� .

(6.22)

From the parity of Q and P — see the discussion following (5.16) — it follows that the second
ratio in the second line simplifies to εN times the first ratio in that line. As long as the twist is
not commensurate, i.e. does not obey (6.15), we can cancel 1− εN ei`2φ on both sides of the
equation. In fact, since the two sides of (6.22) are continuous in the twist, the result holds for
any twist. (An alternative proof, that does not rely on this cancellation or completeness, can
be obtained using the decomposition (6.11) like before rather than the simplification (6.12).)
So we have

`2−1
∑

k=0

eikφ
T0

�

u+ (k− s)η
�

Q̃
�

u+ (k− s+ 1/2)η
�

Q̃
�

u+ (k− s− 1/2)η
� =

P̃
�

u− (s+ 1/2)η
�

Q̃
�

u− (s+ 1/2)η
� . (6.23)

Multiplying both sides by Q̃
�

u+ 2s+1
2 η

�

, and using (6.10) we arrive at (6.19).

6.6 Structure of eigenvalues of Q̃ and P̃

Similar to the discussion in Section 5.5 the eigenvalues of the truncated Q operator,

Q̃(u,φ) |{vm}Mm=1〉= Q̃(u, {vm}Mm=1,φ) |{vm}Mm=1〉 , (6.24)
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can be expressed as

Q̃(u, {vm}Mm=1,φ) = cst×
M
∏

m=1

�

t−1
m t − tm t−1

�

, (6.25)

with vm = log tm obeying the Bethe equations (2.7) due to the truncated TQ equations (6.16).
In particular the eigenvalues Q(u,φ) and Q̃(u,φ) of a given eigenvector have the same zeroes.

Since we are at root of unity, the eigenvalues of the truncated Q operator on the M -particle
sector are quasiperiodic too:

Q̃(u± `2η,φ) = εM Q̃(u,φ) . (6.26)

Similarly it follows that
Q̃(u± `2η,φ) = εN/2−Sz

Q̃(u,φ) . (6.27)

Likewise, we can show that the eigenvalues of the truncated P operator are of the form
(5.21) but with M replaced by N −M , and

P̃(u± `2η,φ) = εN/2+Sz
P̃(u,φ) . (6.28)

6.7 Connection to the work of Frahm et al

Frahm, Morin-Duchesne and Pearce [70] observed that the zeroes of the eigenvalues of the
Q operator appear as part of zeroes of eigenvalues of the transfer matrix whose argument is
shifted as T(`2−1)/2(u + `2η/2,φ) at root of unity. In our framework this is clear too. From
the factorised expression (6.10) we see that the zeroes of the eigenvalues of T̃s(u,φ) are ei-
ther zeroes of Q̃

�

u + 2s+1
2 η,φ

�

or zeroes of P̃
�

u − 2s+1
2 η,φ

�

. Specialising s = (`2 − 1)/2,
T̃(`2−1)/2 = T(`2−1)/2 and this agrees with Ref. [70].

7 Applications to XXZ at root of unity: general results

Now we turn to applications of the general formalism developed in Sections 3–6 to the spec-
trum of the XXZ spin chain (and the six-vertex model’s transfer matrix) at root of unity. In this
section we use the formalism to derive several general results. This and other features of the
spectrum at root of unity will be illustrated by numerous explicit examples in Section 8.

7.1 Preliminaries

Let us first define a few useful concepts. Recall that the Q operator and all transfer matrices
commute with each other. We will call a joint eigenvector of this family of operators a state.
We will assume that the Bethe ansatz is complete, so that any state is of the form |{um}Mm=1〉,
see (3.11) and subsequent remark, with {um}Mm=1 a solution to the Bethe equations (2.7).

Consider for a moment the periodic isotropic Heisenberg XXX spin chain. Here infinite
rapidities (vanishing quasimomenta) can be added to the Bethe roots to get sl2-descendants
(see e.g. §1.1.3 in [10]). Unlike when a finite root is added, infinite rapidities do not change
the values of the other Bethe roots, and the eigenvalues for the transfer matrix stays the same
as well. Likewise, for the XXZ model at root of unity there are states |{um}Mm=1〉 for which
certain special roots can be added to get another state without affecting the values of {um}Mm=1
or eigenvalues. We will call states that are minimal in this sense ‘primitive’; it is similar to a
highest-weight condition except that we do not use representation theory to characterise it.
Namely, we call a state |{um}Mm=1〉 primitive if no nontrivial subset of {um}Mm=1 corresponds to a
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physical state whose eigenvalue for Ts differs at most by a sign. (For the reason why we allow
for a sign see Section 7.2.)

Primitive states have no FM strings. Recall that by n±∞ we denote the numbers of Bethe
roots at ±∞, respectively. Typically, namely for twist φ /∈ {0,π}, a primitive state has no roots
at infinity either.8 In the (anti)periodic case φ ∈ {0,π} a primitive state may have n±∞ 6= 0
as long as n∓∞ = 0, see (2.18) and Section 8.1.3.

Let us remark that it is possible for two primitive eigenstates to be degenerate, namely
when N is odd and the two states are related by the spin flip operator

∏

j σ
x
j : we will discuss

this case in Section 7.4.
Any state that is not primitive is a descendant of some primitive state: it satisfies

Q(u,φ) |{vm′}M
′

m′=1〉 ∝
M
∏

m=1

sinh(u− um)
M ′
∏

n=M+1

sinh(u−wn) |{vm′}M
′

m′=1〉 , (7.1)

where |{um}Mm=1〉 is primitive and the additional Bethe roots {wn}M
′

n=M+1 consist of FM strings
and roots located at ±∞. Away from the isotropic points descendant states only exist when
condition (6.15) is satisfied.

Finally, forφ /∈ {0,π} away from the (anti)periodic points, a primitive state and its descen-
dants might be eigenstates for Hamiltonians with opposite twist, φ and −φ, see Appendix C.3.
The sign of the twist in Ts(u,±φ) is fixed accordingly. We will further illustrate this in Sec-
tion 8.2.

Remark. We have used the term ‘descendant’ here, because the corresponding ‘descendant
tower’ that we will introduce in Section 8 resembles the descendant structures of Lie algebras.
We use ‘primitive’ rather than ‘highest weight’ to stress that we do not use representation theory
to characterise these states. (One could similarly use ‘derived state’ rather than ‘descendant’,
but we will refrain from doing so. We hope that this will not cause too much confusion.) In
fact, primitive states do have highest weight for the loop algebra of sl2 [39], cf. [32]. From our
perspective this algebraic perspective is not completely satisfactory since the loop-algebra ac-
tion does not commute with the two-parameter transfer matrix or Q operator: as the example
in Section 2.3 illustrates, the loop-algebra descendants are no longer eigenvectors of the latter.
We do believe that there exist a deeper algebraic structure that is compatible with the Q oper-
ator, which would allow for unambiguous use of the terms ‘highest-weight’ and ‘descendant’.
We intend to investigate the underlying algebraic structure in the future.

7.2 Impact of FM strings on transfer-matrix eigenvalues

With this terminology let us show that a descendant state |{vm′}M
′

m′=1〉 of a primitive state
|{um}Mm=1〉 has Ts(u,±φ)-eigenvalues that differ by at most a sign. This means that the mo-
mentum of the primitive state and its descendant may differ by π while all other (quasi-)local
charges generated by Ts(u,±φ) are identical.

Write the eigenvalues of T1/2 and the Q operator for the primitive state |{um}Mm=1〉 as

T1/2(u,φ) |{um}Mm=1〉= T1/2(u) |{um}Mm=1〉 ,

Q(u,φ) |{um}Mm=1〉=Q(u) |{um}Mm=1〉 .
(7.2)

8 States with n±∞ 6= 0 but n∓∞ = 0 do occur at twist φ /∈ {0,π}. In Section 8.2 we will show that they have
the same Ts-eigenvalues as certain primitive states at twist −φ that have the same finite Bethe roots, and of which
they should be considered descendants.
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For simplicity we assume that |{um}Mm=1〉 does not contain any Bethe roots at ±∞. By Sec-
tion 5.5 the eigenvalue of the Q operator is a trigonometric polynomial of degree M ,

Q(u)∝
M
∏

m=1

(t−1
m t − tm t−1) , t = eu , (7.3)

and satisfies the functional TQ relation

T1/2(u)Q(u) = T0(u−η/2)Q(u+η) + eiφ T0(u+η/2)Q(u−η) . (7.4)

A descendant |{vm′}M
′

m′=1〉 of the primitive state |{um}Mm=1〉 is also an eigenvector of the Q
operator,

Q(u,±φ) |{vm′}M
′

m′=1〉=Q′(u) |{vm′}M
′

m′=1〉 , (7.5)

where forφ /∈ {0,π} the sign of the twist±φ has to be chosen to match that of the Hamiltonian,
see Section 8.2. From the definition (2.19) of an FM string we note that the eigenvalue of the
Q operator on the descendant state is

Q′(u)∝Q(t) tn−∞−n+∞

nFM
∏

m=1

�

t`2 − e2`2α
FM
m t−`2

�

, t = eu , (7.6)

where n±∞ and nFM are the numbers of roots at ±∞ and FM strings, respectively, of the
descendant state. Observe that Q′(u) satisfies the TQ relation

εnFM T1/2(u)Q
′(u) = T0(u−η/2)Q′(u+η) + eiφ T0(u+η/2)Q

′(u−η) , (7.7)

where we recall that ε = q`2 ∈ {±1}. Hence, the eigenvalue of T1/2 for the descendant state
|{vm′}M

′

m′=1〉 is

T1/2(u,±φ) |{vm′}M
′

m′=1〉= ε
nFM T1/2(u) |{vm′}M

′

m′=1〉 . (7.8)

Since the T1/2-eigenvalue of the descendant state differs by at most a sign from that of the
primitive state, the descendant has the same local charges generated by T1/2 as the primitive
state, except that its momentum might differ by π. More generally, from the transfer matrix
fusion relations (5.12) we obtain

Ts(u,φ) |{um}Mm=1〉= Ts(u) |{um}Mm=1〉 ,

Ts(u,±φ) |{vm′}M
′

m′=1〉= ε
2s nFM Ts(u) |{vm′}M

′

m′=1〉 .
(7.9)

We will give several explicit examples of the descendant states associated with primitive
states, and the descendant towers that they form, in Sections 8.1–8.2.

7.3 FM strings at commensurate twist

In Section 6.3 we saw that, at root of unity, when the twist φ is commensurate as in (6.15) the
truncated Wronskian relations (6.14) trivialise in the sense that the eigenvalues of Q̃ and P̃ are
proportional to each other. This can only be achieved when the eigenvalues of P̃ are related
to those of Q̃ through adding or subtracting Bethe roots at infinity or FM strings, cf. (6.14):
eigenstates with FM strings must occur when the twist is commensurate. Conversely, if FM
strings are present amongst the zeroes of the eigenvalues of Q̃ or P̃ the truncated Wronskian
relations (6.14) vanish, since for s = 0 the left-hand side of (6.14) does not contain zeroes of
FM strings while the right-hand side does. This means that descendants containing FM strings
can only exist when the twist φ is commensurate. In conclusion, FM strings can only, and
necessarily do, occur at commensurate twist.
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From (6.12), whenever T̃s(u,φ) has nonzero eigenvalues it follows that the eigenvalues
Thw

s (u,φ) must have poles if 1 − εN ei`2φ = 0 to compensate the vanishing prefactor. This
corroborates Refs. [25, 28] in which it was shown that terms proportional to log t can arise
when solving the functional TQ relations, yielding eigenvalues that are quasi-polynomials in
t [28]. As it turns out, the appearance of these quasi-polynomials is also closely related to the
FM strings and their string centres, cf. (6.15). A detailed discussion of this will appear in a
forthcoming article [71].

When (6.15) is satisfied, a quantisation condition for the centres of FM strings based on
(6.23) was obtained in Refs. [32, 34, 36]. Let us review their arguments. For an eigenstate
|{um}Mm=1〉 we have

Q̃(u,φ) |{um}Mm=1〉=Q(u) |{um}Mm=1〉,

P̃(u,φ) |{um}Mm=1〉= P(u) |{um}Mm=1〉,
(7.10)

where the eigenvalues are trigonometric polynomials in t = eu. Let us decompose the Q
function in to a ‘regular’ part Qr(u), consisting of nr factors whose zeroes are Bethe roots that
are neither FM strings nor infinite, a ‘singular’ part Qs(u), consisting of nFM FM strings, along
with factors accounting for Bethe roots at infinity as in (5.21):

Q(u) =Qr(u)Qs(u) tn−∞−n+∞ , t = eu ,

Qr(u)∝
nr
∏

m=1

�

t−1
m t − tm t−1

�

, Qs(u)∝
nFM
∏

m=1

�

t−`2
m t`2 − t`2

m t−`2
�

,
(7.11)

where the number of down spins M = nr + `2 nFM + n+∞ + n−∞. The proportionality signs in
(7.11) indicate equality up to t-independent factors. Because the Wronskian (6.14) vanishes,
the eigenvalue P(u) has the same regular zeroes as Q(u):

P(u) =Qr(u) Ps(u) t n̄−∞−n̄+∞ , Ps(u)∝
n̄FM
∏

m=1

�

t̄ −`2
m t`2 − t̄ `2

m t−`2
�

, (7.12)

where n̄±∞ and n̄FM are the number of Bethe roots at±∞ and FM strings, respectively, present
amongst the zeroes of the P operator. The total number of zeroes of Q(u) and P(u) is equal to
the system size N :

N = 2 nr + `2 nFM + `2 n̄FM + n+∞ + n−∞ + n̄+∞ + n̄−∞ . (7.13)

Consider the functional form of the interpolation formula (6.23),

P(u) =Q(u)
`2−1
∑

k=0

eikφ
T0

�

u+ (k+ 1/2)η
�

Q(u+ kη)Q
�

u+ (k+ 1)η
� . (7.14)

Using (7.11)–(7.12) and the fact that Qs(u+η) = εnFM Qs(u) this can be rewritten as

εnFM Qs(u) Ps(u) tn−∞−n+∞+n̄−∞−n̄+∞

=
`2−1
∑

k=0

eikφ
T0

�

u+ (k+ 1/2)η
�

Qr(u+ kη)Qr

�

u+ (k+ 1)η
�

ei(2k+1)(n−∞−n+∞)η
.

(7.15)

This is a ‘quantisation condition’ for the string centres of FM strings. Indeed, (7.15) implies that
for any two states belonging to the same descendant tower, i.e. sharing the same regular part
of their Q functions, the combination Qs(u) Ps(u) contains the same zeroes. In other words,
the string centres of FM strings for any state belonging to a descendant tower are determined
solely by the regular part of the Q functions. Moreover, string centres of FM strings are free
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within a descendant tower in the sense that adding or removing FM strings whose string centres
are given by the zeroes of Qs(u) Ps(u) results in other eigenstates within the same descendant
tower. We can add FM strings from the zeroes of Qs(u) Ps(u) to the primitive state in order to
generate the descendant states. We present explicit examples of the resulting tower structures
in Sections 8.1–8.2.

7.4 Primitive degenerate eigenstates

When the system size N is odd and condition (6.15) for a commensurate twist is satisfied, it
is possible to have two primitive eigenstates with degenerate eigenvalues of Ts [72]. Namely,
the two eigenstates are related by reversing all spins,

|{vm′}N−M
m′=1}〉=

N
∏

j=1

σx
j |{um}Mm=1}〉 , (7.16)

and, most importantly, their Bethe roots {vm′}N−M
m′=1 and {um}Mm=1 are completely different: both

are primitive states. This is only possible when the parities of M and N−M differ, i.e. the system
size N is odd.

When this happens, the eigenvalues of T̃s are zero for both states,

T̃s(u,φ) |{um}Mm=1}〉= T̃s(u,−φ) |{vm′}N−M
m′=1}〉= 0 . (7.17)

In this case, the matrix T̃(x , y,φ) = T̃s(u,φ) can not be inverted for any x , y ∈ C. Despite this,
the decomposition (6.20) still applies, where rather than via (6.9) the P operator is defined
through the TQ relation for the state beyond the equator. However, it is no longer possible
determine the eigenvalues of the Q operator Q̃ for the degenerate primitive states. In practice
this is not a problem since, as both states are primitive, we can use the numerical recipe in
Appendix C.1 to determine the zeroes of the Q functions (Bethe roots) for both states by solving
the functional TQ relation numerically.

Curiosity at supersymmetric point. In general the number of degenerate primitive eigen-
states at root of unity and commensurate twist increases as the (odd) system size N grows.
The exception to this rule is the special point η = 2π

3 , φ = 0 (or η = π
3 , φ = π, cf. Ap-

pendix C.2), for which there are only two degenerate primitive eigenstates for any odd N .
(There are no degenerate primitive eigenstate when N is even.) These values of η correspond
to the supersymmetric point ∆ = −1

2 . For commensurate twist φ = 0 and odd system size N ,
the antiferromagnetic ground states are always doubly degenerate, and have been well stud-
ied. We call them Razumov–Stroganov (RS) states, from the conjecture made in Ref. [73] and
later proven in Ref. [74]. RS states are closely related to lattice supersymmetry [75,76]. (Note
that in our convention for the Hamiltonian the RS states are the highest excited states in the
spectrum.)

Interestingly, RS states are the only two primitive states that have degenerate eigenval-
ues for T1/2 at ∆ = −1/2, for any odd N . Let us denote them by |RS1〉, in the sector with

M = (N − 1)/2 down spins, and |RS2〉=
∏N

j=1σ
x
j |RS1〉, with M = (N + 1)/2. Their eigenval-

ues for T1/2 are

T1/2(u, 0) |RS1〉= sinhN (u) |RS1〉 , T1/2(u, 0) |RS2〉= sinhN (u) |RS2〉 . (7.18)

The Bethe roots can be obtained using numerical method in Appendix C.1. For instance, for
N = 5 we have

|RS1〉= |{um}2m=1〉 ,

u1 =
log(11−

p
21)− log10
2

+
iπ
2

, u2 =
log(11+

p
21)− log 10
2

+
iπ
2

,
(7.19)
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and

|RS2〉= |{vm′}3m′=1〉 ,

v1 =
iπ
2

, v2 =
log(2−

p
3)

2
+

iπ
2

, v3 =
log(2+

p
3)

2
+

iπ
2

.
(7.20)

One naturally wonders what the structure of the truncated two-parameter transfer matrix
T̃(x , y,φ) is at ∆ = 1/2, and how it relates to the RS states. We will postpone this question
to future work.

7.5 Q functions for fully polarised states

Since all transfer matrices and the Hamiltonian commute with the total magnetisation Sz , the
two fully polarised states |↑↑ · · · ↑〉 and |↓↓ · · · ↓〉 are eigenstates of all transfer matrices, and
therefore of the Q and P operators. Let us study this in more detail.

For the pseudovacuum |↑↑ · · ·↑〉 on top of which magnon excitations are built it is easy to
see that for any system size N and twist φ,

Q̃(u,φ) |↑↑· · ·↑〉=Q⇑(u,φ) |↑↑· · ·↑〉 , Q⇑(u,φ) = cst , (7.21)

with Q function that does not depend on u or φ.
From the definition of the two-parameter transfer matrix (3.6) and (6.4) we have

Q̃(u,φ) |↓↓· · ·↓〉=Q⇓(u,φ) |↓↓· · ·↓〉 , (7.22)

where the Q function is

Q⇓(u,φ) = 〈↓↓· · ·↓| T̃(u, 0,φ) |↓↓· · ·↓〉

= tra

�

�

eu−η/2 W̃−1
a − e−u+η/2 W̃a

�N
Ẽ(φ)

�

=
`2−1
∑

k=0

�

q−k−1/2 t − qk+1/2 t−1
�N

eikφ , t = eu ,

(7.23)

which is consistent with (7.15). (Note that one needs to compare Q⇓(u,φ) with P⇑(u,−φ).)
From the final expression in (7.23) we see that

Q⇓(u+η,φ) = eiφ
� `2−2
∑

k=0

�

q−k−1/2 t − qk+1/2 t−1
�N

eikφ

+
�

q−`2+1/2 t − q`2−1/2 t−1
�N

ei(`2−1)φ
�

εN e−i`2φ
�

�

,

(7.24)

and since ε = q`2 = ±1, we conclude that if 1− εN ei`2φ = 0 then

Q⇓(u+η,φ) = eiφQ⇓(u,φ) . (7.25)

This is precisely the commensurate-twist condition (6.15) for the appearance of FM strings.
When φ = 0 and the condition (6.15) is satisfied Q⇓(u,φ) is a trigonometric polynomial in
z = tξ`2 = eξ`2u with ξ = 1 (ξ = 2) if `1 is even (odd). In that case the Bethe roots, i.e. the
zeroes of (7.23), consist of only FM strings and pairs +∞,−∞.
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8 Applications to XXZ at root of unity: examples

The physical Hilbert space (C2)⊗N consists of all joint eigenstates of the transfer matrices.
Assuming the completeness of the Bethe ansatz these states can be distinguished by their
Bethe roots. Degeneracies are known to occur amongst the eigenvalues of the transfer matrices
Ts when the condition (6.15) for commensurate twist is satisfied [20, 30, 31]. At first sight,
this might resemble the degeneracies due to the SU(2), or sl2 = (su2)C, symmetry at the
isotropic point. Yet such degeneracies are not expected away from the isotropic point. In this
section we will show with several concrete examples how to construct the descendant towers
(Hasse diagrams) that link all different eigenstates with the same eigenvalues (possibly up
to a sign for T1/2, cf. Section 7.2), for the transfer matrices. Moreover, as was observed by
Fabricius and McCoy [32], we will illustrate in Section 8.1.1 that these degeneracies grow
exponentially. This has significant consequences in the thermodynamic limit, which will be
discussed in Section 10.2.

The discussions in this section are less rigorous than the previous sections. We have used
the following method. In order to study the spectrum of XXZ spin chain at root of unity we
need to know the Bethe roots associated to the eigenstates of the model, which is equivalent to
knowing the Q functions, i.e. the eigenvalues of the Q operator, for these eigenstates. Making
use of the decomposition of the truncated two-parameter transfer matrix Q̃(x ,φ) = T̃(x , 0,φ),
we construct the Q operator for the XXZ spin chain at root of unity explicitly for system size
N ≤ 16. This is possible thanks to the truncation of the auxiliary space at root of unity. All the
explicit examples in Section 8.1–8.2 are obtained through this procedure. In many instances,
analytic expressions can be obtained using symbolic algebra software.

8.1 Descendant towers in periodic case

Let us first consider twist φ = 0 vanishes, i.e. periodic boundary conditions, and illustrate
how descendant states can be found from a primitive state together with FM strings or pairs
+∞,−∞. The result will be a descendant tower, consisting of all eigenstates with degenerate
(possibly up to a sign for s = 1/2) eigenvalues of Ts for all 2s ∈ Z>0. At φ = 0 every eigenstate
|{um}Mm=1}〉 (M < N

2 ) has at least one eigenstate with the same eigenvalue for Ts, namely the
spin-flipped state beyond the equator,

|{vm′}N−M
m′=1}〉∝

N
∏

j=1

σx
j |{um}Mm=1}〉 . (8.1)

We will refer to |{um}Mm=1}〉 and |{vm′}N−M
m′=1}〉 as states on the opposite side of the equator with

respect to each other. As we will illustrate, these two states are closely related when (6.15) is
satisfied, forming the top and bottom of a descendant tower that includes various intermediate
states.

In this section we will examine the case with system size N = 12, anisotropy∆= 1
2 (η= iπ

3 ,
so `1 = 1 and `2 = 3), and twist φ = 0. Similar constructions of descendant towers apply to
the antiperiodic case φ = π, which we shall not discuss separately.

8.1.1 Descendant towers of FM strings and their ‘free-fermion’ nature

We start with an example of a descendant tower that is generated solely by adding FM strings
to a primitive state. Consider the simplest primitive state: the pseudovacuum state |{∅}〉 =
|↑↑· · ·↑〉, with no magnons (M0 = 0 spins down). The corresponding state beyond the equator,
∏12

j=1σ
x
j |{∅}〉= |↓↓· · ·↓〉 has Q function given by (7.23):

Q(t)∝ t12 + 220 t6 + 924+ 220 t−6 + t−12 . (8.2)
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It is easy to verify (7.25). The zeroes of this Q function9 are of the form

αFM
1 = α1 + i

π

6
, αFM

2 = α2 + i
π

6
, αFM

3 = α3 + i
π

6
, αFM

4 = α4 + i
π

6
, (8.3)

with numerical values of the real parts of the Bethe roots given by

α1 = −0.89566465 , α2 = −0.23210918 , α3 = 0.23210918 , α4 = 0.89566465 . (8.4)

Thus the state corresponding to |{∅}〉 beyond the equator is itself a Bethe vector:

12
∏

j=1

σx
j |{∅}〉= |{vm′}12

m′=1〉=: |{αFM
1 ,αFM

2 ,αFM
3 ,αFM

4 }〉 . (8.5)

Now let us for a moment consider the free-fermion case ∆ = 0 (η = iπ/2), φ = 0,
which was an important example for [37]. In that case the S-matrix reduces to S = −1,
so the Bethe equations decouple with Bethe roots taking values of the form αn ± iπ/2 with
αn ∈ [0,2π). Reality of the energy requires any solution to consists of complex-conjugate pairs
αn+iπ/2,αn−iπ/2. The very simple resulting spectrum can be understood as consisting of FM
strings of length `2 = 2, and the free-fermion nature is visible in that any string can be added
or removed without affecting the location of the other strings. See e.g. [36] for the details.
More generally, for any root of unity, (7.15) implies that FM strings behave like free fermions
within a descendant tower. For a primitive state |{um}Mm=1〉, if the state |{um}Mm=1∪{α

FM
1 ,αFM

2 }〉
belongs to the descendant tower, then so does |{um}Mm=1 ∪ {α

FM
n }〉 for n ∈ {1, 2}. That is, FM

strings are ‘transparent’: they do not scatter with (feel or influence the values of) other roots.
This observation immediately yields the following descendant tower. Given a primitive

state, construct the corresponding eigenstate beyond the equator and find its Bethe roots as
above. The descendant tower is obtained from the primitive state by adding FM strings one
by one, with magnetisation M jumping by `2 each time, until we reach the eigenstate beyond
the equator at the bottom. For example, the descendant tower obtained in this way from
the pseudovacuum that we considered above is illustrated in Fig. 4. This structure is easily
verified by explicitly constructing the Q operator, and one sees that the eigenvalues of the
transfer matrices Ts are degenerate (up to a sign) for all descendant states.

In particular it follows that the number of descendant states within the magnetisation sec-

tor with number of down spins fixed to M = M0+n`2 is equal to

�

nFM

n

�

, i.e. grows binomially

in the number nFM of FM strings for the state beyond the equator. By adding up all descendant
states at the occurring values of M we find that the total number within the descendant tower
is

ntotal =
nFM
∑

n=0

�

nFM

n

�

= 2nFM , (8.6)

in agreement with the loop-algebra prediction, cf. Eq. (1.19) of Ref. [32]. The the descendant
tower is exponentially large in the number nFM of FM strings present in the state beyond the
equator corresponding to the primitive state.

8.1.2 Descendant towers with pairs of roots at infinity

Next we turn to an example of a descendant tower that is generated by adding FM strings
as well as pairs +∞,−∞ to the Bethe roots of a primitive state. Recall that Bethe roots at
infinity correspond to applications of the lowering operators of Uq(sl2) (see Appendix A.1).

9 Recall that each pair ±t of zeroes of Q corresponds to one Bethe root, cf. Footnote 3 on p. 6
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M=0 |{∅}〉

M=3 |{αFM
1 }〉 |{αFM

2 }〉 |{αFM
3 }〉 |{αFM

4 }〉

M=6 |{αFM
1 ,αFM

2 }〉 |{αFM
1 ,αFM

3 }〉 |{αFM
1 ,αFM

4 }〉 |{αFM
2 ,αFM

3 }〉 |{αFM
2 ,αFM

4 }〉 |{αFM
3 ,αFM

4 }〉

M=9 |{αFM
1 ,αFM

2 ,αFM
3 }〉 |{α

FM
1 ,αFM

2 ,αFM
4 }〉 |{αFM

1 ,αFM
3 ,αFM

4 }〉 |{α
FM
2 ,αFM

3 ,αFM
4 }〉

M=12 |{αFM
1 ,αFM

2 ,αFM
3 ,αFM

4 }〉

Figure 4: Illustration of a descendant tower from the pseudovacuum for N = 12,
∆ = 1/2, φ = 0. Arrows of different colours correspond to the addition of different
FM strings.

At root of unity `2 applications of either of S± or S̄± already gives zero, so the total numbers
of Bethe roots at +∞ and −∞ must be smaller than `2: we need n±∞ < `2. As we will
illustrate, pairs of Bethe roots at +∞,−∞ play a similar role as FM strings.

We continue with the example N = 12, ∆ = 1
2 (η = iπ

3 ), φ = 0. Let us now start from
a primitive state with one down spin (M0 = 1), |{u1}〉, say for the solution to Bethe equa-
tions (2.7) given by

u1 =
1
2

log

p
3+ 1
p

3− 1
. (8.7)

Consider again the corresponding state beyond the equator, |{vm′}11
m′=1〉 ∝

∏12
j=1σ

x
j |{u1}〉.

We obtain its eigenvalue for the Q operator by solving (7.15), yielding the Q function

Q(t)∝
11
∏

m′=1

�

t − e2 vm′ t−1
�

=
�

t −
p

3+ 1
p

3− 1
t−1
��

t6 − 59
74
(−8+ 3

p
3) +

91− 48
p

3
37

t−6
�

. (8.8)

The zeroes of this Q function are u1, two FM strings, along with (cf. Section 5.5) two pairs of
roots +∞,−∞:

v1 = u1 ,

v3(n−1)+k+1 = α
FM
n +

i(k− 2)π
3

, 1≤ n≤ nFM = 2 , 1≤ k ≤ `2 = 3 ,

v8 = v10 = +∞ , v9 = v11 = −∞ .

(8.9)

Here the FM strings are centred at

αFM
1 = α1 + i

π

6
, αFM

2 = α2 + i
π

6
, (8.10)

with real parts that have numerical values

α1 = −0.38464681 , α2 = 0.12649136 , (8.11)

satisfying the quantisation condition (7.15). Note that n±∞ = 2< `2 = 3.
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M = 1 |{u1}〉

M = 4 |{u1,αFM
1 }〉 |{u1,αFM

2 }〉

M = 5 |{u1, 2×±∞}〉

M = 7 |{u1,αFM
1 ,αFM

2 }〉

M = 8 |{u1,αFM
1 , 2×±∞}〉 |{u1,αFM

2 , 2×±∞}〉

M = 11 |{u1,αFM
1 ,αFM

2 , 2×±∞}〉

Figure 5: The descendant tower of |{u1}〉 with finite u1 for N = 12, ∆= 1/2, φ = 0.

Unlike for FM strings, Bethe roots at infinity cannot added one by one: {u1,±∞} does not
satisfy the Bethe equations, as it violates the condition (2.12). On the other hand, using (A.7)
we can easily check that

|{u1, 2×±∞}〉 := |{u1,+∞,−∞,+∞,−∞}〉∝ (S−)2 (S̄−)2 |{u1}〉 (8.12)

is an eigenstate with the same eigenvalues for Ts as |{u1}〉. That is, a pair of Bethe roots
+∞,−∞ can be viewed as a ‘bound state’: these two roots always appear together in order to
satisfy condition (2.15).10 Like FM strings, pairs+∞,−∞ do not scatter with other magnons.
Therefore, when the corresponding descendant state beyond the equator contains one pair of
infinite Bethe roots as in our example, the total number of states in the descendant tower is

ntotal =
nFM+1
∑

m=0

�

nFM + 1
m

�

= 2nFM+1 , (8.13)

as illustrated in Fig. 5.
Almost all (primitive) states at M = 1 give rise to a descendant tower of this form, only

differing in the locations of the FM string centres. There are two exceptions, to which we turn
next.

8.1.3 Mirroring descendant towers

There is one more interesting feature present in the spectrum for N = 12, ∆ = 1
2 (η = iπ

3 ),
φ = 0. At M = 1 down spin we find from (2.15) that there are two eigenstates, namely
|{+∞}〉 and |{−∞}〉, which have an infinite Bethe root. These are primitive: their Ts-
eigenvalues are different from those of the pseudovacuum, reflecting that we are not at the

10 Another viewpoint is that, unlike in the isotropic case, the coproduct of Uq(sl2) is ‘chiral’: the operators S±

and S̄± from (2.5) break the left-right (parity) symmetry of the Hamiltonian. The combination S− S̄−, however, is
compatible with parity invariance.
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isotropic point. We will concentrate on |{+∞}〉 in this section; the situation for |{−∞}〉 is
analogous.

In general, in the (anti)periodic case φ ∈ {0,π}, the existence of an eigenstate of the
form |{um}Mm=1 ∪ {n × +∞}〉 for some n > 0 implies the existence of another eigenstate
|{um}Mm=1∪{(`2−n)×−∞}〉with the same eigenvalues of Ts (up to a sign), whose Bethe roots
can be found from the Bethe equations (2.7). (Likewise, the presence of a state
|{um}Mm=1 ∪ {n×−∞}〉 implies that of |{um}Mm=1 ∪ {(`2 − n)×+∞}〉.)

One can verify that the state beyond the equator corresponding to |{+∞}〉 does not belong
to the same descendant tower as |{+∞}〉, unlike for the examples presented in the previous
sections. The eigenvalue for the Q operator on the corresponding state beyond the equator,
|{vm′}11

m′=1}〉∝
∏12

j=1σ
x
j |{+∞}〉, is obtained through (7.15), yielding

Q(t)∝
11
∏

m′=1

�

t − e2 vm′ t−1
�

= t11 +
165
4

t5 + 66 t−1 +
11
2

t−7 . (8.14)

Its zeroes contain three FM strings and two Bethe roots at −∞,

v1 = v2 = −∞ ,

v3(n−1)+k+2 = α
FM
n +

i(k− 2)π
3

, 1≤ n≤ nFM = 3 , 1≤ k ≤ `2 = 3 ,
(8.15)

where the FM strings have centres

αFM
n = αn + i

π

6
, α1 = −0.404723313 , α2 = 0.075767627 , α3 = 0.613080368 , (8.16)

which satisfy the quantisation condition (7.15).
The resulting descendant-tower structure is as follows. The primitive state |{+∞}〉 gives

rise to descendants via the addition of the above FM strings. This yields a descendant tower
that accounts for half of the states with the same eigenvalues (possibly up to a sign) of the
transfer matrices Ts. The other half of the states form a ‘mirroring tower’, obtained from the
first tower by spin reversal. At the top of the mirroring tower we find the primitive eigenstate
|{2×−∞}〉, whose eigenvalues for Ts are the same as those of |{+∞}〉 except for a sign for
s = 1/2. Spin reversal relates states on opposite sides of the equator as

12
∏

j=1

σx
j |{um}Mm=1〉 ∝ |{vm′}12−M

m′=1 〉= |{+∞, 2×−∞,αFM
1 ,αFM

2 ,αFM
3 } \ {um}Mm=1〉 . (8.17)

See Fig. 6 for an illustration.

8.2 Descendant towers for nonzero commensurate twist

Now we turn to commensurate twist (6.15) with φ /∈ {0,π} away from the (anti)periodic
case. It will be instructive to consider the two commensurate twists ±φ simultaneously. Like
with the mirror-pair of descendant towers in Section 8.1.3 we need to consider two copies
of descendant towers. This time, however, the two copies include states at twist φ as well
as states at opposite twist −φ. Indeed, in Appendix C.3 we show that the transfer matrices
Ts(u,φ) with twist φ are related to those with opposite twist by flipping all spins,

N
∏

j=1

σx
j Ts(u,φ)

N
∏

j=1

σx
j = e2siφ Ts(u,−φ) . (8.18)
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Figure 6: Illustration of descendant towers from degenerate primitive states at
M0 = 1, 2 with Bethe roots at infinity for N = 12, ∆ = 1/2, φ = 0. Global spin
reversal acts by reflection through the middle of the figure: the states with the same
colour are pairs corresponding to each other beyond the equator.

Thus
∏N

j=1σ
x
j |{um}Mm=1〉 is an eigenstate of (the Hamiltonian, and more generally) the transfer

matrices Ts(u,−φ) whenever |{um}Mm=1〉 is so for Ts(u,φ), cf. (C.17). (Observe that φ = 0,π
are the only two values for which φ = −φmod2π.)

We study the example N = 6, ∆ = 1
2 (so η = iπ/3) and commensurate twist φ = ±2π

3 .
We wish to understand the descendant tower for primitive states with M0 = 1 down spin.
These ‘twisted magnons’ are discussed in detail in Appendix B.2. Consider |{u1}〉 with u1 =
arctan tan(π/18)p

3
, which is an eigenvector for the Hamiltonian with twist φ = 2π

3 . Its quasimo-
mentum, see Eq. (B.9), is

ep = i log
sinh(u1 −η/2)
sinh(u1 +η/2)

=
6π−φ

6
=

8π
9

. (8.19)

Next consider the primitive state |{u2}〉′ with u2 = −arctan tan(π/18)p
3

, where we decorate the

ket by a prime to indicate that it is an eigenstate for the Hamiltonian with twist φ′ = −2π
3 .11

This second state has opposite quasimomentum

ep ′ = i log
sinh(u2 −η/2)
sinh(u2 +η/2)

=
−6π−φ′

6
= −

8π
9
=

10π
9

mod2π . (8.20)

11 With our conventions (see Section 3) the off-shell Bethe vectors are independent of the twist, and the depen-
dence onφ only enters via the Bethe equations. The notation |{. . . }〉′ therefore is not really necessary, as the values
of the Bethe roots implicitly determine the sign of the twist, yet we believe that it helps clarifying the discussion.
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These two primitive states have the same eigenvalues for the energy (cf. Appendix B.2)

H(φ) |{u1}〉 = E |{u1}〉 ,
H(−φ) |{u2}〉′ = E′ |{u2}〉′ ,

E = E′ = −cos
π

9
−

1
2

, (8.21)

and, as εnFM = (−1)0 = 1 in (7.8), the same ‘twisted’ momentum p = ep+φ/N = ep ′ −φ/N =
πmod 2π. We note, however, that these two states are not degenerate for the transfer matrices.
For example, the fundamental transfer matrix T1/2 acts by

T1/2(u,φ) |{u1}〉=
eiφ/2

64

�

a1 t6 + a2 t4 + a3 t2 + a4 + a5 t−2 + a6 t−4 + a7 t−6
�

|{u1}〉 , (8.22)

in terms of t = eu as usual, while

T1/2(u,φ′) |{u2}〉′ =
eiφ′/2

64

�

a7 t6 + a6 t4 + a5 t2 + a4 + a3 t−2 + a2 t−4 + a1 t−6
�

|{u2}〉′ (8.23)

has the opposite order of the coefficients. The coefficients read

a1 = −2 , a2 = a5 = 9− 6 sin
π

18
− 6 cos

π

9
,

a3 = −6
�

1− 3cos
π

9
+ cos

2π
9
− 4 sin

π

18

�

,

a4 = −1+ 18 cos
2π
9
− 18 sin

π

18
,

a6 = −6
�

1+ cos
2π
9
− sin

π

18

�

, a7 = 1 .

(8.24)

This reproduces the above values of ep,ep ′, and thus p, through (B.9) and E, E′ via (B.6).
To construct the descendant towers we turn to the corresponding states beyond the equator.

For |{u1}〉 this is
∏6

j=1σ
x
j |{u1}〉 ∝ |{u1,−∞,αFM

1 〉
′, whose eigenvalue for the Q operator

Q̃(t,φ′) is
Q′(t)∝ t

�

t − e2u1 t−1
��

t3 − e6αFM
1 t−3

�

≈ t5 − 1.2266816 t3 + 3.4456224 t−1 − 4.2266816 t−3 .
(8.25)

The state beyond the equator corresponding to |{u2}〉′ is |{u2,+∞,αFM
2 〉, with eigenvalue for

the Q operator Q̃(t,φ) given by

Q(t)∝ t−1
�

t − e2u2 t−1
��

t3 − e6αFM
2 t−3

�

≈ t3 − 0.8152075 t + 0.2902233 t−3 − 0.2365922 t−5 .
(8.26)

Here the string centres of the two FM strings are

αFM
1 = 0.20618409+

iπ
6

, αFM
2 = −0.20618409+

iπ
6

. (8.27)

The descendant towers can now readily be constructed using the ‘free fermion’-like property
as in Section 8.1.1. The resulting tower structure is depicted in Fig. 7, where in general states
come in pairs that have the same (possibly up to a sign, as always) eigenvalues for all transfer
matrices e∓isφ Ts(u,±φ), where the sign in ±φ is determined by the Hamiltonian for which
the state is an eigenvector.

A key difference with the (anti)periodic case is that, in order to construct the descendant
tower by considering the state beyond the equator corresponding to the primitive state, we
are led to consider the systems with twists φ and φ′ = −φ simultaneously. The states within
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Figure 7: Illustration of descendant towers from the primitive states |{u1}〉 and |{u2}〉′

for N = 6, ∆ = 1/2 and commensurate twist φ = 2π
3 and φ′ = −φ. Like in Fig. 6

states of the same colour correspond to each other via global spin reversal.

either tower in Fig. 7, e.g. |{u1}〉 and |{u1,−∞}〉′, have degenerate (possibly up to a sign)
eigenvalues for all e∓isφ Ts(u,±φ), with sign of the twist determined by the states. On the other
hand, between the two different towers, the eigenstates are only degenerate for the momentum
(possibly up to a shift by π) and energy: as we saw for the two primitive states this does not
extend to the higher charges generated by the transfer matrices. This is the second important
difference with the (anti)periodic case from Section 8.1.3, where all eigenstates in Fig. 6 have
degenerate (up to a possible sign) eigenvalues for Ts. To conclude this discussion we remark
that the descendant-tower structure for twists ±φ /∈ {0,π} can get more complicated for roots
of unity with `2 > 3.

8.3 Full spectrum at root of unity: an example

Although we have not been able to find an algorithmic description of the structure of the
spectrum for given values of the spin-chain parameters N ,∆,φ, our numerical investigations
of numerous examples suggest that the full spectrum can be understood case by case in terms
of the descendant towers that we have described in this section. Let us demonstrate this for a
system with N = 10,∆= 1

2 (η= iπ
3 ) and φ = 0. The resulting description of the full spectrum

is given in Table 1.
We stress that, due to the vanishing Wronskian relation (6.14) and the ‘free fermion’-

like behaviour of FM strings, each primitive state is at the top of a descendant tower, with
descendants that are obtained by adding FM strings or pairs of roots +∞,−∞. By (2.18) the
states come in three categories, classified by the number of Bethe roots located at infinity:

i) n+∞ = n−∞ (= 0 for primitive states) ,

ii) n+∞ > n−∞ = 0 ,

iii) n−∞ > n+∞ = 0 .

More precisely, the conditions (2.15) and (2.17) allow for n±∞ = M+1mod 3. Since of course
n+∞+n−∞ ≤ M infinite roots can first occur at M = 3 (n±∞ = 1), then at M = 4 (n±∞ = 2),
not at M = 5 (n±∞ = 0), after which the pattern repeats.

Start with |↑ · · · ↑〉 = |{∅}〉. From the zeroes of the Q function (7.23) we find (cf. Foot-
note 9 on p. 34) that the corresponding state beyond the equator can be written as |↓· · ·↓〉∝
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|{αFM
1 ,αFM

2 , 2×±∞}〉, with FM strings of length `2 = 3. We proceed as in Section 8.1.2. Draw
the candidate descendant tower using the ‘free-fermion’ property. Note that (2.15) and (2.17)
exclude all potential descendant states in this tower with one pair +∞,−∞ of infinite roots:
all four infinite roots must be added at the same time. The primitive state at M = 0 thus gives
rise to a descendant tower with two descendants at M = 3 and at M = 7, and one descendant
at each of M = 4, 6,10.

All ten states |{u1}〉 at M = 1 must be primitive. Their Bethe root are finite in view of (2.15)
and (2.17). The corresponding states beyond the equator have room for two FM strings and
one pair of infinite roots (n+∞ = n−∞ = 1, allowed at M = 9). The descendant tower is as
in Fig. 5, except that there is just a single pair of infinite roots. All intermediate descendants
occur: the pair of infinite roots at M = 3,6, 9 is allowed by (2.15) and (2.17). Each M = 1
vector thus sits at the top of a descendant tower containing one descendant at each of M = 3, 7
and two descendants at M = 4, 6.

The 45 states at M = 2 are also primitive, and must have finite Bethe roots. The corre-
sponding states beyond the equator allow for two FM strings. By the free-fermion property
each descendant tower contains four states.

Next we turn to M = 3, where 120 − 12 = 108 primitive states remain. Here it starts
to become a little more complicated to predict the structure by hand, as infinite Bethe roots
(n±∞ = 1) may occur. Due to parity invariance there must be equally many states in the
classes (ii) and (iii). It is possible to find out how many such states occur. Indeed, suppose
that n+∞ = 1, n−∞ = 0 (the opposite case is treated analogously). Then two Bethe roots
remain to be determined. Their Bethe equations effectively acquire a twist due to the presence
of the infinite root, cf. the discussion preceding (2.12). One can solve these Bethe equations,
and delete all solutions that themselves contain infinite roots. Alternatively one can directly
use the eigenvalues of the truncated two-parameter transfer matrix T̃(x , y,φ) to compute the
eigenvalues of the Q operator Q̃ numerically. In either case, the corresponding states beyond
the equator need four more Bethe roots. For the primitive states with n+∞ = n−∞ = 0 these
extra roots come from n+∞ = n−∞ = 2, while for the primitive states with n±∞ = 1 and
n∓∞ = 0 these descendants have n±∞ = 2, n∓∞ = 0 plus one FM string.

One proceeds analogously for the 210 − 12 = 198 primitive states left at M = 4. The
corresponding states beyond the equator need two more Bethe roots, which come from adding
a pair +∞,−∞ for the primitive states in class (i). The situation is a bit more tricky for the
primitive states in the other classes. For class (ii) they are of the form |{u1, u2,+∞,+∞}〉,
but the corresponding states beyond the equator are only allowed to have one infinite root. In
this case one of the infinite roots is removed to make place for an FM string: the descendants
are |{u1, u2,αFM,+∞}〉.

The 252− 90= 162 primitive states left at the equator must fall in class (i).
The resulting spectrum is summarised in Table 1, where ‘×k’ counts the different FM string

configurations (choices of αFM
n ) for the descendant states at a given magnetisation. For exam-

ple, the entry 1 ×2 + 10 comes from |{αFM
n }〉 for n = 1, 2 (descendants from M = 0) along

with |{u1,±∞}〉 for the ten different Bethe roots u1 at M = 1. The entry 1+ 10×2 similarly
represents |{2×±∞}〉 and |{u1,αFM

n }〉 for n= 1,2, respectively.

8.4 Deformations of FM strings

At the start of Section 7.3 we showed that FM strings occur precisely when the system is at
root of unity with commensurate twist (6.15). Let us further substantiate this by studying what
happens to the Bethe roots constituting an FM string under small changes to the twist φ or
the anisotropy parameter η. (Observe that such deformations immediately break the relation
(6.15), as `2 fluctuates wildly when the value of η varies through iQ ⊂ iR.)
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Table 1: The full spectrum for N = 10, ∆ = 1
2 (η = iπ

3 ) and φ = 0, organised
in terms of primitive and descendant states with n+∞ = n−∞, n+∞ > n−∞ = 0,
n−∞ > n+∞ = 0.

total # # primimitive states # descendant states
M n±∞ = 0 n+∞ > 0 n−∞ > 0 n+∞ = n−∞ n+∞ > 0 n−∞ > 0
0 1 1 0 0 0 0 0
1 10 10 0 0 0 0 0
2 45 45 0 0 0 0 0
3 120 40 34 34 1×2+ 10 0 0
4 210 121 34 34 1+ 10×2 0 0
5 252 162 0 0 45×2 0 0
6 210 0 0 0 1+10×2+121 34 34
7 120 0 0 0 1×2+ 10+ 40 34 34
8 45 0 0 0 45 0 0
9 10 0 0 0 10 0 0
10 1 0 0 0 1 0 0

Turning on a small twist φ (Appendix E.1) leads to smooth changes of the Bethe roots
associated to FM strings, and the same is true for the eigenvalues of the Q operator. This
is closely related to the string hypothesis in the thermodynamic limit, as explained in Sec-
tion 10.2: under small variations of the twist an FM string decomposes into (string deviations
of) two ordinary Bethe strings with slightly different string centres. See also our conjecture in
Section 10.2.

Instead, even a tiny change of η away from the root-of-unity values completely changes
the Bethe roots associated to the FM strings (Appendix E.2): unlike before, FM strings cannot
be continuously reconstructed when η is deformed, and the eigenvalues of the Q operator
change drastically. This is expected from the representation theory of Uq(sl2), which is very
sensitive to the precise root of unity. However, as one would expect on physical grounds,
physical quantities such as the eigenvalues of the transfer matrices Ts do change continuously
as η is varied. Further investigations are required in order to fully understand this behaviour.

8.5 Connection to the work of Fabricius and McCoy

In [31] Fabricius and McCoy derived an equation for the string centre of FM strings at zero
twist, see (1.11) therein, by linearising the Bethe equations (2.7) around an arbitrary root of
unity. In other words, these string centres are obtained by continuity from their values in an
infinitesimal neighbourhood of the root of unity. Let us explain why this is not in contradiction
with the results from Section 8.4 and Appendix E.2.

By ‘Bethe roots’ we mean the zeroes of the eigenvalue of Q operator constructed from the
two-parameter transfer matrix. We thus determine the FM string centres at commensurate
twist (6.15) from the zeroes of the Q operator. Such zeroes associated with FM strings are
among the zeroes of the Drinfeld polynomial (parameters of the evaluation representation).
Note that the Drinfeld polynomial Y(v) in (1.42) of Ref. [32], cf. (4.2) therein and [39], is
proportional to Qs Ps in our notation, as can be seen by comparing (1.42) in [32] with our
(7.15).

Next, our roots associated with FM strings do not satisfy (1.11) in [31]. This can most
easily been seen when N is a multiple of `2 and `1 is even (i.e. L a multiple of N and r even
in the notation of [31]), so that (1.11) from [31] reduces to (1.10) therein. In that case the
denominator of Y(v) is one, and the zeroes of Y(v) coincide (up to a simple change of notation)
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with the zeroes of (7.23), which we identify with the roots constituting the FM string. This
would coincide with the solutions of [31] if one would ignore the second factor in parenthesis
in (1.10).

The solutions to (1.11) in [31] can be used to construct the eigenvectors of H. Indeed,
Fabricius and McCoy proposed a creation operator for FM strings, see (1.38) and (1.41)–(1.42)
in [32]. In examples we find that, taking the spectral parameter therein to by a solution to
(1.11) in [31], the result is an eigenvector of H and T1/2, but not of the two-parameter transfer
matrix or Q operator. (Note that we cannot take the spectral parameter to be the FM string
centres as found by our methods, cf. Section 8.5, since these are zeroes of Y(v) which appears
as a denominator in (1.38) from [32].) Instead, the FM string creation operator from [32]
yields a linear combination of the eigenvectors of the Q operator. In Appendix E.2 we illustrate
this with an example.

In the next section we propose creation and annihilation operators for FM strings that do
yield eigenvectors of the Q operator.

9 Conjectures for FM creation and annihilation operators

Vernier et al. [36] proposed to use semicyclic representations in order to construct degenerate
states with different magnetisation. These representations have also been used to construct
quasilocal charges [77]. Building on these ideas we present conjectures for explicit construc-
tions of the FM string creation and annihilation operators that commute with the XXZ transfer
matrix while changing the magnetisation in steps of `2.

9.1 Case q`2 = +1

We start with roots of unity obeying ε = q`2 = +1. Pick the semicyclic representation for the
auxiliary space: V sc

a is `2 dimensional, has spin s ∈ C and furthermore depends on a parameter
β ∈ C, see Appendix A.2. Replace Xa from (4.1), (6.3) by Xsc

a = Xa+β x y/(x − y) |0〉〈l −1|a,
which still obeys the commutation relation Wa Xsc

a = q Xsc
a Wa. Substituting this in (4.7) modi-

fies the matrix entry S+a = L21
a /sinhη to

S+, sc
a = S+a + β |0〉〈`2 − 1|a , (9.1)

while keeping the other three matrix elements in (4.7) unchanged. In this way we obtain a
Lax operator Lsc

a j , and the usual construction (3.5)–(3.6) gives the transfer matrix

Tsc
s (u,φ,β) = tra

�

Lsc
aN (u,β) · · ·Lsc

a1(u,β)Ea(φ)
�

, (9.2)

depending on s ∈ C and β ∈ C. Here the twist Ea(φ) acts on V sc
a by the usual expression

(B.1). The matrix elements of (9.2) change the magnetisation (N − 2M)/2 by −n`2 and are
proportional to βn for positive n ∈ Z>0. For example, in a chain of length N = `2, the expansion
of the transfer matrix contains a term tra[(S+, sc

a )N ]
∏N

j=1σ
−
j that changes the magnetisation

by −`2, creating `2 magnon excitations.
The matrices Tsc

s (u,φ) do not commute with each other at different values of u, but do com-
mute with T1/2(u,φ) when the twist is commensurate. To see this, note that the construction
of the semicyclic Lax operator guarantees that the following version of the RLL relation (3.3)
with (six-vertex) R-matrix (3.4) holds true for any β:

R jk(u− v)Lsc
a j(u,β)Lsc

ak(v,β) = Lsc
ak(v,β)Lsc

a j(u,β)R jk(u− v) . (9.3)

This is an identity of operators on Vj ⊗ Vk ⊗ V sc
a . Let us reinterpret it by thinking of the spin-

1/2 space labelled by k as an auxiliary space, Vk   Vb. The symmetry property R jk = Rk j
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of (3.4) allows us to view the R-matrix as a Lax matrix Lb j , whereas Lsc
ak takes the role of

an R-matrix Rsc
ab. Reversing the two sides of (9.3) and changing v 7→ u − v we arrive at an

RLL relation on V sc
a ⊗ Vb ⊗ Vj:

Rsc
ab(u− v,β)Lsc

a j(u,β)Lb j(v) = Lb j(v)L
sc
a j(u,β)Rsc

ab(u− v,β) . (9.4)

Here a corresponds to the semicyclic auxiliary space, b to a spin-1/2 auxiliary space, and k
to a spin-1/2 physical space. The train argument implies that the twisted semicyclic transfer
matrix (9.2) commutes with the twisted fundamental transfer matrix (3.5)–(3.6), provided
Rsc

ab commutes with the tensor product of the twists matrices. This requires the twist to be
commensurate, ei`2φ = 1, cf. (6.15).

By fusion (9.2) further commutes with Ts′(u,φ) for any 2 s′ ∈ Z>0:
�

Tsc
s (u,φ,β) ,Ts′(v,φ)

�

= 0 , s ∈ C , β ∈ C , 2s′ ∈ Z>0 . (9.5)

Since the twisted semicyclic transfer matrix Tsc
s (u,φ,β) changes the magnetisation of an eigen-

state of the Q operator in steps of `2, it mixes states that are degenerate for Ts′(u,φ) within
each descendant tower.

One can use Tsc
s (u,φ,β) to construct eigenstates of the Q operator itself. Because the part

of Tsc
s (u,φ,β) of first order in β changes the magnetisation of eigenstates of the Q operator

by −`2, we make

Conjecture 1. When ε = q`2 = +1 the linearisation in β of (9.2) at s = (`2 − 1)/2,

BFM(u) := ∂β Tsc
s (u,φ,β)

�

�

β=0, 2s=`2−1 , (9.6)

is the creation operator for the FM string {αFM} = {u, u + iπ
`2

, · · · , u + iπ `2−1
`2
}. The spectral

parameter can be taken to be any Bethe root from the FM string, e.g. u as in (9.6).

Note that at β = 0 and 2s = `2 − 1 the semicyclic Lax operator coincides with the Lax
operator whose auxiliary space is the `2-dimensional highest-weight representation. By (9.2)
the operator (9.6) can thus be expressed more explicitly as

BFM(u) =
N
∑

j=1

tra

�

LaN (u) · · ·La, j+1(u) e0,`2−1
a σ−j La, j−1(u) · · ·La1(u)Ea(φ)

�

, (9.7)

where we write en,n′
a = |n〉〈n′|a for the matrix units on Va.

The construction of the FM-string creation operator (9.6) is just like that of the generating
function of the quasilocal Y charges proposed in Ref. [77], except that the transfer matrices
are evaluated at different values of s. Therefore BFM(u), like those Y charges, commutes with
Ts(u) with 2s ∈ Z>0 but not with T̃s′(u) when 2s′ ∈ C \Z>0.

Example. We have verified our conjecture in many examples. To illustrate this consider N = 6,
∆ = −1

2 (η = 2iπ
3 ) and φ = 0. The descendant tower of the pseudovacuum |{∅}〉 = |↑↑↑↑↑↑〉

contains three descendants:

|{αFM
1 }〉 , |{αFM

2 }〉 , |{αFM
1 ,αFM

2 }〉 , (9.8)

with FM strings centred at

αFM
1 = −

log(10+ 3
p

11)
6

, αFM
2 = +

log(10+ 3
p

11)
6

. (9.9)

One can verify that (9.6) does indeed create these FM strings:

|{αFM
n }〉∝ BFM(αFM

n ) |{∅}〉 , n= 1,2 , (9.10)
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and the consistency condition |{αFM
1 ,αFM

2 }〉∝ BFM(αFM
1 ) |{α

FM
2 }〉= BFM(αFM

2 ) |{α
FM
1 }〉 holds, even

though the BFM do not commute in general. More generally, whenever two FM strings with
centres αFM

n ,αFM
n′ occur among the descendants of some primitive state |{um}m〉 we find that

BFM(αFM
n ) |{um}m ∪ {αFM

n′ }〉 = BFM(αFM
n′ ) |{um}m ∪ {αFM

n }〉 ∝ |{um}m ∪ {αFM
n ,αFM

n′ }〉. That is, our
creation operator (9.6) can be used to construct the whole descendant tower described in
Section 8.1.1.

Next we turn to the annihilation operator. Let us denote the parameter of the cyclic repre-
sentation by γ. If we repeat the same construction with the transposed Lax matrix La j(vy ,ux)
from (4.9), this time replacing the entry Ŝ−a := L12

a (vy ,ux)/ sinhη by

Ŝ−, sc
a = Ŝ−a + γ |`2 − 1〉〈0|a , (9.11)

we obtain a semicyclic transfer matrix

T̂sc
s (u,φ,γ) = tra

�

L̂
sc
aN (u,γ) · · · L̂sc

a1(u,γ)Ea(φ)
�

(9.12)

that changes the magnetisation by positive multiples of `2. Like before we arrive at

Conjecture 2. When ε = q`2 = +1 the linearisation in γ at s = (`2 − 1)/2,

CFM(u) := ∂γ T̂sc
s (u,φ,γ)

�

�

γ=0, 2s=`2−1

=
N
∑

j=1

tra

�

LaN (u) · · ·La, j+1(u) e`2−1,0
a σ+j La, j−1(u) · · ·La1(u)Ea(φ)

�

,
(9.13)

annihilates the FM string with Bethe roots {u, u+ iπ
`2

, · · · , u+ iπ `1−1
`2
}.

We have again checked this in many examples including the one above. We find that the
consistency condition CFM(αFM

n )B
FM(αn′) |{um}m∪{αFM

n }〉= |{um}m∪{αFM
n′ }〉= BFM(αn′)CFM(αFM

n )
|{um}m∪{αFM

n }〉 holds so long as |{um}m∪{αFM
n }〉 and |{um}m∪{αFM

n′ }〉 are eigenstates of the Q
operator, even though we do not know the commutation relations between BFM(u) and CFM(v)
in general. We postpone such ‘off-shell’ relations to future investigations.

9.2 Case q`2 = −1

When ε = q`2 = −1 the RLL relation (9.4) has to be modified by including some signs:

Rsc
ab(u− v,β)Lsc

a j(u,−β)Lb j(v) = Lb j(v)L
sc
a j(u,β)Rsc

a j(u− v,−β) . (9.14)

This RLL relation can be shown by direct calculation on Vb ⊗ Vj . The resulting monodromy
matrix is ‘staggered’, with alternating sign of β . For general ε = q`2 = ±1 the semicyclic
monodromy matrix can thus be defined as

Msc
a (u, s,φ,β) := Lsc

aN (u, s,εNβ) · · ·Lsc
a j(u, s,ε jβ) · · ·Lsc

a1(u, s,εβ)Ea(φ) . (9.15)

When ε = +1 all βs have the same sign, while for ε = −1 the sign alternates. Taking the trace
we obtain the general expression for the semicyclic transfer matrix

Tsc
s (u,φ,β) = tra

�

Lsc
aN (u, s,εNβ) · · ·Lsc

a j(u, s,ε jβ) · · ·Lsc
a1(u, s,εβ)Ea(φ)

�

. (9.16)

For ε = +1 this reduces to (9.16); in particular, the use of the same notation as in (9.16)
should not cause any confusion.
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Figure 8: Graphical proof of Eq. (9.18) for an even number N of sites.

Figure 9: Graphical proof of Eq. (9.18) for an odd number N of sites.

Recall that for ε = −1 the commensurate twist φ depends on the system size N through
the condition ei`2φ = (−1)N from (6.15). Therefore on V sc

a ⊗ Vb we have

Ea(φ)Eb(φ)R
sc
ab(u,β) = Rsc

ab

�

u, (−1)Nβ
�

Ea(φ)Eb(φ) . (9.17)

Combining (9.14) and (9.17) the train argument, illustrated in Figs. 8 and 9, yields

Rsc
ab(u− v,β)Msc

a (u, s,β ,φ)Mb(v,φ) =Mb(v,φ)Msc
a (u, s,−β ,φ)Rsc

ab(u− v,β) . (9.18)

Multiplying by Rsc
ab(u− v,β)−1 = Rsc

ab(v − u+η,−β)/ sinh2(u− v +η), provided it exists, and
taking the trace over the `2-dimensional auxiliary space we see that the semicyclic transfer
matrix (9.16) commutes with the fundamental transfer matrix in the sense that

Tsc
s (u,β ,φ)T1/2(v,φ) = T1/2(v,φ)Tsc

s (u,−β ,φ) , u, v, s ∈ C . (9.19)

With the aid of the fusion relation we obtain the commutation relations

Tsc
s (u,β ,φ)Ts′(v,φ) = Ts′(v,φ)Tsc

s

�

u, (−1)2s′β ,φ
�

, u, v, s ∈ C , 2s′ ∈ Z>0 . (9.20)

In particular, the semicyclic transfer matrix commutes with Ts′ for integer s′.

Remark. Another way to get this result is to evaluate the monodromy matrix Msc
a′ with an

2`2-dimensional semicyclic auxiliary space Va′ when ε = −1. One can verify that tra′M
sc
a′ =

Tsc
s (u,β ,φ) + Tsc

s (u,−β ,φ), while (−1)N tra′
�

Msc
a′ E
′
�

= Tsc
s (u,β ,φ)− Tsc

s (u,−β ,φ) if an extra

twist E′ =
∑2`1−1

n=0 |n+ `2 mod2`2〉〈n|a′ is included.

In either way we are led to

Conjecture 3. For any ε = q`2 = ±1 the linearisation in β of (9.16) at s = (`2 − 1)/2,

BFM(u) := ∂β Tsc
s (u,φ,β)

�

�

β=0, 2s=`2−1

=
N
∑

j=1

ε jtra

�

LaN (u) · · ·La, j+1(u) e0,`2−1
a σ−j La, j−1(u) · · ·La1(u)Ea(φ)

�

,
(9.21)

creates an FM string with Bethe roots {u′, u′ + iπ
`2

, · · · , u′ + iπ `2−1
`2
}. The spectral parameter in

(9.21) is related to the FM string by u= u′ if ε = +1 and u= u′ − iπ
2`2

when ε = −1.

This conjecture has been successfully tested on all examples in Section 8, as well as for
various cases when `2 is even.
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Let us focus on ε = −1 again. Taking the derivative of (9.20) with respect to the parameter
β we obtain the (anti)commutation relations

�

BFM(u),Ts′(v)
	

= 0 , 2s′ + 1 ∈ Z>0 ,
�

BFM(u),Ts′(v)
�

= 0 , s′ ∈ Z>0 .
(9.22)

The anticommutation of BFM(u)with T1/2(v) for ε = −1 might be surprising, but can be under-
stood as follows. When ε = −1 an FM string adds π to the momentum without affecting the
energy or other charges. This requires BFM(u) to anticommute with the translation operator,
and to commute with all higher conserved charges (logarithmic derivatives of T1/2). This is
guaranteed by the anticommutation.

The annihilation operator for FM strings can be defined like in (9.13). Generalise the
semicyclic transfer matrix (9.12) to arbitrary ε ∈ {+1,−1} by including staggered parameters
±γ like in (9.16). Then we propose

Conjecture 4. When ε = q`2 = ±1 the operator

CFM(u) := ∂γ T̂sc
s (u,φ,γ)

�

�

γ=0,2s=`2−1

=
N
∑

j=1

ε j tra

�

LaN (u) · · ·La, j+1(u) e`2−1,0
a σ+j La, j−1 · · ·La1(u)Ea(φ)

� (9.23)

annihilates an FM string with Bethe roots {u′, u′+ iπ
`2

, · · · , u′+ iπ `2−1
`2
}. The spectral parameter

is again related to the FM string by u= u′ if ε = 1 and u= u′ − iπ
2`2

for ε = −1.

10 Thermodynamic limit

10.1 FM strings and Z charges

In Section 7.2 we have seen that all states within a descendant tower have the same eigen-
values (up to a possible minus sign) for Ts. This may lead one to wonder if those states can
be distinguished at all using charges that are (quasi)local in the thermodynamic limit. The
answer to this question is positive: the (exponentially many) degeneracies can be lifted by
taking into account the quasilocal Z charges [42–45] that can be constructed at root of unity as
logarithmic derivatives of the truncated transfer matrix T̃s from Section 6. The quasilocality of
the Z charges in the thermodynamic limit was demonstrated in Refs. [42–45]. The Z charges
were used to study out-of-equilibrium phenomena such as quantum quenches in Ref. [41].
Here we focus on their role in distinguishing states that are degenerate for Ts.

In Section 6 we already studied the key ingredient for the construction of the Z charges,
viz. the truncated two-parameter transfer matrix T̃(x , y,φ) = T̃s(u,φ) at root of unity. Similar
to Ref. [41] we define the generating function of the Z charges as

Z(u,φ) := −i∂s log T̃s(u,φ)
�

�

2s=`2−1 = −i T̃−1
(`2−1)/2(u,φ)∂sT̃s(u,φ)

�

�

2s=`2−1 . (10.1)

Like in (3.8) the Z charges are the coefficients of the expansion around u= η
2 ,

Z( j) := −i
d j−1

du j−1
Z(u,φ)

�

�

�

u=η/2
. (10.2)

The Z charges are able to tell apart each member of the descendant tower. Let us illustrate
this for the example N = 6, ∆ = 1

2 (η = iπ
3 ) and φ = 0 from Section 2.3.Consider the

descendant tower formed by

|{∅}〉= |↑↑↑↑↑↑〉 , |{αFM
1 }〉 , |{αFM

2 }〉 , |{αFM
1 ,αFM

2 }〉∝ |↓↓↓↓↓↓〉 , (10.3)
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where the string centres for the two FM strings are

αFM
1 = −

log(10+ 3
p

11)
6

+
iπ
6

, αFM
2 =

log(10+ 3
p

11)
6

+
iπ
6

. (10.4)

The generating function (10.1) acts on the descendant tower by

Z(u, 0) |{∅}〉=
12π cosh(6u)
10− cosh(6u)

|{∅}〉 ,

Z(u, 0) |{αFM
1 }〉=

6
p

11π
10− cosh(6u)

|{αFM
1 }〉 ,

Z(u, 0) |{αFM
2 }〉= −

6
p

11π
10− cosh(6u)

|{αFM
2 }〉 ,

Z(u, 0) |{αFM
1 ,αFM

2 }〉= −
12π cosh(6u)
10− cosh(6u)

|{αFM
1 ,αFM

2 }〉 .

(10.5)

The eigenvalues of Z(u) are different for each eigenstate.
Now consider the thermodynamic limit N → ∞. There is a subtlety in the presence of

FM strings. For instance, when φ = 0 and η = iπ`1/`2 with `1 odd, (6.15) implies that for
odd N there are no FM strings in the spectrum, while for even N there are (exponentially
many) states associated with FM strings. The spectrum of systems at finite size is therefore
sensitive to the parity of N , and it is not a priori clear whether the thermodynamic limit is
well defined. However, numerics suggests that at odd N there are states in the spectrum that
differ by terms that vanish as N → ∞ to give rise to the same asymptotic degeneracies as
obtained when taking the limit via even N . Thus the result in the thermodynamic limit should
be independent of the way in which the limit N →∞ is taken.

The role of the Z charges in separating the degeneracies in the presence of FM strings
has important implications for the thermodynamic limit: Z charges have to be included when
constructing the generalised Gibbs ensemble (GGE) for the XXZ spin chain at root of unity.
Z charges are also important to obtain non-vanishing spin Drude weight with XXZ model at
root of unity [42, 43]. This is further supported by the discussion in the remainder of this
section.

10.2 TBA, string-charge duality, and a conjecture for string centres of FM strings

One of the cornerstones in the study of the thermodynamic properties of quantum integrable
models is the thermodynamic Bethe ansatz (TBA), which has been used extensively to study
out-of-equilibrium problems such as transport, quantum quenches and generalised hydrody-
namics.

In order to solve the TBA equations for the XXZ spin chain at root of unity one relies on
the string hypothesis [78], which stipulates the types of bound states that the model permits.
This is a powerful tool that has yielded numerous results for thermodynamic properties of the
XXZ model. A general review can be found in [79]. In the following we will use the notation
of Ref. [46].

In [46], Ilievski et al. made the remarkable observation that the root densities of the
Bethe strings (bound states) are in one-to-one correspondence with the generating functions
of (quasi)local charges (3.8) of the model. This string-charge duality is of great use and con-
venient for the study of expectation values of (quasi)local charges, especially for quantum
quenches [12]. The string-charge duality furthermore provides the root densities for the long-
time non-equilibrium steady states [46,80].

When we are at root of unity we have to take into account the generating function of the
Z charges to obtain the root densities of the ‘last two string types’ in the list of Takahashi [78,
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79]. This result has been derived in [41, 46].12 Moreover, the total root densities of the ‘last
two string types’ are the same from the TBA calculation (see Eq. (9.66) of [79]), revealing a
deep connection between the two.

The ‘last two string types’ are related to FM strings too. In fact, two Bethe strings, one
of each of the last two string types, that have coinciding real parts of their string centres
(cf. Footnote 9 on p. 34) together form an FM string. For example, consider ∆ = 1

2 (η = iπ
3 ),

for which the string hypothesis says that the last two string types are (2,+) and (1,−). Call
a bound state with n magnons whose Bethe roots have the same real part an ‘n-string’. Then
‘(2,+)’ denotes a 2-string with even parity (centred at the real axis, i.e. a complex conjugate
pair), and ‘(1,−)’ a 1-string with odd parity (centred at Im um =

π
2 ≡ −

π
2 ). For η = iπ

3 the
imaginary parts of the 2-string with even parity are±π6 while the imaginary part of the 1-string
with odd parity is π2 . On the other hand, according to the examples in Section 8, FM strings
for η= iπ

3 can be expressed as

u1 = α−
iπ
6

, u2 = α+
iπ
6

, u3 = α+
iπ
2

, α ∈ R . (10.6)

But this can be viewed as two strings, one of type (2,+) and one of type (1,−), with coinciding
real part of the string centre.

We expect that for any system size with commensurate twist FM strings can be decomposed
in terms of the last two string types of the string hypothesis in this way, even at finite system
size. Indeed, for any principal root of unity η= iπ

`2
the last two string types are (`2 − 1,+) and (1,−) [78]. We have investigated FM strings

for all `2 ≤ 6 at various N and found that they can all be viewed as consisting of strings of
the last two string types with equal real parts of the string centres. It even appears to hold for
non-principal root of unity, see Appendix F for examples.

By studying the string centres of FM strings as the value ofφ approaches the commensurate
twist (6.15) as in Appendix E.1 we are led to

Conjecture 5. For any finite system size N and root of unity η = iπ `1
`2

with commensurate
twist, any Fabricius–McCoy string

αk = α
FM +

iπ
`2

�

`2 + 1
2
− k

�

, 1≤ k ≤ `2 , (10.7)

has string centre with imaginary part

ImαFM =

¨

π
2`2

if `1 is odd ,

0 if `1 is even .
(10.8)

This conjecture has been confirmed for all examples in Section 8.
In the thermodynamic limit, the conjecture (10.8) is compatible with the known TBA re-

sults [79]. Due to the exponentially large degeneracies of the descendant tower, FM strings in
the thermodynamic limit will contribute to the thermodynamic quantities. Through conjecture
(10.8) the density of FM strings has been included already in the root densities of the ‘last two
string types’. It implies that we do not need to include any new functional relation to the TBA
formalism in [79].

Combining the conjecture with the knowledge that the generating function of the Z charges
is crucial to obtain the root densities of ‘last two string types’, we conclude that the Z charges
are directly related to the FM strings.

12 In Ref. [41], the authors considered only principal root of unity (`1 = 1). Similar results for arbitrary root of
unity can be obtained analogously, cf. the supplementary material of [81].
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Remark. There is a key difference between the thermodynamics of the ‘descendant states’ in
our article and the sl2-descendants in spin-1/2 Heisenberg XXX spin chain. For the latter the
sl2-descendant states are associated with Bethe roots at infinity (vanishing quasimomenta),
and do not enter in the TBA calculations. However, for the XXZ spin chain at root of unity the
‘descendant states’ in our terminology (see Section 7.1) do enter the TBA calculation through
the density of FM strings, which is in principle determined by the density of the last two string
types.

10.3 FM strings and spin Drude weight

One of the most important physical consequences of the quasilocal Z charges is the non-
vanishing high-temperature spin Drude weight13 of the XXZ model at root of unity, due to
the non-commutativity between the spin flip operator

∏

j σ
x
j and the Z charges [42,43,45]. It

can be considered as a manifestation of the exponentially many degeneracies in the thermo-
dynamic limit.

In Appendix E.2 we demonstrate that perturbing the anisotropy parameter η away from
root of unity can change the structure of the Bethe roots dramatically, especially for states
with FM strings. On the other hand, the spin Drude weight [45] is also known to change
significantly under such perturbations. This hints at a connection between the existence of FM
strings and the fractal structure of the spin Drude weight.

Another hint for the intimate relation between FM strings and non-vanishing spin Drude
weight at root of unity comes from the domain-wall quench, i.e. the time evolution of an
initial state |↑ · · · ↑↑↓↓ · · · ↓〉, for the XXZ model at root of unity. Here ballistic spin transport
(non-vanishing spin Drude weight) can be treated analytically using generalised hydrodynam-
ics [83]. The right half of the system, i.e. the fully polarised state |↓↓· · ·↓〉, has Q function given
in Section 7.5 for finite size. In the thermodynamic limit, according to the TBA, this fully po-
larised state consists of a filled ‘Fermi sea’ with Bethe roots of the last two string types [79,83],
cf. Section 10.2. In this case, each pair of Bethe strings with one string from each of the last
two string types has the same real parts of the string centres. From the definition of the density
of Bethe strings it follows that the densities of the last two string types must coincide. The
conjecture (10.8) implies that the Bethe roots of |↓↓ · · · ↓〉 consists solely of FM strings. For
the domain-wall quench the ballistic spin transport from the right half of the system is solely
carried out by the quasilocal Z charges [83]. Notice that, even though the FM strings do not
contribute to the dynamics, the ‘FM strings’ of the right half of the system are not true excita-
tions from the perspective of the whole system. Thus they do contribute to the dynamics, as
combinations of Bethe strings of the last two string types, resulting in the domain-wall melting
phenomenon.

11 Conclusion

We have studied the full spectrum of the transfer matrices associated to the quantum spin-1
2

Heisenberg XXZ chain, focussing on root of unity with arbitrary twist. To this end we con-
structed the Baxter’s Q operator, and the P operator, from the factorisation of a two-parameter
transfer matrix (4.25). The eigenvalues of the Q operator, i.e. Q functions, are polynomials
whose zeroes encode the physical solutions of the Bethe equations (2.7).

As a by-product of our construction we rederived the matrix TQ relation (5.10) and transfer-
matrix fusion relations (5.12) from a decomposition of the two-parameter transfer matrix, pro-

13 The full frequency-dependent conductivity σ(ω), which would be of greater experimental relevance than the
Drude weight, remains challenging to compute [82].
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viding a simplification of the conventional approach. At root of unity we further derived trun-
cated transfer-matrix fusion and Wronskian relations from the two-parameter transfer matrix
with auxiliary space truncated to a finite-dimensional space. We also proved an interpolation-
type formula conjectured in Refs. [32,34,41].

Equipped with these algebraic tools we obtained analytic results about the spectrum at
root of unity (Section 7). These results enabled us to demonstrate the presence of descendant
towers for the XXZ model at root of unity with commensurate twist, for with explicit examples
for the various scenarios that occur (Section 8). We elucidated the exponential growth of the
degeneracies at root of unity. Since we can construct the Q operator explicitly at root of unity,
via a trace over a finite-dimensional auxiliary space, we obtained analytic results for rather
large system size compared to previous works. From the quantisation condition (7.15) we
found that FM strings associated with the descendant states behave like free fermions within
each descendant tower (Section 8.1.1). We have found new semicyclic transfer matrices that
satisfy unconventional RLL relations, see e.g. (9.18), from which we conjectured an explicit
expression for the creation and annihilation operators of FM strings (Section 9).

Even though our main results and discussions concentrate on systems with finitely many
sites, we moreover compared our results with recent works on the thermodynamic limit (Sec-
tion 10). We explained the relation between the truncated two-parameter transfer matrices
and the quasilocal Z charges, which are of crucial importance in many applications such as
quantum quenches and spin transport at root of unity. Inspired by the string-charge duality
we found a connection between the last two string types à la Takahashi, the Z charge and the
FM strings in the XXZ model at root of unity. This led us to a conjecture about the imaginary
part of the string centres of FM strings based on the string hypothesis.

Outlook. Several interesting aspects remain to be explored. First of all we hope to apply the
construction of the two-parameter transfer matrix to other quantum integrable models, such as
the XXZ spin chain with other boundary conditions as well as their higher-spin generalisations.
It is not known how the construction should be generalised to integrable models with higher-
rank symmetry, where there exist several Q operators.

We would like to understand more properties of the FM strings in the thermodynamic limit,
e.g. whether quasilocality of the Z charges has a deep relation to FM strings (cf. Section 10).
In addition, the semiclassical limit of the domain-wall quench in the gapless regime yields
a similar ballistic spin transport behaviour [84, 85] to the quantum counterpart [83]. How-
ever, it is not clear what the semiclassical limit of the Z charges would be since the classical
Landau–Lifshitz field theory does not have an underlying quantum-group structure. It would
be desirable to clarify the relation between the mechanisms in both quantum and classical
regime when a qualitative classical-quantum correspondence of spin transport [84] applies.

The structure of descendant towers from Section 8 implies the existence of a hidden On-
sager algebra at least for a part of the physical Hilbert space [86]. At the free-fermion point
∆ = 0, and at η = iπ

3 for the integrable spin-1 XXZ chain, the Onsager algebra plays a crucial
role. The properties of the Onsager algebra may allow one to obtain results like in Ref. [36].
The relation between the Onsager generators and the semicyclic transfer matrices from Sec-
tion 9 needs to be elucidated. In particular we would like to discover algebraic structures like
those in [36] in the extensively studied, yet not completely understood, XXZ spin chain.

The full spectrum of the XXZ model at root of unity has potential physical applications. For
instance, equipped with our results, it would be interesting to calculate the partition function
of the six-vertex model at root of unity analytically using algebraic geometry, following recent
works on the isotropic case [87,88]. Furthermore, other physically relevant quantities such as
the density matrix and overlaps with a generic state can be extracted from the full spectrum
at finite system size, which could shed light on the studies of quantum entanglement and
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non-equilibrium dynamics in exact solvable models.
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A Quantum sl2

The quantum group Uq(sl2) is the unital associative algebra with generators S+,S− along with
K (which is invertible) subject to the commutation relations

KS±K−1 = q±1 S± ,
�

S+,S−
�

=
K2 −K−2

q− q−1
. (A.1)

We take the coproduct to be S± 7→ S± ⊗ K−1 + K⊗ S± and K 7→ K⊗ K. There is a counit and
antipode, see e.g. Eqs. (1.2)–(1.4) in Ref. [47]. A good (but hard to find) introduction is [89].

In this appendix we summarise the representations of Uq(sl2) that we will use. For each
case it is easy to check that the commutation relations (A.1) hold and that K= exp(ηSz). The
spin of an irrep is defined by the eigenvalue [s]q [s+ 1]q of the quantum Casimir operator

1
2

�

S+ S− + S− S+) +
[2]q

2

�

K−K−1

q− q−1

�2

, (A.2)

which generates the centre of Uq(sl2).

A.1 Global representation

The physical Hilbert space (C2)⊗N of the spin chain comes with two ‘global’ representations.
When N = 1 the representation is given by S± = σ± and K = qσ

z/2. For N > 2 repeated
application of the coproduct gives the (reducible) representation

S± =
N
∑

j=1

qσ
z
1/2 ⊗ · · · ⊗ qσ

z
j−1/2 ⊗σ±j ⊗ q−σ

z
j+1/2 ⊗ · · · ⊗ q−σ

z
N/2 ,

K= qSz
= qσ

z
1/2 ⊗ qσ

z
2/2 ⊗ · · · ⊗ qσ

z
N/2 ,

(A.3)

from (2.5). By reversing the factors (taking the opposite coproduct) we obtain another (re-
ducible) representation:

S̄± =
N
∑

j=1

q−σ
z
1/2 ⊗ · · · ⊗ q−σ

z
j−1/2 ⊗σ±j ⊗ qσ

z
j+1/2 ⊗ · · · ⊗ qσ

z
N/2 ,

K̄= qS̄z
= qσ

z
1/2 ⊗ qσ

z
2/2 ⊗ · · · ⊗ qσ

z
N/2 = K .

(A.4)
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All of these operators can be obtained from the entries (3.9) of the monodromy matrix is
the (‘braid’) limits u→±∞. In particular, the B operator from the QISM is closely related to
the above spin-lowering generators. To see this we write the Lax operator (3.2) with spin-1

2
auxiliary space (see Footnote 4 on p. 10) in the form

La j(u) =

�

a j(u) b j(u)
c j(u) d j(u)

�

a
, b j(u) = sinh(η)σ−j , c j(u) = sinh(η)σ+j . (A.5)

In the (‘braid’) limits u→±∞ the diagonal entries behave as

a j(u)∼ ±
e±u

2
qσ

z
j /2 , d j(u)∼ ±

e±u

2
q−σ

z
j /2 , u→±∞ . (A.6)

Therefore, using the definition of monodromy matrix (3.9), we have

lim
u→−∞

(−2 eu)N−1 B(u) = sinh(η)S− ,

lim
u→+∞

(2 e−u)N−1 B(u) = sinh(η) S̄− .
(A.7)

One similarly recovers the spin-raising operators from C, and K,K−1 from either of A,D.

A.2 Auxiliary representations

In this article we use various choices for the auxiliary space, which is always a representation
of Uq(sl2). We summarise the key ingredient in this appendix.

First of all we use the finite-dimensional unitary spin-s representation of Uq(sl2). Denote
the (orthonormal) basis of C2s+1 by |n〉 for n= 0,1, · · · , 2s. Then the generators are given by

S+ =
2s−1
∑

n=0

q

[2s− n]q[n+ 1]q |n+ 1〉〈n| ,

S− =
2s−1
∑

n=0

q

[2s− n]q[n+ 1]q |n〉〈n+ 1| ,

K =
2s
∑

n=0

q−s+n |n〉〈n| , Sz =
2s
∑

n=0

(−s+ n) |n〉〈n| ,

2s ∈ Z≥0 . (A.8)

When s = 1/2 this gives the case N = 1 of (A.3) when we identify |1〉= |↑〉 and |0〉= |↓〉. Note
that we are thus led to a decreasing ordering of the basis: we prefer conventions such that
S± |n〉 ∝ |n± 1〉 and the basis is labelled by non-negative integers; then the matrices match
the standard choice provided we order the basis as |2 s〉, |2 s− 1〉, · · · , |0〉.

Next we use the complex spin-s highest weight representation of Uq(sl2). It is defined on
an infinite-dimensional Hilbert space with orthonormal basis 〈n| indexed by n ∈ Z≥0. The
generators are given by

S+ =
∞
∑

n=0

[2s− n]q |n+ 1〉〈n| ,

S− =
∞
∑

n=0

[n+ 1]q |n〉〈n+ 1| ,

K =
∞
∑

n=0

q−s+n |n〉〈n| , Sz =
∞
∑

n=0

(−s+ n) |n〉〈n| ,

2s ∈ C . (A.9)
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This is related to the transfer matrices Thw
s (4.19). In Figs. 2 and 3 we write down explicit

matrices; let us stress that — albeit perhaps somewhat unusual in an infinite-dimensional con-
text — as above we take the basis to be ordered decreasingly: · · · , |2〉, |1〉, |0〉. When s ∈ 1

2Z≥0
the infinite-dimensional highest-weight representation contains a finite-dimensional submod-
ule. Indeed, the entry of S+ for n = 2s vanishes (cf. Fig. 2), so the subspace labelled by
0≤ n≤ 2s is preserved by all of (A.9). Thus we can truncate to a representation of dimension
2s+ 1 with generators

S+ =
2s−1
∑

n=0

[2s− n]q |n+ 1〉〈n| ,

S− =
2s−1
∑

n=0

[n+ 1]q |n〉〈n+ 1| ,

K =
2s
∑

n=0

q−s+n |n〉〈n| , Sz =
2s
∑

n=0

(−s+ n) |n〉〈n| ,

2s ∈ Z≥0. (A.10)

This representation is equivalent to (A.8) by a gauge transformation (conjugation).
More importantly, when η= iπ`1/`2 there exists another truncation yielding an `2-dimen-

sional representation, illustrated in Fig. 3. This is sometimes referred to as a nilpotent repre-
sentation, due to the fact that (S±)`2 = 0 in this case. The generators act on the subspace with
basis |n〉 for 0≤ n≤ `2 − 1 by

S+ =
`2−2
∑

n=0

[2s− n]q |n+ 1〉〈n| ,

S− =
`2−2
∑

n=0

[n+ 1]q |n〉〈n+ 1| ,

K =
`2−1
∑

n=0

q−s+n |n〉〈n| , Sz =
`2−1
∑

n=0

(−s+ n) |n〉〈n| ,

2s ∈ C. (A.11)

There is one more truncated `2-dimensional representation that we will use at root of
unity: the semicyclic representation. It is similar to the truncated highest-weight representa-
tion (A.11) with an additional entry in S+:

S+ = β |0〉〈`2 − 1|+
`2−2
∑

n=0

[2s− n]q |n+ 1〉〈n| ,

S− =
`2−2
∑

n=0

[n+ 1]q |n〉〈n+ 1| ,

K =
`2−1
∑

n=0

q−s+n |n〉〈n| , Sz =
`2−1
∑

n=0

(−s+ n) |n〉〈n| ,

2s ∈ C ,

β ∈ C.
(A.12)

B Quasiperiodicity

B.1 Twist operator

We define the twist operator Ea(φ) for the auxiliary space. Each of the Uq(sl2) representa-
tions on the auxiliary space from Appendix A.2 is expressed in terms of an orthonormal basis
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{|d − 1〉, · · · , |1〉, |0〉} with d the dimension of the representation. Here d = 2 s + 1 for the
unitary spin-s representation with s ∈ 1

2 Z, d =∞ for the highest-weight representation with
s ∈ C, and d = `2 for the truncation at root of unity. We consider diagonal twist operator
Ea(φ) given by

Ea(φ) =
d−1
∑

n=0

eiφn |n〉〈n|a . (B.1)

In view of our ordering of the basis this yields the twist from (3.9) for s = 1/2 (d = 2).
In particular, the complex spin-s representation yields monodromy matrix Mhw

s

Mhw
s (u,φ) = LsN (u) · · ·Ls2(u)Ls1(u)E

hw
s (φ) , Ehw

s (φ) =
∞
∑

n=0

eiφn |n〉〈n|s , (B.2)

resulting in the transfer matrix Thw
s (u,φ) = trs Mhw

s (u,φ). When |q| ≤ 1 the diagonal matrix
elements of Mhw

s can be bounded by AN |qN eiφ |n for some constant AN , and so the trace is
convergent if |eiφ | < |q|N . At this point we do not know if Thw

s can be analytically continued
outside this disc of convergence.

The truncation at root of unity η= iπ`1/`2 likewise has

M̃s(u,φ) = LsN (u) · · ·Ls2(u)Ls1(u) Ẽs(φ) , Ẽs(φ) =
`2−1
∑

n=0

eiφn |n〉〈n|s , (B.3)

and transfer matrix T̃s(u,φ) = trs M̃s(u,φ). In this case the trace is well defined for any value
of of the twist φ.

B.2 Twisted momentum and magnons

Let us compute the first few charges (3.8) generated by the (six-vertex) transfer matrix with
auxiliary space Va

∼= C2 of spin 1
2 and twist E(φ) = diag(eiφ , 1) as in (3.9)–(3.10). In the

periodic case (φ = 0) we get the cyclic (right) translation operator G(0),

T(η/2, 0) = sinhNη G(0) , G(0) = P12···N = P12 P23 · · ·PN−1,N , (B.4)

so the charge I(1) = −i logG is the usual momentum operator. In the quasiperiodic case the
twist deforms the translation operator to

T(η/2,φ) = sinhNη G(φ) , G(φ) = eiφ(σz
1+1)/2 G(0) = G(0) eiφ(σz

N+1)/2 . (B.5)

In analogy with the periodic case write its eigenvalue as eip; we will get back to the ‘twisted
momentum’ p soon. The next charge is the XXZ Hamiltonian (2.1) up to some constants:

I(2) = −iT(η/2,φ)−1 T′(η/2,φ) = −
2i

sinhη

�

H+
N∆

2

�

, (B.6)

where the prime denotes the derivative with respect to the first argument. The twist spoils
homogeneity in the traditional sense: for φ 6= 0 (B.6) does not commute with (B.4). However,
(3.7) guarantees that (B.6) is ‘twisted homogeneous’ in that it commutes with (B.5). For fun
let us show that this immediately gives the eigenvectors for M = 1.

The twisted translation (B.5) shows the quasiperiodic boundary conditions by G(φ)N =
exp[iφ(Sz + N/2)]. Since the transfer matrix commutes with Sz the ‘improved’ translation
operator G?(φ) := exp[−iφ(Sz + N/2)/N]G(φ) = G(φ)exp[−iφ(Sz + N/2)/N] still com-
mutes with the Hamiltonian. The ‘improved momentum’ is p? = p − (1− M/N)φ. Formally
this setting provides a fully translationally-invariant, and in particular periodic, structure:
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G?(φ)HG?(φ)−1 = H and G?(φ)N = 1. For M = 1 it is easy to build the eigenvectors of
G? explicitly (see Lemma 1.14 in [90] for a variant of this construction): the cyclicity of G?(φ)
ensures that with |Ω〉= |↑↑ · · · ↑〉 the vector

N
∑

j=1

eip? j G?(φ)
1− jσ−N |Ω〉= ei(p?−φ)

N
∑

j=1

e−i(p?−φ/N) j σ−j |Ω〉 (B.7)

has G?(φ)-eigenvalue ei p? where p? = 2πk/N , 0 ≤ k ≤ N − 1, is quantised. When φ is real
G?(φ) is unitary so the twisted magnons (B.7) are linearly independent and form a basis for the
M = 1 sector, so they are also eigenvectors of (B.5) and (B.6). In terms of ep := (2πk−φ)/N
the (twisted) momentum is p = ep+φ/N , the dispersion is ε = cos(ep)−∆, and the right-hand
side of (B.7) looks just like an ordinary magnon,

∑

j e−iep jσ−j |Ω〉. (The sign in the exponential
is because we work with the right translation operator.)

Let us finally make contact with the algebraic Bethe ansatz: for M = 1 (3.11) gives

|{v}〉= B(v) |Ω〉=
sinhη

sinh(v −η/2)
sinhN (v +η/2)

N
∑

j=1

e−iep j σ−j |Ω〉 , (B.8)

where the quasimomentum

ep = i log
sinh(v −η/2)
sinh(v +η/2)

=
2πk−φ

N
(B.9)

solves the Bethe equation eiN ep = e−iφ . The (twisted) momentum and energy given above
match the result (2.8)–(2.9) obtained from (3.12) using (B.5) and (B.6). The difference
between quasimomentum and (twisted) momentum for M = 1 can be avoided by taking
eG := e−iφ G to be the twisted translation.

C Bethe roots

C.1 Numerical recipe for finding Bethe roots

Here we review a numerical recipe, called McCoy’s method, for solving the functional TQ rela-
tion. It appears to have been published first in [91]. We follow the description of Haldane [92].
A similar method was also described by Baxter [20].

The idea is that rather than solve the (coupled, nonlinear) Bethe equations one can obtain
the Bethe roots by solving a few sets of linear equations. This is done by exploiting the known
form of the eigenvalues of the (fundamental) transfer matrix and the Q operator, whose zeroes
are the Bethe roots (see Section 5.5). The recipe goes as follows:

i. Construct the transfer matrix T1/2(u) at some u ∈ C (almost any value will do), and
numerically diagonalise it; this is much more efficient than diagonalisation when u is
kept free. One obtains 2N eigenstates that span the physical Hilbert space. From the
Bethe ansatz we know that the eigenvectors are independent of the spectral parameter,
so these will be eigenvectors for T1/2(u) for any u.

ii. The eigenvalues, however, depend on u. Pick one of the eigenvectors. Its eigenvalue
is found by acting with T1/2(u). This may again be done numerically by writing the
eigenvalue as a Laurent polynomial in t = eu of order N ,

T1/2(t) = cstT

N
∏

n=1

(τ−1
n t −τn t−1) , (C.1)

with zeroes τn that can be fixed by acting with T1/2(un) for N distinct values un ∈ C.
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iii. The corresponding Bethe roots are the zeroes of the Q operator, found by solving the
functional TQ relation (5.19), i.e.

T1/2(u,φ)Q(u,φ) = T0(u−η/2)Q(u+η,φ) + eiφ T0(u+η/2)Q(u−η,φ) . (C.2)

Here T0(u) = sinhN (u) and the eigenvalues are of the form

Q(t) = cstQ

M
∏

m=1

(t−1
m t − tm t−1) , (C.3)

where M is the number of down spins of the eigenvector under consideration. The zeroes
tm can once more be found numerically by taking t = eu equal to the zeroes τn of T1/2
and solving the linear problem .

The zeroes give the Bethe roots um = log tm. One needs to be careful to interpret the result
correctly in the presence of Bethe roots at infinity: um = ±∞ corresponds to tm ∈ {0,∞} so
the corresponding factor in (C.3) collapses to t±1, yielding (5.21):

Q(t) = cstQ × tn−∞−n+∞

M−n+∞−n−∞
∏

n=1

(t−1
n t − tn t−1) . (C.4)

The numerical recipe works very well for the XXZ model away from root of unity, as well
as for the XXX model (∆= ±1). However, one cannot find all the Bethe roots for the XXZ spin
chain at root of unity, precisely due to the existence of degenerate eigenstates of the transfer
matrix T1/2. In that case, our construction for the Q operator still works and gives the correct
results, sometimes even analytically.

C.2 Relation between Bethe roots for anisotropies ∆ and −∆

In the gapless regime (−1 < ∆ < 1) there is a simple relation between Bethe roots of all the
physical solutions at anisotropy∆ and those at anisotropy −∆, even though the corresponding
eigenstates are different since the B-operators in the algebraic Bethe ansatz differ. We will
denote the parameters of the second spin chain by primes: ∆′ = −∆ and

η= arccosh(∆) ∈ iR , η′ = arccosh(∆′) = iπ−η . (C.5)

Consider any solution to Bethe equation (2.7) with η, system size N and twist φ: assume
that the Bethe roots {um}Mm=1 obey

�

sinh(um +η/2)
sinh(um −η/2)

�N M
∏

n(6=m)

sinh(um − un −η)
sinh(um − un +η)

= e−iφ . (C.6)

Then define {u′m}
M
m=1 by

u′m = −um −
iπ
2

, 1≤ m≤ M . (C.7)

In terms of these parameters (C.6) reads

�sinh(−u′m + iπ/2+η/2)

sinh(−u′m + iπ/2−η/2)

�N M
∏

n(6=m)

sinh(−u′m + u′n −η)
sinh(−u′m + u′n +η)

= e−iφ . (C.8)
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This precisely of the form (C.6) with η′ = iπ − η and twist φ′ chosen such that e−iφ′ =
(−1)N e−iφ . This shows that for each solution {um}Mm=1 at anisotropy∆ there is a corresponding
solution {u′m}

M
m=1 at ∆′ = −∆ provided the twist is modified to

φ′ =

¨

φ N even ,

φ +π N odd .
(C.9)

The two eigenstates are related by the unitary gauge transformation

U= exp
�

iπ
N
∑

j=1

j
2
σz

j

�

= eiπ L(L+1)/4
dN/2e
∏

j=1

σz
2 j−1 . (C.10)

(Removing the prefactor in the expression on the right yields a simpler transformation that
also does the job and is its own inverse.) It is easy to check that this transformation changes
the sign of ∆ in the Hamiltonian (2.1):

UH(∆,φ)U−1 = −H(−∆,φ′) . (C.11)

Moreover, the eigenstates are related by

|{u′m}〉∝ U |{um}〉 . (C.12)

C.3 Relation between eigenstates with opposite twist

Recall from Section 5.5 that an M -particle Bethe state |{um}Mm=1〉 for the XXZ model obeys

Q(u,φ) |{um}Mm=1〉=Q(u) |{um}Mm=1〉 ,

P(u,φ) |{um}Mm=1〉= P(u) |{um}Mm=1〉 ,
(C.13)

with eigenvalue Q(u) and P(u) of the form

Q(u) = cstQ ×
M
∏

m=1

�

t−1
m t − tm t−1

�

, tm = eum ,

P(u) = cstP ×
N−M
∏

n=1

�

τ−1
n t −τn t−1

�

, τn = evn ,

t = eu , (C.14)

and where the zeroes um = log tm of Q are the Bethe roots. Let us show that the vn can similarly
be interpreted as the Bethe roots of the spin-flipped counterpart of |{um}MM=1〉 ‘beyond the
equator’ with opposite twist.

Consider the transfer matrices Ts(u) with s ∈ 1
2Z≥0. Under global spin inversion these

operators simply behave as

N
∏

j=1

σx
j Ts(u,φ)

N
∏

j=1

σx
j = e2siφ Ts(u,−φ) . (C.15)

To see this note that for the unitary spin-s representation (A.8) the Lax operator (3.2) is invari-
ant under total spin reversal, which acts by conjugation by σx

j in the physical space and by the

antidiagonal matrix U :=
∑2s

n=0 |2s− n〉〈n| in the auxiliary space. Spin reversal in the physical
space is thus equivalent to spin reversal in the auxiliary space. This property is inherited by the
monodromy matrix. In the periodic case it follows that spin flip in the physical space does not
affect the transfer matrix, as the trace is invariant under reordering the basis. In the twisted
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case we only have to correct for the twist (B.1), which is reversed: UE(φ)U−1 = e2siφ E(−φ).
This proves (C.15).

Now consider the TQ equation (5.10) with φ inverted to −φ. By conjugating both sides
with the global spin-flip operator

∏N
j=1σ

x
j , using (C.15) and multiplying both sides by eiφ we

see that Q̄(u,φ) :=
∏N

j=1σ
x
j Q(u,−φ)

∏N
j=1σ

x
j precisely obeys the TP equation (5.11). More-

over, comparing the eigenvalues in (C.14) shows that the eigenvalues of Q̄(u,φ) on M -particle
Bethe vectors are trigonometric polynomials of degree N −M , just as for the P operator. It fol-
lows that the eigenvalues of Q̄(u,φ) are proportional to those of the P operator; in particular
they have the same zeroes:

Q̄(u,φ)∝ P(u,φ)∝
N−M
∏

n=1

�

τ−1
n t −τn t−1

�

. (C.16)

Since Q̄(u,φ) and Q(u,−φ) have the same characteristic polynomial this shows that the M -
particle eigenvalues of the P operator are the same as the (N − M)-particle eigenvalues of
Q(u,−φ). But we know that the latter can be interpreted as the Bethe roots. Therefore the
zeroes of the P operator can be interpreted as the Bethe roots of the spin-reversed Bethe vector
beyond the equator with opposite twist.

Finally notice that the Bethe vectors (3.11) are constructed using the B-operator, which is
independent of the twist, see (3.9). This implies that the result of reversing all spins on an
off-shell Bethe vector (for the Hamiltonian with original twist φ) is

N
∏

l=1

σx
l |{um}Mm=1〉= |{vn}N−M

n=1 〉 , (C.17)

where the Bethe roots vn beyond the equator are related to the zeroes of eigenvalues of the
P operator on |{um}Mm=1〉. (The dependence of the on-shell Bethe vectors on the twist enters
through the Bethe equations.)

D Alternative proof of Eq. (6.13)

In this appendix we give another proof of (6.13), i.e.

T̃s(u,φ)− ei(2s+1)φ T̃−s−1(u,φ) =
�

1− εN ei`2φ
�

Ts(u,φ) . (D.1)

Consider 2s ∈ Z≥0 with s < `2
2 −1. Proceeding as in Section 5.1 we obtain a decomposition

like in (5.5):
T̃s(u,φ) = Ts(u,φ) + ei(2s+1)φ T∗s (u,φ) . (D.2)

Here T∗s denotes the result of restricting the trace over the auxiliary space to the subspace V ∗a
spanned by |n〉 with 2s+ 1≤ n≤ `2 − 1.

The restricted Lax matrix L∗s j(u) coincides with the transpose (in both auxiliary and phys-
ical space) L−s−1, j(u)T of the Lax operator L−s−1, j(u), whose auxiliary space has dimension
`2 − 2s− 1. Therefore T∗s (u,φ) = T−s−1(u,φ), and we get

T̃s(u,φ) = Ts(u,φ) + ei(2s+1)φ T−s−1(u,φ) . (D.3)

Now consider the transfer matrix T̃∗s obtained like T̃s truncating the trace to the basis of Ṽa
translated (raised) by 2s+ 1, i.e. to |n+ 2s+ 1〉 with 0≤ n≤ `2. Again, since 2s+ 1< `2 and
S+ |`2〉 = 0, the trace can be split into two transfer matrices. The first one coincides with T∗s ,
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Table 2: Numerical results for the Bethe roots of the Bethe vector |{um}3m=1〉 deform-
ing |{αFM

1 }〉 as a small twist φ is turned on.

φ u1 u2 u3

0 −0.49887047− 0.52359877 i −0.49887047+ 0.52359877 i −0.49887047+ 1.5707963 i
10−5π −0.49886307− 0.52359861 i −0.49886307+ 0.52359861 i −0.49888095+ 1.5707963 i
10−4π −0.49879646− 0.52359713 i −0.49879646+ 0.52359713 i −0.49897526+ 1.5707963 i
10−3π −0.49813029− 0.52358228 i −0.49813029+ 0.52358228 i −0.49991897+ 1.5707963 i
10−2π −0.49147893− 0.52344350 i −0.49147893+ 0.52344350 i −0.50942065+ 1.5707963 i

while the second one is obtained as Ts in the basis shifted by `2, i.e. |n+`2〉with 0≤ n≤ 2s+1,
and therefore picks up a factor εN compared to Ts times the twist contribution. Proceeding
as before, one can verify that the second transfer matrix in the decomposition of T̃∗s and T̃−s−1

derive from similar Lax matrices and are both equal to ei(`2−2s−1)φ εN Ts. Thus one has

T̃∗s (u,φ) = T̃−s−1(u,φ) = T−s−1(u,φ) + εN ei(`2−2s−1)φ Ts (u,φ) . (D.4)

Subtracting ei(`2−2s−1)φ times (D.3) from (D.4) we obtain (6.13).

E Deforming FM strings

E.1 Tuning a small twist

We study the Bethe roots for states that include FM strings atφ = 0 numerically in the presence
of a small twist. The results illustrate that FM strings are formed by combining the last two
string types from the string hypothesis.

Consider the case N = 6 and ∆ = 1
2 , like the example in Section 2.3. At zero twist φ = 0

the primitive state |↑↑↑↑↑↑〉 has, by the results of Section 7.5, corresponding state beyond the
equator with Bethe roots (2.21). The descendant tower further includes the states

|{αFM
1 }〉= |{um}3m=1〉 , |{αFM

2 }〉= |{vm}3m=1〉 , (E.1)

with energy eigenvalues E = 0.
Now we turn on a very small twist and study what happens to the corresponding states by

computing the eigenstates with M = 3 and eigenvalues for the transfer matrices Ts that are
very close to those of (E.1). The resulting Bethe roots are collected in Tables 2–3, where we
have expressed the analytic initial values (2.21) numerically to facilitate the comparison. We
observe that the Bethe roots are string deviations of two (2,+) strings, namely u1, u2 and v1,
v2, with string deviations that decrease as φ approaches zero. In the limit φ→ 0 an FM string
forms when two strings, here of type (2,+) and (1,−) respectively, have coinciding real part
of the string centres. This motivates our conjecture in Section 10.2 about the relation between
the last two string types of the string hypothesis and the string centres of FM strings, even for
systems with finite system sizes.

E.2 Tuning the anisotropy

Next we study the behaviour of Bethe roots for states including FM strings at φ = 0 when η is
slightly deformed. We give two examples, both with ∆≈ 1/2.

First we revisit the example with N = 6 from Section 2.3 and Appendix E.1. When∆= 1/2
the states (E.1) with Bethe roots (2.21), i.e. numerical values given by the first rows of Ta-
bles 2–3, are degenerate for the fundamental transfer matrix, with eigenvalue (recall that

60

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067


SciPost Phys. 11, 067 (2021)

Table 3: Numerical results for the Bethe roots of the Bethe vector |{vm}3m=1〉 deform-
ing |{αFM

2 }〉 when introducing a small twist φ.

φ v1 v2 v3

0 0.49887047− 0.52359877 i 0.49887047+ 0.52359877 i 0.49887047+ 1.5707963 i
10−5π 0.49887788− 0.52359894 i 0.49887788+ 0.52359894 i 0.49886000+ 1.5707963 i
10−4π 0.49894452− 0.52360045 i 0.49894452+ 0.52360045 i 0.49876570+ 1.5707963 i
10−3π 0.49961090− 0.52361550 i 0.49961090+ 0.52361550 i 0.49782342+ 1.5707963 i
10−2π 0.50628580− 0.52377622 i 0.50628580+ 0.52377622 i 0.48846413+ 1.5707963 i

t = eu)

T1/2(t) =
1
32

t6 −
3
32

t4 −
15
64

t2 +
5
8
−

15
64

t−2 −
3

32
t−4 +

1
32

t−6

= 0.03125 t6 − 0.093750000 t4 − 0.23437500 t2 + 0.62500000

− 0.23437500 t−2 − 0.093750000 t−4 + 0.03125 t−6 ,

(E.2)

where we give the numerical values for later convenience. In particular their energy is E = 0.
Now we vary the anisotropy a little, taking η = i (π3 ± ε) for small ε > 0, to move away
from root of unity. The numerically obtained values of the Bethe roots of the two states at
M = 3 with energy E ≈ 0 are given in Table 4, including the values that one would obtain
as limits at ε = 0. (These values obey Eq. (1.11) from [31].) Note that the limiting values
at root of unity are rather different from the Bethe roots (2.21) obtained from the zeroes of
the Q operator. Here we use the notation {u′m}m, {u′′m}m rather than {um}m, {vm}m because we
cannot distinguish between the two FM strings arising as the zeroes of the Q function at ε= 0,
i.e. we cannot say which of {u′m}m, {u′′m}m jump to which of {um}m, {vm}m in the limit.

The corresponding states

lim
ε→0
|{u′m}

3
m=1〉 , lim

ε→0
|{u′′m}

3
m=1〉, (E.3)

can be constructed via the FM string creation operators of [32] (see Section (8.5)) to pro-
duce eigenvectors of H with E = 0. However, these vectors are not eigenvectors of the
two-parameter transfer matrix or the Q operator at ∆ = 1/2. We find that nontrivial lin-
ear combinations of them (namely: a multiple of their sum and difference) equal |{um}3m=1〉
and |{vm}3m=1〉, which are eigenvectors of Q operator, respectively.

Despite the jump in the Bethe roots {um}m and {vm}m as ε → 0 we stress that physical

Table 4: The numerical Bethe roots of the two states at M = 3 with energy close to
zero as η changes away from iπ/3, including the values 0,∓iπ/3 and iπ/2,∓iπ/6
(indicated with a question mark) that one would extrapolate as φ→ 0.

η− iπ/3 u′1 u′2 u′3 u′′1 u′′2 u′′3
−i 10−2 0 −1.03763873 i 1.03763873 i 1.5707963 i −0.51859878 i 0.51859878 i
−i 10−4 0 −1.04710210 i 1.04710210 i 1.5707963 i −0.52354878 i 0.52354878 i

0 0? −1.04719755 i ? 1.04719755 i ? 1.5707963 i ? −0.52359878 i ? 0.52359878 i ?
i 10−4 0 −1.04729300 i 1.04729300 i 1.5707963 i −0.52364878 i 0.52364878 i
i 10−2 0 −1.05672931 i 1.05672931 i 1.5707963 i −0.52859878 i 0.52859878 i
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quantities are continuous. For instance, fundamental transfer matrix has eigenvalue

T1/2(t) = 0.03125 t6 − 0.093758120 t4 − 0.23428568 t2 + 0.62482949

− 0.23428568 t−2 − 0.093758120 t−4 + 0.03125 t−6 ε= −10−4 ,

T1/2(t) = 0.03125 t6 − 0.093758120 t4 − 0.23428568 t2 + 0.62482949

− 0.23428568 t−2 − 0.093758120 t−4 + 0.03125 t−6 ε= +10−4,

(E.4)
for |{u′m}

3
m=1〉 and

T1/2(t) = 0.03125 t6 − 0.093750738 t4 − 0.23430930 t2 + 0.62486049

− 0.23430930 t−2 − 0.093750738 t−4 + 0.03125 t−6 ε= −10−4,

T1/2(t) = 0.03125 t6 − 0.093766977 t4 − 0.23437426 t2 + 0.62505535

− 0.23437426 t−2 − 0.093766977 t−4 + 0.03125 t−6 ε= +10−4 ,

(E.5)
for |{u′′m}

3
m=1〉. These polynomials are very close to (E.2).

The second example is N = 10. There is an eigenstate |{um}4m=1〉 with energy eigenvalue
E = 1/2 when ∆= 1

2 . Its Bethe roots are

u1 =
iπ
2

,

u2 = −0.56101744−
iπ
6

, u3 = −0.56101744+
iπ
6

, u4 = −0.56101744+
iπ
2

.
(E.6)

Here u2, u3, u4 form an FM string. The numerically obtained eigenvalue for T1/2 is

T1/2(u, 0) |{um}4m=1〉=
�

0.0009765625 t10 − 0.022460937 t8 + 0.076171875 t6

+ 0.084960938 t4 − 0.72949219 t2 + 1.1806641

− 0.72949219 t−2 + 0.084960938 t−4 + 0.076171875 t−6

− 0.022460937 t−8 + 0.0009765625 t−10
�

|{um}4m=1〉 ,

(E.7)

where t = eu.
The behaviour of the Bethe roots under a small change of η is given in Table 5. We see

that the Bethe roots change drastically, jumping to form a 2-string and two 1-strings with odd
parity. The same is true for the eigenvalues of the Q operator. On the other hand, one can
check that the eigenvalues of Ts change smoothly. For instance, the eigenvalue of T1/2 for the
corresponding state at η= i(π/3+ 10−5) is very close to (E.7):

T1/2(u, 0) |{um}4m=1〉=
�

0.00097654559 t10 − 0.022460999 t8 + 0.076172376 t6

+ 0.084963582 t4 − 0.72950736 t2 + 1.18068832

− 0.72950736 t−2 + 0.084963582 t−4 + 0.076172376 t−6

− 0.022460999 t−8 + 0.00097654559 t−10
�

|{um}4m=1〉 .

(E.8)

F Examples of last two string types of TBA at non-principal root
of unity

We present several examples on the last two string types of the TBA at root of unity using
Takahashi’s notation [78,79] at non-principal root of unity to illustrate our conjecture (10.8)
for the string centre of FM strings.
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Table 5: The numerical Bethe roots of |{um}4m=1〉 as η changes away from iπ/3.

η− iπ/3 u1 u2 u3 u4

0 1.5708 i −0.56102+ 1.5708 i −0.56102− 0.52360 i −0.56102+ 0.52360 i
i 10−6 −4.9936× 10−4 + 1.5708 i 4.9936× 10−4 + 1.5708 i 2.6516× 10−5 − 0.52360 i 2.6516× 10−5 + 0.52360 i
i 10−5 −1.5382× 10−3 + 1.5708 i 1.5382× 10−3 + 1.5708 i 2.9364× 10−6 − 0.52360 i 2.9364× 10−6 + 0.52360 i
i 10−4 −4.8592× 10−3 + 1.5708 i 4.8592× 10−3 + 1.5708 i 2.5441× 10−7 − 0.52360 i 2.5441× 10−7 + 0.52360 i
i 10−3 −0.015342+ 1.5708 i 0.015342+ 1.5708 i 3.2550× 10−8 − 0.52360 i 3.2550× 10−8 + 0.52360 i

We start with η= 2iπ
3 , which is a non-principal root of unity. The allowed string types are

(1,−), (2,+), (1,+). Here we have underlined the last two string types, which are of the form

α1 = α−
iπ
3

, α2 = α+
iπ
3

, α ∈ R ,

α3 = α
′, α′ ∈ R .

(F.1)

According to the conjecture (10.8) the FM string with η= 2iπ
3 should be expressed as

α′1 = α
FM +

iπ
3

, α′2 = α
FM , α′3 = α

FM −
iπ
3

, αFM ∈ R . (F.2)

Clearly, (F.1) and (F.2) describe the same FM string when the real parts of the string centres
coincide. This results are confirmed by all the examples in Section 8 with finite-size calcula-
tions.

For another example with non-principal root of unity we consider η = 2iπ
5 . Using the

method in Chapter 9.2 of [79], we obtain the allowed string types which are (1,+), (1,−),
(3,+), (2,+), where we again underline the last two string types, given by

α1 = α−
2iπ
5

, α2 = α , α3 = α+
2iπ
5

, α ∈ R ,

α4 = α
′ −

iπ
5

, α5 = α
′ +

iπ
5

, α′ ∈ R .
(F.3)

From the conjecture (10.8) the FM string should be expressed a

α′1 = α
FM +

2iπ
5

, α′2 = α
FM +

iπ
5

, α′3 = α
FM ,

α′4 = α
FM −

iπ
5

, α′5 = α
FM −

2iπ
5

,
αFM ∈ R . (F.4)

Again, when the real parts of the string centres in (F.3) and (F.4) coincide they describe the
same FM string.

References

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.
Mod. Phys. 80, 517 (2008), doi:10.1103/RevModPhys.80.517.

[2] J.-S. Caux and F. H. L. Essler, Time evolution of local observables after
quenching to an integrable model, Phys. Rev. Lett. 110, 257203 (2013),
doi:10.1103/PhysRevLett.110.257203.

[3] J.-S. Caux, The quench action, J. Stat. Mech. 064006 (2016), doi:10.1088/1742-
5468/2016/06/064006.

63

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1088/1742-5468/2016/06/064006
https://doi.org/10.1088/1742-5468/2016/06/064006


SciPost Phys. 11, 067 (2021)

[4] T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. II.
Lattice gas and Ising model, Phys. Rev. 87, 410 (1952), doi:10.1103/PhysRev.87.410.

[5] P. Pfeuty, The one-dimensional Ising model with a transverse field, Ann. Phys. 57, 79 (1970),
doi:10.1016/0003-4916(70)90270-8.

[6] P. Fendley, Free parafermions, J. Phys. A: Math. Theor. 47, 075001 (2014),
doi:10.1088/1751-8113/47/7/075001.

[7] P. Fendley, Free fermions in disguise, J. Phys. A: Math. Theor. 52, 335002 (2019),
doi:10.1088/1751-8121/ab305d.

[8] F. C. Alcaraz and R. A. Pimenta, Free fermionic and parafermionic quantum
spin chains with multispin interactions, Phys. Rev. B 102, 121101 (2020),
doi:10.1103/PhysRevB.102.121101.

[9] R. J. Baxter, Exactly solved models in statistical mechanics, in Series on Ad-
vances in Statistical Mechanics, Academic Press, ISBN 9789814415255 (1985),
doi:10.1142/9789814415255_0002.

[10] M. Gaudin, The Bethe wavefunction, Cambridge University Press, Cambridge, ISBN
9781107053885 (2014), doi:10.1017/CBO9781107053885.

[11] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat.
Mech. 064007 (2016), doi:10.1088/1742-5468/2016/06/064007.

[12] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L. Essler and T. Prosen, Complete
generalized Gibbs ensembles in an interacting theory, Phys. Rev. Lett. 115, 157201 (2015),
doi:10.1103/PhysRevLett.115.157201.

[13] H. Bethe, Zur Theorie der Metalle, Z. Physik 71, 205 (1931), doi:10.1007/BF01341708.

[14] R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic heisenberg
chain. I. Some fundamental eigenvectors, Ann. Phys. 76, 1 (1973), doi:10.1016/0003-
4916(73)90439-9.

[15] R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic heisenberg
chain. II. Equivalence to a generalized ice-type lattice model, Ann. Phys. 76, 25 (1973),
doi:10.1016/0003-4916(73)90440-5.

[16] R. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic heisenberg
chain. III. Eigenvectors of the transfer matrix and hamiltonian, Ann. Phys. 76, 48 (1973),
doi:10.1016/0003-4916(73)90441-7.

[17] R. P. Langlands and Y. Saint-Aubin, Algebro-geometric aspects of the Bethe equations,
in Strings and Symmetries, Springer Berlin Heidelberg, Berlin, Heidelberg, (1994),
doi:10.1007/3-540-59163-X_254.

[18] V. Tarasov and A. Varchenko, Completeness of Bethe vectors and difference equa-
tions with regular singular points, Internat. Math. Res. Notices 1995, 637 (1995),
doi:10.1155/s1073792895000377.

[19] R. P. Langlands and Y. Saint-Aubin, Aspects combinatoires des équations de
Bethe, Advances in Mathematical Sciences: CRM’s 25 Years 25, 231 (1997),
https://publications.ias.edu/node/101.

64

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1088/1751-8121/ab305d
https://doi.org/10.1103/PhysRevB.102.121101
https://doi.org/10.1142/9789814415255_0002
https://doi.org/10.1017/CBO9781107053885
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1007/BF01341708
https://doi.org/10.1016/0003-4916(73)90439-9
https://doi.org/10.1016/0003-4916(73)90439-9
https://doi.org/10.1016/0003-4916(73)90440-5
https://doi.org/10.1016/0003-4916(73)90441-7
https://doi.org/10.1007/3-540-59163-X_254
https://doi.org/10.1155/s1073792895000377
https://publications.ias.edu/node/101


SciPost Phys. 11, 067 (2021)

[20] R. J. Baxter, Completeness of the Bethe ansatz for the six and eight-vertex models, J. Stat.
Phys. 108, 1 (2002), doi:10.1023/A:1015437118218.

[21] E. Mukhin, V. Tarasov and A. Varchenko, Bethe algebra of homogeneous XXX Heisenberg
model has simple spectrum, Commun. Math. Phys. 288, 1 (2009), doi:10.1007/s00220-
009-0733-4.

[22] E. Brattain, N. Do and A. Saenz, The completeness of the Bethe ansatz for the periodic ASEP,
(2015), arXiv:1511.03762.

[23] V. Tarasov, Completeness of the Bethe ansatz for the periodic isotropic Heisenberg model,
Rev. Math. Phys. 30, 1840018 (2018), doi:10.1142/s0129055x18400184.

[24] D. Chernyak, S. Leurent and D. Volin, Completeness of Wronskian Bethe equations for
rational glm|n spin chains, (2020), arXiv:2004.02865.

[25] G. P. Pronko and Y. G. Stroganov, Bethe equations ‘on the wrong side of the equator’, J.
Phys. A: Math. Gen. 32, 2333 (1999), doi:10.1088/0305-4470/32/12/007.

[26] V. Kazakov, S. Leurent and Z. Tsuboi, Baxter’s Q-operators and operatorial bäck-
lund flow for quantum (super)-spin chains, Commun. Math. Phys. 311, 787 (2012),
doi:10.1007/s00220-012-1428-9.

[27] C. Marboe and D. Volin, Fast analytic solver of rational Bethe equations, J. Phys. A: Math.
Theor. 50, 204002 (2017), doi:10.1088/1751-8121/aa6b88.

[28] Z. Bajnok, E. Granet, J. Lykke Jacobsen and R. I. Nepomechie, On generalized Q-systems,
J. High Energ. Phys. 2020, 177 (2020), doi:10.1007/jhep03(2020)177.

[29] E. Granet and J. Lykke Jacobsen, On zero-remainder conditions in the Bethe ansatz, J.
High Energ. Phys. 2020, 178 (2020), doi:10.1007/jhep03(2020)178.

[30] K. Fabricius and B. M. McCoy, Bethe’s equation is incomplete for the XXZ model at roots of
unity, J. Stat. Phys. 103, 647 (2001), doi:10.1023/A:1010380116927.

[31] K. Fabricius and B. M. McCoy, Completing Bethe’s equations at roots of unity, J. Stat. Phys.
104, 573 (2001), doi:10.1023/A:1010372504158.

[32] K. Fabricius and B. M. McCoy, Evaluation parameters and Bethe roots for the six-vertex
model at roots of unity, in MathPhys Odyssey 2001, Birkhäuser Boston, Boston, MA, ISBN
9781461266051 (2002), doi:10.1007/978-1-4612-0087-1_6.

[33] C. Korff, Auxiliary matrices for the six-vertex model at qN = 1 and a geometric interpre-
tation of its symmetries, J. Phys. A: Math. Gen. 36, 5229 (2003), doi:10.1088/0305-
4470/36/19/305.

[34] C. Korff, Auxiliary matrices for the six-vertex model at qN = 1: II. Bethe roots, com-
plete strings and the Drinfeld polynomial, J. Phys. A: Math. Gen. 37, 385 (2003),
doi:10.1088/0305-4470/37/2/009.

[35] C. Korff, A Q-operator identity for the correlation functions of the infinite XXZ spin-chain,
J. Phys. A: Math. Gen. 38, 6641 (2005), doi:10.1088/0305-4470/38/30/002.

[36] E. Vernier, E. O’Brien and P. Fendley, Onsager symmetries in U(1) -invariant clock models,
J. Stat. Mech. 043107 (2019), doi:10.1088/1742-5468/ab11c0.

65

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1023/A:1015437118218
https://doi.org/10.1007/s00220-009-0733-4
https://doi.org/10.1007/s00220-009-0733-4
https://arxiv.org/abs/1511.03762
https://doi.org/10.1142/s0129055x18400184
https://arxiv.org/abs/2004.02865
https://doi.org/10.1088/0305-4470/32/12/007
https://doi.org/10.1007/s00220-012-1428-9
https://doi.org/10.1088/1751-8121/aa6b88
https://doi.org/10.1007/jhep03(2020)177
https://doi.org/10.1007/jhep03(2020)178
https://doi.org/10.1023/A:1010380116927
https://doi.org/10.1023/A:1010372504158
https://doi.org/10.1007/978-1-4612-0087-1_6
https://doi.org/10.1088/0305-4470/36/19/305
https://doi.org/10.1088/0305-4470/36/19/305
https://doi.org/10.1088/0305-4470/37/2/009
https://doi.org/10.1088/0305-4470/38/30/002
https://doi.org/10.1088/1742-5468/ab11c0


SciPost Phys. 11, 067 (2021)

[37] T. Deguchi, K. Fabricius and B. M. McCoy, The sl2 loop algebra symmetry of the six-vertex
model at roots of unity, J. Stat. Phys. 102, 701 (2001), doi:10.1023/A:1004894701900.

[38] T. Deguchi, The sl2 loop algebra symmetry of the twisted transfer matrix of the six-vertex
model at roots of unity, J. Phys. A: Math. Gen. 37, 347 (2003), doi:10.1088/0305-
4470/37/2/006.

[39] T. Deguchi, Regular XXZ Bethe states at roots of unity as highest weight vectors of the sl2 loop
algebra, J. Phys. A: Math. Theor. 40, 7473 (2007), doi:10.1088/1751-8113/40/27/005.

[40] A. Lazarescu and V. Pasquier, Bethe ansatz and Q-operator for the open ASEP, J. Phys. A:
Math. Theor. 47, 295202 (2014), doi:10.1088/1751-8113/47/29/295202.

[41] A. De Luca, M. Collura and J. De Nardis, Nonequilibrium spin transport in integrable spin
chains: Persistent currents and emergence of magnetic domains, Phys. Rev. B 96, 020403
(2017), doi:10.1103/PhysRevB.96.020403.

[42] T. Prosen, Quasilocal conservation laws in XXZ spin-1/2 chains: Open, pe-
riodic and twisted boundary conditions, Nucl. Phys. B 886, 1177 (2014),
doi:10.1016/j.nuclphysb.2014.07.024.

[43] R. G. Pereira, V. Pasquier, J. Sirker and I. Affleck, Exactly conserved quasilocal op-
erators for the XXZ spin chain, J. Stat. Mech. P09037 (2014), doi:10.1088/1742-
5468/2014/09/p09037.

[44] E. Ilievski, M. Medenjak, T. Prosen and L. Zadnik, Quasilocal charges in integrable lattice
systems, J. Stat. Mech. 064008 (2016), doi:10.1088/1742-5468/2016/06/064008.

[45] T. Prosen and E. Ilievski, Families of quasilocal conservation laws and quantum spin trans-
port, Phys. Rev. Lett. 111, 057203 (2013), doi:10.1103/PhysRevLett.111.057203.

[46] E. Ilievski, E. Quinn, J. De Nardis and M. Brockmann, String-charge duality
in integrable lattice models, J. Stat. Mech. 063101 (2016), doi:10.1088/1742-
5468/2016/06/063101.

[47] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field
theories through quantum groups, Nucl. Phys. B 330, 523 (1990), doi:10.1016/0550-
3213(90)90122-t.

[48] P. P. Kulish and E. K. Sklyanin, The general Uq(sl2) invariant XXZ integrable quantum spin
chain, J. Phys. A: Math. Gen. 24, L435 (1991), doi:10.1088/0305-4470/24/8/009.

[49] P. Martin and H. Saleur, On an algebraic approach to higher dimensional statistical me-
chanics, Commun. Math. Phys. 158, 155 (1993), doi:10.1007/BF02097236.

[50] L. Hulthén, Über das Austauschproblem eines Kristalles, Arkiv Mat. Astron. Fysik. 26A, 1
(1938).

[51] R. Orbach, Linear antiferromagnetic chain with anisotropic coupling, Phys. Rev. 112, 309
(1958), doi:10.1103/PhysRev.112.309.

[52] C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin-spin interactions. I.
Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev. 150, 321 (1966),
doi:10.1103/PhysRev.150.321.

66

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1023/A:1004894701900
https://doi.org/10.1088/0305-4470/37/2/006
https://doi.org/10.1088/0305-4470/37/2/006
https://doi.org/10.1088/1751-8113/40/27/005
https://doi.org/10.1088/1751-8113/47/29/295202
https://doi.org/10.1103/PhysRevB.96.020403
https://doi.org/10.1016/j.nuclphysb.2014.07.024
https://doi.org/10.1088/1742-5468/2014/09/p09037
https://doi.org/10.1088/1742-5468/2014/09/p09037
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1088/1742-5468/2016/06/063101
https://doi.org/10.1016/0550-3213(90)90122-t
https://doi.org/10.1016/0550-3213(90)90122-t
https://doi.org/10.1088/0305-4470/24/8/009
https://doi.org/10.1007/BF02097236
https://doi.org/10.1103/PhysRev.112.309
https://doi.org/10.1103/PhysRev.150.321


SciPost Phys. 11, 067 (2021)

[53] C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin-spin interactions. II.
Properties of the ground-state energy per lattice site for an infinite system, Phys. Rev. 150,
327 (1966), doi:10.1103/PhysRev.150.327.

[54] C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin-spin interactions. III.
applications, Phys. Rev. 151, 258 (1966), doi:10.1103/PhysRev.151.258.

[55] R. Siddharthan, Singularities in the Bethe solution of the XXX and XXZ Heisenberg spin
chains, (1998), arXiv:cond-mat/9804210.

[56] I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable mod-
els and discrete classical Hirota equations, Commun. Math. Phys. 188, 267 (1997),
doi:10.1007/s002200050165.

[57] P. Wiegmann, Bethe ansatz and classical Hirota equation, Int. J. Mod. Phys. B 11, 75
(1997), doi:10.1142/s0217979297000101.

[58] D. Bernard and V. Pasquier, Exchange algebra and exotic supersymmetry in the chiral potts
model, Int. J. Mod. Phys. B 04, 913 (1990), doi:10.1142/s0217979290000437.

[59] V. V. Bazhanov and Yu. G. Stroganov, Chiral Potts model as a descendant of the six-vertex
model, J. Stat. Phys. 59, 799 (1990), doi:10.1007/bf01025851.

[60] V. V. Bazhanov, T. Łukowski, C. Meneghelli and M. Staudacher, A shortcut to the Q-
operator, J. Stat. Mech. P11002 (2010), doi:10.1088/1742-5468/2010/11/p11002.

[61] D. Chicherin, S. Derkachov, D. Karakhanyan and R. Kirschner, Baxter operators with de-
formed symmetry, Nucl. Phys. B 868, 652 (2013), doi:10.1016/j.nuclphysb.2012.12.002.

[62] O. Babelon, K. K. Kozlowski and V. Pasquier, Baxter operator and Baxter equa-
tion for q-Toda and Toda2 chains, Rev. Math. Phys. 30, 1840003 (2018),
doi:10.1142/s0129055x18400032.

[63] V. V. Bazhanov, S. L. Lukyanov and A. B. Zamolodchikov, Integrable structure of conformal
field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys.
177, 381 (1996), doi:10.1007/bf02101898.

[64] V. V. Bazhanov, S. L. Lukyanov and A. B. Zamolodchikov, Integrable structure of conformal
field theory II. Q-operator and DDV equation, Commun. Math. Phys. 190, 247 (1997),
doi:10.1007/s002200050240.

[65] V. V. Bazhanov, S. L. Lukyanov and A. B. Zamolodchikov, Integrable structure of confor-
mal field theory III. The Yang-Baxter relation, Commun. Math. Phys. 200, 297 (1999),
doi:10.1007/s002200050531.

[66] A. Antonov and B. Feigin, Quantum group representations and the Baxter equation, Phys.
Lett. B 392, 115 (1997), doi:10.1016/s0370-2693(96)01526-2.

[67] P. P. Kulish, N. Yu. Reshetikhin and E. K. Sklyanin, Yang-Baxter equation and representation
theory: I, Lett Math Phys 5, 393 (1981), doi:10.1007/bf02285311.

[68] A. Klümper and P. A. Pearce, Conformal weights of RSOS lattice models and their fu-
sion hierarchies, Physica A: Statistical Mechanics and its Applications 183, 304 (1992),
doi:10.1016/0378-4371(92)90149-k.

[69] A. Kuniba, T. Nakanishi and J. Suzuki, T-systems and Y-systems in integrable systems, J.
Phys. A: Math. Theor. 44, 103001 (2011), doi:10.1088/1751-8113/44/10/103001.

67

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1103/PhysRev.150.327
https://doi.org/10.1103/PhysRev.151.258
https://arxiv.org/abs/cond-mat/9804210
https://doi.org/10.1007/s002200050165
https://doi.org/10.1142/s0217979297000101
https://doi.org/10.1142/s0217979290000437
https://doi.org/10.1007/bf01025851
https://doi.org/10.1088/1742-5468/2010/11/p11002
https://doi.org/10.1016/j.nuclphysb.2012.12.002
https://doi.org/10.1142/s0129055x18400032
https://doi.org/10.1007/bf02101898
https://doi.org/10.1007/s002200050240
https://doi.org/10.1007/s002200050531
https://doi.org/10.1016/s0370-2693(96)01526-2
https://doi.org/10.1007/bf02285311
https://doi.org/10.1016/0378-4371(92)90149-k
https://doi.org/10.1088/1751-8113/44/10/103001


SciPost Phys. 11, 067 (2021)

[70] H. Frahm, A. Morin-Duchesne and P. A. Pearce, Extended T-systems, Q matrices and T-Q
relations for s`(2) models at roots of unity, J. Phys. A: Math. Theor. 52, 285001 (2019),
doi:10.1088/1751-8121/ab2490.

[71] Y. Miao, In preparation.

[72] C. Korff, Auxiliary matrices on both sides of the equator, J. Phys. A: Math. Gen. 38, 47
(2004), doi:10.1088/0305-4470/38/1/003.

[73] A. V. Razumov and Y. G. Stroganov, Spin chains and combinatorics, J. Phys. A: Math. Gen.
34, 3185 (2001), doi:10.1088/0305-4470/34/14/322.

[74] L. Cantini and A. Sportiello, Proof of the Razumov-Stroganov conjecture, Journal of Com-
binatorial Theory, Series A 118, 1549 (2011), doi:10.1016/j.jcta.2011.01.007.

[75] P. Fendley, K. Schoutens and J. de Boer, Lattice models with N = 2 supersymmetry, Phys.
Rev. Lett. 90, 120402 (2003), doi:10.1103/PhysRevLett.90.120402.

[76] P. Fendley, B. Nienhuis and K. Schoutens, Lattice fermion models with supersymmetry, J.
Phys. A: Math. Gen. 36, 12399 (2003), doi:10.1088/0305-4470/36/50/004.

[77] L. Zadnik, M. Medenjak and T. Prosen, Quasilocal conservation laws from semicyclic irre-
ducible representations of Uq(sl2) in XXZ spin-1/2 chains, Nucl. Phys. B 902, 339 (2016),
doi:10.1016/j.nuclphysb.2015.11.023.

[78] M. Takahashi and M. Suzuki, One-dimensional anisotropic Heisenberg model at finite tem-
peratures, Progr. Theor. Phys. 48, 2187 (1972), doi:10.1143/ptp.48.2187.

[79] M. Takahashi, Thermodynamics of one-dimensional solvable models, Cambridge University
Press, Cambridge, ISBN 9780521551434 (1999), doi:10.1017/CBO9780511524332.

[80] E. Ilievski, E. Quinn and J.-S. Caux, From interacting particles to equilibrium statistical
ensembles, Phys. Rev. B 95, 115128 (2017), doi:10.1103/PhysRevB.95.115128.

[81] E. Ilievski and J. De Nardis, Microscopic origin of ideal conductivity in integrable quantum
models, Phys. Rev. Lett. 119, 020602 (2017), doi:10.1103/PhysRevLett.119.020602.

[82] J.-S. Caux, Private communication.

[83] M. Collura, A. De Luca and J. Viti, Analytic solution of the domain-wall nonequilibrium
stationary state, Phys. Rev. B 97, 081111 (2018), doi:10.1103/PhysRevB.97.081111.

[84] O. Gamayun, Y. Miao and E. Ilievski, Domain-wall dynamics in the Landau-Lifshitz mag-
net and the classical-quantum correspondence for spin transport, Phys. Rev. B 99, 140301
(2019), doi:10.1103/PhysRevB.99.140301.

[85] G. Misguich, N. Pavloff and V. Pasquier, Domain wall problem in the quantum XXZ
chain and semiclassical behavior close to the isotropic point, SciPost Phys. 7, 025 (2019),
doi:10.21468/SciPostPhys.7.2.025.

[86] Y. Miao, Conjectures on hidden Onsager algebra symmetries in interacting quantum lattice
models, SciPost Phys. 11, 066 (2021), doi:10.21468/SciPostPhys.11.3.066.

[87] J. Lykke Jacobsen, Y. Jiang and Y. Zhang, Torus partition function of the six-
vertex model from algebraic geometry, J. High Energ. Phys. 2019, 152 (2019),
doi:10.1007/jhep03(2019)152.

68

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1088/1751-8121/ab2490
https://doi.org/10.1088/0305-4470/38/1/003
https://doi.org/10.1088/0305-4470/34/14/322
https://doi.org/10.1016/j.jcta.2011.01.007
https://doi.org/10.1103/PhysRevLett.90.120402
https://doi.org/10.1088/0305-4470/36/50/004
https://doi.org/10.1016/j.nuclphysb.2015.11.023
https://doi.org/10.1143/ptp.48.2187
https://doi.org/10.1017/CBO9780511524332
https://doi.org/10.1103/PhysRevB.95.115128
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1103/PhysRevB.97.081111
https://doi.org/10.1103/PhysRevB.99.140301
https://doi.org/10.21468/SciPostPhys.7.2.025
https://doi.org/10.21468/SciPostPhys.11.3.066
https://doi.org/10.1007/jhep03(2019)152


SciPost Phys. 11, 067 (2021)

[88] Z. Bajnok, J. Lykke Jacobsen, Y. Jiang, R. I. Nepomechie and Y. Zhang, Cylinder partition
function of the 6-vertex model from algebraic geometry, J. High Energ. Phys. 2020, 169
(2020), doi:10.1007/jhep06(2020)169.

[89] M. Jimbo, Topics from representations of Uq(g) – an introductory guide to physicists, Nankai
lectures on mathematical physics, World Scientific, (1992).

[90] J. Lamers, V. Pasquier and D. Serban, Spin-Ruijsenaars, q-deformed Haldane-Shastry and
Macdonald polynomials, (2020), arXiv:2004.13210.

[91] G. Albertini, S. Dasmahapatra and B. M. Mccoy, Spectrum and completeness of the in-
tegrable 3-state Potts model: A finite size study, Int. J. Mod. Phys. A 07, 1 (1992),
doi:10.1142/S0217751X92003719.

[92] F. D. M. Haldane, Notes on computation of Bethe roots by exact diagonalization of XXX
chain, Unpublished (2011).

69

https://scipost.org
https://scipost.org/SciPostPhys.11.3.067
https://doi.org/10.1007/jhep06(2020)169
https://arxiv.org/abs/2004.13210
https://doi.org/10.1142/S0217751X92003719

	Introduction
	Motivation
	XXZ spin chain
	Bethe roots at infinity
	Fabricius–McCoy strings

	Basics of the QISM
	Transfer matrices
	Q operators

	Factorisation of Tshw
	Factorisation of Lax operator
	Intertwiners
	Two-parameter transfer matrix
	Factorisation of two-parameter transfer matrix

	Matrix TQ relation and transfer matrix fusion relation
	Decomposition of highest-weight transfer matrix
	Generalised Wronskian and matrix TQ relation
	Transfer matrix fusion relations
	Interpolation formula
	Structure of the eigenvalues of Q and P

	Truncated transfer matrix at root of unity
	Truncation and intertwiners at root of unity
	Decomposition of two-parameter transfer matrix at root of unity
	Truncated Wronskian and TQ relations
	Truncated fusion relations
	Interpolation formula: proof of a conjecture
	Structure of eigenvalues of  and 
	Connection to the work of Frahm et al

	Applications to XXZ at root of unity: general results
	Preliminaries
	Impact of FM strings on transfer-matrix eigenvalues
	FM strings at commensurate twist
	Primitive degenerate eigenstates
	Q functions for fully polarised states

	Applications to XXZ at root of unity: examples
	Descendant towers in periodic case
	Descendant towers of FM strings and their `free-fermion' nature
	Descendant towers with pairs of roots at infinity
	Mirroring descendant towers

	Descendant towers for nonzero commensurate twist
	Full spectrum at root of unity: an example
	Deformations of FM strings
	Connection to the work of Fabricius and McCoy

	Conjectures for FM creation and annihilation operators
	Case q2 = +1
	Case q2 = -1

	Thermodynamic limit
	FM strings and Z charges
	TBA, string-charge duality, and a conjecture for string centres of FM strings
	FM strings and spin Drude weight

	Conclusion
	Quantum sl2
	Global representation
	Auxiliary representations

	Quasiperiodicity
	Twist operator
	Twisted momentum and magnons

	Bethe roots
	Numerical recipe for finding Bethe roots
	Relation between Bethe roots for anisotropies  and -
	Relation between eigenstates with opposite twist

	Alternative proof of Eq. (6.13)
	Deforming FM strings
	Tuning a small twist
	Tuning the anisotropy

	Examples of last two string types of TBA at non-principal root of unity
	References

