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Abstract

We investigate magnetic instabilities in charge-neutral twisted bilayer graphene close to
so-called “magic angles” using a combination of real-space Hartree-Fock and dynami-
cal mean-field theories. In view of the large size of the unit cell close to magic angles,
we examine a previously proposed rescaling that permits to mimic the same underlying
flat minibands at larger twist angles. We find that localized magnetic states emerge for
values of the Coulomb interaction U that are significantly smaller than what would be
required to render an isolated layer antiferromagnetic. However, this effect is overesti-
mated in the rescaled system, hinting at a complex interplay of flatness of the minibands
close to the Fermi level and the spatial extent of the corresponding localized states. Our
findings shed new light on perspectives for experimental realization of magnetic states
in charge-neutral twisted bilayer graphene.
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1 Introduction

Since the experimental discovery of graphene [1], two-dimensional materials have been at
the focus of intensive research in condensed-matter physics, among others because they bear
great promise for technological applications, see, e.g., Refs. [2,3]. With respect to spintronics
applications [4], it could nevertheless be a disadvantage that bulk graphene is non-magnetic
and one needs to resort to the enhanced density of states at the Fermi level close to defects
or zigzag borders in order to drive magnetic instabilities (see Ref. [5] and references therein).
Recently, a twist appeared in the field when superconducting and correlated insulating states
were discovered in experiments on bilayer graphene where one layer is rotated with respect to
the other by a so-called “magic” angle [6,7], see Fig. 1(a) for an illustration of such a “twisted”
honeycomb bilayer, Ref. [8] for a summary of some recent developments, and Refs. [9–14]
for examples of resulting theoretical efforts. Even if the nature of the correlated insulating
state in these systems remains under debate (see, e.g., Refs. [15–25]), it is reminiscent of
the textbook antiferromagnetic insulator that appears in the Hubbard model for strong on-
site Coulomb interaction U [26]. Indeed, the defining feature of the magic angles [27–31]
is the emergence of flat minibands around the Fermi level such that the relative importance
of intrinsic interactions in graphene is enhanced. It has been demonstrated experimentally
that ferromagnetism emerges when a suitable number of electrons is doped into these flat
bands [32], a fact that might actually be a manifestation of the general phenomenon of flat-
band ferromagnetism in the Hubbard model for suitable filling fractions [33].

Here we reexamine the one-band Hubbard model for twisted bilayer graphene (TBG) and
demonstrate that magnetism occurs also in the charge-neutral (half-filled) system at low values
of the on-site Coulomb interaction U , thus placing magnetic states, including an antiferromag-
netic one, among the competitors for the instabilities in charge-neutral magic-angle twisted
bilayer graphene.

We start from the tight-binding model of Refs. [28, 31]. The resulting non-interacting
band structure at the first magic angle θ = 1.08◦ is shown by the full blue line in Fig. 1(b)
and the corresponding total density of states (DOS) in Fig. 1(c). The four flat minibands
and the related strong enhancement of the DOS at EF are evident. On top of that, we add
Coulomb interactions between the electrons in terms of a local on-site Hubbard interaction
U . The resulting magnetic instabilities are then investigated by a combination of real-space
static mean-field theory (MFT) [5] and dynamical mean-field theory (DMFT) [34–36]. As
an alternative to MFT, one could determine the instabilities of the paramagnetic state with a
random-phase approximation (RPA) analysis [37], and we present results from such an RPA
analysis in appendix A.

2 Geometry of twisted bilayer graphene (TBG)

Let us start by explaining the geometry of TBG in more detail. A single layer of graphene
consists of carbon atoms arranged in a honeycomb lattice such that the unit cell includes two
sites. We then construct a periodic commensurate bilayer structure parameterized by two
integers m, n using the method of Refs. [27, 28, 31, 38, 39]. m and n are coordinates with
respect to the lattice vectors of a single graphene layer a1,2 = a(

p
3,±1)/2. The rotation

angle for such a commensurate structure (moiré pattern) is then given by

cosθ =
n2 +m2 + 4mn

2(n2 +m2 +mn)
, (1)
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Figure 1: (a) Moiré pattern for a twist angle θ = 3.89◦, [(n, m) = (8,9)] with the
identification of magnified regions with AB, AA, and BA stacking. (b) Band struc-
ture calculated for a system with θ = 1.08◦, [(n, m) = (30,31)] and θeff = 1.08◦,
[(n, m) = (8, 9)], (c) total density of states (DOS) corresponding to panel (b). The
almost flat minibands at zero energy and corresponding large DOS peaks exhibit good
agreement between the rescaled and non-scaled systems.

and the fundamental vectors of the TBG superlattice are t 1 = na1 + ma2 and
t 2 = −ma1 + (m+ n)a2. The number of atoms in the moiré cell is given by

Nc = 4(n2 +m2 +mn) . (2)

Figure 1(a) shows the resulting moiré pattern for (n, m) = (8,9) corresponding to a twist angle
θ = 3.89◦ and Nc = 868 atoms in the moiré cell.
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3 Model Hamiltonian

We start from the tight-binding model for the pz orbitals of the carbon atoms in charge-neutral
TBG: Ĥ = Ĥ0 + Ĥint, where Ĥ0 is the single-electron Hamiltonian and Ĥint is the electron-
electron interaction. This leads to the one-band Hubbard model

Ĥ =
∑

i, j,σ

t(r i; r j) d̂
†
iσ d̂ jσ + U

∑

i

�

n̂i↑ −
1
2

��

n̂i↓ −
1
2

�

, (3)

where d̂†
iσ and d̂iσ are the creation and annihilation operators of an electron with spin projec-

tion σ = {↑,↓} at site i and n̂i =
∑

σ d̂†
iσ d̂iσ is the total electron density at site i. The hopping

parameters t(r i; r j) between two pz orbitals located at r i and r j are given in Refs. [28, 31].
The second term in Eq. (3) describes the on-site Coulomb repulsion. The resulting non-
interacting band structure (U = 0) at the first magic angle θ = 1.08◦ is shown by the full
blue line in Fig. 1(b). This case corresponds to (n, m) = (30, 31) and thus to a moiré cell with
Nc = 11164 sites. Dealing with such big unit cells will be challenging even for a one-band
model and even within mean-field theory (MFT) and thus we will explore an idea of Ref. [40]
to reduce the numerical effort.

The precise non-interacting band structure depends not only on the geometry, but evi-
dently also on the hopping parameters t(r i; r j), and in particular the ratio between intra- and
interlayer hopping. Let θ and θ ′ be the angles corresponding to two commensurate moiré
structures and

Λ=
sin θ

′

2

sin θ2
. (4)

Then the rescaling t ′0 = Λ t0 of the nearest-neighbor intralayer hopping while keeping the
interlayer hopping unchanged maps the low-energy band structure from the unprimed to the
primed geometry [40]. The panels (b) and (c) of Fig. 1 illustrate this mapping for the first
magic angle from θ = 3.89◦ to θeff ≡ θ ′ = 1.08◦. Indeed, the dashed red line reproduces both
the low-energy band structure and the density of states well at the expense of reducing the
nearest-neighbor intralayer hopping from the physical value t0 = 2.7 eV [5,41] to t ′0 ≈ 0.75 eV,
i.e., modifying the high-energy physics. With different rescaling factors, i.e., t ′0 ≈ 0.90 eV and
1.02 eV, we can also model the angles θ = 1.30◦ and 1.47◦ in the (n, m) = (25, 26) and (22,23)
systems, respectively by the same effective (n, m) = (8,9) system.

Ref. [40] suggested that the on-site Coulomb interaction should scale in the same way as
the intralayer hopping parameters, U ′ = ΛU although this is less evident than the rescaling of
the hopping parameters, as we will also see in the results to be presented below.

In the following section 4 we will first explore this rescaling trick in order to perform a
detailed study using the case (n, m) = (8, 9) (Nc = 868). In section 5 we will then check
for some representative cases to what extent the conclusions do indeed apply to the unscaled
system, including the first magic angle, i.e., (n, m) = (30,31) (Nc = 11164).

4 Rescaled system

In this section, we investigate the Hubbard model (3) for twisted bilayer graphene (TBG) using
rescaled interlayer hopping parameters, as outlined in the previous section. We will start with
a systematic study using static MFT and then use a more sophisticated dynamical mean-field
theory (DMFT) to argue that the findings of the simple MFT are qualitatively correct even if
there is a quantitative renormalization of the values of the on-site Coulomb interaction U .
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4.1 Static mean-field theory (MFT)

Static MFT is a well-established method to investigate the magnetism in graphene (see, e.g.,
chapter 3.1 of [5] and Refs. [35,36,40,42–44]) such that here we summarize only the essential
features. It amounts to the Hartree-Fock approximation of the interaction term in Eq. (3),

U ni↑ni↓ ≈ U
�

〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉
�

, (5)

where 〈niσ〉 is the average electron occupation number with spin σ at site i. Note that the
approximation (5) decouples the operators for the two spin sectors and thus gives rises to a
quadratic Hamiltonian in each of them where the other spin sector enters only via the site-
dependent mean fields 〈niσ〉 that have to be determined self-consistently. We focus on charge-
neutral TBG that has exactly one electron per site, i.e., we work with the half-filled Hubbard
model. A self-consistent solution is found iteratively, where in each step Nc × Nc matrices
need to be diagonalized and an integral over the moiré Brillouin zone has to be calculated,
that we approximate by a uniform grid of k points. We iterate this procedure until the maxi-
mum change of a density is below 10−6. Given the necessity to diagonalize a large number of
moderately-sized matrices, even this elementary MFT approach becomes CPU-time intensive
in the present situation. Some checks indicate that a k-grid of at least 9×9 points is required
to eliminate artifacts of this discretization while more points do not change the conclusions.
We therefore show results below that have been obtained for 9× 9 k points.

The RPA analysis that we present in appendix A reveals different competing magnetic in-
stabilities at different values of q for the present model. There is a periodic solution with an
antiferromagnetic internal structure. The dominant instabilities are actually found at q 6= 0,
i.e., they should have a larger unit cell than the twisted bilayer lattice, and they have a fer-
romagnetic structure inside a moiré cell. Motivated by the fact that the Hubbard model on
a single honeycomb layer becomes antiferromagnetic at large U [45], we focus here on the
antiferromagnetic mean-field solution. The RPA analysis of appendix A predicts a critical value
Uc ≈ 0.23 t ′0 for the antiferromagnetic state of the twisted bilayer system with θeff = 1.08◦, an
order of magnitude below the critical value of a single layer, that for nearest-neighbor hopping
is known to be UMFT

c /t ≈ 2.23 [45].
Figure 2 shows MFT results for the total magnetization per moiré cell and its maximum

value, defined as

Mtotal =
Nc
∑

i

|mz(~ri)| , mz(~ri) =
〈ni↑〉 − 〈ni↓〉

2
, (6)

Mmax = max{|mz(~r1)| , · · · ,
�

�mz(~rNc
)
�

�} , (7)

respectively. We first focus on the first magic angle θeff = 1.08◦ (red data in Fig. 2). Here, we
find a small albeit finite magnetization for values of U/t as low as

U1.08◦
c1,MFT/t ′0 ≈ 0.32 . (8)

We note that convergence is delicate close to Uc1,MFT and sensitive to the chosen k grid. The
result (8) should thus be considered as an upper bound. Thus, we conclude that this value is
consistent with the prediction of the RPA analysis of appendix A. Given that the magnetization
for these small values is due to the four flat minibands and that there is a low number of asso-
ciated states (4 per moiré cell), the total magnetization (6) for small values of U is small and
thus seen more clearly in the inset of Fig. 2(a) than in the main panel. Indeed, for U/t ′0 ® 1.5,
the total magnetization per moiré cell remains below 2 = 4 · 1/2, consistent with it coming
mainly from the four flat minibands.
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Figure 2: MFT results for the magnetization of the rescaled twisted bilayer system
as a function of on-site Coulomb interaction U/t ′0. Panels (a) and (b) show the total
magnetization per effective Nc = 868 moiré cell and its maximum, respectively. For
comparison, results for a single graphene layer with the same intralayer hopping
parameters are also shown in panel (b). In panel (b), red, green, and blue arrows
mark the critical points for θeff = 1.08◦, θeff = 1.30◦, and θeff = 1.47◦, respectively.

An alternative perspective is given by the maximum magnetization (7) that is shown in
Fig. 2(b). Here, one can firstly observe the onset of magnetization around Uc1 more clearly
than in the main panel of Fig. 2(a). For comparison, the main panel of Fig. 2(b) also in-
cludes the result for a single layer with the same intralayer hoppings as in the twisted bi-
layer system. One observes firstly that additional long-range hoppings within each layer re-
duce the critical value slightly to UMFT

c /t ≈ 2.09 as compared to the nearest-neighbor result
UMFT

c /t ≈ 2.23 [45]. In the region U/t ′0 ¦ 2, the magnetization of the bilayer system is slightly
enhanced with respect to the single-layer case, as might be expected thanks to the additional
intralayer couplings. However, the transition to full magnetization necessarily involves AB
and BA stacking regions (see Fig. 1(a)) that are geometrically frustrated. Consequently, one
expects a complex magnetic state in this transition region. A full analysis of the transition to a
fully magnetized system is beyond the scope of the present work, but we note that convergence
is delicate also in this second transition region, as exemplified by the outlier at U/t ′0 = 2.4 in
the θeff = 1.47◦ data.

The most important finding in the present context is that magnetism arises in the effective

6

https://scipost.org
https://scipost.org/SciPostPhys.11.4.083


SciPost Phys. 11, 083 (2021)

Figure 3: Top panel: MFT result for the spatial magnetization profile of a rescaled
twisted bilayer with θeff = 1.08◦, and the on-site Coulomb interaction U/t ′0 = 1. The
bottom panels show the local density of states (LDOS) in the AA and AB regions for
both spin projections (left two panels), and a diagonal line cut of the local magnetic
moment (right panel).

twisted bilayer model at the magic angle for Coulomb interactions U that are an order of
magnitude smaller than for decoupled single graphene layers. It should be noted that the q = 0
magnetic solution considered here only corresponds to a local, but not the global minimum of
the energy such that the true critical value of U1.08◦

c1,MFT is probably even smaller than the result

(8) (U1.08◦
c1,MFT ≈ 0.15 t ′0 according to the RPA analysis of appendix A).

Figure 2 also includes two examples for larger twist angles θeff = 1.30◦ and 1.47◦ (green
and blue data, respectively). Many of the preceding remarks also apply to these two cases
such that we focus on their peculiarities. Remarkably, the case θeff = 1.30◦ yields an even
smaller U1.30◦

c1,MFT/t ′0 ≈ 0.21 than for θeff = 1.08◦. Actually, while the velocity at the K point only
vanishes at the first magic angle θ = 1.08◦, the minibands have a very small bandwidth over
the entire range until θ = 1.30◦. However, when one goes to θeff = 1.47◦, the critical value of
the onsite Coulomb repulsion increases to U1.48◦

c1,MFT/t ′0 ≈ 1.0. This is still significantly smaller
than the critical value of a single layer UMFT

c /t ≈ 2.09, but clearly larger than in the two other
cases, as expected for minibands close to the Fermi level that now have both a finite Fermi
velocity and a significant bandwidth.

For a more detailed discussion of the magnetic state found above Uc1 but before the sys-
tem becomes completely magnetic, we show in Fig. 3 results for the θeff = 1.08◦ system and
a representative value of the on-site Coulomb interaction U/t ′0 = 1. The top panel shows the
spatial structure of the magnetization pattern that we find to be localized in the AA stacking

7
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region. Thus, in this region the magnetic state of the twisted bilayer system resembles that of
AA stacked bilayer graphene, but at a significantly lower value of U than would be required
for the simple AA system to become magnetic. A different perspective of this magnetic pattern
is provided by the lower right panel of Fig. 3 that presents a diagonal line cut of the mag-
netization. The lower left two panels of Fig. 3 show the spin-resolved local density of states
(LDOS) in the AA and AB stacking regions. Interestingly, in the AA region one finds two peaks
in the LDOS at low energies that are absent in the AB stacking region. The presence of these
peaks correlates with the magnetic state, thus rendering scanning tunneling microscopy (STM)
experiments a promising candidate for the detection of such a magnetic state.

4.2 Dynamical mean-field theory (DMFT)

Even though MFT has been shown to be remarkably successful to qualitatively describe static
[42, 43] and dynamic properties [44] in the semi-metallic phase of single-layer graphene,
it is known to become quantitatively less accurate for larger values of U . For example, the
transition to the antiferromagnetic insulator in the nearest-neighbor hopping case is found at
UMFT

c /t ≈ 2.23 in MFT [45]while more sophisticated and accurate methods place it at a larger
Uc/t ≈ 3.8 [46–49].

DMFT [34] takes local charge fluctuations into account and thus improves the quantitative
treatment of the on-site Hubbard interaction. Indeed, already single-site DMFT shifts the es-
timate of the critical point to the range UDMFT

c /t = 3.5, . . . , 3.7 [35], i.e., remarkably close to
the most accurate estimates [46–49]. Following previous work, we employ here a real-space
version of DMFT [36]. DMFT maps the lattice Hamiltonian Eq. (3) onto a set of quantum
impurity problems via the local Green’s function for site i inside the moiré supercell [34]

Giσ(z) =

∫

dk
�

zI− Ĥ0(k)−Σr
σ(z)

�−1
i,i . (9)

Here Ĥ0 is the single-particle part of Eq. (3). The main approximation is that the local self-
energy matrix for spin projection σ, Σr

σ(z), that plays the role of a dynamical mean field,
depends only on frequency z, but not on momentum k. Eq. (9) can be used to define a col-
lection of Nc single-impurity Anderson models, that we solve here with the numerical renor-
malization group (NRG) [50–52] and iterate until self-consistency is reached [53, 54]. We
refer to Refs. [35, 36] for details on the procedure and just mention two peculiarities for the
present case. Firstly, Eq. (9) requires evidently a combination of integration over the moiré
Brillouin zone while at the same time solving coupled problems for the Nc atoms inside the
moiré supercell. Secondly, even if the band structure of Fig. 1(b), (c) is almost particle-hole
symmetric, there is no strict particle-hole symmetry in the present case in contrast to previous
work [35,36]. Consequently, the chemical potential needs to be adjusted appropriately during
each iteration in order to ensure half filling. Since the chemical potential enters into Eq. (9) in
a non-linear fashion, this renders the numerical problem even more challenging, thus limiting
DMFT not only to the rescaled system, but also the number of U-values considered.

Figure 4 presents some DMFT results for the rescaled system with θeff = 1.08◦, i.e.,
Nc = 868. Comparison of the DMFT results for the magnetization versus U/t ′0 in Fig. 4 with
the MFT results of Fig. 2 shows qualitatively similar behavior. At a technical level, the DMFT
results are a bit more noisy. This is due to the logarithmic frequency discretization inher-
ent to NRG [52], to DMFT being generally numerically more expensive, and in particular the
difficulty to adjust the chemical potential appropriately. Nevertheless, the main quantitative
difference remains that the critical Uc of a single layer is pushed to larger values as compared
to simple MFT, and so is the phenomenon of a magnetization arising in the AA stacking region
of the twisted bilayer system. Nevertheless, also DMFT clearly detects a magnetization in the
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Figure 4: DMFT results for the magnetization versus Hubbard interaction U/t ′0 for
the rescaled system with θeff = 1.08◦. For comparison, results for a single graphene
layer are also shown. Lines are guides to the eye. The inset shows the spatial mag-
netization for U/t ′0 = 2.5.

twisted system for values of the local Coulomb interaction down to U/t ′0 = 1, amounting to a
reduction of the critical value as compared to the single-layer system by at least a factor 3.5
at θeff = 1.08◦. The inset of Fig. 4 shows an example of the spatial magnetization pattern.
This is again very similar to the MFT result shown in the main panel of Fig. 3, just the value of
U/t is renormalized to larger values, namely from 1 for the MFT example to 2.5 of the DMFT
example. Note that U/t ′0 = 2.5 would give rise to a bulk magnetic state within MFT while the
DMFT result in the inset of Fig. 4 is still clearly localized in the AA stacking region. Overall,
DMFT confirms the qualitative conclusions derived from MFT; it just provides a quantitatively
more accurate account of the local Coulomb interaction U .

5 Non-scaled system

We will now present some results for the non-scaled system. The scaling trick has allowed us
to apply the quantitatively more accurate DMFT, but the size of the moiré cells of the non-
scaled systems will exceed those accessible to DMFT such that we focus on static MFT in the
present section. We use the same parameters as in section 4.1 (convergence criterion 10−6,
9× 9 k-grid).

Figure 5 shows MFT results for the total magnetization per moiré cell as a function of
U/t0 at rotation angles θ = 1.08◦, θ = 1.30◦, and θ = 1.47◦. The corresponding moiré cells
contain N = 11164, 7804, and 6076 carbon atoms, respectively. At first sight, the behavior is
very similar to that found in the inset of Fig. 2(a) for the rescaled system (the smaller number of
data points is due to the significantly enhanced computational effort). In particular, Mtotal ® 2

9

https://scipost.org
https://scipost.org/SciPostPhys.11.4.083


SciPost Phys. 11, 083 (2021)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

U/t0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
to

ta
l

(30,31), θ = 1.08◦

(25,26), θ = 1.30◦

(22,23), θ = 1.47◦

Figure 5: MFT results for the magnetization of the non-scaled twisted bilayer system
as a function of U/t0 at rotation angles θ = 1.08◦, θ = 1.30◦, and θ = 1.47◦,
respectively.

remains true for most values of U/t0 shown in Fig. 5, in agreement with again the magnetism
beging due to the four flat minibands that are closest to the Fermi level.

The key items are the values of the critical Coulomb interaction that one may estimate as
U1.08◦

c1,MFT/t0 ≈ 0.85, U1.30◦
c1,MFT/t0 ≈ 0.55, and U1.47◦

c1,MFT/t0 ≈ 1 with a particularly large uncertainty
on the last result given the very slow onset of magnetization for θ = 1.47◦. According to
Ref. [40], in the given normalization, these values should correspond to those found in the
rescaled system. This works out more or less for the case θ = 1.47◦ where in both cases, the
critical U/t ratio is close to 1. However, the values for U1.08◦

c1,MFT and U1.30◦
c1,MFT in the non-scaled

system are bigger than those we might have expected from the rescaled case. Indeed, the order
of the discrepancy corresponds to another factor Λ such that U scales with Λ2 and not just with
Λ. A possible interpretation of this observation is the following: Λ actually also appears in the
scaling of the linear length [40]. Now the magnetic instability at the angles θ = 1.08◦ and
1.30◦ is related to a state localized in the AA region, see, e.g., top panel of Fig. 3. Thus, the
area of the relevant spatial region scales with Λ2, accordingly the number of contributing local
on-site repulsions also scales with Λ2 such that U should also scale with Λ2 rather than Λ in
the cases where the physics is controlled by localized states.

In spite of this additional factor, it remains true that U1.30◦
c1,MFT/t0 ≈ 0.55<U1.08◦

c1,MFT/t0 ≈ 0.85,
and that there is still a significant reduction by factors of 4 respectively 3 with respect to the
critical value Uc for a single graphene layer. In light of the preceding observations, we suggest
that not only the non-interacting bandwidth, but also the size of the moiré cell matter. While
both the θ = 1.08◦ and 1.30◦ bilayers have a small bandwidth, the moiré cell of the latter
is smaller, and this appears to result in a smaller critical value of Uc1. The size of the moiré
cell is smallest for θ = 1.47◦ among the three cases studied, but the value of Uc1 is biggest,
most likely because in this case the minibands closest to the Fermi energy are no longer flat.
Nevertheless, even in this case one observes emergence of magnetism for values of U that are
about a factor 2 smaller than would be needed to render a single layer antiferromagnetic.

To conclude this discussion, let us have a closer look at the spatial structure of the resulting
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Figure 6: The top and bottom panels show the spatial magnetization profile of non-
scaled systems at θ = 1.47◦ and θ = 1.08◦, respectively. The corresponding numbers
of atoms in the unit cell are Nc = 6076 and Nc = 11164.

magnetic states. Figure 6 shows the spatial magnetization profile for non-scaled moiré unit
cells with angles θ = 1.47◦ and at the first magic angle θ = 1.08◦. For illustration purposes,
we consider a value of U just above the first critical point Uc1, i.e. U/t0 = 1.50 and 1.00,
respectively. Like for the recaled system shown in the top panel of Fig. 3, we find an anti-
ferromagnetic pattern that is localized in the AA region. However, thanks to the improved
spatial resolution, we can now observe a clearer separation of the magnetic regions between
neighboring cells. For slightly larger U , the magnetic region grows, but the structure remains
qualitatively similar as in Fig. 6.
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6 Conclusions and perspectives

We have investigated the onset of magnetism in charge-neutral “magic-angle” twisted bi-
layer graphene with numerical real-space static and dynamical mean-field approaches. In the
rescaled system we found that localized magnetic states appear in the twisted bilayer system
for values of the on-site Coulomb repulsion U that are an order of magnitude smaller than
those needed to render a single layer magnetic. We then showed that the non-scaled system
exhibits qualitatively similar behavior. The reduction is less impressive (up to a factor 4 in the
cases investigated), but still remarkable. We note that this finding is consistent with a recent
diagrammatic real-space mean-field study [55] that focused on two selected values of U .

The rescaling proposed in Ref. [40] actually reproduces the flat minibands close to the
Fermi level very well, compare Fig. 1. Our results therefore demonstrate that the band struc-
ture is not the only factor that matters. Indeed, the corresponding states are localized in AA
stacking regions. This suggests a scaling of the critical Uc with area rather than linear size, as
is indeed roughly consistent with our findings for θ = 1.08◦ and 1.30◦. A more quantitative
analysis would involve computation of the Coulomb matrix elements with respect to the Wan-
nier functions [11, 15, 56–59] of the rescaled and non-scaled systems, respectively. However,
such an analysis goes beyond the scope of the present work.

A side effect of the observation that the spatial extent of the localized states also matters is
that smaller unit cells favor magnetism over bigger ones. Indeed, we find onset of magnetism
for θ = 1.30◦ for smaller values of Uc than for the first magic angle θ = 1.08◦. The system
with θ = 1.47◦ has an even smaller unit cell than that with θ = 1.30◦, but at this larger angle
there is no longer any really flat band close to the Fermi level such that here the value of Uc
is found to be larger. A related point is that magic angles are usually defined via a vanishing
Fermi velocity [27–31] while in fact it may be more relevant that the entire minibands are
narrow. Indeed, the latter criterion is satisfied over the entire range θ = 1.08 . . . 1.30◦ such
that the smaller unit cell can then give rise to a lower Uc at the upper boundary of this range
of angles.

It should be noted that in our mean-field investigations we have focussed on antiferromag-
netic solutions that are periodic over moiré cells. However, the RPA analysis of appendix A sug-
gests that there are other competing instabilities, and indeed the mean-field self-consistency
loop sometimes converges to other solutions. In particular, the true lowest-energy state might
be modulated in real space and exhibit an internal ferromagnetic structure, like in the case of
an electric bias between the two layers [40]. Should this indeed be the case, this can only fur-
ther reduce the value of the Uc for the onset of magnetism such that our estimates are in fact
upper bounds. The main conclusion that twisting leads to a significant reduction of the critical
Uc for the appearance of magnetism is thus unaffected by the assumptions on the nature of
the ground state.

Another point to note is that we find a stronger reduction of the critical interaction Uc at
charge neutrality than a previous RPA investigation [37]. This difference can be traced to a
different tight-binding model at the starting point. Indeed, the authors of Ref. [37] have imple-
mented the corrugation of Ref. [56] that takes a modulation of the distance between the two
layers in different stacking regions into account. However, other factors may also be relevant
in an experiment such as strain when the bilayer is deposited on a substrate. In the same spirit,
Coulomb interactions should actually be long-range [60], at least for free-standing bilayers,
since atomically thin layers cannot screen the Coulomb repulsion between electrons. Still,
screening will depend on the actual substrate and may thus depend on the exact experimental
conditions. Even other factors such as spin-orbit interactions that are sufficiently weak to be
usually negligible in graphene may matter in the present situation given the significant reduc-
tion of the kinetic energy scale in the twisted bilayer system. Thus, which of several competing
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instabilities finally wins in an experimental realization may depend on a number of factors;
here we have simply demonstrated that a magnetic instability (possibly an antiferromagnetic
one) is one of the competitors in charge-neutral twisted bilayer graphene.

The macroscopic magnetization of a ferromagnetic state can be detected, e.g., via the Hall
effect [32]. Antiferromagnetic or almost ferromagnetic, but modulated spiral states are more
difficult to detect experimentally since they do not give rise to a macroscopic moment. In
bulk systems, one would resort to (neutron) scattering to detect such states, but in the present
nanoscopic setting this may not be feasible. The best option may thus be scanning tunnel-
ing spectroscopy (STS) experiments [61] in order to detect the corresponding characteristic
features in the local density of states (see lower panels of Fig. 3). In fact, the corresponding
signatures might already have been observed in recent STS experiments [62–64]. However,
the latter samples are subject to heterostrain [65,66] which also gives rise to a splitting in the
electronic density of states. An unambiguous detection of a magnetic state would thus require
a detailed investigation of the variation of the tunneling spectrum with the different stacking
regions.

Returning to theoretical questions, an alternative approach would be via low-energy con-
tinuum models in the spirit of Ref. [30]. One reason why we have rather used the rescaled
model [40] here is that, as illustrates Fig. 1, it reproduces the band structure well over a wide
range of energies and not just the flat minibands close to the Fermi level. However, in the range
of intermediate values of U/t where mainly the flat minibands contribute to the magnetism,
effective low-energy models would have the advantage of being more amenable to numerical
approaches [14,67–70] such that we suggest the investigation of magnetism by such methods
as a topic for further studies.

A further interesting issue that goes beyond questions accessible to low-energy effective
models would be the full phase diagram of the twisted bilayer systems up to larger values of
U/t. Indeed, the results underlying Fig. 2 suggest that there is no single simple transition to
a bulk magnetized system, but that this transition actually proceeds via several intermediate
states in the region U/t ′0 ≈ 2. Given that magnetic interactions in the AB and BA stack-
ing regions are geometrically frustrated (compare Fig. 1(a)), even the magnetic state in the
Heisenberg limit U/t →∞ is far from obvious.
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A Noninteracting susceptibility of the rescaled system

In this appendix, we provide an RPA analysis of the noninteracting susceptibility that is similar
in spirit to Ref. [37]. However, here we focus on the rescaled system with θeff = 1.08◦.

We adopt the multiorbital RPA approach to study the instability of the paramagnetic
state [71,72].

The multiorbital spin susceptibilities tensor can be expressed in terms of the Matsubara
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spin-spin correlation function:

�

χ(q ,ω)
�

st =
1
3

β
∫

0

dτeiωτ
¬

TτŜs(q ,τ)Ŝt(−q , 0)
¶

, (10)

with the Matsubara frequency ω, the imaginary time τ and spin operators Ŝ at orbitals s,
t. The noninteracting (zero-order) susceptibility is just a simple bubble diagram involving
two Green’s functions. Using the spectral representation of the Green’s functions, this can be
expressed as

�

χ0(q , iω)
�

st = −
1
Nc

∑

k

∑

µ,ν

as
µ(k)a

t∗
µ (k)a

s
ν(k + q)at∗

ν (k + q)

iω+ Eν(k + q)− Eµ(k)

�

nF (Eν(k + q))− nF (Eµ(k))
�

,

(11)
where µ, ν are band indices, as

µ(k) and Eµ(k) are the µ-th eigenvalue and eigenvector of the
noninteracting Hamiltonian, respectively, and nF is the Fermi-Dirac distribution function.

The Coulomb interaction can then be included at the mean-field level and one arrives at a
so-called “RPA” (or “Stoner”, see, e.g. Refs. [26,73]) formula for the interacting susceptibility

χ(q , iω) =
χ0(q , iω)
I−χ0(q , iω)U

, (12)

where in the paramagnetic state we can use χ0 according to Eq. (11). According to Eq. (12),
the static susceptibility χ(q , iω = 0) diverges whenever U equals one of the eigenvalues of
the tensor χ0(q , iω = 0)−1. One can use this identity to determine the mean-field critical
Uc , and indeed, the critical Uc of an infinite graphene sheet was originally determined in this
manner [45]. The value of q and the corresponding eigenvector yield information about the
expected magnetic state for U > Uc .

The tensor of Eq. (11) is symmetric, but computing all N2
c entries for a fixed q is time-

consuming since each of them involves a sum over reciprocal space and two sums over all
energy levels. In order to keep the CPU time manageable, we have limited the sum

∑

µ,ν to
states that are close to the Fermi energy. The latter approximation is physically justified since
the ground-state ordering should be dominated by the quasi-flat bands close to the Fermi
energy. A similar approximation to the Matsubara sums has also been used in Ref. [37] except
that we use here a more radical sharp cutoff. Nevertheless, we have checked that taking the 50
to 100 states closest to the Fermi energy into account is sufficient to yield no visible truncation
effects; we used 200 states to be on the safe side. Since we use a finite grid for the integration
over the moiré Brillouin zone, the sum Eq. (11) consists strictly speaking of a finite number
of poles. In order to smooth these out, we introduce a broadening parameter and evaluate
Reχ0(q , iω = iη) such that we obtain a Lorentzian broadening of width η at iω = 0. Apart
from the truncation in energy space, the momentum grid, and the broadening parameter η, the
result for χ0(q , iω = 0) also depends on temperature T . T = 10−8 t seems to be sufficiently
low to ensure ground-state physics. However, there is a delicate balance between broadening
parameter η and the grid in reciprocal space. If η is too large, it will smear out any peaks and
thus reduce the values of χ(q , iω = 0). On the other hand, for a too small value of η, the
momentum discretization will become visible. We found that the combination η = 5 · 10−5 t
and a uniform 9×9 grid of points (kx , ky) yield a good compromise such that we will present
results for these parameters here.

Figure 7(a) shows the distribution of the leading eigenvalue of the static susceptibility
tensor χ0(q , iω = 0) in the moiré Brillouin zone. In contrast to single layers and AA-stacked
bilayer graphene that prefer a single type of ordering at q = 0, in the present case the maximal
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Figure 7: (a) Distribution of the largest eigenvalue χ0(q , 0) of the susceptibility ten-
sor for the rescaled system with θeff = 1.08◦. The white hexagon denotes the first
Brillouin zone. Panels (b), (c), and (d) show the spatial profile of the largest eigen-
vector of the static susceptibility tensor for q = Γ , K, and qmax, respectively. We used
η= 5 ·10−5 t, a uniform 9×9 grid to evaluate the sum

∑

k , and a total of 200 states
around the Fermi level for each µ and ν.

eigenvalue of χ0(q , iω = 0) is rather flat in reciprocal space. The global maximum is neither
at q = Γ nor at the two symmetry-related points K and K′, but rather at another point qmax
at the boundary of the first Brillouin zone. The values are maxχ0(q , iω = 0) = 4.35378/t ′0,
4.99189/t ′0, and 6.61892/t ′0, for q = Γ , K, and qmax, respectively. According to the discussion
around Eq. (12), this predicts a critical value Uc = 0.229686 t ′0 for a q = 0 state and globally
Uc = 0.151082 t ′0, but for a state with a spatial modulation with a wave vector qmax over moiré
cells.

Panels (b)–(d) of Fig. 7 show the corresponding eigenvectors of the susceptibility tensor.
At the Γ point (panel (b)), one observes a staggered sign change between nearest neighbors
with the maxima located in the AA region. This corresponds to the periodic antiferromagnetic
state that we have investigated in the main text. The analogous result for the eigenvector at
the K (K′) point is shown in Fig. 7(c). Here we find a ferromagnetic solution in each moiré
cell with the maximum again in the AA region, but the corresponding value of q implies that
the corresponding state should be accompanied by a tripling of the unit cell in real space.
Finally, Fig. 7(d) shows the eigenvector at qmax. The local structure inside a moiré cell is still
ferromagnetic, but exhibits a stronger internal modulation. Furthermore, the corresponding
MFT solution should be modulated with a wave vector qmax in real space. Examination of
further values of q reveals an antiferromagnetic internal structure close to the Γ point while
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the ferromagnetic internal arrangement is predominant in other regions of the Brillouin zone.
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