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Abstract

Charge-density waves are responsible for symmetry-breaking displacements of atoms
and concomitant changes in the electronic structure. Linear response theories, in partic-
ular density-functional perturbation theory, provide a way to study the effect of displace-
ments on both the total energy and the electronic structure based on a single ab initio
calculation. In downfolding approaches, the electronic system is reduced to a smaller
number of bands, allowing for the incorporation of additional correlation and environ-
mental effects on these bands. However, the physical contents of this downfolded model
and its potential limitations are not always obvious. Here, we study the potential-energy
landscape and electronic structure of the Su-Schrieffer-Heeger (SSH) model, where all
relevant quantities can be evaluated analytically. We compare the exact results at arbi-
trary displacement with diagrammatic perturbation theory both in the full model and
in a downfolded effective single-band model, which gives an instructive insight into the
properties of downfolding. An exact reconstruction of the potential-energy landscape is
possible in a downfolded model, which requires a dynamical electron-biphonon inter-
action. The dispersion of the bands upon atomic displacement is also found correctly,
where the downfolded model by construction only captures spectral weight in the target
space. In the SSH model, the electron-phonon coupling mechanism involves exclusively
hybridization between the low- and high-energy bands and this limits the computational
efficiency gain of downfolded models.
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1 Introduction

The study of electron-phonon interactions (EPIs) goes back to the early days of solid-state
theory. They are important for our understanding of basic material properties such as effective
masses [1–4] and lattice constants [5,6]. Furthermore, this interaction is responsible for phase
transitions, such as conventional superconductivity [7–18] and charge-density waves (CDWs)
[19–30]. Even in unconventional superconductors, signatures of EPIs can be found [31–43].
However, the precise interplay responsible for these phenomena is not fully understood, which
is one of the reasons that the fundamental interaction between electrons and phonons needs
to be described accurately. Developments in this direction occur along two main paths: first-
principles calculations and model Hamiltonians.

The standard ab initio method for calculating the EPI is the density-functional perturbation
theory (DFPT) [44]. The most important ingredients of this theory are the adiabatic Born-
Oppenheimer approximation [45], density-functional theory (DFT) [46], and linear-response
theory. Briefly put, these state that it is possible to separate the dynamics of the electrons
and ions, treat the electron in an effective one-body Schrödinger equation, and calculate the
response of the electrons upon displacement of the nuclei within linear order, based only on the
electronic density [47–49]. The resulting EPI simultaneously describes two sides of the same
coin, namely how the electrons screen and renormalize the phonons and how the electronic
structure will adjust to atomic displacements. For an overview of the historical development
and the recent accomplishments of calculating the EPI from first principles, see Ref. [50].

Despite the unquestionable success of the current ab initio computational methods, another
trend in the literature is to treat the important physical phenomena in correlated materials
with downfolding approaches. The central idea is to reduce the number of degrees of freedom
compared to the full system by keeping only the relevant states in a low-energy theory. The
other states are integrated out and determine the parameters of the downfolded system. The
overarching purpose of this procedure is the application of more advanced and expensive
computational techniques only to the low-energy space where correlations take place.

For phonon-related properties, the constrained density-functional perturbation theory
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(cDFPT) was introduced [51] and successfully applied to superconducting materials such as
alkali-doped fullerides [52] and light elements [53]. Additionally it was applied to monolayer
1H-TaS2 [29], where it was shown that the CDW in this material is induced by coupling be-
tween the longitudinal-acoustic phonons and the electrons from an isolated low-energy metal-
lic band. With the help of cDFPT it is possible to extract unscreened or partially screened
parameters such as the phonon frequency and the electron-phonon vertex from an ab initio
calculation and use these as the basis for an effective low-energy model Hamiltonian. The
usefulness of partially screened parameters lies in the fact that they get rid of the coupling
between phonons and the high-energy electrons.

As discussed, the description of real physical phenomena that are tightly linked to the EPIs
is frequently based on ab initio theories (DFPT, cDFPT) that involve substantial numerical and
computational effort. The structure of the theory is not always transparent, and also obscured
by details of the numerical implementation. To avoid these complications, a second branch in
the literature is focused on model Hamiltonians. The most popular models of the EPI are the
Fröhlich model [54] for polaron formation, the Holstein model [55] for optical phonons, and
the Su-Schrieffer-Heeger (SSH) model [56] for CDWs.

For understanding the interplay of electronic structure and atomic displacements, the SSH
model is the most instructive since it explicitly describes how the electronic band structure
is renormalized by the displacements of the atoms. Previous investigations using this model
have studied properties such as the effective mass [57, 58] and the band structure [59, 60],
but also phonon-related properties [61]. In the model, a periodic displacement of the atoms
can open a band gap and thereby lower the total energy of the system [56], leading to a CDW
transition. In other words, electronic screening makes the CDW phonon go soft. This textbook
example of a CDW transition [62] is appealing for the investigation of downfolding since it
is possible to perform all calculations exactly once the Born-Oppenheimer approximation has
been applied.

The origin of this extraordinary simplicity lies in the observation that the Born-Oppen-
heimer approximation makes the phonons classical and the remaining electronic degrees of
freedom in the SSH model are noninteracting. Thus, given any fixed displacement, the result-
ing electronic Hamiltonian is easily diagonalized. In some sense, this is similar to the method
employed in Hirsch-Fye Quantum Monte Carlo [63], where a Hubbard-Stratonovich transfor-
mation is used to generate a system of noninteracting electrons coupled to classical fields and
the subsequent analysis only involves varying the classical field and evaluating the noninter-
acting electron system. Unlike in Hirsch-Fye Quantum Monte Carlo, here the classical field is
directly observable and has a clear physical meaning.

We choose to study the SSH model here for its simplicity, acting as a minimal model for
electron-phonon coupling. At the same time, this means that there are many relevant aspects of
electron-phonon coupling and CDWs that are not captured by the SSH model. In particular, the
SSH model neglects Coulomb interactions between the electrons, and these are responsible for
important effects such as screening and entirely electronic CDWs without lattice displacement.
Furthermore, in higher dimensions, the shape of the Fermi surface can play an important role,
in the form of nesting and Van Hove singularities. Given the complexity of electron-phonon
systems, studying simple models is a useful way to identify relevant effects and mechanisms.

In this work, we compare the direct calculation of properties of the SSH model in the
Born-Oppenheimer approximation at finite displacement with a perturbative diagrammatic
expansion around the undistorted state à la DFPT. In this model, the diagrammatic expansion
can be evaluated analytically order by order and we show that it correctly captures how the
electron-phonon coupling renormalizes the phonon frequency and the electronic structure.
Then, in the spirit of downfolding, we move to an effective single-band model for the dimer-
ization transition in the SSH model. The diagrammatic structure in this effective model differs
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Figure 1: (a) Dimerization. (b) Band structure at various values of the atomic displacement
α. The thick lines represent the occupied states when there are 〈n〉 = 0.9 spinless electrons
per dimer.

substantially from the original model: an interaction between an electron and two phonons
appears and this interaction turns out to be dynamical with a frequency set by the high-energy
electrons that were integrated out. We show that this downfolded model faithfully reproduces
the energy landscape and the CDW. Furthermore, we discuss a cDFPT-like approach to down-
folding, which correctly describes the screening of the phonon frequencies. In the SSH model,
the displacement-induced orbital reconstruction between target and rest space is the central
aspect of the downfolding and there is no remaining electron-phonon coupling in the cDFPT
low-energy model.

2 Model

In this work, we consider the SSH model [56] in the classical Born-Oppenheimer limit [64], i.e.,
we ignore the kinetic energy of the atoms. We consider spinless fermions in a one-dimensional
lattice with Hamiltonian

H = −t
N−1
∑

i=0

(1+ ui − ui+1)(c
†
i ci+1 + c†

i+1ci) +
ks

2

N−1
∑

i=0

(ui+1 − ui)
2. (1)

Here, ui is a (classical) variable describing the atomic displacements, with 0 ≤ i < N . We use
the periodic boundary condition uN ≡ u0. The hopping t > 0 sets the electronic energy scale
and the force constant ks > 0 that of the phonons.

We consider dimerization, i.e., displacements of the form ui = (−1)iα/2, and double the
unit cell to include entire dimers. This is illustrated in Fig. 1a. Using the notation ai = c2i and
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bi = c2i+1, we obtain

H = −t
N/2−1
∑

i=0

(1+α)(a†
i bi + b†

i ai)− t
N/2−1
∑

i=0

(1−α)(a†
i+1 bi + b†

i ai+1) +
1
2

Nksα
2. (2)

Performing a Fourier transform to momentum space, the Hamiltonian in matrix form reads

H =
∑

k

�

a†
k b†

k

�

ε̂(k)

�

ak
bk

�

+
1
2

Nksα
2, (3)

ε̂(k) = −t

�

0 1+α+ (1−α)e2ik

1+α+ (1−α)e−2ik 0

�

, (4)

with eigenvalues

ε±(k) = ±2t
Æ

1+ (α2 − 1) sin2(k) = ±2t
Æ

cos2(k) +α2 sin2(k). (5)

These give the dispersion shown in Fig. 1b. Note that the Brillouin zone is
−π/2≤ k ≤ π/2, where k is made dimensionless by setting the atomic distance to unity.

In the following, we assume that the electronic density 〈n〉 is smaller than 1 electron/dimer.
Since the model is particle-hole symmetric, the case 〈n〉> 1 follows by symmetry. The situation
〈n〉 = 1 (half-filling) is special and will be discussed in more detail below, see Sec. 7. At zero
temperature, the electron density is proportional to the Fermi wave vector k f and independent
of α: 〈n〉= 2k f /π. The total electronic energy per dimer, in the thermodynamic limit N →∞,
is

Eel =
1
π

∫ k f

−k f

ε−(k)dk, (6)

and the total energy per dimer is

E = ksα
2 + Eel. (7)

Note that in this model, displacements do not change the Fermi surface and the electronic
energy Eel depends on α only via Eq. (5), which will allow us to pull derivatives through the
integral in Eq. (6).

In Fig. 2a, we show how the total energy depends on α for fixed ks and 〈n〉. The total
energy is obviously symmetric in α, and the undistorted lattice at α= 0 is an extremum of the
total energy. Without electrons, Ebare = ksα

2 is a convex parabola with a minimum at α = 0.
However, the coupling to the electrons can lead to a Peierls CDW phase transition where α= 0
turns into a local maximum and two global minima occur at α= ±α∗. The finite α lowers the
energy of the occupied states and thus the total electronic energy and this compensates for the
gain in potential energy due to α.
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Figure 2: (a) Energy landscape at ks/t = 0.8, 〈n〉 = 0.9. The curves show the exact energy
E(α), the harmonic approximation including electronic screening E(0)+ 1

2ω
2α2, and the bare

phonon energy E(α = 0) + 1
2ω

2
bareα

2. The arrows indicate the minima at ±α∗. (b) Phase
diagram of the SSH model for the density 〈n〉 and the force constant ks. The black star marks
the parameters of (a). We only consider the transition to the dimerized CDW.

3 Harmonic and anharmonic lattice potential

To analyze the phase transition, it is useful to perform a Taylor expansion of the lattice potential
E(α) around α= 0.

E(α)− E(0) =
1
2

d2E(α)
dα2

�

�

�

�

α=0
α2 +

1
4!

d4E(α)
dα4

�

�

�

�

α=0
α4 + . . . (8)

≡
1
2
ω2α2 + h(4)α4 + . . . (9)

ω2 =ω2
bare +∆ω

2, (10)

ω2
bare ≡ 2ks, (11)

∆ω2 ≡
1
π

∫ k f

−k f

dk
d2ε−(k)

dα2

�

�

�

�

α=0
= −

2t
π

∫ k f

−k f

dk
sin2(k)
cos(k)

, (12)

h(4) =
1
π

∫ k f

−k f

dk
1
4!

d4ε−(k)
dα4

�

�

�

�

α=0
=

t
4π

∫ k f

−k f

dk
sin4(k)
cos3(k)

. (13)

Here, we have introduced the bare phonon frequencyωbare and the dressed phonon frequency
ω. The difference ∆ω2, the electronic screening of the phonon, originates in the change in
electronic structure in response to the lattice distortion. Screening lowers the phonon fre-
quency, and the Peierls transition occurs when the dressed phonon frequency is equal to zero,
i.e., ω= 0. In Fig. 2b, the Peierls transition is represented as the black line that separates the
phases ω2 < 0 (Peierls instability) and ω2 > 0 (no instability). As we can see, a weak force
constant ks and a density 〈n〉 close to half-filling is preferred for a Peierls instability. Beyond the
Peierls transition, α= 0 is a local maximum of the potential and the higher-order terms, such
as h(4), are responsible for ensuring that E(α) has a minimum at some finite α. In Appendix A,
we show that there can be at most two minima, symmetrically located around α = 0. Only
even orders of α appear due to the symmetry of the system.
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4 Electron-phonon coupling: Two-band model

In the previous section, we used our knowledge of the exact dependence of the electronic struc-
ture ε̂ on α to determine the potential-energy landscape. In ab initio calculations (e.g., DFPT),
one will usually not have access to this. Instead, the only known quantities are the electronic
structure of the undistorted structure ε̂0 and the electron-phonon coupling, the first derivative
of the electronic structure with respect to the displacement. Access to the latter quantity is
guaranteed by the 2n+ 1 theorem [47–49]. Because of this, it is instructive to calculate the
(approximate) potential-energy landscape of the SSH model—and in particular the screening
of the phonon frequency—based just on these quantities in a perturbative expansion around
α= 0.

The Feynman rules can be read off from the Hamiltonian, Eq. (3), by writing it as

Ĥ =
∑

k

f †
k ε̂0(k) fk +α f †

k ĝ(k) fk + N
1
2
ω2

bareα
2. (14)

Here, f † is shorthand for the vector (a†, b†). There is a single q = 0 phonon mode correspond-
ing to dimerization, with frequency ω2

bare = 2ks. This mode is entirely classical, since we are
interested only in a Born-Oppenheimer potential-energy landscape. The electron-phonon cou-
pling is a matrix in electronic space and is obtained as ĝ = d ε̂/dα evaluated at α= 0. In other
words, it consists of the parts of ε̂ that are proportional to α. Explicitly,

ĝ(k) = −t

�

0 1− e2ik

1− e−2ik 0

�

in the (a†, b†) basis. (15)

Note that we are considering a single phonon mode at q = 0, so we do not need a q label on
ĝ. The lack of higher-order electron-phonon-coupling terms in Eq. (14) is a special property
of the SSH model.

To evaluate the Feynman diagrams, it is most convenient to express the electronic part of
the Hamiltonian in the eigenbasis of the unperturbed electronic system. This basis transfor-
mation can be seen in Appendix B. The transformed electron-phonon coupling is

ĝ(k) = 2t

�

0 i sin(k)
−i sin(k) 0

�

in the band basis. (16)

We observe that g couples the two bands and has no intraband component. In other words,
to linear order in α around α= 0, distortions only change the orbital composition of the bands
but not the dispersion of the bands.

The vanishing diagonal elements of g can also be understood as a symmetry selection rule.
The inversion symmetry of the system implies that ε(α) and ε(−α) have the same eigenvalues
and this implies both Tr g = Tr d ε̂

dα =
d

dα Tr ε̂ = 0, which holds in any basis, and 〈n| ĝ |n〉 = 0
for any α = 0 eigenvector |n〉, since these |n〉 are eigenvectors of the inversion operator with
eigenvalue ±1.

4.1 Leading diagram

We are interested in establishing the effective potential felt by the atoms, including electronic
screening. Diagrammatically, this means that the phonon mode only appears as external lines,
whereas internally the diagram consists of electronic propagators and electron-phonon ver-
tices. All diagrams with n external lines need to be summed to obtain the αn coefficient in the
potential E(α).1

1For the diagrammatic expansion of the free energy, see Ref. [65].
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Figure 3: (a) Diagram for the renormalization of the phonon frequency. The black dots rep-
resent external phonon lines, the red and blue lines denote the electronic Green’s functions
G± in the band basis, and the triangles are the electron-phonon coupling. (b) Fourth order
diagram.

For all upcoming diagrams, we will use the electronic Green’s function

Ĝ(E, k) =
1̂

E 1̂− ε̂0(k) + iη̂k
, (17)

where 1̂ is the identity matrix, the division denotes matrix inversion, and η̂k denotes the usual
small imaginary constant that is positive (negative) for empty (occupied) states, respectively.

For the phonon self-energy, i.e., with two external lines, there is only a single diagram,
shown in Fig. 3a for one possible choice of the band indices, which corresponds to

∆ω2 =
∑

m,n∈{+,−}

∫

dk
π

gm,n(k)Πm,n(k)gn,m(k), (18)

Πm,n(k) =
fm(k)− fn(k)
εm(k)− εn(k)

, (19)

fm(k) =

¨

1 for m= −1 and |k| ≤ k f ,

0 otherwise.
(20)

This allows us to simplify the result to

∆ω2 = −
2
π

∫ k f

−k f

dk
|g+−(k)|

2

ε+ − ε−
= −

2
π

∫ k f

−k f

dk
4t2 sin2(k)
4t cos(k)

= −
2t
π

∫ k f

−k f

sin2(k)
cos(k)

dk. (21)

This is consistent with Eq. (12). This shows that the harmonic energy landscape can be cal-
culated entirely from the undistorted structure at α= 0, based on the electronic dispersion ε̂0
and the electron-phonon coupling ĝ.

4.2 Higher-order diagrams

It is also possible to calculate the energy landscape beyond the quadratic term. A special
property of the SSH model is that the there are no higher-order electron-phonon vertices nor
anharmonic bare phonon terms. Because of this, the entire perturbation theory is expressed in
ε± and g. For example, the diagram for the fourth order contribution α4 is shown in Fig. 3b.

8

https://scipost.org
https://scipost.org/SciPostPhys.11.4.079


SciPost Phys. 11, 079 (2021)

This is the only connected diagram at this order.2 Note that all external phonons have q = 0, so
all electronic lines have the same momentum k and energy E. The band index of the electronic
lines is alternating, since the electron-phonon coupling is entirely off-diagonal. The expression
corresponding to this diagram is of the form

h(4) =
1
2

∫

dk
π

∫

dE g+−(k)g−+(k)g+−(k)g−+(k) G−(k, E)G+(k, E)G−(k, E)G+(k, E), (22)

which already includes a factor 2 accounting for the fact that there is a second way to assign
the band indices.3

The product of Green’s functions can be reduced by repeated application of the relation
AB = (B − A)/(A−1 − B−1) for A 6= B, which is helpful because
G−1
± (k, E) = E ∓ |ε0(k)| + iηk is very simple. Below, all G’s have the same arguments k, E,

which were dropped for notational convenience.

G−G+G−G+ = (G+ − G−)
1

2 |ε0|
(G+ − G−)

1
2 |ε0|

=
G2
− + G2

+

4 |ε0|
2 −

G+ − G−
4 |ε0|

3 . (23)

In the denominators we have already safely taken the limit η→ 0. Now, the integral over E
can be performed using

∫

dEG2
±(E) = 0 and

∫

dEG±(E) = n(ε±(k)). Here, n(ε±(k)) is the
occupation, which is unity for the − branch and |k| < k f and zero otherwise. This gives the
same result as Eq. (13),

h(4) =
1
2

∫ k f

−k f

dk
π
(2t)4 sin4(k)

1
4(2t)3 cos3(k)

=
t

4π

∫ k f

−k f

dk
sin4(k)
cos3(k)

. (24)

Diagrams at higher order can be evaluated in the same way, by repeated simplification of prod-
ucts of Green’s functions. An interesting aspect is that the entire potential-energy landscape
E(α) can be calculated in this way (for 〈n〉 6= 1, see Sec. 7) without ever determining how the
band dispersion changes.

4.3 Change in electronic structure

The change in the electronic structure is given by the self-energy Σ(E, k) and can be obtained
diagrammatically by considering the sum of all one-electron irreducible diagrams. Now, the
electronic lines are amputated and the phononic ends of the vertices are connected to crosses
representing α. This is similar to the way an external Zeeman magnetic field or scattering
potential can be included in a diagrammatic theory. Note that due to the Born-Oppenheimer
approximation, there is no true phonon propagator with two end points, which would repre-
sent the phonon dynamics.

In the present model, it turns out that there is only a single, trivial diagram for the self-
energy,

Σ+− = g+−α= α , (25)

with an equivalent diagram for Σ−+. Together, they recover the exact electronic Green’s func-
tion Ĝ via the Dyson equation,

Ĝ−1 = Ĝ−1 − Σ̂= E − ε̂0 −α ĝ + iηk = E − ε̂ + iηk. (26)
2We remind the reader that we consider classical displacements, in the sense of the Born-Oppenheimer approx-

imation. Thus, internal phonon propagators are not allowed in the diagrams.
3The − line starting at the top left could also go to the bottom left instead of the top right. To keep the diagram

connected, all other lines are then immediately fixed.
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Figure 4: (a) The interaction vertex of the effective single-band theory (left-hand side) can
be expressed in terms of the original vertices and the electronic band that is integrated out.
(b) The diagrams responsible for the α2 and α4 contributions to the energy in the single-band
model.

5 Single-band effective model

At 〈n〉 < 1, there is only one partially filled band and this motivates us to investigate the
possibility of describing the CDW via a single-band effective model. Here, we construct a
model consisting of the partially filled electronic band, the bare phonon, and the coupling
between the two. Formally, such a model is obtained by integrating out the unoccupied band
of the two-band model. The effective action of the single-band model contains (partially)
renormalized, dynamically screened interactions between these electrons and the phonons.
In fact, the interaction vertices in this effective model can and do have an entirely different
structure compared to those of the original two-band model. Generally, the vertices in the
effective theory are obtained by collecting all connected diagrams consisting of rest space
(here: ε+) internal lines with a particular number of external phonon and target space (here:
ε−) lines, and an infinite set of vertices can appear in this way. The only general constraints are
the conservation of the fermion number and momentum conservation. Thus, the low-energy
Hamiltonian can contain interactions of the form αm(c†c)n for arbitrary m and n. However,
additional symmetries of the system can provide further constraints on the effective action.

Here, the single-band model is energetically completely symmetric in α↔ −α and this
implies that only even powers of α can appear in the effective action. In other words, only
interaction vertices with an even number of phonon lines are allowed.4

In fact, looking at the diagrammatic structure, it turns out that the single-band effective
theory of the SSH model only contains one interaction vertex, shown in Fig 4a. This vertex
has two phonon and two external electronic lines (one incoming, one outgoing) and takes the
value

V (E, k) = |g+−|
2 G(E, k) = 4t2 sin2(k)

1
E − |ε0(k)|+ iηk

. (27)

Note that V depends explicitly on E; the screened interactions that enter the effective model
are dynamical quantities. The effective model contains only a single fermion with dispersion
ε−, so no further electronic band label is necessary.

The downfolded SSH model has only a single effective interaction vertex. This happens
because the electron-phonon coupling in the original SSH model only has a single external
high-energy electron (blue line in Fig. 4a). On the other hand, if the original model had con-
tained either electron-electron interactions in the high-energy band or electron-phonon cou-
pling between different electronic states in the high-energy band, then the downfolding would
be more involved, since more diagrammatic contributions would appear in the expression for
the effective action.

4Note that in the two-band model, although the eigenvalues are symmetric in α, the eigenvectors are not and
this leads to the finite value of ĝ, which is entirely off-diagonal in the electronic eigenbasis.
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For the energy E(α), the second-order contribution, shown in Fig. 4b, is

1
2
∆ω2 =

∫

dk
π

∫

dE V (E, k)G(E, k), (28)

which upon insertion of Eq. (27) is equal to the result we obtained in the two-band model.
Similarly, the fourth-order contribution, also shown in Fig. 4b, is

h(4) =
1
2

∫

dk
π

∫

dE V 2(E, k)G2(E, k)

=
1
2

∫

dk
π

∫

dE
16t4 sin4(k)

(E − |ε0(k)|+ iηk)2
1

(E + |ε0(k)|+ iηk)2
. (29)

The denominator can be simplified using the same techniques as above and this gives the same
final result as the earlier expression for h(4).

5.1 Change in electronic structure in the single-band model

In the effective model, only the electronic target space is considered, corresponding to the
lower band at zero displacement. The rest space has been integrated out. Σ is now a scalar
quantity and it is once again given by a single diagram,

Σ(k, E) = α2V (k, E) = 4α2 t2 sin2(k)
E − |ε0(k)|+ iηk

. (30)

In this case, Σ(k, E) is an explicit function of E and it is not possible to interpret it purely as a
change in the dispersion. Since the true change in the electronic structure involves a change
in the orbital composition of the bands and thus coupling between the bands and changes in
the wave functions, it is not possible to capture this entirely in a single-band model. However,
if we restrict ourselves to the vicinity of the lower band in terms of energy, we find

Σ(k,−2t cos k) = −t
sin2(k)
cos(k)

α2, (31)

which is equal to the exact second-order expansion of Eq. (5).
At the same time, the self-energy of Eq. (30) has a pole at E = |ε0|, the energy of the upper

band that has been integrated out. In the spectral function A(E, k) = − 1
π Im G(E, k), this shows

up as interaction-induced spectral-weight transfer, as shown in Fig. 5. The original spectral
weight of the noninteracting, i.e., undistorted downfolded model (grey peak) is distributed
to the positions of the lower and upper band of the interacting, i.e., distorted model (orange
peaks). Thus, even though it cannot represent the matrix structure of the electronic Green’s
function, the downfolded model has spectral weight at the right locations. Note that there is
no imaginary part in the self-energy and thus no additional broadening of these peaks in the
downfolded model; all broadening comes from the constant η = 0.05 used for plotting the
spectrum.

6 Constrained density-functional perturbation theory

The downfolding procedure employed above is based on an explicit resummation of the dia-
grammatic series and is able to reproduce the screening from bare to dressed lattice potential
exactly. This approach can be applied here, since we have full knowledge of the entire elec-
tronic structure and the electron-phonon coupling. In ab initio calculations, the downfolding
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k = 0.9 /2

Two-band model: lower band
Two-band model: upper band

Downfolded model
Downfolded model ( = 0)

Figure 5: Spectral function of the downfolded single-band model for α = 0.5. Here, a broad-
ening η = 0.05 is used to improve visibility. (a) Spectral-weight transfer to the upper band
occurs due to the self-energy. See Fig. 1b for the dispersion in the original two-band model.
(b) Cross-section at k = 0.9· π2 , indicated by the grey dashed line in (a). The original model has
two bands with spectral weight at E = ±|ε(k)|, respectively (small vertical bars). In the single-
band model at α > 0, the self-energy leads to some spectral-weight transfer to the position of
the upper band.

is usually done somewhat differently. Indeed, cDFPT is a tool commonly used for downfold-
ing electron-phonon systems onto an electronic target space and calculating corresponding
partially screened phonon frequencies. In general, it evaluates a Feynman diagram similar to
Fig. 3a, with the restriction that at least one of the two electronic propagators shall not be part
of the target space.

In the SSH model, if the lower band is chosen as the target space, cDFPT includes the only
relevant screening process, with one + and one − electron, in its calculation of the partially
screened phonon frequency. In other words,

ΠcDFPT
m,n =

¨

0 for m= n= −,

Πm,n(k) otherwise.
(32)

Here Πm,n(k) is defined and used as in Eq. (19). In the SSH model, Π−− anyway does not
contribute to the phonon renormalization, and as a result the cDFPT phonon frequency is
identical to the fully screened phonon frequency.

The cDFPT low-energy model then basically consists of the fully screened phonon, the
lower electronic band, and no electron-phonon coupling, since g−− = 0. Because of this special
property of the SSH model, there is no real distinction between the partially and fully screened
phonon.

7 Breakdown of perturbation theory at half-filling

The series expansion of the potential E(α) around α = 0, performed either diagrammatically
or by directly taking derivatives of ε(k,α), shows a regular pattern. Only even powers of α are
allowed. For a given power α2n, the diagrammatic contribution will be of the form (modulo
prefactor) g2nGn

−Gn
+. The 2n electron-phonon vertices g contribute (2t)2n sin2n(k), whereas

the Green’s functions can be reduced to n(ε−(k))/(2ε0)2n−1∝ n(ε−(k))/ cos2n−1(k). The only

12

https://scipost.org
https://scipost.org/SciPostPhys.11.4.079


SciPost Phys. 11, 079 (2021)

role of the density is to determine the integration range, via k f . This becomes qualitatively
important for 〈n〉 → 1, k f → π/2, since ε0(k f )→ 0. The denominator in the integral diverges
and as a result the entire integral is no longer convergent. In other words, perturbation theory
around α = 0 is not possible since E(α) is not an analytical function anymore. Physically, the
dimerization at half-filling is a Peierls transition caused by the perfect nesting of the Fermi
surface points ±π/2 with respect to the dimerization wave vector π (in the original Brillouin
zone). Thus, at half-filling, dimerization will occur even at arbitrarily large force constant ks.

8 Conclusion and discussion

A key question in the investigation of coupled electron-phonon systems is the evolution of
the total energy and electronic structure as a function of atomic displacement. In ab initio
studies, it is desirable to gain (perturbative) access to this energy landscape starting from
the undistorted structure and a small set of relevant electronic bands. In the SSH model, it
is actually possible to perform this perturbative, diagrammatic expansion analytically and to
trace the performance of effective models. This both provides a unique insight into “exact
downfolding” and highlights the successes and possible failures of effective models.

The bare phonons in the SSH model are entirely harmonic by definition. Thus, all an-
harmonic effects in the potential energy have to be created by the (linear) coupling to the
electrons and the resulting electronic screening. Due to the simple structure of the model, the
screening can be calculated to arbitrary order in the displacement. It reduces the energetic
cost of displacements and eventually leads to a CDW transition, i.e., the appearance of a new
global minimum in the energy landscape at a finite displacement. In this model, all relevant
quantities can be reduced to integrals over the occupied part of the Brillouin zone.

It is also possible to downfold onto a single-band model with only half the electronic
degrees of freedom of the original system. The diagrammatic structure changes due to the
downfolding; the electron-phonon coupling is now dynamical and quadratic in the displace-
ment field. Still, the analytical evaluation of the diagrams determining the energy landscape
is possible and agrees with the exact result. Regarding the electronic structure, the effective
single-band model only has the ability to describe spectral-weight transfer and by construction
does not have the ability to describe the changes in the orbital composition of the bands as the
atoms move. In the cDFPT approach, as well as in the cRPA approach to Coulomb interactions,
these changes in the electronic structure are usually not considered at all.

This observation is potentially relevant for several two-dimensional transition-metal
dichalcogenides. For example, monolayer 1H-TaS2 has a single band crossing the Fermi level
and this band consists of a combination of d0,+2,−2 orbitals. It was already known that the
electronic matrix structure is imprinted on the momentum structure of the electron-phonon
coupling in ab initio downfolding [29] and that the resulting single-band electron-phonon
model accurately describes the phonon frequencies (i.e., the energy landscape close to the
undistorted structure). A similar situation, with a single composite band crossing the Fermi
level, occurs in 1H-NbS2 [66]. An open question is how these single-band effective models
perform in the description of the true electronic structure of the distorted phase. If the dis-
tortions lead to hybridization between target and rest space, downfolded models can only
capture the spectral-weight transfer. On the other hand, downfolded approaches can fully de-
scribe processes that occur entirely in the target space. Thus, fluctuation diagnostics of the
electron-phonon coupling [29] can provide an answer to this question.

The SSH model in the Born-Oppenheimer approximation—as studied here—is very much
a simplification of the complex reality of electron-phonon-coupling and charge-density-wave
physics. We assume that the lattice is one-dimensional, that the electronic hopping amplitudes
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and the bare restoring forces are linear in the displacement, that there is no electron-electron
interaction, that there is a single relevant phonon mode (dimerization), and that the system
is in the T = 0 ground state. Still, some general conclusions are possible from our work. It is
possible to generate anharmonic phonon terms entirely electronically, from an initial Hamil-
tonian that has purely harmonic phonons. Diagrammatic expressions can be constructed for
the electronic screening at and beyond the harmonic level; in the general case these will be
infinite series of diagrams, but here there is only a single diagram at any order in the displace-
ment. In the presence of multiple relevant phonons, see Appendix C, the Born-Oppenheimer
energy landscape will include mode-mode coupling as well. Downfolding of the electronic
space generates a new perturbation series, in which effective higher-order vertices appear nat-
urally. Unlike in the original Hamiltonian, the vertices of the downfolded system are also
dynamical (frequency-dependent). As a result, the self-energy is dynamical as well, leading
to spectral-weight transfer in the downfolded model. We note that this happens even though
the electrons are noninteracting. The magnitude of the self-energy in the low-energy band is
approximately given by the electron-phonon coupling (between the target and the rest space)
squared times the displacement squared divided by the energy separation between the low-
energy and the high-energy band. This supports the natural strategy of including bands in the
low-energy model that are close in energy and those that are strongly coupled to the target
space via the relevant phonon modes.

Funding information This work is supported by the Deutsche Forschungsgemeinschaft (DFG)
through the Research Training Group Quantum Mechanical Materials Modelling (RTG 2247)
and Germany’s Excellence Strategy (University Allowance, EXC 2077) as well as by the Central
Research Development Fund of the University of Bremen.

A Number of minima of E(α)

The SSH model in the limit of large α is unlikely to be an accurate description of any real
physics, but it is useful to establish some formal results. First of all, the triangle inequality
provides us with bounds on the dispersion,

max(cos(k),α |sin(k)|)≤
|ε±(k)|

2t
≤ cos(k) +α |sin(k)| . (33)

Thus, in the limit of large α, ε(k) is roughly proportional to α sin(k). The total energy is
then dominated by the purely lattice term proportional to ksα

2. We conclude that the energy
landscape E(α) is bounded from below, as it should be.

Two types of energy landscape E(α) are discussed in the text, one with a single minimum
at α = 0 and one with two minima at α = ±α∗. In fact, we can proof that these are the only
two possibilities, no further local minima are allowed.

First, we define the auxiliary function f (x) = −
p

1+ x2, so that

ε−(k,α) = |ε0(k)| f
�

α

�

�

�

�

sin(k)
cos(k)

�

�

�

�

�

. (34)

We observe that the second derivative of f , f ′′ = −(1+ x2)−3/2, is monotonously increasing
for x ≥ 0. This implies that d2ε−(k,α)/dα2 is also monotonously increasing as a function of
α for α ≥ 0 and the same holds for E(α), which is just a k-integral over ε−. Thus, there can
be at most one α≥ 0 where d2E(α)/dα2 = 0. In E(α), local minima (d2E/dα2 > 0) and local
maxima (d2E/dα2 < 0) alternate, so by the intermediate value theorem d2E/dα2 must cross
zero between every local optimum of E(α). This can happen only once for α≥ 0, so there are
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i − 1, 4 i, 1 i, 2 i, 3 i, 4 i + 1,1
t41 t12 t23 t34

t41

Figure 6: Length-4 unit cell with a periodic distortion (phonon eigenmode α2). The double
arrows indicate the four hopping parameters t i j . The atoms are labeled by their unit-cell
number and their position within the unit cell.

at most two optima at α≥ 0 and one of them is at α= 0 by symmetry. Since E(α)→ +∞ for
α→ +∞, there is either a single global minimum at α = 0 or a local maximum at α = 0 and
two global minima at ±α∗.

B Basis transformation of the electron-phonon coupling

The electronic part is most conveniently expressed in the band basis of ε̂0, which is ε̂ evaluated
at α= 0. The two eigenvalues of ε̂0 are ε±,0 = ±2t cos(k) with corresponding eigenvectors

~v±(k) =
1
p

2

�

1
∓e−ik

�

. (35)

With the eigenvectors, we can form the transformation matrix

Û(k) =
1
p

2

�

1 1
−e−ik e−ik

�

, (36)

which diagonalizes ε̂0. This yields the electron-phonon coupling in the band basis,

ĝ(k) = Û−1(k) ĝ(k)Û(k) = 2t

�

0 i sin(k)
−i sin(k) 0

�

. (37)

C Beyond dimerization: 4-site unit cell

At half-filling, the dimerization is commensurate in the sense that 2k f = qdimerization. We have
already shown that dimerization can also be energetically favorable away from half-filling, but
so far we have not considered CDWs with other periodicities. In this appendix, we consider
periodicity 4, which allows for the study of additional phonon modes. Because this doubling
of the unit cell increases both the number of phonons and the number of electronic bands,
it is more difficult to derive compact formulas and our treatment remains relatively brief,
highlighting some similarities and differences to the 2-site unit cell.

In this case, it is convenient to first consider the electronic dispersion as a function of the
four hopping amplitudes t i j , as shown in Fig. 6. In the SSH model, these hopping parameters
will be linear functions of the atomic displacements.

The electronic Hamiltonian is

ε̂(k) =







0 t12 0 t41 exp(4ik)
t12 0 t23 0
0 t23 0 t34

t41 exp(−4ik) 0 t34 0






. (38)
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With t2
RMS = (t

2
12 + t2

23 + t2
34 + t2

41)/4, its four eigenvalues ε++, ε+−, ε−+, and ε−− read

ε±±(k) = ±
È

2t2
RMS ±

Ç

4t4
RMS + 2t12 t23 t34 t41 cos(4k)− t2

12 t2
34 − t2

23 t2
41. (39)

Here, −π/4 < k ≤ π/4 is the Brillouin zone corresponding to this unit cell. As for the dimer-
ization transition, the total electronic energy is given by

∑

m

∫

dk εm(k)n(εm(k)).
Now, in the SSH model, the hopping parameters depend linearly on the atomic displace-

ments. We consider three phonon modes α1, α2, and α3 defined by

t12 = t(1+α1 +α2),

t23 = t(1−α1 +α3),

t34 = t(1+α1 −α2),

t41 = t(1−α1 −α3). (40)

α1 is the dimerization mode studied in the main text, α2 is sketched in Fig. 6, and α3 is ob-
tained from α2 by translating the unit cell by one atom. They are eigenmodes at q = 0. Com-
bining Eqs. (39) and (40), it is possible to calculate ε(k;α1,α2,α3) and its derivatives with
respect to αi . Using computer algebra, it is possible to evaluate these derivatives straight-
forwardly, although the expressions quickly become unwieldy. Below, we will briefly discuss
the nonzero terms at the lowest orders. Finally, integrating these derivatives of the dispersion
over the filled part of the Brillouin zone (for each band) then gives the terms in the Taylor
expansion of E(α1,α2,α3), as in Sec. 3 of the main text. The first derivative vanishes as ex-
pected, ∂α1

ε = ∂α2
ε = ∂α3

ε = 0. The second derivative is diagonal in the phonon index,
∂α1,α2

ε = ∂α1,α3
ε = ∂α2,α3

ε = 0, so the only nonzero elements are ∂α1,α1
ε and ∂α2,α2

ε = ∂α3,α3
ε.

At the level of the third derivative, we find a finite term with mixed phonon labels, to be
explicit:

∂α1,α2,α2
ε = −∂α1,α3,α3

ε = t
�

−
cos2k
cos k

,
cos 2k
sin k

,−
cos2k
sin k

,
cos 2k
cos k

�

. (41)

Here, the four components in the vector correspond to the bands from lowest to highest en-
ergy, and we have assumed k > 0. At fourth order, we find nonzero expressions only for the
terms where the derivatives appear in pairs, e.g., ∂α1,α1,α2,α2

ε. Symmetries and momentum
conservation still ensure that many terms in the expansion vanish, but already at the third
order we see that qualitatively new terms appear compared to energy landscape for the 2-site
unit cell. In other words, the Feynman diagrams studied in the main text are all relevant in
general, but diagrams that were “forbidden” in that simple system can play a role. It is difficult
to make any statements about the sign and relative magnitude a priori; for a computational
case study of nonlinear mode-mode coupling, see Ref. [67].

Similarly, the Hamiltonian can be written in terms of the bare dispersion and the electron-
phonon couplings, now as 4×4 matrices. In analogy to the main text, the terms in the expan-
sion of E(α1,α2,α3) can then be obtained diagrammatically.
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