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Abstract

Topological order in solid state systems is often calculated from the integration of an
appropriate curvature function over the entire Brillouin zone. At topological phase tran-
sitions where the single particle spectral gap closes, the curvature function diverges and
changes sign at certain high symmetry points in the Brillouin zone. These generic prop-
erties suggest the introduction of a supervised machine learning scheme that uses only
the curvature function at the high symmetry points as input data. We apply this scheme
to a variety of interacting topological insulators in different dimensions and symmetry
classes. We demonstrate that an artificial neural network trained with the noninteracting
data can accurately predict all topological phases in the interacting cases with very lit-
tle numerical effort. Intriguingly, the method uncovers a ubiquitous interaction-induced
topological quantum multicriticality in the examples studied.
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1 Introduction

Topological order is typically quantified by an integer-valued topological invariant that is of-
ten calculated from the momentum space integration of a certain curvature function, whose
precise form depends on the dimension and symmetry class of the system [1-3]. Though the
profile of the curvature function in a topological phase varies with the system parameters, the
topological invariant remains unchanged. Across topological phase transitions (TPTs) where
the topological invariant jumps discretely, the curvature function displays a rather universal
feature: [4-7] it gradually diverges at certain high-symmetry points (HSPs) in momentum
space, and the divergence changes sign as the system crosses the TPT, causing the discrete
jump in the topological invariant. By analyzing the divergence of the curvature function, vari-
ous statistical aspects of the Landau second-order phase transitions can be transposed to TPTs.
These aspects include the notion of critical exponents, scaling laws, universality classes, and
correlation functions. These notions form the basis of the curvature renormalization group
(CRG) method which can capture the TPTs solely based on the renormalization of the curva-
ture function near the HSP [8], regardless of whether the system is noninteracting [9-13] or
interacting [14, 15] or periodically driven [16-19].

The CRG method demonstrates that, although topology is a global property of the en-
tire manifold of the D-dimensional Brillouin zone (BZ), the knowledge about topology can
be entirely encoded in the curvature function near a HSP Motivated by this intuition, in this
paper we present a supervised machine learning (ML) scheme that utilizes only the curvature
function at the HSPs as input data to predict TPTs. The proposed ML scheme answers an
important question regarding the application of ML to topological phases: how much data
is required to reliably distinguish topological phases? Various ML strategies have been sug-
gested to address this issue, including the concept of quantum loop topography [20,21], and
using either the wave function [22-24], Hamiltonian [25-28], electron density [29], system
parameters [30, 31], transfer matrix [32], or density matrix [33] as the input data. Here,
we present a simple ML scheme based on input data comprising at most D + 1 real numbers
in D dimensions applicable to different symmetry classes and weakly interacting systems. We
train a simple fully-connected artificial neural network with a single hidden layer with data
from prototypical noninteracting TIs whose topological phases are well-known, and then use
the trained network to predict the topological phase diagram when many-body interactions
are adiabatically turned on such that the single-particle curvature function gradually evolves
into its many-body version. We demonstrate how the ML scheme accurately captures the topo-
logical phases and phase transitions driven by interaction with very little numerical effort and
simultaneously uncover interaction-driven multicritical points. By performing a very sim-
ple training procedure (on noninteracting data) we are thus able to access information about
the topology in a much wider parameter space, where a direct calculation of the topological
invariants is much more cumbersome.

The article is organized in the following manner. In Sec. 2.1, we first review the generic
features of the curvature function and the proposed supervised ML scheme based upon it. We
then apply this scheme to predict the topological phase diagram of the Su-Schrieffer-Heeger
model under the influence of nearest-neighbor interaction in Sec. 2.2 as a concrete example. In
Sec. 2.3.1, we apply the ML scheme to 2D Chern insulators with nearest-neighbor interaction,
and in section 2.3.2 to Chern insulators with electron-phonon interaction, elaborating on the
quantum multicriticality caused by the interactions. The results are finally summarized in
Sec. 3.
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2 Machine learning topological phases through local curvature

2.1 Supervised machine learning based on local curvature

The topological systems we consider are those whose topological invariant C is given by a
D-dimensional momentum space integration

C= f dPkF(k,M), D
BZ

where F(k,M) is referred to as the curvature function or local curvature, and
M = (M;, M,...Mp, ) is a set of tuning parameters in the Hamiltonian. This form of topo-
logical invariant has been proved to be true for any noninteracting system described by Dirac
models in any dimension and symmetry class [34]. The points k, in momentum space satisfy-
ing kg = —k; (up to a reciprocal vector) are referred to as the high symmetry points (HSPs).
For a D-dimensional cubic system, there are D + 1 distinguishable HSPs, such as k, = (0, 0),
(m,0), and (7, ) in 2D. Note that (0, ) and (7, 0) are indistinguishable in the sense that the
curvature function has the same value at these two points. As the system approaches the TPT,
the F(ky, M) generally diverges and flips sign as the system crosses the critical point

lim F(ky,M)=— lim F(ky, M)=+o00. (2)
M—M; M—M;

Our aim is to construct a supervised ML scheme to identify the critical point M. of TPTs in
the D;;-dimensional parameter space. Certainly we may use the entire profile of the curvature
function F(k,M) as the input data for ML, but this would be numerically expensive. The
question then amounts to what is the minimal amount of data from the curvature function
that can accurately predict M, with the smallest numerical effort. Since the critical behavior
described by Eq. (2) is a defining feature of the TPT, it motivates us to design an ML scheme
that uses only the curvature function at the D + 1 distinguishable HSPs as input data. Our
investigation suggests a supervised ML scheme that consists of the following steps:

(1) We choose a subspace M of the parameter space in which all the critical points M, and
their corresponding HSPs k, at which the curvature function diverges are known.

(2) We generate F (k0,1\7l) for several points in M, and label them with the value of the
corresponding topological invariant. We use this input data to train the neural network for
supervised classification of the different topological phases.

(3) Once the neural network is trained, for an unexplored point in the parameter space M,
we generate test data F(ky, M) at the same HSPs. We then use the trained neural network to
predict which phase these points belong to. This last step may be repeated to scan through
additional points in the M space.

Note that interacting subsets may in principle already be used in the training phase. In
this work, however, we choose the noninteracting limit as the subspace M to train the neural
network, whose topology is often easier to solve. We then employ the trained neural net-
work to predict the topology of the parameter space where the interaction is turned on. Our
approach assumes that the non-interacting system can indeed manifest nontrivial topology
in parts of its parameter space, and that the interacting system is adiabatically connected to
the same topological class as the non-interacting one, i.e. the interactions do not change the
underlying nonspatial symmetries. Because the scheme only relies on the curvature function
at the D + 1 distinguishable HSPs, it circumvents the tedious integration in Eq. (1) for the
interacting cases, and consequently serves as a very efficient tool to obtain the phase diagram
in the vast M parameter space. We now demonstrate the efficiency of our method by studying
different interacting TIs.
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2.2 Su-Schrieffer-Heeger model with nearest-neighbor interaction

We study the 1D Su-Schrieffer-Heeger (SSH) model in the presence of nearest-neighbor inter-
action to demonstrate the efficiency of the proposed supervised ML scheme. The noninteract-
ing part of the Hamiltonian is given by

Hy = Z(t +8t)c) g+ (t—6t)c), cpi +hoc.
i
= ZQkagkch + Qi ChpCak » 3
P

where c;; is the spinless fermion annihilation operator on sublattice I = {A, B} atsite i, t + 6t
and t — ot are the hopping amplitudes on the even and the odd bonds, respectively, and
Qr = (t +6t) + (t — 5t)e™* after a Fourier transform. We consider the nearest-neighbor
interaction [14,35]

Heoe=V Z (naing; + nginai+1)

1

—_ T T
= Z VqCAk+qCBk/—chk’cAk , 4
kk’q

where n;; = C}Ll.ch-, and V; = V(1 + cosq). In the limit of weak interaction, the changes to the
topology of the model can be described by renormalizing the Hamiltonian with self-energies
calculated from Dyson’s equation [14]. To one-loop order, the self-energies are given by

Zaak) =Zpp(k) =V, ()
1 —i *
00 =5 2 Vet = a1 ©®

where the phase ay, is defined by Q; = |Q;|e**:. The %, and Z; are the Hartree terms that
introduce a finite chemical potential that shifts the entire spectrum by —V. 3,5 and Xz, are
the Fock terms that modify the off-diagonal elements of the 2 x 2 Hamiltonian matrix in the
sublattice space. The phase of the modified off-diagonal element then reads

¢ =—arg(Qx + Zp)
1 .
= —arg (Qk +3 ; Ve l“kw) , )

and the topological invariant is simply the winding number of this phase

27 27
dk dk
C= J — O = f —F(k,5t,V). (8)
0 21 0 21

The curvature function F(k,&t, V) with the parameter space M = (6t,V) is thus

i hxakhy — hyakhx
2m hZ+h2 ’

1
F(k,6t,V)= ﬂakQDkZ €)

where h, = R[Qy + Zyp], hy = 3[Qx + Xyp]. Note that in the noninteracting limit V = 0, the
curvature function recovers the more familiar Berry connection [14].

To realize the ML scheme proposed in Sec. 2.1, since the noninteracting SSH model is
known to go through TPT via gap closing at k, = 7, we use the curvature function F(r,5t,0)
at k, = 7 as the input data to train a neural network that consists of a single dense hidden
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layer, as indicated in Fig. 1 (a). The noninteracting V = 0 subspace M = (5t, 0) is used to train
the neural network, as indicated by the colored lines in Fig. 1 (c). The details of the training
procedure are given in appendix A. In accordance to the usual notation, the 6t < 0 data is
labeled as nontrivial with C =1, and &t > 0 as trivial with C = 0. After the neural network is
trained, we use it to predict the topology in the interacting case V # 0 in the large M = (6t, V)
parameter space. For each M (darker colored areas in Fig. 1 (c)) we feed the curvature function
at the same HSP F(m,6t, V) to the network to obtain C. The resulting phase diagram shown
in Fig. 1 (c) correctly captures the phase boundary between the C = 1 and the C = 0 phases,
as can be compared by the results obtained from the curvature renormalization group (CRG)
approach [14]. A comparison with Eq. (7) immediately points to the advantage of this ML
scheme, because it does not require to an explicit calculation of the highly cumbersome integral
in Eq. (8).

@) p,ot,v)  (b)
0.5

0 T 2n

k input hidden output
layer layer layer

(c) training data
1.0 -

Vit

-1.0
-0.25 ot/t 0.25

Figure 1: Machine learning scheme to classify different topological phases in the in-
teracting SSH model. (a) The profile of the curvature function F(k,6t,V) and the
value at the HSP k, = 7t used as input data to train a neural network — whose architec-
ture is shown in (b) - to recognize different topological phases. (c) The topological
phase diagram predicted by the network for the interacting model (V # 0), using
a one-loop self-energy approximation. The training set is that of the noninteracting
SSH model at V = 0 given by the topologically trivial phase 6t > 0 (light red line)
and the nontrivial phase 6t < 0 (light blue line).

2.3 Interacting Chern insulators in 2D

We now apply our algorithm to study interacting TIs in two dimensions. To illustrate the
power of the methodology, we consider two kinds of interactions: electronic interactions and
electron-phonon interactions. In both cases, we find that the ML scheme predicts a complex
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phase diagram and the emergence of interaction-driven multicriticality.

2.3.1 Chern insulator with nearest-neighbor electronic interaction

The noninteracting Hamiltonian matrix of the Chern insulator takes the form Hy = d(k)- o in
the (A, B) sublattice space for every momentum k, where

do(k) =0, d; =sink,, dy(k) =sink,,
d3(k) =M + 2 —cosk, —cosk,, . (10)

For concreteness, we will examine the nearest-neighbor interaction of a form analogous to
Eq. (4), with the vertex

Vq=V(2+cosqx+cosqy). (11

The effect of the interaction is to modify the Green’s function by

iw+d)—d, —d;+id,
Gl (kiw) = ( 0 3 . 12 ) (12)
—dj—id;, iw+dj+d;
where the d-vector is renormalized by the intra- and inter-sublattice self-energies
d1:d1+R.eZAB, dézdz—ImZAB,
Zap— 2 —ap— 2
dj=dg+ 2488 g/ =2 BB (13)

2 ’ 2

which generally depend on both momentum and energy. The precise form of the self-energies
has been discussed previously in detail in [14]. The topological invariant in terms of the full
Green’s function in this case reads [36,37]

A A’k (% dw
C = — —
3 )z, 2m)2 )_ 2m

xe°Tr[(G718,G)(G18,G)(G13.G)] . (14)

Note that €2 is the Levi-Civita tensor where {a, b,c} = {w, k., ky}, and G = G(k,iw) is the
interaction-dressed single-particle Green’s function. Because the lowest order self-energy is
frequency-independent, Eq. (14) greatly simplifies to

_ 1 21, 3/ N/ N/
C _4—and kd'-(.,d x 3, d). (15)

This form is similar to that of noninteracting 2D class A models, where it simply counts the as-
sociated skyrmion number of the self-energy-renormalized d’-vector. The integrand in Eq. (15)
is then treated as the curvature function F(k,M) = F(k,,k,,M,V), with the mass term and
interaction strength M = (M, V) forming a 2D parameter space:

F(k,M) = 4%&' (8,4 x 8, d). (16)

We again use a neural network with a single hidden layer to determine the topology in
the interacting case, as indicated by Fig. 2 (a), where the curvature function at the three
distinguishable HSPs is used as the input data. The noninteracting subspace M = (M, 0) is used
to train the neural network. The noninteracting subspace has 3 critical points corresponding

6
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Figure 2: Machine learning scheme to classify different topological phases in inter-
acting 2D Chern insulators. (a) The curvature function at zero frequency «w = 0 and
the three inequivalent high-symmetry points k, = (0, 0), (0, 1), (7r, ) used as input
data for the neural network — whose architecture is depicted in (b). The ML predicted
topological phase diagram for the interacting Chern insulators: (c) electron-electron
interactions and (d) electron-phonon interactions. In both cases, the neural network
is trained with noninteracting data (shaded lines at V =0 in ¢) and d)), correspond-
ing to the three inequivalent topological phases with C = 0,£1. The method unveils
the existence of multicritical points between the C = 1 and C = —1 phases, indicated
by the black crosses.

to the divergence of curvature function at the 3 distinguishable HSPs [38]. Once the neural
network is trained, we use it to predict the interacting case V # 0 in the larger parameter space
M = (M, V), yielding the phase diagram shown in Fig. 2 (c), which correctly captures the three
topological phases, as can be compared with the CRG result that has previously solved part of
the phase diagram [14]. This again suggests that our ML scheme is a very efficient numerical
tool, since it circumvents the cumbersome integration of Eq. (15).

An unexpected result unveiled by our ML method is the prediction of an interaction-driven
multicritical point between the C = 1 and C = —1 phases, as indicated by the black cross in
Fig. 2 (c) where four regions meet. Although the precise location of this multicritical point and
the phase boundaries surrounding it can be altered by higher order self-energy corrections,
our result suggests that many-body interactions can be a mechanism for the generation of
multicritical TPTs. Such a feature has also been seen in 1D Creutz model with Hubbard-type
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interaction [39].

2.3.2 Chern insulator with electron-phonon interaction

As electron-phonon interactions are ubiquitous in real materials and can affect properties such
as transport of surface states, we now consider the impact of such interactions on the Chern
insulator [40-56]. In particular, we consider the deformation potential coupling between an
acoustic phonon mode and spinless fermions of the form [57]

Heph = quMq(c;;HqcAk+c;k+chk)(aq+aiq), a7

where aq is the phonon annihilation operator, wq = v, q is the phonon dispersion with sound
velocity vy, and Mg = u,/q with u a phenomenological coupling constant determined by sound
velocity, electron-ion potential, and ion density. The noninteracting part is that given by
Eq. (10). The results for the corresponding self-energies are presented in Appendix B, and
extend the calculation of the one-loop self-energies for optical phonons detailed in [14] to the
case of acoustic phonons.

We treat the mass term M and the electron-phonon coupling u in Eq. (17) as tuning pa-
rameters M = (M, u), and aim to find the TPTs in this 2D parameter space. A crucial difference
from the case of electron-electron interaction in Sec. 2.3.1 is that here, even at the one-loop
level, the self-energy depends on both momentum and frequency K = (w, k,, k), and so does
the curvature function (integrand of Eq.(14)):

abc

€
F(K,M) =
(K, M) 24m2

Tr[(G18,G)(G18,G)(G13,G)]. (18)

Consequently, the numerical integration of the topological invariant in Eq. (14) becomes even
more tedious, especially given the unbounded frequency integration. Nevertheless, we find
that close to TPTs, the curvature function at « = 0 diverges and flips at the HSPs of momentum
k. In other words, the appropriate HSPs in this problem are given by
Ky = (w, ky, k) =(0,0,0), (0,7,0), and (0, 7, ), at which the critical behavior of F(K,, M)
follows that discussed in Sec. 2.1. This critical behavior at zero frequency is a reminiscence
of gap closures at the Fermi energy at typical quantum critical points that is manifested in the
spectral function A(k, w) (detailed in Appendix B).

Our ML scheme becomes a powerful tool in this case, since it circumvents the momentum-
frequency integration in Eq. (14), relying instead on the divergence of the curvature function.
As in Sec. 2.3.1, we use the noninteracting limit in the absence of phonons u = 0 as training
data, and apply the ML scheme as illustrated in Fig. 2 (a)-(b). Fig. 2 (d) shows the phase
diagram obtained by our ML scheme using the three distinct HSPs K; as input data. To check
the validity of the results, we plot the spectral function across two representative TPTs (driven
by either the mass term M or the electron-phonon coupling u), predicted by the ML scheme in
Fig. 3. Note that the corresponding spectral functions clearly display a continuous closure and
opening of gaps at w = 0 consistent with a continuous phase transition. This implies that both
TPTs driven by the electron-phonon interaction and the mass are second order transitions.
To summarize, the phase diagram correctly captures all phases and phase boundaries, and
moreover indicates the appearance of a multicritical point as a function of coupling u around
M = —2.0, indicating that electron-phonon interaction can also serve as a mechanism to in-
duce multicriticality. Thus, many-body interactions are added to the list of several recently
uncovered mechanisms that can trigger topological multicriticality, including periodic driving
or quantum walk protocols [17-19, 58], long range hopping or pairing [12,13,59], spin-orbit
coupling [11,60], topological insulator/topological superconductor hybridization [61], as well
as more complicated mechanisms in the spin liquid [62] and toric code models [63].
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(a)
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Figure 3: (a) The spectral function A(ky = (0, 1), w) for the Chern insulator with
electron-phonon interaction. We fix the electron-phonon coupling at u = 0.4 and plot
A(koy = (0, ), w) for different masses from M = —2.4 (bottom curve) to M = —1.6
(top curve). One sees a gap-closure at zero frequency at the topological transition
point M, = —2. (b) The spectral function A(k = (0,0), w) at fixed M = 0.2 and
different couplings from u = 0.2 (bottom curve) to u = 0.8 (top curve). The gap
closure occurs at u, ~ 0.5. These results indicate gap-closures at «w = 0 at the TPTs
predicted by the ML scheme, driven by a change in either M or u.

We close this section by making a comparison between the CRG [8-15,17,18] and the ML
scheme proposed here. Though both methods have their advantages and disadvantages, the
ML scheme is more efficient than the CRG for obtaining the phase diagram and the related
invariants while the latter is more useful to extract critical exponents associated with the TPTs.

3 Conclusions

In summary, we propose a supervised machine learning scheme based on the divergence of
the curvature function at high-symmetry points, to rapidly identify different topological phases
in interacting systems, thereby circumventing costly multi-dimensional integrations. The ma-
chine learning scheme consists of an artificial neural network that utilizes as input data D + 1
real numbers, representing the values of the curvature function at D distinguishable HSPs in ei-
ther momentum or momentum-frequency space. The strategy is to train the neural network by
the data in a subspace where the topological phases are known - typically the noninteracting
case — and then use the trained neural network to predict the topology in a larger parame-
ter space. Because the machine learning scheme circumvents the tedious multidimensional
integration of topological invariants, especially in interacting systems, it is a highly efficient
tool to map out the topology in a large parameter space regardless the type of interaction
and dimension of the system, as demonstrated for several examples. The efficiency of this ML
scheme also helps to quickly uncover the multicriticality caused by both the electron-electron
and electron-phonon interactions, where multiple topological phases join at a single point on
the phase diagram, indicating that these many-body interactions serve as new mechanisms to
generate multicritical TPTs. Though the results presented were based on the first order self-
energy corrections, a valid approximation for weakly interacting systems, the proposed ML
scheme can straightforwardly be extended to higher order self-energy terms. The scheme is
widely applicable to topological materials in any dimension and symmetry class, provided the
topological invariant is defined from the integration of a local curvature. Future directions in-
clude the study of strongly interacting TIs within the paradigm presented here in conjunction
with numerical methods like exact diagonalization [15], as well as the interplay of topology
and symmetry-broken phases in interacting topological systems.
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A Neural network architecture and training

In this appendix, we give a brief overview of the details of the neural network architecture
and training used to obtain the phase diagrams of the interacting topological insulators men-
tioned in the main text. The construction, training, and evaluation of neural networks was
implemented using Tensorflow [64, 65]. For all of the results shown in the main text, we
employed a neural network with a single fully-connected hidden layer and varying input and
output layer depending on the dimensionality of the system and the number of phases in the
topological phase diagram (input: a single neuron for the 1D SSH model, three neurons for
the 2D Chern insulators, output: two neurons for the 1D SSH model, three neurons for the
2D Chern insulators). We employed a hidden layer with 10 neurons to generate the results
presented in the main text, but we empirically found that the width of the hidden layer can
be reduced to 2-3 neurons without significant performance reduction. As activation function,
we used a sigmoid for the hidden layer and a softmax for the output layer to obtain classifi-
cation probabilities. To train the network, we used noninteracting data. We used 4096 points
randomly distributed between 6t/t = —1.0 and 6t/t = 1.0 in the SSH model, and between
M = —12.0 and M = 12.0 for the 2D Chern insulator, fed in batches of size 32. The training
lasted for 50 epochs. The optimizer used during training was ADAM and the loss function was
the categorical cross entropy.

An open-source version of the software used to generate the results presented in this paper

is publicly available at https://gitlab.com/paolo.molignini/interacting-topological-insulators-ml.

B Self-energy of Chern insulator with electron-phonon interaction

For the Chern insulator with electron-phonon interactions discussed in Sec. 2.3.2, in the zero
temperature limit T — 0, taking the Bose distribution N, = 0 and the Fermi distribution
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ng(x) = 6(—x), the self-energies are given by
Sk, iw,) = > M2
q

y (1+ d3g—q/di—q)/2 N (1 —d3k—q/dx—q)/2
i, —wq—di_q iw, +wg+deq |’

Tpp(k,iw,) = ZM(?
q

y (1 —dsk—q/dx—q)/2 N (1+ dsk—q/dx—q)/2
iw, —a)q—dk_ ia)n+wq+dk_q ’

Zap(k, zwn)—z 5 dk

N 1 1
i, —wq—dy_q 1w, +wq+deq]’

L Qg
Zpalk, iw,) = Z 12di_q

><|:. ! — - ! :|, (19)

o, —wqg—diq 1w, +wg+dig

which depend on both momentum and the Matsubara frequency iw,. We then replace the
Matsubara frequency by a continuous one, iw,, — iw, in the calculation of the curvature func-
tion. The topological invariant is again given by Eq. (14), whose integrand can be expressed
in terms of the d’-vector in Eq. (13) by
T _ab -1 -1 -1
Eea C']"r[(G 3aG)(G BbG)(G aCG)]{a,b,c}z{w,kx,ky}
4mi
= S {—ie®d}8,d; 3, d! |0 b c=(1,23}
[(w+d))2—d?2]
+e%°4d’ 3,,d} 8,d!8,d | (0 b.c.dj=(0.1,2,3)
+we8,d.8,d; 3, d |10 b=(1.23)} >

=F(KM), (20)

where we have denoted K = (w, k., k). Note that in the noninteracting limit d’ — d, only the
first term in Eq. (20) survives, which recovers the Berry connection F(k, M) in the integrand
of Eq. (15) after a frequency integration. On the other hand, when calculating the spectral
function

1
Ak, w) =——Im [TrGret(k, w)] , (21)
T
we use the retarded version G™'(k, w) of the interacting Green’s function in Eq. (12) obtained
through an analytical continuation iw — w + in.
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