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Abstract

We show that T T̄ , J T̄ and J Ta - deformed classical CFTs posses an infinite set of sym-
metries that take the form of a field-dependent generalization of two-dimensional con-
formal transformations. If, in addition, the seed CFTs possess an affine U(1) symmetry,
we show that it also survives in the deformed theories, again in a field-dependent form.
These symmetries can be understood as the infinitely-extended conformal and U(1) sym-
metries of the underlying two-dimensional CFT, seen through the prism of the “dynamical
coordinates” that characterise each of these deformations. We also compute the Poisson
bracket algebra of the associated conserved charges, using the Hamiltonian formalism.
In the case of the J T̄ and J Ta deformations, we find two copies of a functional Witt -
Kac-Moody algebra. In the case of the T T̄ deformation, we show that it is also possible
to obtain two commuting copies of the Witt algebra.
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1. Introduction and summary

Two-dimensional quantum field theories universally contain a composite irrelevant operator
denoted as T T̄ , with a number of remarkable properties [1]. When added to the action, this
operator generates a deformation [2, 3] that alters the UV drastically and non-locally, but in
a controllable way [4–6]. Quantities such as the finite-volume energy spectrum, the S-matrix
and various partition functions can be computed exactly in terms of their undeformed coun-
terparts [2–12]. At the classical level, the deformed Hamiltonian can be written down exactly
in terms of the undeformed one [13], while at the quantum level it is possible, to a certain
extent, to track the flow of energy eigenstates and of correlation functions of distinguished
operators [14–16].

In addition to their appeal as solvable non-local field theories, T T̄ - deformed QFTs have
found interesting applications in various fields, ranging from QCD [17–21] and string theory
[22–24] to holography1 [26–28]. Various properties and generalizations were explored in
[29–47]. A particularly interesting off-shoot is a single-trace analogue of the T T̄ deformation,
proposed in [48] and further developed in [49–54], which opens up a path towards holography
for asymptotically flat spacetimes in terms of QFTs that share the ultraviolet properties of T T̄ .

As discussed in [2], QFTs with similar properties to T T̄ can be obtained by considering
deformations constructed from the components of any two conserved currents. A particular
case that has been studied rather thoroughly is the J T̄ deformation [55], constructed from
the components of a U(1) current and those of the right-moving stress tensor, as well as its
generalization that we will denote as J Ta, where the right-moving stress tensor is replaced by
the generator Tµa of translations in some fixed direction x̂a [39, 56, 57]. The spectra of the
deformed theories can again be worked out exactly [56,58–60] and the UV is again modified
in a non-local, yet predictable way. While certain physical properties of J T̄ and J Ta - deformed
QFTs are quite different from those of T T̄ - deformed ones (for example, these deformations
break Lorentz invariance), they still share many important properties with it and can offer a
complementary point of view. Indeed, the J T̄ and J Ta deformations are simpler than T T̄ in
the sense that they are only non-local along one direction; in particular, J T̄ - deformed CFTs

1See also the lecture notes at [25] for a pedagogical discussion of the existing holographic proposals for T T̄ -
deformed CFTs.
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possess full one-dimensional conformal invariance, allowing for the calculation of correlation
functions [61]. Additionally, the single-trace analogue of J T̄ - deformed CFTs [58, 59, 62] is
a promising avenue for understanding holography for extremal black holes [63] in terms of
QFTs that share the asymptotic UV behaviour of J T̄ - deformed CFTs.

In view of these applications and possible generalizations, it is of interest to better under-
stand the structure of T T̄ , J T̄ and J Ta - deformed QFTs. A very basic question is what their
symmetries are, and in particular whether these symmetries can be infinitely extended, as is
common in two-dimensional QFTs. For example, it has already been shown that all deforma-
tions of the Smirnov–Zamolodchikov type preserve integrability, if initially present [2], which
amounts to an infinite number of conserved charges.

In this article, we study the T T̄ , J T̄ and J Ta deformation of classical two-dimensional CFTs.
As is well known, the seed theories enjoy an infinite-dimensional symmetry that consists (at the
classical level), of two commuting copies of the Witt algebra that are enhanced, if additional
U(1) symmetries are present, to two commuting copies of the Witt - Kac-Moody algebra. Our
task is to determine whether these symmetries are preserved by the various deformations.

The holographic analyses of [28] for the case of T T̄ and [64] for the case of J T̄ suggest that
the answer is affirmative. These papers studied the asymptotic symmetries of AdS3 associated
to the mixed boundary conditions induced by each of these deformations, and found that all
the Virasoro and Kac-Moody symmetries are still present, though their generators become non-
local due to their dependence on a certain field-dependent modification of the coordinates.

While these holographic analyses are indicative, they remain an indirect and purely clas-
sical (large N) calculation, despite giving access to the central extension of the symmetry
algebra. In this article, we perform a different classical analysis of the symmetries, this time
from a field-theoretical point of view. Even though the central extensions are no longer ac-
cessible — and thus it will only be sensitive to the Witt part of the Virasoro algebra — this
calculation has the advantage of being more straightforwardly generalizable to the quantum
case, which is the question of true interest. We will show that an infinite-dimensional set of
symmetries is indeed preserved, and we exemplify how the Poisson brackets of their conserved
charges furnish Witt and Kac-Moody algebras in the deformed theory. If this structure survives
at quantum level, it would represent a non-local generalization of two-dimensional CFTs, with
a possibly generalized symmetry structure that is yet to be understood.

The main reason to expect the original symmetries to remain present is that, as nicely ex-
plained in [65] (see also [4,66]), the main effect of the T T̄ deformation — and, as it turns out,
of all the other deformations in the Smirnov–Zamolodchikov class — is to provide a dynami-
cal set of coordinates, through which the underlying QFT dynamics is seen. This was shown
in [66] at the level of the classical equations of motion, while [13] (see also [56]) studied
it in Hamiltonian language, showing the deformed and undeformed systems are canonically
equivalent. Therefore, from the perspective of the dynamical coordinates, it can be expected
that all the rigid CFT structure should be present, even if deformed in a predictable way.

The logic of this paper is a very simple generalization of the argument that the symmetry
group of two-dimensional CFTs is infinite-dimensional. We consider an arbitrary translationally-
invariant field theory on flat space, with null coordinates U , V = σ ± t, and we perform the
coordinate shift

U → U + ε f (u) , V → V − ε f̄ (v) , (1.1)

where u(U , V ), v(U , V ) are some possibly field-dependent “coordinates” and the functions
f (u), f̄ (v) are arbitrary. Concentrating on the left-movers for simplicity, the change in the
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action under the shift of U takes the form

δ f S = −
∫

dUdV ε f ′(u) (TUU∂V u+ TV U∂Uu) . (1.2)

If the QFT is question is a CFT, then the trace of the stress tensor, TV U , vanishes off-shell.
By taking u = U , the variation of the action vanishes for any function f (U) yielding, upon
inclusion of the right-movers, the well-known infinite-dimensional conformal symmetries of
two-dimensional CFTs.

In the case of T T̄ , J T̄ and J Ta - deformed CFTs, the trace of the stress tensor no longer
vanishes, but it is still true that the stress tensor only has two independent components off-
shell. To have an infinite-dimensional symmetry, we simply choose the function u(U , V ) so
that (1.2) is zero. The solution for u will be field-dependent, yet its structure will turn out
to be universal for each particular type of deformation, due to their very special nature. For
example, the field-dependent coordinates ua = {u, v} for J Ta-deformed CFTs (including the
special case of J T̄), are simply

ua = Ua −λaϕ , (1.3)

where λa is the deformation vector and ϕ is the scalar dual to the current J via J = ?dϕ. In
T T̄ - deformed CFTs, the off-shell solution for u is harder to write explicitly. On-shell, it can
be chosen to agree with the expressions that previously appeared in the literature [4].

The field-dependent coordinates u, v obtained this way are the same as those in which the
dynamics of the deformed CFT is mapped to that of the original CFT [4]. Therefore, in a sense,
the infinite-dimensional symmetries we are uncovering are nothing but the infinite conformal
symmetries of the original CFT, seen through the prism of the dynamical coordinates. For this
reason, we call these symmetries pseudo-conformal.

While the concept of a field-dependent spacetime transformation may seem somewhat
unusual, it is definitely not new [67,68]. To make it more palatable, note that it can be simply
understood as a neat way of packaging an infinite set of rather standard non-linear and field-
dependent transformation laws for each of the fields in the theory, as well as all derivatives of
these fields. These non-linear transformations are symmetries because they leave the action
invariant.

When the seed CFT also contains conserved currents (taken to be U(1) for simplicity), it
is well known that they generate an infinite-dimensional U(1) Kac-Moody symmetry. To see
this, consider the current χ(u)JA associated with a phase rotation of the fundamental fields
parametrized by an arbitrary function χ(u) of some possibly field-dependent coordinate u,
where JA is conserved. The divergence of this new current is

∇A (χ(u)JA) = 2χ ′(u)(JU∂V u+ JV∂Uu) . (1.4)

In a CFT, it is usually possible to choose a linear combination of the U(1) current generating
the global phase shift and its topological counterpart so that the V component of the sum
vanishes. Then, χ(U)JA is conserved for arbitrary transformations χ(U), giving rise to an
infinite-dimensional Kac-Moody symmetry. In the T T̄ , J T̄ and J Ta - deformed CFTs, it will
generally no longer be possible to find such chiral linear combinations of the currents; how-
ever, we will show that in each of these cases, the deformed structure does allow us to find
linear combinations of the conserved currents such that the ratio of their components is the
same as that of the stress tensor components, implying that (1.4) will vanish for the same
function u(U , V ) as (1.2). An analogous statement holds for the right-movers. Consequently,
we will find that the original U(1) affine symmetries of the CFT get deformed into an infinite-
dimensional set of field-dependent U(1) symmetries, which involve the same field-dependent
coordinates as the pseudo-conformal ones.
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Having established the existence of an infinite set of field-dependent symmetries, a natural
follow-up question is to find their algebra, and in particular whether it coincides with that of
the seed CFT. The holographic analyses of [28,64] suggest that the answer is yes, based on a
calculation that heavily relies on the on-shell map to a CFT living in the field-dependent coor-
dinates. In anticipation of the quantum case, where these coordinate transformations become
operator-valued and thus significantly more difficult to work with, we decided to employ the
Hamiltonian formalism to compute the Poisson brackets of the symmetry generators.

The Hamiltonian treatment for T T̄ - deformed CFTs was developed in [13] (see also [56]),
who gave a very simple expression for the deformed Hamiltonian density in terms of the un-
deformed Hamiltonian and momentum densities. We will show that this method can be easily
adapted to the J T̄ and J Ta deformations to obtain the corresponding expression for the de-
formed Hamiltonian density in terms of the undeformed Hamiltonian, momentum and charge
densities. This allows us to compute the algebra of the conserved charges in the deformed
theories using the universal equal-time Poisson brackets of the various currents in the unde-
formed CFT. For the simpler J T̄ and J Ta deformations, the algebra can readily be shown to
consist of two commuting copies of a functional Witt - Kac-Moody algebra. The T T̄ calcula-
tion is slightly more involved, as we encounter certain ambiguities in the Poisson bracket of
the field-dependent coordinates. However, we show it is possible to fix this freedom in such
a way that the algebra consists again of two commuting copies of the functional Witt algebra.
Throughout the paper, we concentrate on the charge algebra on compact space, as it presents
several subtleties that disappear when taking the flat space limit.

The plan of this paper is as follows. In section 2, we exhibit the infinite-dimensional sym-
metries of T T̄ - deformed CFTs, compute the Poisson bracket algebra of the conserved charges
and show that it can be chosen to be Witt. We conclude with a possibly instructive comparison
of the Lagrangian and Hamiltonian treatments of the T T̄ - deformed free boson. In section
3, we discuss the J T̄ deformation, which provides a nice warm-up for the more general J Ta
case. We start by exhibiting the infinite symmetries of a J T̄ - deformed free boson, then we
compute the charge algebra, and finally show that the results generalize to arbitrary J T̄ - de-
formed CFTs, by providing a general Hamiltonian formulation of these theories along the lines
of [13]. In section 4, we repeat the same exercise for the J Ta deformation. Various details of
the rather technical calculations are relegated to the appendices.

2. T T̄ - deformed CFTs

We consider a family of classical, Lorentzian field theories parameterized by a real coupling µ
of length dimension two, so that the theory at µ= 0 is a CFT. Their actions are related by the
following flow equation

∂µSL(µ) =
1
2

∫

d2 x
p
γ (TαβTαβ − T2) , (2.1)

where the right-hand side is evaluated in the theory deformed by an amount µ. This equation
can be solved for the deformed Lagrangian; a well-known example is the T T̄ - deformed free
boson, which is related to the Nambu–Goto action in static gauge [3].

The trace of the stress tensor in a T T̄ - deformed CFT no longer vanishes; however, it is
still true that the stress tensor only has two independent components off-shell, due to the trace
flow equation

Tαα ≡ T = −µ (TαβTαβ − T2) , (2.2)

which was proven in e.g. [28] for general classical CFTs.
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One can equivalently perform a Hamiltonian analysis of the system [13], by solving the
associated flow equation for the Hamiltonian density

∂µH = −
1
2
(TαβTαβ − T2) , (2.3)

where the components of the stress tensor are obtained from the Hamiltonian density via2

Tt t =H , Tσt = ∂πk
H∂φ′kH , Ttσ = πkφ

′k ≡ P , Tσσ = πk∂πk
H+φ′k∂φ′kH−H ,

(2.4)
with φk,πk denoting the canonical fields and their conjugate momenta. The relation between
the flow (2.1) of the Lagrangian and the above flow of the Hamiltonian has been explained
in [16].

The symmetries of the seed theory impose certain constraints on the undeformed Hamil-
tonian H(0). First, Lorentz invariance allows us to choose the stress tensor to be symmetric, so
T (0)σt = T (0)tσ = P . Then, the conformal symmetry of the undeformed CFT guarantees that the
stress tensor is traceless, T (0)σσ = T (0)t t =H(0). This requires H(0) to satisfy

(πk∂πk
+φ′k∂φ′k)H(0) = 2H(0) . (2.5)

By solving the flow equation, [13] showed that the stress tensor stays symmetric and that the
deformed Hamiltonian density takes the simple form

H = 1
2µ

Æ

1+ 4µH(0) + 4µ2P2 −
1

2µ
, (2.6)

while Ttσ = P remains unchanged. Using (2.6) and (2.5), Tσσ can be expressed only in terms
of H and P , thus showing that the deformed stress tensor still only has two independent
components, which algebraically determine the rest.

Note the equation (2.6) is similar to the corresponding equation for the energies of T T̄ -
deformed theories on a compact space. However, eq. (2.6) is an equation for the Hamiltonian
density - a local current - and not the integrated charge.

2.1. Infinite pseudo-conformal symmetries

We would now like to investigate the field-dependent pseudo-conformal symmetries of T T̄ -
deformed CFTs. As explained in the introduction, we consider shifting the null coordinates
U , V = σ± t as

U → U + ε f (u) , V → V − ε f̄ (v) (2.7)

for arbitrary functions f (u), f̄ (v) of some possibly field-dependent coordinates (u, v), which
depend on both U and V . The change in the action takes the form

δ f S = −
∫

dUdV ε f ′(u) (TUU∂V u+ TV U∂Uu) ,

δ f̄ S =

∫

dUdV ε f̄ ′(v) (TV V∂U v + TUV∂V v) . (2.8)

A convenient parametrization of the two independent stress tensor components is in terms of

µL≡ −
TUV

TV V
=

2µTUU

1− 2µTUV
, µL̄≡ −

TV U

TUU
=

2µTV V

1− 2µTV U
, (2.9)

2Note that our conventions are related to those of [13] by H→−H,P →−P .
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where we used the trace identity (2.2), which in null coordinates reduces to
TUV = −2µ(TUU TV V − T2

UV ), in the second step. In terms of L, L̄, the components of the
stress tensor are

TUU =
L

2(1−µ2LL̄)
, TV V =

L̄
2(1−µ2LL̄)

, TUV = −
µLL̄

2(1−µ2LL̄)
(2.10)

and its conservation equations read

(∂V −µL̄∂U)L= 0 , (∂U −µL∂V )L̄= 0 . (2.11)

This parametrization is useful for identifying the symmetries of the T T̄ - deformed CFTs. The
variation (1.2) of the action will vanish for arbitrary f (u), f̄ (v), provided the field-dependent
coordinates u, v are chosen to satisfy

∂V u= µL̄∂Uu , ∂U v = µL∂V v . (2.12)

Assuming that L and L̄ are analytic functions of (U , V ), the Cauchy—Kowalevski theorem
guarantees that a solution to these two partial differential equations exists, at least locally.
Once the initial values are specified (for example on a hypersurface of constant V and constant
U), the solution is unique. Formally, we can write the solutions to (2.12) as

u= Peµ
∫

dV L̄∂U u0(U) , v = Peµ
∫

dUL∂V v0(V ) , (2.13)

for some functions u0(U), v0(V ), where P denotes path-ordering. Since the solution exists
off-shell for any L, L̄, (2.7) are symmetries of the classical action.

An interesting feature of the field-dependent coordinates is that the stress tensor conser-
vation equations (2.11) simply reduce to (anti)-holomorphicity of L, L̄ with respect to u, v

(∂V −µL̄∂U)L= (∂V u−µL̄∂Uu)∂uL+ (∂V v −µL̄∂U v)∂vL= ∂V v(1−µ2LL̄)∂vL= 0 (2.14)

and similarly for L̄. Thus, in terms of L, L̄ and the field-dependent coordinates u, v, the dy-
namics of the stress tensor in the T T̄ - deformed CFT becomes that of a usual CFT stress tensor,
where on-shell we have L= L(u) and L̄= L̄(v).

The expression (2.13) for the field-dependent coordinates is rather formal, and it would
be good to find a more manageable one. To this end, we consider the inverse transformations
U(u, v), V (u, v). Using (2.12), they can be shown to satisfy

∂vU = −µL̄∂vV , ∂uV = −µL∂uU . (2.15)

These equations are very simple to solve on-shell, as the (anti)-holomorphicity of L = L(u)
and L̄ = L̄(v) implies that ∂u∂vU = ∂u∂vV = 0. Thus, on-shell ∂uU and ∂vV are (anti)-
holomorphic functions of u and v, respectively, that can be chosen at will. A simple choice
is ∂uU = ∂vV = 1, which will allow us to recover the well-known field-dependent coordinate
transformation3 [4,66]

U = u−µ
∫ v

dv′L̄(v′) , V = v −µ
∫ u

du′L(u) . (2.17)

3It is interesting to ask whether such an additional constraint on U , V is also possible off-shell. The answer is
no, as can be seen by taking derivatives of (2.15)

�U = ∂u∂v U =
−µ∂uL̄∂v V +µ2L̄∂vL∂uU

1−µ2LL̄
, �V = ∂u∂v V =

−µ∂vL∂uU +µ2L∂uL̄∂v V

1−µ2LL̄
. (2.16)

If ∂uU = 1, the left-hand side of this equation vanishes, whereas the right-hand side clearly does not, off-shell.
An explicit off-shell solution to these equations can be found in the free boson case, discussed at the end of this
section.
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So far, we have shown that the action is invariant under the field-dependent coordinate trans-
formations (2.7), with u, v chosen to satisfy (2.12) off-shell. The conserved charges associated
with these symmetries are given by the general formula

Qξ =

∫

dσ nATABξ
B, (2.18)

where n = ∂t is the unit normal to a constant time slice and ξA are the coordinate shifts in
eq. (2.7), namely ξ = f (u)∂U for the first symmetry and ξ = − f̄ (v)∂V for the second. The
explicit form of the charges is

Q f =

∫

dσ f (u)(TUU − TV U) =
1
2

∫

dσ f (u)L
1+µL̄

1−µ2LL̄
(2.19)

and

Q̄ f̄ =

∫

dσ f̄ (v)(TV V − TUV ) =
1
2

∫

dσ f̄ (v)
L̄(1+µL)
1−µ2LL̄

. (2.20)

The integrands can be written in a more suggestive form by noticing that4

u′ ≡ ∂σu= ∂Uu(1+µL̄) =
1+µL̄

(1−µ2LL̄)∂uU
, v′ ≡ ∂σv =

1+µL
(1−µ2LL̄)∂vV

. (2.22)

Using this, the expressions for the charges become

Q f =
1
2

∫

dσ∂σu∂uU L f (u) , Q̄ f̄ =
1
2

∫

dσ∂σv ∂vV L̄ f̄ (v) . (2.23)

This rewriting makes charge conservation manifest, as on-shell one is integrating purely
(anti)-holomorphic functions. It also shows that the pseudo-conformal conserved charges of
T T̄ - deformed CFTs precisely correspond to those of an auxiliary CFT whose coordinates are
u, v, up to the rescaling factors ∂uU ,∂vV which, as explained, can be chosen to equal one on-
shell. These expressions then coincide with those found in the holographic analysis of [28].

Note that when the T T̄ - deformed CFT is placed on a compact space, charge conservation
requires f (u) to be a periodic function of u, and similarly for f̄ (v). Since the periodicity of the
coordinates U , V of the field theory is fixed, that of the solutions to (2.12) will in general be
field-dependent. Denoting these field-dependent radii of u, v as Ru and, respectively, Rv , then
the argument of f (u) is more precisely û = u/Ru, from which it is straightforward to build
a periodic function, thus ensuring the conservation of the associated charge. The explicit
dependence on the field-dependent radii will become important in the next section, as they
contribute non-trivially to the Poisson brackets.

2.2. Conserved charges and Poisson bracket algebra

In this section, we proceed to computing the Poisson bracket algebra of the conserved charges
(2.19) and (2.20) in a T T̄ - deformed CFT placed on a cylinder of radius R. The result for
non-compact space can be simply obtained by taking R→∞. One reason we concentrate on
the compact case is that, as we will see, it presents a number of subtleties that are not present
in the non-compact setting.

4The map between the matrices ∂X x and ∂x X is explicitly given by
�

∂uU ∂v U
∂uV ∂v V

�

=
1

∂U u∂V v(1−µ2LL̄)

�

∂V v −µL̄∂U u
−µL∂V v ∂U u

�

. (2.21)
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We start by rewriting the charges in the Hamiltonian language. Using (2.4), we find the
simple expressions

Q f =
1
2

∫ R

0

dσ f (û)(H+P), Q̄ f̄ =
1
2

∫ R

0

dσ f̄ (v̂)(H−P), (2.24)

where û= u/Ru and v̂ = v/Rv . The relation between L, L̄ and H±P can easily be read off by
comparing (2.19) and (2.24). At this point, it is useful to fix the freedom in the definition of
u, v, and we will make the natural choice ∂uU = ∂vV = 1. With this choice, the field-dependent
coordinates satisfy the following simple relation

u′ ≡ ∂σu= 1+µ(H−P) , v′ ≡ ∂σv = 1+µ(H+P) , (2.25)

where we used eq. (2.22). The radii of the field-dependent coordinates u, v take the simple
form

Ru ≡
∫ R

0

dσu′ = R+µ(H − P) , Rv ≡
∫ R

0

dσ v′ = R+µ(H + P) , (2.26)

where H =
∮

dσH(σ) and P =
∮

dσP(σ) are the total Hamiltonian and momentum.
To compute the Poisson bracket algebra of the charges (2.24), we will need the algebra

of the currents H ± P and those of the normalized state - dependent coordinates û, v̂. The
Poisson brackets of the currents are determined by their Poisson brackets in the undeformed
theory through (2.6)

{H(0), H̃(0)}= {P , P̃}= (P + P̃)∂σδ(σ− σ̃) ,

{H(0), P̃}= {P , H̃(0)}= (H(0) + H̃(0))δσδ(σ− σ̃) , (2.27)

together with the exact expression (2.6) for the deformed Hamiltonian density. Here, we
introduced the short-hand notation H(σ) ≡ H,H(σ̃) ≡ H̃ and similarly for P . Explicitly, we
find

{H, H̃}= {P , P̃}= (P + P̃)∂σδ(σ− σ̃) , {H, P̃}=
H(0) + H̃(0) + 2µP(P + P̃)

1+ 2µH
∂σδ(σ− σ̃),

(2.28)
where H(0) =H+µ(H2−P2). The Poisson brackets of the field-dependent coordinates can be
determined from the above though the identity (2.25), which shows that up to a factor of µ2,
the Poisson brackets of the spatial derivatives u′, v′ are identical to those of H±P . Explicitly,

{u′, ũ′}= −2µ2(G− + G̃−)∂σδ(σ− σ̃) , {v′, ṽ′}= 2µ2(G+ + G̃+)∂σδ(σ− σ̃) ,

{u′, ṽ′}= −{v′, ũ′}= 2µ3F ′(σ)δ(σ− σ̃) , (2.29)

where the functions F and G± are defined as

F ≡
H2 −P2

1+ 2µH
, G± ≡ (H±P)

1+µ(H±P)
1+ 2µH

. (2.30)

To obtain the Poisson brackets of the coordinates u, v themselves, we integrate eq. (2.29) with
respect to σ, σ̃. We find

{u, ũ} = −2µ2 [G−(σ)Θ(σ̃−σ)− G−(σ̃)Θ(σ− σ̃) + D−(σ)− D−(σ̃)] ,

{v, ṽ} = 2µ2 [G+(σ)Θ(σ̃−σ)− G+(σ̃)Θ(σ− σ̃) + D+(σ)− D+(σ̃)] ,

{u, ṽ} = 2µ3 [F(σ)Θ(σ̃−σ) + F(σ̃)Θ(σ− σ̃) + A(σ) + B(σ̃)] , (2.31)
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where A, B, D± are integration functions that we will constrain below, and the range of theσ, σ̃
coordinates is restricted to [0, R).

When working with the above Poisson brackets, one should take into account the fact that
the field-dependent coordinates wind around the spatial circle. There are two possible ways
to deal with this issue: we either restrict the variables σ, σ̃ as above and carefully keep track
of the winding of u, v or, more elegantly, we consider them living on R instead of [0, R) and
make the Poisson brackets periodic by replacing δ→ δR, where δR(x)≡

∑

n∈Zδ(x+nR) is the
“comb function” with periodicity R, and Θ → ΘR(x) ≡

∫ x
d y δR(y). Note that ΘR coincides

with the usual Heaviside function as long as |σ − σ̃| < R, but counts the additional winding
whenever the difference grows larger.

The Poisson brackets between the coordinates and the field-dependent radii (2.26) are
determined from (2.31) by using the fact that Ru = u(R)− u(0) for an arbitrary origin σ = 0.
We obtain

{u(σ), Ru}= −2µ2(G−(σ) + G−(0)−wD−) , {u(σ), Rv}= 2µ3(F(σ)− F(0) +wB) ,

{v(σ), Ru}= −2µ3(F(σ)− F(0) +wA) , {v(σ), Rv}= 2µ2(G+(σ) + G+(0)−wD+) ,
(2.32)

where the winding of a function A(σ) is defined as

wA ≡ A(R)− A(0). (2.33)

Note the winding can in principle depend on the starting point, ‘0’. Since these Poisson brackets
are periodic in σ, it is clear that the Poisson brackets of the radii with each other vanish,
consistently with their definition (2.26) in terms of the total energy and momentum.

The functions A, B, D± are subject to several constraints, such as charge conservation. As
detailed in appendix A.1, when the theory is on a compact space, this requires the windings
to satisfy

wD− +µwB = G−(0) +µ F(0),

wD+ +µwA = G+(0) +µ F(0). (2.34)

Note in particular that the windings cannot be zero in finite size.
We obtain further constraints on the functions A, B, D± by requiring that the Poisson brack-

ets (2.31) be consistent with time evolution. Parametrising A, B, D± in terms of four new func-
tions X , Y, X̄ , Ȳ

A= F(Y −
1
2
)− G−Ȳ , D+ = G+(Y −

1
2
)−µ2F Ȳ , (2.35)

B = F(X̄ −
1
2
)− G+X , D− = G−(X̄ −

1
2
)−µ2FX , (2.36)

time evolution, as we show in appendix A.2, restricts the above functions to satisfy

Ẋ − {H, X }=
1+ 2µP
1+ 2µH

X ′ , ˙̄X − {H, X̄ }= −
1− 2µP
1+ 2µH

X̄ ′ (2.37)

and similarly for Y, Ȳ . This translates into the requirement that X , Y be only functions of u,
while X̄ , Ȳ can only depend on v.

Additional constraints on the functions A, B, D±/X , X̄ , Y, Ȳ follow from the requirement that
the Poisson brackets of the conserved charges yield other conserved charges. More precisely,
as detailed in appendix A.3, the non-zero Poisson brackets of the radii Ru,v with the energy
currents induce terms proportional to Quf ′ and Q̄v f̄ ′ . These terms are not conserved due to
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the lack of periodicity of the associated functions and should thus be cancelled. This entirely
fixes the winding part of the functions X , Y, X̄ , Ȳ , i.e.

X (û) = Xp(û) , X̄ (v̂) = v̂ + X̄p(v̂) , Y (û) = û+ Yp(û) , Ȳ (v̂) = Yp(v̂), (2.38)

where the functions Xp(û), etc., are periodic in their argument. The Poisson bracket algebra
of the conserved charges is then given by

{Q f , Q̄ f̄ }= −µ(Q∂u f Q X̄p∂v f̄ +QYp∂u f Q̄∂v f̄ ) ,

{Q f ,Qg}=Q f ∂u g−∂u f g +µ
2(Q∂u f QXp∂u g −QXp∂u f Q∂u g) ,

{Q̄ f̄ , Q̄ ḡ}= Q̄∂v f̄ ḡ− f̄ ∂v ḡ +µ
2(Q̄∂v f̄ Q̄ Ȳp∂v ḡ − Q̄ Ȳp∂v f̄ Q̄∂v ḡ) . (2.39)

The details of this calculation are worked out in appendix A.3. Even more constraints on the
functions Xp, X̄p, Yp, Ȳp could be derived from the Jacobi identities, but we will not pursue this
avenue here.

Of course, in general we would expect the Poisson bracket of the field-dependent coor-
dinates to be fixed by the natural interpretation of the integral of the left- and right-moving
energy densities, H±P . As we will see in sections 3 and 4, this is indeed what happens in the
case of J T̄ and J Ta - deformed CFTs, where the current is naturally represented in terms of the
derivative of an auxiliary scalar ϕ, whose known Poisson brackets naturally fix the potential
ambiguities coming from integrating the Poisson brackets of ϕ′. In the T T̄ case, the existence
of an analogous interpretation would determine the functions X , X̄ , Y, Ȳ . In the absence of
such an interpretation, an obvious choice is to set the periodic part Xp, etc., of these arbitrary
functions to zero, case in which the Poisson brackets take the very simple form

{u, ũ}=− 2µ2

�

(G− + G̃−)ε(σ̃−σ) +
G−v − G̃− ṽ

Rv

�

,

{u, ṽ}=2µ3

�

(F − F̃)ε(σ̃−σ) +
Fu
Ru
+

F̃ ṽ
Rv

�

,

{v, ṽ}=2µ2

�

(G+ + G̃+)ε(σ̃−σ) +
G+u− G̃+ũ

Ru

�

, (2.40)

where ε(σ̃ −σ) = Θ(σ̃ −σ)− 1
2 . Apart from the winding terms, these look rather naturally

as the commutation relations of bosons. In the non-compact case, where the last terms drop
out, we may be able to justify this as the correct, or the most natural, choice. In the compact
case, however, consistency of the charge algebra requires the winding terms to be present in
the Poisson brackets of the field-dependent coordinates, and so far we do not have a good
interpretation for them. In any case, the choice (2.40) implies that the Poisson brackets of the
charges organise into two commuting copies of a functional Witt algebra,

{Q f , Q̄ f̄ }= 0 , {Q f ,Qg}=Q f ∂u g−∂u f g , {Q̄ f̄ , Q̄ ḡ}= Q̄∂v f̄ ḡ− f̄ ∂v ḡ , (2.41)

i.e., a Witt algebra at the level of the functions that label the conserved charges.
On the cylinder, however, it is customary to write the charge algebra in terms of the Fourier

modes, Ln, L̄n obtained by choosing the basis of functions fn(û) = einû and f̄n(v̂) = e−inv̂ and
multiplying all charges by a factor of R, so as to make them dimensionless. Then, the classical
charge algebra (2.41) translates into

{Lm, Ln}= −i
m− n

1+ 2µ̂ L̄0
Lm+n , { L̄m, L̄n}= −i

m− n
1+ 2µ̂L0

L̄m+n , {Lm, L̄n}= 0, (2.42)
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where µ̂ = µ/R2 is the dimensionless T T̄ coupling on the cylinder and the denominators
come from the ratios R/Ru,v that now appear explicitly in the charge algebra. Thus, while we
do obtain a Witt algebra at the level of the functions that parametrize the conserved charges,
it is not the usual Witt algebra when written in terms of Fourier modes.5

So far, we have been concentrating exclusively on the compact case. The discussion and
calculations we performed in this section and in appendix A all simplify if the theory lives
on the plane R → ∞, assuming that the energy and momentum densities decay at spatial
infinity. First, the functions f and f̄ in eq. (2.24) become just functions of u and v, which are
assumed to decay or stay constant at infinity, so that the associated charges are finite. The fall-
off conditions on H,P automatically ensure charge conservation, so we can simply drop all
the winding terms that complicated the compact case. In particular, the unintuitive winding
terms proportional to u/Ru and v/Rv in the commutator (2.40) can be dropped, as well as
those in (2.38) and (A.26)–(A.28), who were related to charge non-conservation. Finally, in
the non-compact setting only the functional form of the Witt algebra is relevant, which in this
case is identical to its CFT counterpart.

2.3. T T̄ - deformed free boson example

At the start of this section, we used the Lagrangian formulation to exhibit the infinite pseudo-
conformal symmetries of T T̄ - deformed CFTs. The ratios L, L̄ of the stress tensor components
played a special role in our analysis, acting as the (anti)-holomorphic stress tensor components
of an auxiliary ‘usual CFT’ living in the u, v coordinates. Even though the charges assumed a
suggestive CFT-like form, (2.23), in terms of L, L̄, the subsequent Poisson bracket analysis
made no use of this structure.

In this section, we would like to discuss the relation between the T T̄ - deformed and
the original CFT in the Hamiltonian formalism. We concentrate on the special case of the free
boson, where everything can be made entirely explicit. In the Hamiltonian formalism, the T T̄ -
deformed and original CFT are related by a canonical transformation, as was nicely explained
in [13] which can be spelled out explicitly for the free boson. As we will show, the reason that
the L, L̄ variables are not particularly useful for computing the equal-time Poisson brackets in
the deformed theory is that this canonical transformation does not map equal times to each
other. One would thus need to use Hamiltonian evolution inside the bracket in order to relate
their Poisson brackets to those of the simple CFT obtained from (2.27).

The goal of this section is thus to show that the equal-time Poisson brackets of the quantities
L, L̄ in the T T̄ - deformed CFT simply correspond to the unequal-time Poisson brackets of
H(0) ±P in the undeformed CFT, obtained by evolving with the equations of motion. We also
use this opportunity to give a few explicit formulae for the free boson in our conventions and
underline certain additional points, in both the Lagrangian and the Hamiltonian formalisms.

Lagrangian analysis

The action of a T T̄ - deformed free boson is

SL(µ) =
1

2µ

∫

d tdσ
�

1−
q

1+ 2µ(φ′2 − φ̇2)
�

. (2.43)

5One can obtain the usual Witt algebra at the level of the Fourier modes by multiplying the left-moving charges
by Ru and the right-moving ones by Rv , as was done in e.g. [28]. One disadvantage of doing so is that the new
L0 and L̄0 would no longer represent the energy plus/minus the momentum of the state. Also, since the field-
dependent radii have non-zero Poisson brackets with the charges of the opposite chirality, a non-zero commutator
between the left and right-moving charges would be induced.
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The components of the stress tensor are

TUU =
(∂Uφ)2

p

1+ 8µ∂Uφ∂Vφ
,

TV V =
(∂Vφ)2

p

1+ 8µ∂Uφ∂Vφ
,

TV U =
1

4µ

�

1−
1+ 4µ∂Uφ∂Vφ
p

1+ 8µ∂Uφ∂Vφ

�

. (2.44)

It is easy to check that the trace identity (2.2) holds off-shell. Using the definition (2.9) of L, L̄
and the above explicit form of the stress tensor, one can solve for the derivatives of φ in terms
of L, L̄

∂Uφ =

√

√L
2

1

1−µ
p

LL̄
, ∂Vφ =

√

√ L̄
2

1

1−µ
p

LL̄
. (2.45)

Using this, one can easily express the partial derivatives of the field φ with respect to u, v in
terms of L, L̄

∂uφ = ∂uU(∂Uφ −µL∂Vφ) = ∂uU

√

√L
2

, ∂vφ = ∂vV (∂Vφ −µL̄∂Uφ) = ∂vV

√

√ L̄
2

, (2.46)

which relates them (off-shell) to the stress tensor components of a free boson in the u, v co-
ordinates. The equation of motion for the T T̄ -deformed free boson reduces to the free wave
equation ∂u∂vφ = 0 in terms of the field-dependent coordinates. Notice however that the
coordinate transformation we have chosen does not map the action (2.43) to the free boson
action in u, v coordinates.

It is interesting to note that in the simple case of the T T̄ - deformed free boson, an
explicit off-shell solution for ∂uU and ∂vV can be found. A reason for the simplification
is the off-shell compatibility relation ∂U∂Vφ = ∂V∂Uφ, which translates, using (2.45) and
∂U − µL∂V = (∂uU)−1∂u , ∂V − µL̄∂U = (∂vV )−1∂v , into a constraint on L, L̄, namely

∂uU∂v
p
L= ∂vV∂u

p

L̄. Combining this with (2.16), we obtain an off-shell equation for U(u, v)

∂v(∂uU) = −2µ∂uU

p

L̄∂vL

1+µ
p

LL̄
⇒ ∂uU = U ′0(u)exp

�

−2µ

∫ v

0

dv

p

L̄∂vL

1+µ
p

LL̄

�

. (2.47)

This expression makes it clear that, while we do have a function worth of freedom in choosing
the initial condition U0(u), no particular choice of this function will reduce to a simple choice
for ∂uU off-shell. Similar comments hold for ∂vV .

In the case of the free boson, there is a U(1) current associated with the shift symmetry of
φ. Its components are

JU =
∂Uφ

p

1+ 8µ∂Uφ∂Vφ
, JV =

∂Vφ
p

1+ 8µ∂Uφ∂Vφ
. (2.48)

There is also a current J̃U = ∂Uφ, J̃V = −∂Vφ, which is topologically conserved. The combi-
nations J± = (J + J̃)/2 are chiral and respectively anti-chiral in the undeformed CFT, leading
to an infinite set of conserved charges. After the deformation, these currents are no longer
chiral, but it can be easily checked (using (2.45)) that their components satisfy the relation

J+V
J+U
= −µL̄ ,

J−U
J−V
= −µL, (2.49)
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which is the same relation as that satisfied by the stress tensor components (2.10). Following
our argument in the introduction, this implies that for any function χ(u) and χ̄(v) which
depend on the same field-dependent coordinates u, v as the pseudo-conformal symmetries,
the currents χ(u)J+ and χ̄(v)J− will be conserved. They generate an infinite set of affine
U(1) symmetries. Thus, the full symmetry of the original free CFT is still present after the
deformation.

Hamiltonian analysis

The canonical momentum conjugate to φ in the T T̄ -deformed theory is

π=
φ̇

Æ

1+ 2µφ′2 − 2µφ̇2
(2.50)

and the Hamiltonian density reads

H = πφ̇ −L= 1
2µ

Æ

1+ 2µ(π2 +φ′2) + 4µ2(πφ′)2 −
1

2µ
, P = πφ′. (2.51)

Notice this is precisely of the form (2.6), derived in [13]. The equal-time Poisson bracket is

{φ(σ),π(σ̃)}= δ(σ− σ̃). (2.52)

It is useful to rewrite the canonical variables in terms of L, L̄. We find

π=
∂Uφ − ∂Vφ

p

1+ 8µ∂Uφ∂Vφ
=

p
L−

p

L̄
p

2(1+µ
p

LL̄)
, φ′ = ∂Uφ + ∂Vφ =

p
L+

p

L̄
p

2(1−µ
p

LL̄)
. (2.53)

We subsequently notice that the combinations

π+φ′

2
=

√

√L
2

1+µL̄
1−µ2LL̄

= ∂σu∂uφ ,
φ′ −π

2
=

√

√ L̄
2

1+µL
1−µ2LL̄

= ∂σv ∂vφ, (2.54)

where we used (2.22) and (2.46) in the last step. These relations hold off-shell and inde-
pendently of what we choose ∂uU to be. The quantities ∂uφ and ∂vφ simply represent the
holomorphic and anti-holomorphic derivative of a free boson living in the auxiliary u, v coor-
dinate system. Letting u, v = σc ± tc , where the subscript c stands for “auxiliary CFT”, these
derivatives can be further written in terms of the canonical momentum of the auxiliary free
boson as

∂uφ =
πc +φ′c

2
, ∂vφ =

φ′c −πc

2
, (2.55)

where πc = ∂tc
φc is the canonical momentum. Then, (2.54) leads to the following map be-

tween the free boson canonical variables and the T T̄ - deformed ones

φc(u(σ), v(σ)) = φ(σ) , πc(u(σ), v(σ)) =
π+φ′

2u′
+
π−φ′

2v′
, (2.56)

which holds on a constant t slice in the T T̄ - deformed CFT. One can easily check that
φ′ = u′∂uφc + v′∂vφc agrees with the expectation from (2.54) via (2.55). Upon choosing
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the gauge6 ∂uU = ∂vV = 1, the spatial derivatives u′, v′ are given by (2.25). This map is very
similar to that presented in [13], who made a slightly different choice of gauge. Since both
the free boson and the T T̄ - deformed free boson can be obtained from different gauge-fixings
of the three-dimensional Nambu–Goto action, the map (2.56) between the two is canonical.

Since the map is canonical, it should preserve the Poisson brackets. Let us compute, for
concreteness, the Poisson bracket of πc with itself, using the right-hand side of (2.56). The
result can be written in the suggestive form7

{πc(σ),πc(σ̃)}=
1
2

�

1
u′ũ′
−

1
v′ ṽ′

�

∂σδ(σ− σ̃). (2.58)

The fact that the equal-time Poisson bracket of the two free boson momenta does not vanish
can be understood intuitively from the fact that an equal time slice in the T T̄ - deformed
system does not generally map to an equal time slice in the free boson one. We should thus
compare this with the unequal time Poisson bracket in the free boson system, obtained from
the relations

{πc
+(u),π

c
+(ũ)}=

1
2
∂uδ(u− ũ) , {πc

−(v),π
c
−(ṽ)}= −

1
2
∂vδ(v − ṽ) , {πc

+(u),π
c
−(ṽ)}= 0,

(2.59)
where πc

± = (πc ±φ′c)/2. These commutators follow from the equations of motion, which set
πc
+ to be only a function of u, and πc

− only a function of v. Subtracting the first two terms to
obtain the πc Poisson bracket and changing variables from u, v to σ yields precisely (2.58). A
similar argument holds for the Poisson bracket of φ′c with itself.

More interesting is the result for {πc
+,πc

−}, which in the free boson system vanishes at
all times; however the explicit calculation using (2.56) shows that in our case, it does not.
Instead, it takes the form

{πc
+(σ),π

c
−(σ̃)}=

1
u′v′

∂σ ln
1+ 2µφ′2

1+ 2µπ2
δ(σ− σ̃), (2.60)

where we used (C.6) to rewrite the distribution in a more convenient form. This is nevertheless
still consistent with the Poisson brackets of the free boson system, since we should compare
the Poisson brackets of the full momenta, Πc

+ =
∫

duπc
+(u) and Πc

− =
∫

dvπc
−(v), rather than

those of the momentum densities. The right-hand side of (2.60) is then just a total derivative,
which integrates to zero.

It is easy to show that the Poisson brackets of L, L̄, which we had identified with the
components of the stress tensor of an auxiliary CFT, similarly correspond to CFT commutators
at unequal times. This holds not only for the free boson, but more generally in any T T̄ -
deformed CFT. To show this, we first express L, L̄ in terms of H(0),P via

L= H+P
1+µ(H−P)

, L̄= H−P
1+µ(H+P)

, (2.61)

by using the explicit form (2.6) for H. Then, we use the undeformed Poisson brackets (2.27)
to compute the Poisson brackets of L, L̄, L̃, ˜̄L, obtaining

{L, L̃}= 2(L+ L̃)
u′ũ′

∂σδ(σ− σ̃), {L̄, ˜̄L}= −2(L̄+ ˜̄L)
v′ ṽ′

∂σδ(σ− σ̃), (2.62)

6The terminology “gauge choice” refers to the fact that the T T̄ - deformed free boson corresponds to the Nambu–
Goto action in static gauge, whereas the usual free boson is recovered from the Nambu–Goto dynamics in conformal
gauge. Since the conformal gauge condition is not sufficient to fix the reparametrization symmetry of the Nambu–
Goto action, one needs additional conditions, such as the one we use.

7For this calculation, it is useful to note that for two functions only depending on π and φ′, the Poisson bracket
is

{ f (σ), g(σ̃)}= [∂φ′ f (σ)∂πg(σ̃) + ∂π f (σ)∂φ′ g(σ̃)]∂σδ(σ− σ̃). (2.57)

The result is further simplified using the equivalence of distributions (C.3).
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{L, ˜̄L}= 4
µu′v′

∂σ ln(1−µ2LL̄)δ(σ− σ̃). (2.63)

The first two Poisson brackets precisely correspond to an unequal-time Poisson bracket in a
CFT, thus confirming our intuition. The last Poisson bracket does not obviously match an
appropriate unequal-time CFT commutator, but its form suggests it can be dealt with in a
similar manner as the result for {πc

+,πc
−} in (2.60). However, (2.62) is not sufficient, as one

may have hoped, to give a one-line derivation of the charge algebra if the charges are written in
the form (2.23). The reason is that, as we saw in the previous subsection, the L, L̄ brackets are
but one of several contributions to the conserved charges. While the charge algebra (2.41) is
expected to emerge also from this slightly different way of performing the calculation, the use
of the L, L̄ variables does not appear to bring any particular simplification to the computation
of the Poisson brackets of the charges, as compared to the calculation performed in the previous
subsection.

3. J T̄ -deformed CFTs

The J T̄ deformation [55] is an irrelevant deformation of two-dimensional QFTs of the Smirnov–
Zamolodchikov type [2], constructed from the components of a U(1) current and those of the
generator, TαV , of right-moving translations. In Lorentzian signature, the flow of the action is
given by

∂ SJ T̄

∂ λ
=

∫

d2 x
p
γεαβ JαTβV = −

∫

dUdV (JU TV V − JV TUV ), (3.1)

where, as before, U , V = σ± t are null coordinates on two-dimensional Minkowski space. The
current J does not need to be chiral along the flow.

When the seed theory is a CFT, the finite-size spectrum of the deformed theory can be
computed exactly. Introducing the right-moving energy ER = (E − P)/2, its eigenvalues in the
deformed CFT are given by [59,69]

ER(λ, R) =
4π
λ2k

�

R−λQ(0)+ −

√

√
�

R−λQ(0)+
�2
−
λ2k
2π

E(0)R R

�

, (3.2)

where E(0)R is right-moving energy of the corresponding state in the undeformed CFT, R is the

circumference of the circle, and Q(0)+ is the charge associated with the chiral part, J+, of the
current. The chiral charge flows as

Q+ =Q(0)+ +
λk
4π

ER. (3.3)

It can easily be checked that the combination EL − 2πQ2
+/(kR) is constant along the flow,

where EL is the left-moving energy EL = (E + P)/2. This suggests an interpretation of the J T̄
deformation as spectral flow in the left-moving sector, where the spectral flow parameter is
proportional to the right-moving energy of the state.

A nice feature of the J T̄ deformation is that, when the seed theory is a CFT, it preserves an
SL(2,R)L×U(1)R subgroup of the original conformal group. As a consequence, the deformed
CFT remains local and conformal on the left, while becoming non-local on the right. This
remaining conformal structure allows for an analysis of correlation functions [61]. It is to
be expected that the left-moving conformal symmetries, together with the left-moving U(1)
symmetries, are enhanced to a full Virasoro n Kac-Moody algebra. This is precisely what
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was found in the holographic analysis of [70], which provided a holographic dual to the J T̄
deformation in terms of AdS3 gravity coupled to a U(1) Chern–Simons gauge field with mixed
boundary conditions at infinity and spelled out the asymptotic symmetries associated with
these boundary conditions. In addition, the asymptotic symmetry analysis of [70] showed
that the right-moving U(1) translational symmetries of the system are also enhanced to a right-
moving Virasoro symmetry, but one that is generated by field-dependent diffeomorphisms and
gauge transformations. While the holographic setup of [70] assumed that J was chiral, we
will see in this section that for non-chiral J , also its right-moving part generates an infinite-
dimensional, field-dependent Kac-Moody algebra.

In this section, we would like to exhibit the two-fold Virasoro n Kac-Moody symmetries
of J T̄ - deformed CFTs from a canonical analysis, which will complement the holographic
results of [70]. To warm up, we will start with an analysis of the J T̄ - deformed free boson,
first in the Lagrangian and then in the Hamiltonian formalism. We then develop a general
Hamiltonian framework, along the lines of [13], for J T̄ - deformed classical CFTs, use it to
construct conserved charges and show that the presence of two commuting copies of the Witt
- Kac-Moody algebra is a completely general feature of J T̄ - deformed CFTs.

3.1. J T̄ -deformed free boson: infinite symmetries

The J T̄ - deformed free boson was first studied in [55]. The SL(2,R)L × U(1)R symmetry of
the problem require the action to take the form

SJ T̄ = −
∫

dUdV∂Uφ∂VφF(λ∂Vφ), (3.4)

for some function F . The J T̄ flow equation (3.1) determines it to be

F(x) = 1
1− x

. (3.5)

The equations of motion are simply

∂V

�

∂Uφ

1−λ∂Vφ

�

= 0, (3.6)

with general solution φ(U , V ) = f (U) + g(V −λ f (U)), for two arbitrary functions f , g.
One can easily show that the action (3.4) is equivalent off-shell to a free boson, via the

field-dependent coordinate transformation8

u= U , v = V −λφ(U , V ) . (3.7)

Indeed, using the relation between the first derivatives of φ

∂Uφ =
∂uφ

1+λ∂vφ
, ∂Vφ =

∂vφ

1+λ∂vφ
, (3.8)

one can easily check that the action (3.4) becomes
∫

dudv ∂uφ∂vφ .
As in the case of the T T̄ deformation, the field-dependent coordinates in terms of which

the dynamics reduces to that of the undeformed CFT are also the ones appearing in the infinite-
dimensional pseudo-conformal symmetries. To see this, let us compute the components of the

8In this section, as well as in the next one, we will abusively be using the same notation u, v for the field-
dependent coordinates, even though their expression in terms of the fields changes from (2.12) in T T̄ , to (3.7)
in J T̄ , to (4.13) in J Ta and (4.21) in J̃ Ta. We hope that this choice, made for ease of notation, will not cause
confusion to the reader.
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stress tensor

TUU =
(∂Uφ)2

(1−λ∂Vφ)2
, TV U = 0 , TUV =

λ∂Uφ(∂Vφ)2

(1−λ∂Vφ)2
, TV V =

(∂Vφ)2

1−λ∂Vφ
. (3.9)

The stress tensor is not symmetric because the J T̄ deformation breaks Lorentz invariance, and
the TV U component vanishes as a consequence of the SL(2,R) symmetry preserved by the
deformation. Noting that

∂U v
∂V v

= −
λ∂Uφ

1−λ∂Vφ
= −

TUV

TV V
(3.10)

and using (1.2), we conclude that the action is invariant under

U → U + ε f (U) , V → V − ε f̄ (v) (3.11)

for arbitrary functions f , f̄ of their respective arguments. The first transformation is simply
the infinite enhancement of the left-moving conformal symmetries. The second transformation
corresponds to a field-dependent, right-moving pseudo-conformal transformation.

The conserved energy-momentum charges are given by (2.18), and read

Q f =

∫

dσ f (U)TUU , Q̄ f̄ =

∫

dσ f̄ (v)(TV V − TUV ). (3.12)

Thus, we find that the J T̄ - deformed free boson possesses two infinite sets of conserved
charges, one associated to a usual left-moving conformal symmetry, and the other one as-
sociated with a field-dependent right-moving coordinate transformation.

There are additional charges corresponding to the U(1) currents. The U(1) current asso-
ciated to the shift symmetry of φ is

JU =
∂Uφ

(1−λ∂Vφ)2
, JV =

∂Vφ

1−λ∂Vφ
. (3.13)

There is additionally a topologically conserved current, J̃ = ?dφ, with components

J̃U = ∂Uφ , J̃V = −∂Vφ. (3.14)

In a CFT, the combinations J± = (J± J̃)/2 are chiral and respectively anti-chiral, and generate
two copies of a U(1) Kac-Moody algebra, one left-moving and one right-moving. Due to the
SL(2,R)L symmetry of the deformed theory, we would still expect [71] to be able to construct
a purely left-moving conserved current. Indeed, it is not hard to notice that the combination

Kα ≡
1
2
(Jα + J̃α −λTαV ) (3.15)

has a vanishing right-moving component. Concretely,

KU =
∂Uφ

1−λ∂Vφ
, KV = 0. (3.16)

The left-moving component is holomorphically conserved, as seen by using the equations of
motion (3.6). We also note that for the single boson TUU = K2

U , so the combination TUU−K2
U is

trivially independent of λ. As we will see, the λ - independence of this combination generalizes
and corresponds to the fact that the J T̄ deformation induces a kind of momentum-dependent
spectral flow transformation on the left-movers [61,69].
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Since the V component of the current Kα vanishes, the current χ(U)Kα is conserved for
any function χ(U). Thus, we find an infinite set of conserved charges associated with this
chiral U(1) symmetry, given by

Pχ =

∫

dσχ(U)KU . (3.17)

It is interesting to ask whether there also exists an infinite-dimensional enhancement of the
right-moving U(1) symmetry. A natural candidate is the current J−, which is purely right-
moving in the undeformed CFT. In presence of the deformation, its components are

J−U =
λ∂Uφ∂Vφ

(1−λ∂Vφ)2

�

1−
λ

2
∂Vφ

�

, J−V =
∂Vφ

1−λ∂Vφ

�

1−
λ

2
∂Vφ

�

. (3.18)

These have the important property that

J−U
J−V
= −

∂U v
∂V v

, (3.19)

which implies that the current χ̄(v)J−α is conserved for any function χ̄(v). In fact, any linear
combination of J−α and TαV , when multiplied by an arbitrary function of v, will give rise to a
conserved current. The conserved charges associated with the χ̄(v) J−α currents are

P̄χ̄ =

∫

dσχ̄(v)(J−U − J−V ). (3.20)

3.2. Hamiltonian analysis and charge algebra

Given the conserved charges (3.12), (3.17) and (3.20), we would now like to compute their
Poisson bracket algebra. For this, we should first pass to the Hamiltonian formulation of the
J T̄ - deformed free boson.

The momentum conjugate to φ is

π≡
∂L
∂ φ̇
= φ̇F − λ

4
(φ̇2 −φ′2)F ′. (3.21)

Using the explicit form (3.5) of F , one can find the expression for φ̇ in terms of π and φ′

φ̇ = φ′ −
2
λ

�

1−

√

√1−λφ′

1−λπ

�

. (3.22)

The Hamiltonian density reads

H = πφ̇ −L= − 4
λ2

Æ

(1−λπ)(1−λφ′) +
�

φ′ −
2
λ

��

π−
2
λ

�

. (3.23)

For reasons that will soon become clear, it is convenient to introduce the left- and right-moving
energy and current densities

HL,R =
H±P

2
, J± =

π±φ′

2
, (3.24)

where the momentum density P = πφ′, and write all quantities of interest in terms of the
right-moving energy current, HR. The expression for HR is then

HR =
2
λ2

�

1−λJ+ −
Ç

(1−λJ+)2 −λ2H(0)R

�

, (3.25)
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where the undeformed right-moving Hamiltonian current H(0)R is

H(0)R =
H(0) −P

2
=
(π−φ′)2

4
. (3.26)

The expression for the conserved charges (3.12) in terms of HR,π and φ′ is

Q f =

∫

dσ f (U)HL(σ) , Q̄ f̄ =

∫

dσ f̄ (v)HR(σ) , (3.27)

since, by definition, HR = −TtV = TV V − TUV , and HL = TtU = TUU is the generator of
left-moving translations. The U(1) charges (3.17) and (3.20) read

Pχ =

∫

dσχ(U)
�

J+ +
λHR

2

�

, P̄χ̄ =

∫

dσχ̄(v)J−. (3.28)

It is useful to compute the Poisson brackets of the above symmetry generators in two steps.
First, we use the free-field expression (3.26) for the undeformed Hamiltonian and the currents
to show that

{H(0)R (σ),H
(0)
R (σ̃)}= −{H

(0)
R (σ),P(σ̃)}= −

�

H(0)R (σ) +H(0)R (σ̃)
�

∂σδ(σ− σ̃) ,

{P(σ),P(σ̃)}= (P(σ) +P(σ̃))∂σδ(σ− σ̃) , {J±(σ),J±(σ̃)}= ±
1
2
∂σδ(σ− σ̃) ,

{P(σ),J±(σ̃)}= J±(σ)∂σδ(σ− σ̃) , {H(0)R (σ),J−(σ̃)}= −J−(σ)∂σδ(σ− σ̃) , (3.29)

while the commutator of H(0)R with J+ vanishes.9 Using these, one can easily deduce the
commutation relations of the deformed Hamiltonian HR with the various other currents, such
as

{HR(σ),HR(σ̃)}= −

�

HR(σ)

1−λJ+(σ)− λ2

2 HR(σ)
+

HR(σ̃)

1−λJ+(σ̃)− λ2

2 HR(σ̃)

�

∂σδ(σ− σ̃),

(3.30)

{P(σ),HR(σ̃)}=

�

HR(σ) +
HR(σ̃)

1−λJ+(σ̃)− λ2

2 HR(σ̃)

�

∂σδ(σ− σ̃). (3.31)

In order to arrive at this simple form, we used the identity
Ç

(1−λJ+)2 −λ2H(0)R = 1−λJ+ − λ2

2 HR, as well as the equivalence of distributions spelled
out in appendix B.

A more complete list of commutators, whose form is not particularly enlightening, is given
in appendix B. An exception is the commutator {HL(σ),HL(σ̃)} of two left-moving currents,
which due to the left conformal invariance of J T̄ - deformed CFTs can be shown to take on a
standard CFT form

{HL(σ),HL(σ̃)}= (HL(σ) +HL(σ̃))∂σδ(σ− σ̃). (3.32)

Note that the Poisson bracket (B.5) of the right-moving Hamiltonian withφ is naturally propor-
tional to a δ function, thus resolving the potential integration ambiguities that we encountered
in the T T̄ case.

9The last two relations follow from {H(0)(σ),J±(σ̃)}= ±J±(σ)∂σδ(σ− σ̃).
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We can now compute the algebra of the symmetry generators (3.12). The details of the
calculation are given in appendix B. We find

{Q f ,Qg}=Q f g ′− f ′g , {Q̄ f̄ , Q̄ ḡ}= Q̄ f̄ ′ ḡ− f̄ ḡ ′ , {Q f , Q̄ f̄ }= 0,

which implies that the generators of the diffeomorphisms (3.11) organize themselves into two
commuting copies of the Witt algebra. The commutators with the U(1) currents read

{Q f , Pχ}= Pf χ ′ , {Pχ , Pη}=
1
2

∫

dσχ∂ση , (3.33)

which represents a U(1) Kac-Moody extension of the left-moving Witt algebra, including the
usual Kac-Moody central term with level k = 1. The commutator with the right-moving Witt
generators vanishes. As for the right-moving U(1) generators, it can be easily shown that they
commute with the left-moving Virasoro - Kac-Moody ones. The algebra of these U(1) currents
is however not Kac-Moody

{P̄χ̄ , P̄η̄}= −
1
2

∫

dσχ̄∂ση̄+
λ

2
P̄χ̄η̄′−χ̄ ′η̄ , (3.34)

{Q̄ f̄ , P̄η̄}= −P̄ f̄ η̄′ −
λ

2
Q̄ f̄ ′η̄ .

It is not hard to notice that the combination

P̄KM
η̄ = P̄η̄ +

λ

2
Q̄η̄ (3.35)

does have standard Witt - Kac-Moody commutation relations with Q̄ f̄ and itself, i.e.

{Q̄ f̄ , P̄KM
η̄ }= −P̄KM

f̄ η̄′
, {P̄KM

χ̄ , P̄KM
η̄ }= −

1
2

∫

dσχ̄∂ση̄. (3.36)

Thus, we find two copies of the Witt - Kac-Moody algebra, one of which is completely standard,
generated by local transformations, while the second one is field-dependent. Note that if we
define the theory on a cylinder then, as before, we should divide the coordinates that appear
in the functions labelling the charges by their respective periodicities, i.e. replace U → U/R
and v→ v/Rv , where the field-dependent radius of the coordinate v in (3.7) is

Rv = R−λQ̃, (3.37)

where Q̃ =
∫

dσ(J+ −J−) is the winding charge of the field φ. Unlike in the T T̄ case, now
the field-dependent radius Rv commutes with the energy and charge currents, as well as with
the field-dependent coordinate v, and thus its inclusion at this final stage does not affect at all
the functional charge algebra above.

As we discussed in section section 2, on the cylinder it is natural to label the charges by
their Fourier modes. Using the mode functions fn(û) = einû and f̄n(v̂) = e−inv̂ , as before, we
define

Ln = RQ fn
, L̄n = RQ̄ f̄n

, Kn = R Pfn
, K̄n = R P̄KM

f̄n
. (3.38)

The functional Witt - Kac-Moody algebra we found above then translates into the usual Witt -
Kac-Moody algebra for the left-moving Fourier modes

{Lm, Ln}= −i(m− n)Lm+n , {Lm, Kn}= inKm+n , {Km, Kn}= −iR
m− n

4
δm+n . (3.39)
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However, the field-dependent radius does enter the right-moving part of the charge algebra,
as we obtain

{ L̄m, L̄n}= −i
(m− n)

1− λ̂Q̃
L̄m+n , { L̄m, K̄n}=

in

1− λ̂Q̃
Km+n, (3.40)

where λ̂= λ/R is the dimensionless J T̄ coupling on the cylinder. This is our final result for the
classical symmetry algebra of a J T̄ - deformed free boson. Since this is a classical calculation,
we are unable to compute the central extension of the Witt algebra, which is a quantum effect;
however, the holographic analysis of [70] indicated, in terms of the rescaled charges RQ f and
Rv Q̄ f̄ , it is the same as that of the undeformed CFT.

3.3. General J T̄ -deformed CFTs

So far, we have shown that the J T̄ - deformed free boson possesses two sets of Witt n Kac-
Moody symmetries. It is to be expected that general J T̄ - deformed CFTs should exhibit a
similar enhancement of their global symmetries. To show this, we first need to develop a
general Hamiltonian treatment of J T̄ - deformed CFTs, along the lines of what was done
in [13] for T T̄ . The goal of this section is to present this general treatment and to construct
the conserved charges in a general class of J T̄ - deformed CFTs.

We consider a two-dimensional classical field theory with fields φk, with k = 1, . . . , n. We
assume that the field theory has a U(1) symmetry, which for simplicity will be taken to be
a shift symmetry of a scalar field φ1. The Hamiltonian H(πk,φk) thus only depends on φ1
through its spatial derivatives. The U(1) shift current has components

J1
t = π1 , J1

σ = ∂φ′1H. (3.41)

The components of the topologically conserved current (3.14) are

J̃1
t = φ

′
1 , J̃1

σ = ∂π1
H (3.42)

and we assume that in the undeformed CFT, the currents J± = (J ± J̃)/2 are chiral and,
respectively, anti-chiral, which will impose certain constraints on H(0).

We will consider deforming the Hamiltonian by the J1 T̄ operator J1 T̄ = J1
σTtV − J1

t TσV
constructed from the above current and the components (2.4) of the stress tensor. The flow
equation is

∂λH = −J1 T̄ . (3.43)

Introducing, as before, the right-moving energy density HR = (H −P)/2, the expression for
J1 T̄ simplifies to

J1 T̄ = 2(π1∂πk
HR∂φ′k

HR −HR ∂φ′1HR). (3.44)

As explained in the previous subsection, the J T̄ deformation preserves left conformal invari-
ance, so we expect the V U component of the stress tensor

TV U = −HR +πk∂πk
HR +φ

′k∂φ′kHR + ∂πk
HR∂φ′kHR (3.45)

to be zero along the flow. At least in the single-field (i.e., J T̄ - deformed free boson) case, this
is indeed the case, as TV U can be shown to obey

2∂λTV U+π∂πH∂φ′TV U+π∂φ′H∂πTV U−π2∂πTV U−H∂φ′TV U+π TV U−∂φ′H TV U = 0, (3.46)

which shows that if TV U starts out being zero, it will stay zero along the flow. We expect an
appropriate generalization of this equation to multiple fields to hold as well.
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To solve the two equations (3.43) and (3.45), we make the Ansatz

HR =
1
λ2

F
�

λ2H(0)R ,λJ+
�

≡
1
λ2

F(x ,α) , J+ =
π1 +φ′1

2
, (3.47)

which is motivated by dimensional analysis, the universality of the deformation, and the fact
that we expect, just as in the case of T T̄ , that the deformed energy formula (3.2) will also
apply at the level of the currents, and not only that of the global conserved charges. Since
(3.2) only depends on E(0)R and Q(0)+ , we consequently assume that HR only depends on H(0)R
and J+.

To bring the flow equations into a manageable form, we also need a few properties of the
undeformed Hamiltonian. First, since the undeformed theory is a CFT and the Hamiltonian
has dimension two, we have

πk∂πk
H(0)R +φ

′
k∂φ′k

H(0)R = 2H(0)R . (3.48)

Since, by assumption, J± are purely (anti)-chiral in the original CFT, H(0)R satisfies

J1+
V =

1
2
(∂π1

+ ∂φ′1)H
(0)
R = 0 (3.49)

and

J1−
U =

1
2
(π1 −φ′1)−

1
2
(∂π1
− ∂φ′1)H

(0)
R = 0. (3.50)

Using these and the Ansatz (3.47), the flow equations can be simplified to

−λ2TV U = F − 2x∂x F + x(∂x F)2 −α∂αF −
1
4
(∂αF)2 = 0, (3.51)

λ3 (∂λH+ J1 T̄ ) = −4F +2(2x−αF)∂x F +(2α− F)∂αF −2λπ1

�

x(∂x F)2 −
1
4
(∂αF)2 − F∂x F

�

.

(3.52)
It can be easily checked that

F(x ,α) = 2(1−α−
Æ

(1−α)2 − x) (3.53)

solves all the above equations. Thus, the Hamiltonian of a rather general J T̄ - deformed CFT
is given in terms of the undeformed Hamiltonian and the U(1) current via precisely (3.25),
where now H(0)R is the right-moving Hamiltonian of the undeformed CFT and J+ is given in
(3.47). This expression also agrees with the general deformed energy formula (3.2) (obtained
for constant current densities) if we set k = 2π in our conventions.

It is furthermore possible to show in full generality that the current

Kα = J+α −
λ

2
TαV (3.54)

stays chiral along the flow.10 The chiral component reads

KU =
1
4
(π1 +φ

′
1 + ∂π1

H+ ∂φ′1H− 2λTUV ) =
1
2
(π1 +φ

′
1 +λHR), (3.55)

10Indeed, KV =
1
4 (−π1−φ′1+∂π1

H+∂φ′1H−2λTV V ) =
1

2λ (∂αF−λ2TV V ) = 0 where, using the explicit functional

form of F(x ,α), it can be shown that TV V = −∂πk
HR∂φ′kHR =

1
λ2

�

x(∂x F)2 − 1
4 (∂αF)2

�

= 1
λ2 ∂αF .
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which precisely equals the integrand of (3.28), now in the general case. The current KU f (U)
will thus generate an infinite number of conserved U(1) charges, given by (3.28). We note in
passing that the combination

TUU − K2
U = P + 1

λ2
(F − (α+ F/2)2) = P +H(0)R −J 2

+ (3.56)

is λ - independent. Thus, we see that rather generally, the J T̄ deformation induces a type of
spectral flow in the left-moving sector.

Next, we would like to check whether in general J T̄ - deformed CFTs, the components of
the J− current satisfy the relation (3.19), which would allow us to construct an infinite set of
field-dependent, right-moving Kac-Moody charges. In Hamiltonian language, the components
of the J− current read

J−U = J−V +
π1 −φ′1

2
, J−V =

1
4
(−π1 +φ

′
1 − ∂π1

H+ ∂φ′1H) = −
1
2
(π1 −φ′1)∂x F . (3.57)

It is trivial to check that J−U TV V + J−V TUV = 0, using the fact that F satisfies ∂αF = F∂x F . This
implies that, very generally, the ratio of the J− components is the same as that of the right-
moving stress tensor, allowing us to construct an infinite set of field-dependent right-moving
U(1) symmetries.

The conserved charges are given by the same formulae (3.27) and (3.28) as in the free
boson case, but now in terms of the general initial Hamiltonian density and currents. The
field-dependent coordinate11 is v = V − λφ1. Since the commutation relations (3.29) of the
undeformed generators hold in any CFT and the formula (3.25) for the deformed Hamiltonian
is universal, it is clear that the commutation relations of the conserved charges are exactly the
same as in the free boson case, namely two commuting copies of the Witt - Kac-Moody algebra,
provided we redefine the right-moving U(1) generator as in (3.35).

4. J Ta-deformed CFTs

As already emphasized in the previous section, the J T̄ deformation has the nice property that
it preserves half of the conformal symmetries of the original CFT. However, given that the
main message of this article is that all Smirnov–Zamolodchikov-type deformations of two-
dimensional CFTs preserve all the infinite-dimensional symmetries of the original CFT in a
particular modified form, it is interesting to analyse these more general deformations, too.

Thus, in this section we study irrelevant deformations constructed from the components
of a U(1) current and the generator Tαa of translations in some chosen direction x̂a, defined
via

∂λa S =

∫

d2 x
p
γεαβ JαTβa, (4.1)

11 In the Hamiltonian formalism, the derivatives of the field-dependent coordinate v are given by

∂U v = −
λ

2
(∂π1

H+φ′1) , ∂V v = 1+
λ

2
(∂π1

H−φ′1) (3.58)

and it can be easily checked that they satisfy

∂U v TV V + ∂V v TUV =
1
λ2
(∂αF − F −αF∂x F −

1
2

F∂αF) +
φ′1
λ
(F∂x F − ∂αF) = 0. (3.59)

It is interesting to note that this identity also holds if π1↔ φ′1, which interchanges J with J̃ .
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where we work in conventions where εtσ = εσt = 1. We will in fact distinguish between two
different types of deformations, denoted J Ta and J̃ Ta, the first constructed from the usual
Noether current J that is only conserved on-shell, and the other constructed from the topolog-
ical current J̃ = ?dφ, whose conservation is an off-shell identity.

Despite the fact that J Ta deformations generally break both conformal and Lorentz in-
variance, the finite-size spectrum of such theories could be derived in [56] using coupling to
background fields. The formula for the deformed energy in finite size reads

E(λa, R) =
λσ
λt

P(0) −
λ ·Q
λ2

t
+

R
λ2

t



1−

√

√

√

�

1−
λ ·Q

R

�2

−
2λ2

t E(0)

R
+

2λtλσP(0)

R
−

2λt(λ2
σ −λ

2
t )

R2
P(0)Q



 ,

(4.2)
where λt ,λσ are the time and, respectively, space components of the deformation vector λa,

λ ·Q ≡ λσQ+λtQ̃ , (4.3)

R is the circumference of the cylinder and E(0), P(0),Q =
∫

J and Q̃ =
∫

J̃ are the energy,
momentum and conserved charges of the corresponding state in the undeformed CFT.12 The
formula for the energy spectrum of a J̃ Ta - deformed CFT is simply obtained via the replace-
ment Q↔ Q̃.

We start by studying the J Ta and J̃ Ta - deformed free boson systems, whose Lagrangians
can be built explicitly, and construct the infinite-dimensional pseudo-conformal and Kac-Moody
symmetries there first. Interestingly, while the Lagrangians of the two theories look rather dif-
ferent, their Hamiltonians are related in a very simple manner. We then present the deformed
Hamiltonian density of a general J Ta - deformed CFT and show that the conserved charges
charges organise themselves yet again into two commuting copies of the Witt - Kac-Moody
algebra.

4.1. J Ta-deformed free boson

In this subsection, we work out the J Ta-deformed free boson action and symmetries. The
general form of the action is

S =

∫

d tdσL(φ̇,φ′). (4.4)

The canonical stress tensor is given by

Tαβ = γαβL− γαγ
∂L

∂ (∂γφ)
∂βφ (4.5)

and its components are, explicitly

Tt t =
∂L
∂ φ̇
φ̇ −L , Ttσ =

∂L
∂ φ̇
φ′ , Tσt = −

∂L
∂ φ′

φ̇ , Tσσ = L− ∂L
∂ φ′

φ′. (4.6)

The components of the shift current are

Jα = −
∂L

∂ (∂αφ)
⇒ Jt =

∂L
∂ φ̇

, Jσ = −
∂L
∂ φ′

. (4.7)

12Note that λσ = −αJ T1
in [56], and the sign of P(0) is flipped with respect to this reference; also λσ = −µφ with

respect to the conventions of [57].
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The J Ta flow equations take the form

∂L
∂ λa

= (J Ta) = ε
αβ JαTβa , with J Tt = L ∂L

∂ φ′
, J Tσ = −L

∂L
∂ φ̇

, (4.8)

which, as explained in [57], are satisfied separately for λσ and λt . These equations are of
Burger’s type, with solution (εtσ = 1)

L(φ,φ′) = L0(φ̇ −λσL,φ′ +λtL) = L0(∂aφ − εabλ
bL), (4.9)

where L0 is the undeformed Lagrangian. Taking L0 =
1
2(φ̇

2 −φ′2), the deformed Lagrangian
satisfies

λ2L2 − 2L(1− εab∂αφλb)−ηab∂aφ∂bφ = 0, (4.10)

where λ2 = λaλ
a. In the case of J T̄ , λ2 = 0, and we obtain the solution of the previous

section, with λJ T̄ = 2λσ = 2λt . Concentrating on λ2 6= 0, we find

LJ Ta
=

1
λ2

�

1− εab∂aφλb −
Æ

1− 2εab∂aφλb + (λa∂aφ)2
�

. (4.11)

Passing to null coordinates U , V = σ± t, it is not hard to check that13

λU JV TUU + (1−λU JU)TV U = 0 , (1+λV JV )TUV −λV JU TV V = 0. (4.12)

According to our general discussion in the introduction, this implies that if we introduce the
field-dependent coordinates

u= U −λUϕ , v = V −λVϕ, (4.13)

where ϕ is a scalar in term of which J = ?dϕ (i.e., JU = ∂Uϕ and JV = −∂Vϕ), then we obtain
two infinite sets of field-dependent symmetries, with conserved charges given by

Q f =

∫

dσ f (u)(TUU − TV U) , Q̄ f̄ =

∫

dσ f̄ (v)(TV V − TUV ), (4.14)

where f (u), f̄ (v) are arbitrary functions of the corresponding field-dependent coordinates
(4.13). If the theory is defined on a compact space, then charge conservation requires the
functions f (u), f̄ (v) to be periodic and it is natural to normalize the field-dependent coordi-
nates by the corresponding field-dependent radii Ru = R−λUQ and Rv = R−λV Q.

The theory will similarly possess an infinite set of of conserved U(1) currents, which are
analogous to J± in the undeformed CFT. The seed currents are

Kα ≡
1
2
(Jα + J̃α −λV TαV ) , K̄α ≡

1
2
(Jα − J̃α +λ

U TαU) (4.15)

and can be shown to satisfy KU/KV = TUU/TV U and respectively K̄U/K̄V = TUV/TV V . Thus
χ(u)Kα and χ̄(v)K̄α will be conserved for any functions χ(u), χ̄(v) of the field-dependent co-
ordinates (4.13) associated with the J Ta deformation. Notice that one can add an arbitrary
multiple of TαU to Kα and an arbitrary multiple of TαV to K̄α without affecting their conser-
vation. As we will see shortly, an appropriate linear combination of these will generate two
infinite sets of Kac-Moody symmetries.

The relation between the auxiliary scalarϕ that enters the field-dependent coordinates and
the ‘fundamental’ scalar φ is rather non-local; yet, the conserved charges depend explicitly on
it. To have conserved charges that only depend on the local field, it may be more natural to

13Remember that λU = 2λV = λσ −λt , λ
V = 2λU = λσ +λt .
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study the J̃ Ta deformation instead, for which we expect the shift of the coordinates to just be
proportional to the fundamental boson.

It can also be checked that, unlike in the case of J T̄ , where we could choose (as remarked
upon in footnote 11) the field-dependent coordinates to be either given by the analogue of
(4.13), or that of (4.21), with the latter being the more natural choice, in J Ta the only possible
field-dependent coordinate is (4.13).

4.2. J̃ Ta - deformed free boson

The J̃ Ta deformation is defined in the same way as the J Ta one (4.1), except that the compo-
nents of J are now replaced by those of the current J̃

J̃t = φ
′ , J̃σ = φ̇. (4.16)

The flow equations read

∂L
∂ λσ

= φ′(φ̇ ∂φ̇L+φ
′∂φ′L−L) , ∂L

∂ λt
= −φ̇(φ̇ ∂φ̇L+φ

′∂φ′L−L). (4.17)

From this, we immediately deduce that φ̇ ∂λσL+φ
′∂λt

L = 0. Dimensional analysis suggests
the Ansatz

L= 1
λ2

F(x , y) , x = λa∂aφ = λσφ
′ −λtφ̇ , y = λaε

ab∂bφ = λσφ̇ −λtφ
′. (4.18)

The equation above reduces to 2yF = (y2 − x2)∂y F , implying that F(x , y) = (y2 − x2)F0(x).
To fix F0, we plug this Ansatz into the flow equations (4.17), obtaining

F(x , y) =
y2 − x2

2(1− x)
, (4.19)

where the overall coefficient is fixed by matching to the free boson asλσ,t → 0. The Lagrangian
of the J̃ Ta - deformed free boson thus takes a very simple form

LJ̃ Ta
=

φ̇2 −φ′2

2(1−λa∂aφ)
, (4.20)

which is a straightforward generalization of the J T̄ Lagrangian (3.4) - (3.5). This action is
equivalent to that of a free boson via the field-dependent coordinate transformation

ua = Ua −λaφ. (4.21)

It is interesting that the Lagrangians for the J Ta and J̃ Ta - deformed free boson look so dif-
ferent. However, we expect the associated Hamiltonians to be very similar, as we will soon
show.

Passing to the null coordinates U , V , the components of the shift current read

JU =
∂Uφ(1−λU∂Uφ)
(1−λa∂aφ)2

, JV =
∂Vφ(1−λV∂Vφ)
(1−λa∂aφ)2

(4.22)

and those of the stress tensor

TUU = JU∂Uφ , TV V = JV∂Vφ , TV U =
∂Uφ∂Vφλ

U∂Uφ

(1−λa∂aφ)2
, TUV = JU∂Vφ −L. (4.23)
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It can be easily checked that the field-dependent coordinates (4.21) proposed above satisfy
(1.2), implying yet again the existence of two infinite sets of pseudo-conformal symmetries.
In contrast with J Ta, now the generators of the symmetries are entirely constructed from the
fundamental scalar φ.

Let us now turn to the currents. It is not hard to check that the combinations

Kα ≡
1
2
(Jα + J̃α −λV TαV ) , K̄α ≡

1
2
(Jα − J̃α −λU TαU) (4.24)

satisfy KU/KV = TUU/TV U and respectively K̄U/K̄V = TUV/TV V , and thus χ(u)Kα and χ̄(v)K̄α
will be conserved for any functions χ, χ̄ of the field-dependent coordinates (4.21). These will
generate two sets of Kac-Moody currents. As before, one can add an arbitrary multiple of TαU
to Kα and of TαV to K̄α, without affecting this conclusion.

4.3. Hamiltonian analysis and general J Ta - deformed CFTs

We now move on to the Hamiltonian description of the J Ta and J̃ Ta - deformed free boson.
In the J Ta case, the Lagrangian is given by (4.11), and the momentum conjugate to φ is

π(J Ta) =
∂L
∂ φ̇
=
λσ
λ2

�

1−
1

p

1− 2εab∂aφλb + (λa∂aφ)2

�

+
λt

λ2

λa∂aφ
p

1− 2εab∂aφλb + (λa∂aφ)2
.

(4.25)
The equation for φ̇ in terms of φ′ and π is quadratic, with solution

φ̇ = −
λσ(1−λtφ

′)
λ2

t
+
λσ −πλ2

λ2
t

√

√ 1− 2λtφ′

1− 2πλσ +π2λ2
, (4.26)

where we assumed that λσ > πλ
2 and λ2 > 0. Plugging into the Hamiltonian density, we find

H f .b.
J Ta
=
(1−πλσ)(1−φ′λt)

λ2
t

−
p

(1− 2φ′λt)(1− 2πλσ +π2λ2)
λ2

t
. (4.27)

This Hamiltonian density can be rewritten in the suggestive form

HJ Ta
=
λσ
λt

P − λ ·J
λ2

t
+

1

λ2
t

�

1−
Æ

(1−λ ·J )2 + 2λt(Pλσ −λtH(0) −λ2P(J+ +J−))
�

,

(4.28)
where

λ ·J = λσ(J+ +J−) +λt(J+ −J−) = 2λUJ+ + 2λVJ− (4.29)

in analogy with (4.3). Remember that for the free boson, P = πφ′ and H(0) = (π2 +φ′2)/2.
It is now clear that a uniform density state of the deformed system in finite size will have an
energy given by (4.2).

It is interesting to also derive the Hamiltonian for the J̃ Ta - deformed free boson, for which
the Lagrangian takes the very different form (4.20). The conjugate momentum is

π(J̃ Ta) =
φ̇(1−λσφ′) +λt(φ̇2 +φ′2)/2

(1+λtφ̇ −λσφ′)2
(4.30)

and so

φ̇ = −
1−λφ′

λt
+

1
λt

√

√

√1− 2λσφ′ +λ2φ′2

1− 2λtπ
. (4.31)
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The Hamiltonian density of the J̃ Ta - deformed free boson then reads

H f .b.
J̃ Ta
=

1

λ2
t

�

(1−λσφ′)(1−λtπ)−
Æ

(1− 2λtπ)(1− 2λσφ′ +λ2φ′2)
�

. (4.32)

Note this is related to HJ Ta
by the simple interchange π↔ φ′, as suggested by the energy

formula given in [56]. Therefore, we no longer need to discuss the J̃ Ta - deformation, given
that in the Hamiltonian formalism, it is identical to the J Ta deformation, up to the interchange
π↔ φ′.

The Hamiltonian density of a J Ta - deformed CFT satisfies the flow equation

∂λaH = −(J T )a = −εαβ JaTβa, (4.33)

which should hold for general J Ta - deformed CFTs, at least of the kind described in section,
not only the free boson. Using the expression (2.4) for the stress tensor components and (3.41)
for those of the U(1) current, the flow equations take the specific form

∂λt
H = (J T )t = −π1∂πk

H∂φ′kH+H∂φ′1H, (4.34)

∂λσH = −(J T )σ = −P ∂φ′1H+π1(πk∂πk
H+φ′k∂φ′kH−H). (4.35)

While we will not attempt to solve this equation, the experience of [13] and of the J T̄ defor-
mation makes it rather clear that the solution should simply be given by the same formula as
that for the deformed energy, but now with the constant densities replaced by general cur-
rents. Indeed, plugging the general Hamiltonian (4.28), with H(0),P and J± replaced by the
Hamiltonian, momentum and charge densities of an arbitrary seed CFT, into (4.35) and mak-
ing use of only the general constraints that the Hamiltonian H(0) of the original CFT satisfies,
such as the conformality constraint (2.5) and the chirality constraints (3.49) and (3.50) on the
CFT currents,14 we find that it solves the flow equations. Thus, (4.28) represents the general
expression for the Hamiltonian density of a J Ta - deformed CFT.

As noted above, everything we said so far also holds for the J̃ Ta deformation, upon the
simple interchange π1↔ φ′1, or J−→−J−.

4.4. Conserved charges and their algebra

The conserved charges associated with the pseudo-conformal symmetries and their U(1) coun-
terparts (4.15) are given by

Q f =

∫

dσ f (u)HL(σ) , Q̄ f̄ =

∫

dσ f̄ (v)HR(σ) , (4.36)

Pχ =

∫

dσχ(u)(J+ +λUHR) , P̄χ̄ =

∫

dσχ̄(v)(J− +λVHL) , (4.37)

where, as before, HL,R = (H±P)/2, were now H is given by the general expression (4.28),
and u, v are given in (4.13).

The commutation relations can be evaluated as before starting from those of H(0),P ,J±.
The commutation relations of the auxiliary field ϕ that enters the definition of the field-
dependent coordinates are determined from those of the currents, via

ϕ′ = Jt = J+ +J− (4.38)

14In terms of H(0), these amount to ∂π1
H(0) = π1 , ∂φ′1H

(0) = φ′1.
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and integrating with respect to σ.
The details of the calculation are unilluminating, and the steps followed are the same as

in the analogous computation for J T̄ .15 The charge algebra splits again into two commuting
copies of the Witt- U(1) current algebra, given by

{Q f ,Qg}=Q f g ′− f ′g , {Q f , Pχ}= Pf χ ′−λV Qχ f ′ , {Pχ , Pη}=
1
2

∫

dσχ∂ση+λV Pχη′−ηχ ′

(4.39)
and

{Q̄ f̄ , Q̄ ḡ}= Q̄ f̄ ′ ḡ− ḡ ′ f̄ , {Q̄ f̄ , P̄χ̄}= −P̄ f̄ χ̄ ′ +λUQ̄ f̄ ′χ̄ , {P̄χ̄ , P̄η̄}= −
1
2

∫

dσχ̄∂ση̄+λU P̄χ̄ ′η̄−η̄′χ̄ ,

(4.40)
where all the commutators involving one left- and one right-moving generator vanish. The
algebra can be put into the standard Witt - Kac-Moody form via the redefinition

PKM
χ = Pχ −λV Qχ , P̄KM

χ̄ = P̄χ̄ −λUQ̄χ̄ . (4.41)

If we are on compact space, the field-dependent coordinates u, v should be divided by the
corresponding field-dependent radii

Ru = R−λUQ , Rv = R−λV Q. (4.42)

As in the J T̄ case, these radii do not contribute to the Poisson brackets of the charges, because
they commute with all the energy and charge currents, as well as with the field-dependent
coordinates. As before, when expressing the above algebra in terms of Fourier modes, the
factors R/Ru and R/Rv will appear explicitly on the right-hand side of the left- and, respectively,
right-moving commutators.

5. Discussion

In this article, we studied the symmetries of classical T T̄ , J T̄ and J Ta - deformed CFTs. We
showed that each deformed theory possesses an infinite number of conserved charges, which
are in one-to-one correspondence with the initial conformal and, if applicable, affine U(1)
symmetries of the undeformed CFT. The manner in which the symmetries of the initial CFT
are deformed is rigidly dictated by the field-dependent coordinates associated to each of these
deformations, i.e. the coordinates in terms of which the classical dynamics of the deformed
theory reduces to that of the original CFT. The charge algebra that we find in all cases consists
of two commuting copies of the functional Witt - Kac-Moody algebra, i.e., it is functionally
the same as that of the undeformed CFT. While these conclusions were already present in
the holographic analyses of [28] and [70], this work sharpens and complements them in a
formalism that is more straightforwardly applicable to the quantum case.

The symmetries of the deformed CFTs can be analysed either on the plane, or on the cylin-
der. In this article, we mostly concentrated on the compact case, as it presents a number of

15As in J T̄ (but unlike in T T̄), a great simplification comes from the fact that the commutator of the Hamiltonian
density with ϕ̃′ is trivial to integrate, as in (B.5), since the only σ̃ dependence is in the δ function. The resulting
commutator with φ̃ is proportional to a delta function. Since this is a local result, it is natural to set the possible
integration function to zero, thus fixing the ambiguities that plagued the T T̄ calculation. Another simplification
that allows us to easily compute the charge Poisson brackets is that, as in (B.11) for J T̄ , the σ̃ derivative of the
Poisson bracket of any two currents such as for example ∂σ̃({HL , H̃L})σ̃=σ, when evaluated at σ̃ = σ, is a total σ
derivative, implying that the term can be easily integrated by parts. As before, the constant term in this integration
by parts needs to be judiciously chosen, in order to obtain a meaningful algebra.

30

https://scipost.org
https://scipost.org/SciPostPhys.11.4.078


SciPost Phys. 11, 078 (2021)

subtleties that disappear in the infinite-radius limit. These subtleties are due to the fact that the
arbitrary functions of the field-dependent coordinates that label the conserved charges need
to be periodic in the compact case; this requirement is fulfilled by dividing their argument by
the field-dependent radius of the respective coordinate. This has several effects: i) the field-
dependent radius appears explicitly in the charge algebra when written in terms of Fourier
modes and thus, the algebra we obtain is not quite Witt at the level of the mode functions;
and ii) in the T T̄ case, the field-dependent radius contributes non-trivially to the Poisson brack-
ets of the charges. These contributions are not conserved, but they can be cancelled at the cost
of including certain winding terms in the Poisson brackets of the field-dependent coordinates.

These additional winding terms are allowed due to certain ambiguities in the Poisson brack-
ets of the T T̄ field-dependent coordinates, which our analysis did not fix. In fact, we found
two holomorphic and two anti-holomorphic functions’ worth of freedom entering these Pois-
son brackets, resulting in a corresponding ambiguity in the T T̄ charge algebra. In contrast,
the analogous would-be ambiguities for the J T̄ and J Ta deformations are naturally resolved
by the fact that the current can always be written in terms of a free boson, whose commutation
relations are known. We therefore expect that a better understanding of the physical inter-
pretation of the fields

∫

dσ(H±P), which appear in the definition of the T T̄ field-dependent
coordinates, would allow us to unambiguously fix this charge algebra, too. In particular, it
should explain the origin of the winding terms in the Poisson brackets (2.40) that are appar-
ently necessary for charge conservation. As we currently lack such an understanding, we have
presented the more general result.

Our analysis has also clarified the role of the quantities L, L̄ in a T T̄ - deformed CFT, which
behave as the stress tensor components of an auxiliary CFT living in the field-dependent co-
ordinates u, v, from the point of view of the Hamiltonian formalism. Namely, we showed that
the equal-time Poisson brackets of these quantities match, to a convincing extent, the unequal-
time Poisson brackets of the stress tensor components in the would-be CFT. This observation
is however not very useful in computing the charge algebra, as one would still need to sep-
arately evaluate the contributions coming from the Poisson brackets of the field-dependent
coordinates, although it could provide an alternate and likely instructive way of performing
the calculation.

Looking forward, the thorough classical analysis we presented herein is the first step to-
wards building the quantum symmetries of the system. Nevertheless, a lot more work is re-
quired to determine if the infinitely-extended symmetries actually survive quantization, and
to understand how to appropriately define the charge operators. Not only will this process
involve resolving the operator ordering ambiguities and finding the central terms that likely
appear, but a crucial step will be to determine how the symmetry generators act on the states
of the system. It will be particularly interesting to find how the representations of this rather
peculiar kind of field-dependent symmetries are organised.

An important indication that the action of these symmetries on the states will be subtle,
is the fact that the Witt algebra we found is not compatible with the finite-size spectrum of
the deformed theories: indeed, while the former predicts the usual integer spacing between
descendant states obtained by acting with the raising operators L−m and L̄−n, the latter predicts
a spacing given by the difference of two square roots. This tension persists upon including
in the algebra the corrections due to the field-dependent radius. One possible explanation
for this disagreement is suggested by a subtlety that can already be seen in the J T̄ and J Ta -
deformations: the field-dependent symmetry generators may continuously deform the winding
and momentum of the states, which in the quantum theory are supposed to obey a quantization
condition. If confirmed, this would indicate that the charges we constructed do not act within
the Hilbert space of physical states of the deformed CFTs placed on a cylinder. This may not
be a very big problem in itself, as these theories are already ill-defined on the cylinder, due
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to the appearance of imaginary energies. It is also conceivable that a slight modification of
the symmetry generators makes the algebra compatible with the spectrum on compact space,
resolving this conflict.

Whereas the action of the symmetries we found raises questions in compact space, these is-
sues are avoided on the plane, where no such quantization conditions are required. Moreover,
in this case the winding terms in the T T̄ Poisson brackets disappear and the charge algebra is
exactly Witt. Since the non-compact spectrum is not affected by the deformations we consid-
ered, in this case we need to understand how the charge operators act on more complicated
observables, such as local operators.

If the infinite set of symmetries does survive quantization and their action is understood for
T T̄ , J T̄ and J Ta - deformed CFTs, it would be of great interest to understand their implications
in more general settings. For example, the single-trace versions of the T T̄ and J T̄ deforma-
tions share many properties with the Smirnov–Zamolodchikov double-trace ones. Given the
crucial importance of the dynamical coordinates in the existence of the infinite symmetries we
found, it would be interesting to see whether they contain an analogue of the field-dependent
coordinates, or perhaps a more general mechanism for the implementation of the symmetry.
Since these deformations are dual to string theory in non-asymptotically AdS spacetimes, this
may provide a powerful tool for developing the holographic dictionary in such spacetimes.
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A. Details of the Poisson bracket algebra in T T̄ -deformed CFTs

A.1. Constraints from charge conservation

As explained in the main text, the Poisson brackets of the field-dependent coordinates are
obtained by integrating (2.29) with respect to σ, σ̃. This results in a certain ambiguity in the
Poisson brackets, which we parametrized in terms of four functions: A, B, D±.

These functions are not entirely arbitrary; in particular, they should be compatible with
charge conservation. In Hamiltonian language, the time derivative of the charges (2.19),
(2.20) is given by

d
d t

Q f = ∂tQ f −{H,Q f }=
1
2

∫

dσ
�

f ′(û)
Ru
(H+P)−

f ′(û)
Ru
(H+P){H, u} − f (û){H,H+P}

�

,

(A.1)
where H is the full Hamiltonian. Using (2.28) and (2.32), we find

{H,H+P}= −∂σ
�

(H+P)
1+ 2µP
1+ 2µH

�

, (A.2)

{H, u}=
µ(H−P)
1+ 2µH

(1− 2µP)−µ(wD− − G−(0))−µ2(wB − F(0)). (A.3)
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Integrating by parts the last term in (A.1), we find

d
d t

Q f =
Q f ′

Ru
[G−(0)−wD− +µ(F(0)−wB)]. (A.4)

Thus, the left-moving charges are conserved only if the right-hand side of (A.4) vanishes. A
similar analysis can be performed for the right-moving charges, finding that (2.19), (2.20) are
only conserved if the constraint (2.34) holds. The second relation follows from conservation
of Q̄ f .

A.2. Time evolution of the Poisson bracket

We would like to understand the constraints on the functions A, B, D± coming from the identity

d
d t
{u, ũ}=

§

du
d t

, ũ
ª

−
§

dũ
d t

, u
ª

, (A.5)

together with its {u, ṽ} and {v, ṽ} counterparts, where as before d f
d t = ḟ −{H, f } and ḟ ≡ ∂t f .

Since u̇= 1 and otherwise only the unknown function D− could in principle explicitly depend
on time, the above equation reduces to

2µ2Ḋ− − 2µ2 ˙̃D− + {H, {u, ũ}}= {{H, u}, ũ} − {{H, ũ}, u}. (A.6)

We subsequently plug in the explicit Poisson brackets (2.31) and

{H, u}=
µ(H−P)
1+ 2µH

(1− 2µP)≡ µΓ−, (A.7)

which follows from (A.3), after having imposed charge conservation to cancel the winding
contributions. Furthermore,

{H, ũ}= −µ
�

(G′− +µF ′)Θ(σ̃−σ)− 2G−δ(σ− σ̃) + D′− +µB′
�

, (A.8)

{P , ũ}= µ
�

(G′− −µF ′)Θ(σ̃−σ)− 2G−δ(σ− σ̃) + D′− −µB′
�

, (A.9)

obtained by taking a derivative of (2.31). It is worth noting the identities

G± +µF =H±P , G± −µF =
(H±P)(1± 2µP)

1+ 2µH
≡ Γ± . (A.10)

For consistency, the terms proportional to Θ(σ̃ − σ) and δ(σ̃ − σ) in (A.6) should cancel
separately, and they do. We are then left with terms that either depend only on σ, or only on
σ̃. Thus we find two equations that must be satisfied separately,

2{H, D−} − 2Ḋ− = ∂HΓ−(D− +µB)′ − ∂PΓ−(D− −µB)′ , (A.11)

as well as the same equation with σ→ σ̃, where

∂HΓ− =
1− 4µ2P2

(1+ 2µH)2
, ∂PΓ− =

4µP
1+ 2µH

− 1. (A.12)

Next, it is useful to parametrize D− and B as

D− = G−(X̄ − 1/2)−µ2FX , B = F(X̄ − 1/2)− G+X , (A.13)
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case in which (A.11) reduces to the following constraints on X , X̄

Ẋ − {H, X }=
1+ 2µP
1+ 2µH

X ′ , ˙̄X − {H, X̄ }= −
1− 2µP
1+ 2µH

X̄ ′. (A.14)

Remembering that the field-dependent coordinates satisfy (2.12)

du
d t
=

1−µL̄
1+µL̄

u′ =
1+ 2µP
1+ 2µH

u′ = 1−{H, u} ,
dv
d t
= −

1−µL
1+µL

v′ = −
1− 2µP
1+ 2µH

v′ = −1−{H, v},

(A.15)
it is clear that X should only be a function of u and X̄ , only a function of v.

An identical argument for the {v, ṽ} bracket fixes the functions A and D+ to take the form
(2.35), where we used again charge conservation to reduce the {H, v} bracket to

{H, v}= −
µ(H+P)
1+ 2µH

(1+ 2µP)≡ −µΓ+ . (A.16)

Finally, the time derivative of the mixed Poisson bracket is

d
d t
{u, ṽ}=

§

du
d t

, ṽ
ª

−
§

d ṽ
d t

, u
ª

. (A.17)

It is easy to see all terms proportional to Θ and δ functions cancel. We are left with

2µ(Ȧ− {H, A}) + (D+ +µA)′∂HΓ− + (D+ −µA)′∂PΓ− = 0 (A.18)

2µ( ˙̃B − {H, B̃})− (D̃− +µB̃)′∂H̃Γ̃+ + (D̃− −µB̃)′∂P̃ Γ̃+ = 0. (A.19)

Interestingly, the {u, v} Poisson bracket does not link the ambiguities on the left-moving side
(parametrized by B, D−, or X , X̄ ) to those on the right-moving side (parametrized by A, D+, or
Y, Ȳ ), as we find that the general solution (2.35) satisfies identically these equations for X , Y
holomorphic and X̄ , Ȳ anti-holomorphic.

A.3. Poisson brackets of the charges

In this subsection, we show explicitly the details of the calculation of the Poisson bracket
between a left-moving charge Q f and a right-moving charge Q̄ f̄ . Plugging in the expressions
(2.24), we find

{Q f , Q̄ f̄ }=
1
4

∫

dσdσ̃
�

f ˜̄f {H+P , H̃− P̃}+ f ′(H+P) ˜̄f
�

û, H̃− P̃
	

+ f ˜̄f ′(H̃− P̃)
�

H+P , ˆ̃v
	

+ f ′(H+P) ˜̄f ′(H̃− P̃)
�

û, ˆ̃v
	

�

=
µ

2

∫

dσdσ̃

�

− f ˜̄f F ′δ(σ− σ̃)− f ′
H+P

Ru

˜̄f
�

2G̃−δ(σ− σ̃)− G̃′−Θ(σ− σ̃)− D̃′− + ûG̃′−
�

+ f ˜̄f ′
H̃− P̃

Rv

�

−2G+δ(σ− σ̃) + G′+Θ(σ̃−σ) + D′+ − ˆ̃vG′+
�

+µ2 f ′
H+P

Ru

˜̄f ′
H̃− P̃

Rv

�

FΘ(σ̃−σ) + F̃Θ(σ− σ̃) + A(σ) + B(σ̃)

− û(F̃ − F(0) +wA)− ˆ̃v(F − F(0) +wB)
�

�

.

(A.20)
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We integrate by parts all terms that contain F ′, G′± or D′±, keeping in mind that the boundary
terms do not vanish if the functions have winding. For example

µ

2

∫

dσ̃ ˜̄f
�

G̃′−Θ(σ− σ̃) + D̃′− − ûG̃′−
�

(A.21)

= −
µ

2
f̄ (0)(G−(0)−wD−)−

µ

2

∫

dσ
�

˜̄f ′ ˆ̃v′
�

G̃−Θ(σ− σ̃) + D̃− − ûG̃−
�

− ˜̄f G̃−δ(σ− σ̃)
�

.

Collecting furthermore the terms proportional to δ functions, we obtain

{Q f , Q̄ f̄ }=
µ

2

∫

dσ
�

f ′ ˜̄f
�

û′F −
H+P

Ru
G−

�

+ f ˜̄f ′
�

v̂′F −
H−P

Rv
G+

��

(A.22)

+
µ

2

∫

dσdσ̃
�

− f ′
H+P

Ru

˜̄f ′ ˆ̃v′
�

G̃−Θ(σ− σ̃) + D̃− − ûG̃−
�

− f ′û′ ˜̄f ′
H̃− P̃

Rv

�

G+Θ(σ̃−σ) + D+ − ˆ̃vG+
�

+µ2 f ′
H+P

Ru

˜̄f ′
H̃− P̃

Rv

�

FΘ(σ̃−σ) + F̃Θ(σ− σ̃) + A(σ) + B(σ̃)

−û(F̃ − F(0) +wA)− ˆ̃v(F − F(0) +wB)
��

−
µ

Ru
Q f ′ f̄ (0)(G−(0)−wD−)−

µ

Rv
Q̄ f̄ ′ f (0)(G+(0)−wD+) . (A.23)

The first line vanishes identically, using (2.25). The terms proportional to Θ functions add up
to

µ

2

∫

dσdσ̃

�

f ′
H+P

Ru

˜̄f ′

Rv

�

−ṽ′G̃− +µ
2(H̃− P̃)F̃

�

Θ(σ− σ̃)

+
f ′

Ru

˜̄f ′
H̃− P̃

Rv

�

−u′G+ +µ
2(H+P)F

�

Θ(σ̃−σ)
�

= −
µ

2

∫

dσdσ̃ f ′ ˜̄f ′
H+P

Ru

H̃+ P̃
Rv

[Θ(σ− σ̃) +Θ(σ̃−σ)] = −
2µ

RuRv
Q f ′Q̄ f̄ ′ . (A.24)

Similarly, the terms proportional to û and ˆ̃v give

µ

R2
u
Quf ′

∫

dσ̃
˜̄f ′

Rv

�

ṽ′G̃− −µ2(H̃− P̃)(F̃ − F(0) +wA)
�

+
µ

R2
v
Q̄v f̄ ′

∫

dσ
f ′

Ru

�

u′G+ −µ2(H+P)(F − F(0) +wB)
�

=
2µ

RuRv

�

1
Ru

Quf ′Q̄ f̄ ′(1+µ
2[F(0)−wA]) +

1
Rv

Q f ′Q̄v f̄ ′(1+µ
2[F(0)−wB])

�

. (A.25)

35

https://scipost.org
https://scipost.org/SciPostPhys.11.4.078


SciPost Phys. 11, 078 (2021)

Using these equations to work out the Poisson bracket of the charges, we finally find

{Q f , Q̄ f̄ } (A.26)

=
µ

Ru
Q f ′

�

f̄ (0)(wD− − G−(0))

+

∫

dσ̃
˜̄f ′

Rv

�

(H̃− P̃)
�

−
1
2
+ ˆ̃v(1+µ2[F(0)−wB]) +µ

2B̃
�

− ṽ′D̃−

�

�

+
µ

Rv
Q̄ f̄ ′

�

f (0)(wD+ − G+(0))

+

∫

dσ
f ′

Ru

�

(H+P)
�

−
1
2
+ û(1+µ2[F(0)−wA]) +µ

2A
�

− u′D+

�

�

.

The terms proportional to u, v in the integrand, which represent the contribution of the state-
dependent radii to the Poisson brackets, are dangerous, as they would produce terms propor-
tional to Quf ′ on the right-hand side, which are not conserved due to the non-periodicity of
the associated function. A very similar derivation for the left-left and right-right components
of the Poisson bracket algebra gives

{Q f ,Qg}=
1
Ru

Q f g ′− f ′g

−
µ2

Ru
Q f ′

�

g(0)(F(0)−wB) +

∫

dσ̃
Ru

g̃ ′
�

ũ′B̃ − (H̃+ P̃)
�

D̃− + ˆ̃u[G−(0)−wD−]
��

�

+
µ2

Ru
Qg ′

�

f (0)(F(0)−wB) +

∫

dσ
Ru

f ′
�

u′B − (H+P)
�

D− + û[G−(0)−wD−]
��

�

.

(A.27)

{Q̄ f̄ , Q̄ ḡ}=
1
Rv

Q̄ f̄ ′ ḡ− f̄ ḡ ′

−
µ2

Rv
Q̄ f̄ ′

�

ḡ(0)(F(0)−wA) +

∫

dσ̃
Rv

˜̄g ′
�

ṽ′Ã− (H̃− P̃)
�

D̃+ + ˆ̃v[G+(0)−wD+]
��

�

+
µ2

Rv
Q̄ ḡ ′

�

f̄ (0)(F(0)−wA) +

∫

dσ
Rv

f̄ ′
�

v′A− (H−P)
�

D+ + v̂[G+(0)−wD+]
��

�

.

(A.28)

With these results, we can deduce how to choose the functions A, B and D± in order to guaran-
tee, for consistency, that the right-hand sides are conserved. In the following, we will analyse
this requirement step by step.

Concretely, we need to cancel the radius contributions proportional with Quf ′ and Q̄v f̄ ′ ,
which are not conserved due to the lack of periodicity of the functions that label them. Let
us first consider the result (A.27), and understand the possible choices for the winding of D−
so as to cancel this term. There are three types of winding one can consider: proportional
to û(σ), proportional to Θ(σ), or proportional to v̂(σ). In the case of D−, the first type of
winding does not help cancel the non-conserved terms proportional to Quf ′ in the total Poisson
bracket. Moreover, it introduces u - type winding in (A.26), which cannot be cancelled by u -
type winding in B (or the other functions) without introducing additional u - type winding in
(A.27). Consequently, the u - type winding in B and D− must be zero. A similar argument sets
the v - type winding in A and D+ to zero.

For whatever the other type of winding we may have, the vanishing of the terms propor-
tional to Quf ′ in (A.27) and Q̄v f̄ ′ in (A.28) sets wD± = G±(0). The conservation equation (A.4)
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then requires that wA = wB = F(0), so the charge algebra becomes

{Q f , Q̄ f̄ }=
µQ f ′

RuRv

∫

dσ f̄ ′
��

v̂ −
1
2
+µ2B

�

(H−P)− v′D−

�

+
µQ̄ f̄ ′

RuRv

∫

dσ f ′
��

û−
1
2
+µ2A

�

(H+P)− u′D+

�

, (A.29)

{Q f ,Qg}=
1
Ru

Q f g ′− f ′g −
µ2

R2
u
Q f ′

∫

dσg ′ (u′B − (H+P)D−)

+
µ2

R2
u
Qg ′

∫

dσ f ′ (u′B − (H+P)D−)

and a similar equation for {Q̄ f̄ , Q̄ ḡ}. The first term in the first equation can be cancelled if
we choose a v - type of winding D− and/or B; however, if we do not want it to introduce
non-conserved terms in the second equation, we need to choose

u′B(v) − (H+P)D(v)− = 0 , v′D(v)− −µ
2(H−P)B(v) =H−P , (A.30)

where the superscript (v) indicates the coefficient of v̂ in the corresponding function. These
equations determine D(v)− = G− and B(v) = F . Since the total winding of the functions D− and
B is G−(0) and respectively F(0), we see that the v-type winding accounts for all of it, leaving
no room for a Θ - type of winding. An identical argument sets

v′A(u) − (H−P)D(u)+ = 0 , u′D(u)+ −µ
2(H+P)A(u) =H+P . (A.31)

Therefore, we find that the winding part of the functions A, B, D± is entirely fixed by charge
conservation and the non-appearance of non-conserved terms in the charge algebra.

This however is not sufficient to fix the charge algebra, as the periodic parts of these func-
tions have not yet been fixed. The integrals we are left with are only conserved if they are of
the form H+P times a periodic function of û or H−P times a function of v̂. Combining the
first line of eq. (A.29) with the third, we find the requirement

(H̃− P̃)
�

−
1
2
+µ2B̃(p)

�

− ṽ′D̃− = −(H̃− P̃)X̄p(v̂) ,

ũ′B̃(p) − (H̃+ P̃)D̃(p)− = −(H̃+ P̃)Xp(û) , (A.32)

where the superscript (p) indicates the periodic part and where Xp(û) and X̄p(v̂) are periodic
functions that are arbitrary for now. Comparing this with (A.13) however, we find that Xp = X
and X̄p = X̄ − v̂.

Similarly, the other contributions to (A.26)–(A.28) are conserved when (2.35) holds with
Yp ≡ Y − û and Ȳp ≡ Ȳ periodic. The resulting algebra is

{Q f , Q̄ f̄ }= −
µ

RuRv

�

Q f ′Q X̄p f̄ ′ + Q̄ f̄ ′QYp f ′
�

,

{Q f ,Qg}=
1
Ru

Q f g ′− f ′g +
µ2

R2
u

�

Q f ′QXp g ′ −Qg ′QXp f ′
�

,

{Q̄ f̄ , Q̄ ḡ}=
1
Rv

Q̄ f̄ ′ ḡ− f̄ ḡ ′ +
µ2

R2
v

�

Q̄ f̄ ′Q̄ Ȳp ḡ ′ − Q̄ ḡ ′Q̄ Ȳp f̄ ′

�

. (A.33)

We can finally rewrite ∂u f = f ′/Ru and ∂v f̄ = f̄ ′/Rv to recover eq. (2.39).
The undetermined functions Xp, X̄p, Yp, Ȳp could more generally be constrained by the Ja-

cobi identities that the Poisson bracket algebra must satisfy. These involve product of δ func-
tion distributions, so their full analysis is rather involved. We will not pursue it here.16

16Note added in v2: to simplify the analysis, it is possible to study the Jacobi identities involving a “smeared”

37

https://scipost.org
https://scipost.org/SciPostPhys.11.4.078


SciPost Phys. 11, 078 (2021)

B. The J T̄ charge algebra

In this appendix, we present some details of the calculation of Poisson brackets of the conserved
charges in J T̄ - deformed CFTs. As explained in the main text, the undeformed commutators
(3.29) and the general formula (3.25) allow us to compute the commutator of the deformed
right-moving Hamiltonian with various quantities of interest. These read

{HR(σ),HR(σ̃)}=
−H(0)R (σ)−H(0)R (σ̃) +

λ2

2 HR(σ)HR(σ̃)
Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
Ç

(1−λJ+(σ̃))2 −λ2H(0)R (σ̃)
∂σδ(σ− σ̃),

(B.1)

{P(σ),HR(σ̃)}=
H(0)R (σ) +H(0)R (σ̃) +λJ+(σ)HR(σ̃)
Ç

(1−λJ+(σ̃))2 −λ2H(0)R (σ̃)
∂σδ(σ− σ̃), (B.2)

{HR(σ),J+(σ̃)}=
λHR(σ)

2
Ç

(1−λJ+(σ))2 −λ2H(0)R

∂σδ(σ− σ̃), (B.3)

{HR(σ),J−(σ̃)}= −
J−(σ)

Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
∂σδ(σ− σ̃). (B.4)

Using the fact that J+−J− = φ′1 and that the last two commutators are total σ̃ derivatives, we
can deduce the commutator of HR with φ, which will be used to compute the Poisson bracket
of the energy currents with the field-dependent coordinate v = V −λφ1. We find

{HR(σ),φ1(σ̃)}=
−J−(σ)−λHR(σ)/2

Ç

(1−λJ+(σ))2 −λ2H(0)R (σ)
δ(σ− σ̃). (B.5)

Note that, in principle, we could have added an arbitrary integration function, A(σ), to the
right-hand-side of this commutator. However, the fact that the commutator is local with respect
to σ− σ̃ compels us to set this potential integration function to zero.

Using the above commutators, we can easily compute those of HL =HR +P . As noted in
the main text, the {HL ,HL} commutator can be shown to be equivalent (using the criteria in
appendix C) to

{HL(σ),HL(σ̃)}= (HL(σ) +HL(σ̃))∂σδ(σ− σ̃). (B.6)

The {HL(σ),HR(σ̃)} commutator is somewhat involved; however, in the calculations below,
in which we will integrate over σ̃, it suffices to know that it is proportional to ∂σδ(σ − σ̃)
which implies, using (C.1), that we only need to know its value at σ̃ = σ, as well as that of its
first σ̃ derivative evaluated at σ̃ = σ,

{HL(σ),HR(σ̃)}|σ̃=σ =HR



1−
1

Ç

(1−λJ+)2 −λ2H(0)R



 , ∂σ̃ {HL(σ),HR(σ̃)}|σ̃=σ = 0.

(B.7)

version of the field dependent coordinates u0 ≡
∫ R

0
dσu(σ), v0 ≡

∫ R

0
dσ v(σ) and the currents, as was done in [72]

for J T̄ . The simplest Jacobi identity is {{P, P̃}, u0}+ cyclic= 0. Plugging in the minimal solution, we find that this
Jacobi identity is not satisfied. More generally, it seems to be very difficult to find a solution to the Jacobi identities
that has the non-trivial winding required by the charge conservation equation (A.4). If no such solution exists,
this means that the functions u, v as defined in this note are not good functions on phase space when the T T̄ -
deformed theory lives on compact space. This does not, however, preclude the existence of related field-dependent
coordinates whose action phase space is well-defined, as was the case for J T̄ .
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The {HL ,φ} commutator can be inferred from (B.5).
We can now compute the algebra of the symmetry generators (3.12). It is trivial to show

that the left-movers satisfy a Virasoro algebra, since

{Q f ,Qg}=
∫

dσdσ̃ f (U)g(Ũ){HL(σ),HL(σ̃)}=
∫

dσHL(σ)( f g ′− f ′g) =Q f g ′− f ′g . (B.8)

The commutator of the left and the right generators can be shown to vanish

{Q f , Q̄ f̄ }=
∫

dσdσ̃ f (U)
�

{HL(σ),HR(σ̃)} f̄ (ṽ) + f̄ ′(ṽ){HL(σ), ṽ}HR(σ̃)
�

(B.9)

=

∫

dσ f (U)
�

{HL(σ),HR(σ̃)}|σ̃=σ ∂σ f̄ (v)−λ f̄ ′(v) {HL(σ),φ(σ̃)}|σ̃=σHR(σ)
�

= 0,

where we used the fact that the field-dependent coordinate v = V − λφ1 (and so
∂σ f̄ = f̄ ′(1 − λφ′1)), as well as the commutators (B.7) and we used the formula (C.5) for
the integral of a derivative of a delta function.

Finally, the right-moving generators have commutation relations

{Q̄ f̄ , Q̄ ḡ}=
∫

dσdσ̃
�

f̄ (v) ḡ(ṽ){HR, H̃R}+ f̄ ′(v){v,HR(σ̃)}HR ḡ(ṽ) + f̄ (v) ḡ ′(ṽ){HR, ṽ}H̃R

�

=

∫

dσ
�

f̄ (v) ∂σ̃
�

ḡ(ṽ){HR, H̃R}
��

�

σ̃=σ +λ( f̄
′ ḡ − ḡ ′ f̄ )HR {HR(σ),φ(σ̃)}|σ̃=σ

�

.

(B.10)

Note there is no {v, ṽ} commutator, as v = V −λφ1 only involves φ. Using the fact that

∂σ̃
�

{HR, H̃R}
��

�

σ̃=σ =
2
λ2
∂σ



1−
1−λJ+

Ç

(1−λJ+)2 −λ2H(0)R



= −∂σ
HR

Ç

(1−λJ+)2 −λ2H(0)R

.

(B.11)
Integrating by parts and using the specific values of the commutators, we find

{Q̄ f̄ , Q̄ ḡ}=
∫

dσ( f̄ ′ ḡ − ḡ ′ f̄ )HR = Q̄ f̄ ′ ḡ− f̄ ḡ ′ . (B.12)

Let us now compute the Poisson brackets with the currents. It is easy to show, using the explicit
expression (3.16) for KU , that

{Q f , Pχ}=
∫

dσdσ̃ f (U)χ(Ũ){HL(σ), KU(σ̃)}=
∫

dσ f (U)χ ′(U)KU(σ) = Pf χ ′ . (B.13)

The commutator of two U(1) charges gives the usual central extension, {Pχ , Pη}=1/2
∫

dσχη′

and the commutator with the right-moving Virasoro generators vanishes. As for the right-
moving U(1)

P̄χ̄ =

∫

dσ
π−φ′

2
χ̄(v), (B.14)

it can be easily shown that they commute with the left-moving U(1) and the left-moving Vira-
soro. The algebra of these U(1) currents is however not Kac-Moody

{P̄χ̄ , P̄η̄}=
1
2

∫

dσ
�

−χ̄η̄′ +λχ̄η̄′
π+φ′

2
−λχ̄ ′η̄

π−φ′

2

�

, (B.15)
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{Q̄ f̄ , P̄η̄}= −
∫

dσ
�

f̄ η̄′J− +
λ

2
f̄ ′η̄HR

�

. (B.16)

As explained in the main text, we can obtain an operator that has the standard commutator
with the right-moving Virasoro by adding a multiple of Tαz̄ to the current. It turns out that the
combination

P̄KM
η̄ =

∫

dσ
�

π−φ′

2
+
λ

2
HR

�

η̄ (B.17)

does the job. The commutator of these new charges is

{P̄χ̄ , P̄η̄}= −
1
2

∫

dσχ̄η̄′(1−λφ′) = −
1
2

∫

dσχ̄∂ση̄. (B.18)

Thus, we find two copies of the Virasoro - Kac-Moody algebra. As explained in the main text,
on a compact space we need to divide the coordinates by the associated radii, but this does
not affect the charge algebra, because the zero modes of J± that enter Rv commute with all
the currents.

C. Equivalence of distributions

The derivative of a Dirac-δ distribution acts on test functions as
∫

dσ̃ f (σ)g(σ̃)∂σδ(σ− σ̃) = f (σ)g ′(σ). (C.1)

It is useful to know when two distributions of the form F(σ, σ̃)∂σδ(σ−σ̃) are equivalent. The
following criterion is necessary and sufficient:

F1∂σδ(σ− σ̃)∼= F2∂σδ(σ− σ̃)⇔











F1(σ,σ) = F2(σ,σ)
∂σF1(σ, σ̃)|σ̃=σ = ∂σF2(σ, σ̃)|σ̃=σ
∂σ̃F1(σ, σ̃)|σ̃=σ = ∂σ̃F2(σ, σ̃)|σ̃=σ

. (C.2)

An example of equivalent distributions is given by F1 =
p

f (σ) f (σ̃) and F2 = [ f (σ)+ f (σ̃)]/2,
or

[ f (σ)g(σ̃) + g(σ) f (σ̃)]∂σδ(σ− σ̃) = [ f (σ)g(σ) + f (σ̃)g(σ̃)]∂σδ(σ− σ̃), (C.3)

which indeed satisfies eq. (C.2).
The remainder of this subsection is dedicated to showing eq. (C.2). To this end, note

that two distributions F1 and F2 are equivalent iff they integrate to the same result against
arbitrary test functions, i.e.

∫ σ2

σ1

dσF1 = f (σ1,σ2, σ̃) =

∫ σ2

σ1

dσF2 , (C.4a)

∫ σ̃2

σ̃1

dσ̃F1 = g(σ̃1, σ̃2,σ) =

∫ σ̃2

σ̃1

dσ̃F2 , (C.4b)

∫ σ2

σ1

dσ

∫ σ̃2

σ̃1

dσ̃F1 = h(σ1,σ2, σ̃1, σ̃2) =

∫ σ2

σ1

dσ

∫ σ̃2

σ̃1

dσ̃F2. (C.4c)
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Obviously, if f or g are normal functions (i.e. not distributions), the requirement eq. (C.4c)
follows from either eq. (C.4a) or eq. (C.4b). For distributions proportional to δ′, the left-hand
side of the requirement eq. (C.4a) gives

∫ σ2

σ1

dσ F(σ, σ̃)∂σδ(σ− σ̃) (C.5)

= F(σ2,σ2)δ(σ̃−σ2)− F(σ1,σ1)δ(σ̃−σ1)− ∂σF(σ, σ̃)|σ=σ̃Θ(σ1 < σ̃ < σ2) .

The result is not a simple function, but it is a distribution with only δ functions for which we
know the equivalence relations: the coefficients of the delta functions have to agree, as well
as the remainder. This leads to the first two equations on the right-hand side of eq. (C.2).
The third equation follows from eq. (C.4b). Equation (C.4c) does not provide additional con-
straints.

The fact that the result of eq. (C.5) contains δ functions, suggests a generalization to
distributions of the form [F(σ, σ̃)∂σ+G(σ, σ̃)]δ(σ−σ̃). Two such distributions are equivalent
iff

F1(σ,σ) = F2(σ,σ) , (C.6a)

∂σF1(σ, σ̃)− G1(σ, σ̃)|σ=σ̃ = ∂σF2 − G2(σ, σ̃)|σ=σ̃ , (C.6b)

∂σ̃F1(σ, σ̃) + G1(σ, σ̃)|σ=σ̃ = ∂σ̃F2(σ, σ̃) + G2(σ, σ̃)|σ=σ̃ . (C.6c)

The derivation is identical.
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