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Emergent supersymmetry on the edges
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Abstract

The WZW models describe the dynamics of the edge modes of Chern-Simons theories
in three dimensions. We explore the WZW models which can be mapped to supersym-
metric theories via the generalized Jordan-Wigner transformation. Some of such models
have supersymmetric Ramond vacua, but the others break the supersymmetry sponta-
neously. We also make a comment on recent proposals that the Read-Rezayi states at
filling fraction v = 1/2, 2/3 are able to support supersymmetry.
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1 Introduction and Conclusion

Ever since its discovery, space-time supersymmetry [ 1] has been widely utilized in high-energy
physics and cosmology. Despite its theoretical attraction, the presence of supersymmetry in
nature has not been observed in high-energy experiments yet. Instead, the series of recent
works suggested interesting ideas of realizing space-time supersymmetry in the condensed
matter systems [2, 3, 4, 5, 6, 7].

Of particular interest are the integer and fractional quantum Hall systems. The fractional
quantum Hall states are shown to have topological order[8, 9] which is beyond the Landau
theory of symmetry breaking. Those topologically ordered states are known to possess gapless
edge excitations with fractional charges.

The plateaus of fractional quantum Hall effect are characterized by filling fraction v, the
parameter associated with Hall conductivity o = % v. The theoretical approach to the ob-
served filling fractions was pioneered by Laughlin [10], and ideas such as hierarchy states
[11, 12] and the composite fermion [13] were proposed to explain the fractional quantum
Hall states with Abelian anyonic statistics. Soon afterwards, it was shown in [14, 15] that
the Pfaffian wave function provides theoretical understanding of the non-Abelian fractional
quantum Hall effect.

The Chern-Simons theories in the 2+ 1 space-time dimensions provide low-energy effective
theories capturing the response of the quantum Hall ground state to low-energy fluctuations.
Especially, the non-Abelian braiding statistics of the anyon can be understood essentially from
the computation of Wilson lines of Chern-Simons theories on S [16]. The quantization of the
Chern-Simons theory on a manifold with boundaries leads to a chiral rational conformal field
theory(RCFT) [16, 17] that describes the edge excitations of quantum Hall states. A prominent
example is a correspondence between Laughlin states of v = 1/k and RCFT with u(1), affine
algebra. For more details, see the discussion in [18, 19].

The goal of this paper is to explore the emergent supersymmetry on the edges of the 2+ 1-
dimensional gapped phases. By the superymmetry on the edges, we mean that a chiral RCFT
has a chiral primary G(z) of conformal weight h = 3/2 satisfying the operator product expan-
sion(OPE) below,

T(2)G(0) ~ Z%G(O) + %aG(O),

2c

G(2)G(0) ~ )

+ e T(0), €))
b4

where T(2) is the stress-energy tensor with the central charge c¢. Then the primary G(z) plays

a role of the supersymmetry current.

In the present work, we mainly pay attention to the non-chiral Wess-Zumino-Witten(WZW)
models that has a chiral primary of h = 3/2 obeying (1). Once such a model exists, its chiral
sector that can arise on the edges is then able to support a supersymmetry current. The above
problem is also equivalent to another problem searching for non-chiral WZW models associated
with supersymmetric theories via the so-called the Jordan-Wigner transformation [20, 21]
where the chiral primary of h = 3/2 of the WZW model becomes the superymmetry current.

To understand the equivalence, let us consider an well-known example, the tricritical Ising
model. The tricritical Ising model is the Virasoro minimal model with central charge ¢ = 7/10,
and has six chiral primaries of h = 0, 1/10, 3/5, 3/2, 3/80 and 7/16 whose characters are
denoted by y;,(7). The model is a bosonic CFT by itself and thus has no supersymmetry current,
which is clearly understood from its torus partition function

25 = itn=o ()| + |20z s O + |10z O + 2023 O + [tz O + 102 2 (]
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It is known that the model has a primary operator €”’(z,%) of (h,h) = (3/2,3/2) that satisfies
the OPE

(2

7 )ZLJFZ(T(O)JF T(O))+ T(0)T(0)

€”(z,2)e”(0) ~ (—
(z,2)e7(0) 15) (22)3 15\ 233 23% 2Z

Note that the above OPE involves only the identity operator and its descendants, consistent
with the fusion algebra of the tricritical Ising model. The OPE (2) implies that the chiral part of
€”(z,%), denoted by €”(z), would satisfy (1) with ¢ = 7/10, namely the chiral part of the model
has the supersymmetry current. On the other hand, the generalized Jordan-Wigner transfor-
mation maps the (non-chiral) tricritical Ising model to the A/ = 1 supesymmetric minimal
model with ¢ = 7/10 [21] where the chiral primary €”(z) becomes the supersymmetry cur-
rent. From the partition function of the A" = 1 supersymmetric minimal model with ¢ =7/10
in the Neveu-Schwarz(NS) sector,

NS — 0 [qLO—c/24qL0—c/24:|

= [in=0() + 2z3 (O + | (D) + 2023 ()]
= tn=0() a3 (B + Ly (D)o (D) + -+ 3

where y,(7) are the characters of the tricritical Ising model, one can see that the chiral pri-
mary €”(z) of h = 3/2 indeed appears as the descendant of the vacuum and becomes the
holomorphic supersymmtry current.

A fermionic CFT refers to a conformal field theory which has primaries of half-integer
spin. We need to choose a spin structure to define such a fermionic CFT. On a two-torus, there
exist four different spin structures denoted by (NS,NS), (R,NS), (NS,R) and (R,R) where the
former in the parenthesis specifies either the Neveu-Schwarz(NS) or the Ramond(R) boundary
condition along the temporal circle while the latter along the spatial circle. We use a shorthand
notation NS, Ng, R and R for those spin structures in what follows.

Of course, the WZW models themselves cannot be a supersymmetric theory due to their
bosonic nature. Instead, we will apply the fermionization, a.k.a. the generalized Jordan-
Wigner transformation, to convert them to candidates of interest. A modern understanding
of the fermionization is to couple a bosonic theory having non-anomalous Z, symmetry with
the low-energy limit of the topological phase of the Kitaev Majorana chain followed by the Z,
quotient [22, 20]. This idea has been applied in recent works [23, 21, 24, 25, 26, 27]. The
fermionization also provides a theoretical ground to the well-known fact that the tricritical
Ising model is supersymmetric [28], as explained above. The target of our analysis is to search
for supersymmetric RCFTs with ¢ > 1 and we fermionize the WZW models that has no more
than 60 primaries to achieve the goal.

Although there are many known constructions for the unitary supersymmetric RCFTs such
as the supersymmetric minimal models [28, 29, 30], ' = 1 extremal supersymmetric confor-
mal field theory(SCFT) [31], N/ = 1 “Beauty and the Beast” SCFT [32], the full classification is
still far-fetched. The classification program of fermionic RCFTs with a few number of primaries
has been studied only recently. For instance, see [33, 34]. Instead of explicit construction or
full classification, we rather focus on the essential features of the supersymmetric RCFTs for
the exploration. First, the NS-sector has to contain spin-3/2 currents as the vacuum descen-
dants that play a role of the supersymmetry currents. Second, the torus partition function of
R-sector becomes an index and thus take a constant value. Finally, the R-sector primaries sat-
isfy the supersymmetric unitarity constraint h® > 34 Whenever a fermionic RCFT fulfills the
above necessary conditions, we regard it as an unitary supersymmetric RCFT. We also check if
the candidate partition functions allow the super Virasoro character decomposition. For later
convenience, we refer to the above four conditions as SUSY conditions.
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Table 1: List of WZW models that allows fermionization to supersymmetric models with super-
symmetric vacua.

Type Gy
A-type SU(12),, SU(4)3, SU(6),, SU(2)¢
A’-type SU(4)4/2,
C-type Sp(4)s, Sp(6),, Sp(12),
D-type 50(8)3, SO(12),, SO(24),
SO(N); SO(3)3(= SU(2)s), SO(4)3(= (SU(2)6)?),
SO(5)3(=Sp(4)3), SO(6)3 =SU(4)3, SO(7)3, -

Table 2: List of WZW models whose Z, orbifold allows fermionization to supersymmetric mod-
els. However their Ramond vacua do not saturate the supersymmetric unitarity bound.
Type ‘ Gy
E-type (E7)2, (Eg)y
Orbifold 50(16)2/22, SU(16)1/Zz, SU(8)2/Z2

The main results of this paper are summarized in table 1 and 2. The WZW models listed
in table 1 can be fermionized to satisfy the aforementioned SUSY conditions. Moreover, their
Ramond vacua saturate the supersymmetric unitarity bound h® > 57- This implies that super-
symmetry in the Ramond sector remains unbroken. We also remark that those WZW models
in table 1 are shown in the recent work [35] to have A/ = 1 supersymmetric vertex operator
algebra.

On the one hand, table 2 presents the WZW models that can be mapped to fermionic
theories satisfying the SUSY condition via the Jordan-Wigner transformation. However, those
model have none of the R-sector primaries saturating the unitarity bound h® > 37. In other
words, supersymmetry is spontaneously broken in the Ramond sector.

We also investigate the emergence of supersymmetry in certain chiral RCFTs proposed to
describe the Read-Rezayi states at filling fraction v = ﬁ for k =2,3,4,--- and nonnegative
M [15]. We observe that the fermionized RCFTs for (k =2,M = 1) and (k =4,M = 1) can be
identified with the A/ = 2 unitary supersymmetric minimal models, consistent with the recent
work of [36, 37].

This paper is organized as follows. Section 2 is for brief reviews on the modern perspective
on the fermionization, the WZW models and their center symmetry, and the Chern-Simons
theories with emphasis on one-form global symmetries and their gauging. We also summarize
SUSY conditions that has to be obeyed by any supersymmetric RCFTs. In Sections 3 and 4, we
present detailed analyses that show the emergence of supersymmetry for the WZW models in
table 1 and 2. We examine in Section 5 if the RCFTs for the Read-Rezayi states at v =1/2,2/3
preserve supersymmetry. In appendix A, we argue that supersymmetry can emerge only for
the Zg and Zg parafermion CFTs via the Jordan-Wigner transformation.

2 Preliminaries

2.1 Z, Orbifold and Fermionization

We briefly review on the generalized Jordan-Wigner transformation that maps a given bosonic
theory to a fermionic theory and vice versa in two dimensions [22, 20].
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Let us start with a bosonic theory with non-anomalous Z, symmetry, denoted by 5. Gaug-
ing the discrete Z, symmetry leads to an orbifold 5 = B/Z,. The partition functions of B and
B on a genus g Riemann surface ¥, satisfy the relation below

ZZ;,[T]zzig > ZB[s]exp[ichsUT], 4

sEH(%,,Z,)

where the sum s is over all possible discrete gauge fields for the Z, symmetry. It is known that
the orbifold B has an emergent Z, quantum symmetry, and T € H 1(2g, Z,) is the background
gauge field for the quantum symmetry. Here the cup product ‘U’ is a product on cohomol-
ogy classes which becomes the wedge product of differential forms in the case of de Rham
cohomology.

One can also utilize the Z, symmetry to obtain a fermionic theory F ‘dual’ to B. To do so,
one needs a non-trivial two-dimensional invertible spin topological theory, known as the Kitaev
Majorana chain. Note that the theory of the Majorana chain has the Z, global symmetry. The
fermionization can be described as coupling B to the Kitaev Majorana chain, and then taking
the diagonal Z,, orbifold. The partition functions of F on a genus g Riemann surface with spin
structure p is related to that of B as follows,

Z;[T+p:|=2ig Z ZB[S]exp[in(Arf[s+p]+Arf[p]+JsUT)], )

s€H(Z,,Z,)

where T € HY(Z > Z5) is the background gauge field for the fermion parity (—1)F. Here Arf[p]
is the so-called Arf invariant which accounts for the contribution from the Kitaev Majorana
chain. The Arf invariant is a mod 2 index and becomes 1 when p is even and 0 otherwise. For
instance, when Z, = T2, a choice of periodic (R) or anti-periodic (NS) boundary condition
around each of the two cycles specifies a spin structure p. The Arf invariant is then given by

1 (R,R)
Arf[P] = {0 (NS,R), (R,NS), (NS,NS) ° (©)

On the other hand, we can make use of the quantum Z, symmetry to obtain a fermionic theory
F from B:

Z;[T +p] = zlg Z Zl;[s]exp[in (Arf[s +pl+Arflp] +Js U T) ] (7

s€H1(Z,,Z,)

Note that the map (4) further relates Z » to Zj,

ZJ,—:[T +p] = 2_1;; Z(: )ZB[t]exp[in (Arf[s +pl+Arflp] +Js u(T + t)) ]
s,teH(Z,,Z,

1 .

=0 Z ZB[t]exp[mArf[(T+t+p)]], (8)
teH(Z,,Z,)

where we applied an identity below for the last equality,

L Z exp[in(Arf[s+p]+Arf[p]+fsut)]=exp[ircArf[t+p]]. )

28
SEH(Z,Z,)

Using another identity for the Arf invarint,

exp[ircArf[s +t +p]] = exp[irc (Arf[s +pl+Arf[t+pl]+Arf[p]+ J suU t) ] ,
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Table 3: A bosonic theory 3 on S! has either the untwisted or the twisted Hilbert space, depend-
ing on whether a nontrivial Z, holonomy along the circle is turned off or not. Each Hilbert space
can be further decomposed into the Z, even and odd sectors. On the other hand, a fermionic
theory F on a circle has either the Neveu-Schwarz or the Ramond sector, depending on the peri-
odic condition along S!. One can divide each sector into the (—1)" even and odd sectors where
F denotes the fermion number operator.

B | untwisted twisted B untwisted twisted
even He H; even He H
odd Ho H odd He HY

F | NS sector R sector F NS sector R sector
even M H, even H: H
odd HY H; odd H? Ho

one can show that the fermionic theory F can be obtained by coupling F to the Kitaev Majo-
rana chain

Z#[p]= 25| pJexp|inarfip]]. (10)

For proofs of identities, see [38, 20]. The equation (10) implies that Zx is the same as Z # in
any choice of the spin structure except the symmetric p where the sign would be flipped. One
can learn from the maps (4) and (5) how the Hilbert spaces of B, B, F, and F are shuffled to
each other, summarized in table 3

In the present work, bosonic CFTs B mainly refers to the WZW models on simple Lie groups.
Most of WZW models have a natural Z, symmetry, which is a part of the center symmetry. We
utilize the Z, symmetry to construct either the orbifold B or the fermionic partner F in what
follows. In Appendix A, we consider the Z; parafermion theories as an excursion beyond the
WZW models.

2.2 Supersymmetry Conditions

We define a superconformal theory as a conformal theory having a conserved current G(z) of
weight h = 3/2 satisfying the OPEs below,

T(2)G(0) ~ Z%G(O) + éaG(O),

2c 1
= +271(0),
323 2 ©

(11)
G(2)G(0) ~

where T(z) denotes the stress-energy tensor and c is the central charge. The conserved cur-
rent G(z) is then called supersymmetry current. To search for a bosonic CFT which can be
fermionized to a superconformal theory, one needs to find such an h = 3/2 supersymmetry
current. Once we find such a bosonic theory, as explained in introduction, its chiral part has
the supersymmetry current. It is rather nontrivial to show if a candidate primary of h = 3/2
obeys the supersymmetry current OPE (11) for an interacting theory. Instead, we discuss nec-
essary conditions for a given bosonic RCFT to be mapped to a supersymmetric theory via the
generalized Jordan-Wigner transformation (5):

1. We first require a bosonic theory B to have an h = 3/2 primary operator. This primary
will play a role as a supersymmetry current after the fermionization. We also note that
the NS vacuum character of the supersymemtric theory dual to B can be obtained by
combining the vacuum character with the character for the primary of h = 3/2.
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2. For a supersymmetric theory F, the torus partition function in the Ramond-Ramond
sector, denoted by Z%, becomes an index and thus constant. As a consequence, the

difference between torus partition functions of B and B also takes the constant value,
Zp(7, %) — Zg(7, %) = ZR(7, %) = const . (12)

When the index Z ;(1, 7) does not vanish, the corresponding theory has supersymemtric
vacua. On the other hand, the index vanishes when the supersymmetry is spontaneously
broken unless the the supersymmetric unitarity bound below is saturated. The Z§: also
vanishes whenever a given theory has a free fermion regardless of whether the superym-
metry is preserved. In the present work, we focus on a model having no free fermion.

3. The supersymmetric unitarity bound h® > c/24 has to be obeyed. This is because, in the
Ramond sector where G(z) = Zrel j2+2.Gr /2"+3/2 each Laurent mode G, satisfies the
anti-commutation relations below,

1 c
{G,,G,} =2Lr+s+§(r2—2—4)5r+s. (13)

4. Finally, the fermionic partition function in each spin structure should allow the super
Virasoro character decomposition.

As an illustration, let us choose the U(1);, WZW model for B. This model is the theory
of a compact boson on S! with radius 24/3 and has twelve primaries of conformal weights
h =n?/24 for n = 0,£1,..,£5, 6. Note that the U(1);, WZW model has a primary of h = 3/2
which could potentially play a role as a supersymmetry current. The model has a Z, symmetry
which acts on each primary as follows,

2 n2

n n
Z2:|h=2—4>—>(—1) -\h=2—4). (14)

The torus partition functions of B = U(1);, and the orbifold B = B/Z, are given by

5

Zs = |0l + x|+ 25 (|1l +[2a%) (15)
n=1

ZB:|XO|2+|)56{2+ Z ({Xn|2+{X—n|2)+()f1)25+X—1Z—5+X5Z1+X—52—1);
n=2,3,4

which implies that their difference is constant,
2 2 2 2
Zg—Zp= | —xs| + |11 —xs| =12+ 1% (16)

We see that the U(1);, WZW model satisfies the aforementioned first and second necessary
conditions, and thus it is likely that the corresponding fermionic theory is supersymmetric. To
see this, we apply (5) to obtain the torus partition function of the fermionic theory F for each
spin structure given by,

7P = |){o + )(6|2 + {)(2 +X4|2 + \X—z + X—4’2,
2 = |0 —xo|" + |x2a—xal” + 12— 2-4]",
Zer = |X1 +)(5|2 + {1—1 +X—5{2 +2|)(3|2 +2

Z]%: |X1—X5|2+ {X—l—l—s\z =17 +1%.

) (17)

)

X3
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It is straightforward to show that (17) perfectly agrees with the partition function of the A" =1
supersymmetric minimal model with ¢ = 1, which confirms our expectation that F preserves
the supersymmetry. Indeed we can express (17) in terms of the N = 1 super-Virasoro charac-
ters of c = 1.

We make a remark that U(1),, and its fermionic partner in the NS sector can arise as the
theories of gapless edges of three-dimensional U(1) Chern-Simons theories with level k = 12
and k = 3, which will be discussed in more detail later in this section.

2.3 Wess-Zumino-Witten Models

Wess-Zumino-Witten(WZW) models are non-linear sigma models with the group manifold G
as target space. The current algebra of WZW models is known to be described by the affine
Lie algebra G. In this subsection, we briefly review the WZW models and present the prime
consequences.

Let us take the bosonic field g(z,%) which is valued in the unitary representation of the
semi-simple group G. The action of the WZW model has a form of

S= A%Tl Lz dzzTr[g_laugg_la“g] + % , dgyeaMTr [g—la“gg—laﬁgg—lmg] , (18)
where B denote the three-dimensional manifold whose boundary is the two-sphere $? and &
is an extension of the bosonic field g(z,Z%) to the three-dimensional manifold B. For the path
integral to be well-defined, the level k should be quantized. Having constructed an action
(18), one can show that the holomorphic current J(z) = —kdgg~' and the anti-holomorphic
current J(z) = kg1 g are conserved separately.

The primary states of the WZW models are associated with the affine weights of &, which
are labeled by non-negative integers referred to as affine Dynkin labels (& = (g, ty, "+, t4y)-
Here, r denote the rank of G. More precisely, the primary fields are in correspondence with
the weights in the integrable representation Pf defined as

.
Pf::{,a’,uJZO, OSZa}/ujSk}. (19)
=1

The comarks a}/ are combined with the Dynkin labels u; to produce the level k as follows.

.
k=,u0+2a}/,uj. (20)
=1

Because the physically relevant fields ought to be in the P’j, the level k is given by a positive
integer. WZW models possess a finite number of primary fields for a given k, therefore one
can consider them as rational conformal field theory(RCFT).

The central charge of a given WZW model and the conformal weights of primary states
can be computed via the Sugawara construction. Their explicit forms are given by

k(@) (a+2p)

_ xdmt&) =T b 21
k+hv B 2(k+hY) 1)
where hY and p are the dual Coxeter number and affine Weyl vector, respectively.
The torus partition function of a given WZW model takes the form of
2(r,8)= Y, 2a(DMass(%). (22)

0 Sepk
a,vePy
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Table 4: Outer automorphism of the affine Lie algebras are listed in this table.

G 0(6) Action of O(G)
Ayn VANES A(Aoa A1, T, AN—la AN) = (AN: A0, T, AN—Z, AN—l)
By Ly A(AO;M, te :AN—DAN) = (11,)\0; Tt >)'N—1>AN)
CN Zz A(Aoykp te ,7LN_1,)LN) = (AN,AN—L te ,11,10)

A(Ro, A1, 5 Aokt Aai) = (A1, Ao, Ay e+, A, Aog—1)
Ao, A1, Agket Aak) = (Aoges Ak—15 Agk—zs =+ 5 A1, Ag)
Doj41 Ly A(Ags A1, 5 Agies Agiey1) = (Ao, Aoier1 Aak—15 77+ 5 A1, Ag)

Eg L3 A(Ag, A1, 5 As, Ag) = (A1, As, Ag, Ag, A, Ao, Ag)

E; Ly A(Ag, Ay 5 Aey Ay) = (Ags As, Ay Az, Aoy Aq, Ag, A7)

When Mp; = 6y, we call Z(7,7) as a diagonal partition function, otherwise we refer it
as the non-diagonal partition function in what follows. The character y;(7) of irreducible
representation with the highest weight state (i can be computed by the Weyl-Kac formula. An
explicit expression for the character is given by

ZWEW e(w)eW(f))_f’

xp(T) = , (23)

where e(w) denote the sign of an element w of the Weyl group W. The computation of the
g-series of characters is done in SageMath [39].
The modular properties of characters are known as

T+ = 2 Taszs(0), £a(C1/0)= D Susa(o), o8

yePpk yePpk
where the modular matrices have the expressions of

2mi(hy—=g)
llﬁ = 5,&616 T2
T

2mi N AN Ao
Suy =N Z/:Ve(w)exp [—k_'_—hv(w(u+p), v+p)] .
we

(25)
The normalization constant N can be fixed by the unitary constraint of the S-matrix. The data
of WZW models, including the list of primary and the numerical value of S-matrix elements,
are accessible via the program kac [40].

Let us move our attention to the outer automorphism of the WZW models. We wish to
construct the orbifold theory of the WZW models by employing (4). In this paper, we mostly
focus on the non-anomalous Z, symmetry that arise from the outer automorphism of the affine
Lie algebra. More precisely, we focus on the Z, subgroup of the outer automorphism. The outer
automorphism O(G) is defined as the quotient of symmetry groups of Lie algebra G and affine
algebra G which will be denoted as D(G) and D(G) respectively. Here, the symmetry group
means the set of transformations preserving Cartan matrices. The symmetry transformation
of O(G) and the action of O(G) to an arbitrary weight A= (A9, Ay, -+, Ay) are presented in
figure 1 and table 4.

It has been known that the outer automorphism O(G) is isomorphic to the center of Lie
group G. To see this, let us define a subgroup B(G) of G with elements:

b= e—zfriAd)o-H , (26)
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Figure 1: Affine Dynkin diagrams and their outer automorphism are presented. The white node
and black node denote long root and short root respectively.

where the fundamental weight A&, can be obtained by the action of the outer automorphism
A on the zeroth fundamental weight &, = (1,0,---,0) (see table 4). One can show that the
group element b of B(G) indeed commutes with the arbitrary group element of G[41]. The
action of b to the arbitrary state |A> is given by

b|A) = e 2 AGM| A} (27)

Let us now take the Z, subgroup of the outer automorphism O(G). Note that not every
0(G) of the affine Lie algebra admit the Z, subgroup. Specifically, the outer automorphism of
ZI; with N odd and Eg cannot have the Z, subgroup. Except such cases, one can utilize the
Z,, subgroup of center symmetry to construct the orbifold partition function.

As an illustrative example, let us consider the SU(2)s WZW model. This model involves
seven primaries. Denoting the SU(2) fundamental weight by w, the SU(2) representations of
the seven primaries are A; = jw, for j =0,1,..,6. Since the outer automorphism 0(G) sends
@ to &1, the phase factor of (27) becomes (—1)/. In general, one can read the Z, action in
a similar manner for the G, WZW model as long as the outer automorphism of G has a Z,
subgroup.
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2.4 Chern-Simons Theories : Bulk Descriptions

We discuss here the connection between two and three dimensional theories, often referred
to as the bulk-boundary correspondence, established for two-dimensional rational CFTs and
three-dimensional Chern-Simons theories.! We mainly consider the WZW models as two-
dimensional theories in what follows.

The Chern-Simons theory provides a macroscopic approach to understand the physics of
the both integer and fractional quantum Hall states. When a given system in such a topological
phase is defined on a manifold with boundaries, a certain two-dimensional chiral RCFT de-
scribes the modes that live at the edges. To be more precise, all the states of the current algebra
and its representations can be recovered by quantizing the three-dimensional Chern-Simons
theory on the manifold with boundaries.

It was further shown recently in [42] that each character of the current algebra can be
computed by direct evaluation of the Chern-Simon path-integral in the presence of a Wilson
line. This implies that one can describe the chiral primary on the boundary as the non-trivial
Wilson lines allowed in the bulk. A global symmetry which acts on the edge modes can then
be elevated to a one-form global symmetry under which the Wilson lines transform. We can
also show that the conformal weight of a chiral primary is the same with the spin of the
corresponding Wilson line.

Sometimes a global symmetry of a boundary CFT has a 't Hooft anomaly which prevents us
from the gauging the symmetry in a consistent manner. For instance, let us consider an orbifold
B from gauging an anomalous discrete symmetry. The modular invariance of the partition
function Zz could determine the spectrum in the twisted sector. However the anomalous
behavior of the discrete symmetry is then reflected on the fact that such twisted sector is
incompatible with the action of the symmetry.

We will explain below what the consequence of the above two-dimensional 't Hooft anom-
aly could be in the bulk, and discuss the conditions for non-anomalous symmetry necessary to
define either an orbifold 53 or a fermionic theory F on the boundary and their bulk descriptions
as well.

U(1); Chern-Simons theory Let us start with the U(1) Chern-Simons theory with level k,

SzifA/\dA. (28)
4

For even k one can define the theory on any manifold. The Chern-Simons theory corresponds
to the theory of a free compact chiral boson ¢ of radius R = v/k. This is not the case for
odd k where the theory is defined only on spin manifolds and depends on the choice of spin
structure.

When the Chern-Simons theories are applied to the fractional quantum Hall systems, one
can describe the world-lines of quasi-particles as the Wilson lines.

For even k, we have k distinct Wilson lines labelled by the U(1) charge n,

W, (C) = exp [inf A] , (29)
c

forn=0,%1,£2,.,+(k—2)/2,k/2. This is because the Wilson line W}, has a trivial vacuum
expectation value, and thus the lines with n and n + k are identical. One can also show that

We focus on the gauge interactions but bear in mind the presence of the gravitational interactions in the
correspondence.
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W,,(C) has spin

n2

S:ﬂ.

(30)
The spin of W, (C) is defined modulo one, which is reflected on the fact that the trivial Wilson
line W;(C) carries integer spin k/2. Note that the Wilson line W,, corresponds to the two-
dimensional chiral primary of weight h = n?/(2k) via the bulk-boundary correspondence.

On the other hand, (30) says the Wilson line W, (C) carries half-integer spin for odd k.
This implies that, although W, (C) and W,,,(C) induce the same holonomy, their spins differ
by 1/2. For odd k, the Wilson line labelled by n can thus be identified with that by n + 2k,
namely, there are 2k distinct Wilson lines W, (C) for n =0,+1,+2,..,+(k — 1), k.

The U(1); Chern-Simons theory has a Z; global one-form symmetry which acts on the
U(1) gauge field as follows

1
A— A+ EG’ (31)

where the transformation parameter € is closed and has integral periods

f €E€2NL. (32)

It is useful to describe the symmetry transformation as an operator U, associated with a group
element of the symmetry. In the case of the Chern-Simons theory, U, for the Z; one-form
symmetry is now associated with a one-cycle, and is given by the Wilson line

Ug:ezmn/k(C) = Wn(C) . (33)
The Wilson lines W,(C”) also provide operators charged under the one-form symmetry. More
precisely, the line W,,(C) rotates under (31) as follows

W, (C) —s eimJee/ky (C) =™ W, (C), (34)

where fc € = 2mn with an integer n. One can also express the above transformation rule in
terms of operators as

2ninm

Ug:eZWi”/k(C)Wm(C/):e k Wm(C/): (35)

where C is a circle around the loop C’. Note also from the operator relation (35) that the
generators Ug_,2xin/c(C) themselves are charged under the Z; symmetry. As explained in [43],
this implies that the Z; symmetry is anomalous.

Let us now discuss how to gauge the one-form global symmetry. To this end, we restrict
our attention on a non-anomalous subgroup of the Z; symmetry. The generators U, of a non-
anomalous symmetry are required to be neutral under the symmetry. In general, one can show
from (35) that the Wilson line W,(C) satisfies

W, (C)W,(C") = 2™ )W, (C") , (36)

where s = n?/2k is the spin of the line and the phase can be understood as the statistical
phase. Therefore, the symmetry generators U,(C) have to be chosen as the Wilson lines of
either half-integer spin or integer spin. For k = 4p (p € Z), we see the U(1)4, Chern-Simons
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theory has the non-anomalous Z, one-form symmetry, which is generated by the Wilson line
W,—2,(C) of spin p/2

Ug=1(C) = Waesp(C) = exp [ i(2p) JCA],
(Upea () =1. (37)
The Z, one-form global symmetry acts on various Wilson lines as
Uge 1 (CIW,(C) = (—1)"'W,(C), (38)

which is nothing but the three-dimensional uplifting of the Z, action (14). Summing over all
possible insertions of U,__;(C) accounts for gauging the Z, symmetry. A typical insertion is

(Ug=—1(C)) :JDA elaz [ AndA+i(2p) [ ANG(C)
=JDB ei‘%rfB/\dBHbackground terms)’ (39)

where dB = 2dA+ 2w6(C). We should stress that the field redefinition B is allowed because
its first Chern number takes an integer value. As a consequence, the Z, gauging results in the
U(1) Chern-Simons theory with level k = p.

When p is odd, the U(1), Chern-Simons theory is a spin topological field theory and de-
pends on the choice of the spin structure. From the Z, gauging approach, this fact can be
explained by the vacuum expectation value of the Wilson line U,__;(C) that carries h = p/2
half-integer spin.

As a prominent example, one can take the bosonic theory B as the U(1);5, Chern-Simons
theory. As discussed above, the corresponding fermionic theory F is the N = 1 supersymmetric
minimal model. Once the Z, one-form symmetry is gauged, we end up with the U(1); Chern-
Simons theory. The U(1); Chern-Simons theory has 6 inequivalent lines labeled by

n=0,%1,£2,3, (40)

whose spins are 0, 1/6, 1/6, 2/3, 2/3 and 3/2. Interestingly, these lines correspond to the
primaries involved in the NS partition function (17) of the N’ =1 SUSY minimal model. This
is not a coincident but the U(1), with odd p is closely related to a fermionic model associated
with the U(1),, Chern-Simons model in general.

K-matrices One obvious generalization of the Abelian quantum Hall state is a theory of N
U(1) gauge fields characterized by a K matrix,

S=— | ANdA . (41)
4r
The gauge invariance of the action requires that all elements of the matrix K have to be inte-
gers. When the diagonal elements of K are even, the theory becomes independent of the spin
structure. Otherwise, the theory is a spin topological field theory.
The Wilson line labeled by an N-vector n; can be expressed as

W=(C) = exp [iniJ Ai] , (42)

C
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and carries a spin s = (K'/n; n;)/2 where K i is the inverse matrix of K; j- However, not all
Wilson lines are independent. This is because certain Wilson lines become trivial, and any
Wilson line dressed by trivial Wilson lines can be identified with itself. For instance, when the
diagonal elements of K;; are all even integers, there exist N trivial Wilson lines,

W;(J,(C)zexp[iKijJAi], j=1,2,--,N, (43)
c
each of which induces a trivial holonomy and has an integer spin s = K;;/2. Then each line
W;(C) can be identified with the Wilson lines W5, (C) with n} = n;+K;;p; where p; are arbitrary
integers. If a certain diagonal element of K;; is an odd integer, some of Wﬁj have half-integral
spins and cannot be ignored. Then, some of p; are constrained by even integers accordingly.
When the K-matrix is chosen as the Cartan matrix of the Lie algebra of a simple Lie group G,
the Abelian Chern-Simons theory (41) can describe anyons of the non-Abelian Chern-Simons
theory with the gauge group G and level one k = 1. A typical example is the “equivalence”
bewteen U(1), and SU(2); Chern-Simons theories. In fact, it can be viewed as the bulk real-
ization of the Frenkel-Kac construction where the level-one WZW model on G can be described
as free bosons on the root-lattice of g [44, 45].

Non-Abelian Chern-Simons theory The non-Abelian Chern-Simons theories in turn give
rise to the non-Abelian anyons. A prominent example is the SU(2) Chern-Simons theory with
k = 2 which describes the bosonic Moore-Read states[46]. It is thus plausible that the non-
Abelian Chern-Simons theories provide low-energy effective theories for the non-Abelian quan-
tum Hall states, although the full description needs more sophisticated elaborations [36, 19].
When a non-Abelian Chern-Simons theory with gauge group G and level k is placed on a man-
ifold with boundaries, the modes on edges can be described by the WZW model on G with
level k.

Although it is fun to review various features of the non-Abelian Chern-Simons theories to
some extent, we mainly focus on the discussion about some aspects of discrete symmetries in
what follows.

As a demonstration, let us consider the SU(2) Chern-Simons theory with level k. The
Wilson lines W;(C) are now characterized by the SU(2) representation j, and their spins
s = j(j +1)/(k + 2). This model has the one-form Z, center symmetry, generated by the
Wilson line U,__(C) associated with the SU(2) representation of j = k/2,

Ug=—1(C) = Wj2(C). (44)
The above generator has spin s = k/4, and it implies that

Uge 1 (C),ge 1 (C") = (1) U,y (C1), (45)

where the loop C is around the loop C’. The Z, one-form symmetry is thus free from the 't
Hooft anomaly only when k is even. Otherwise, U,__;(C) is charged under Z, and generate

an anomalous Z, symmetry. On the other hand, a charged operator W;(C) rotates under Z,
as

Uy—a (CIW;(C) = (1) W;(C). (46)

The transformation rule (46) can be also understood from the expectation value of the two
linked loops in the j and j’ representations given by

2 /
Sip =\ g Sin[ 5 @i+ D + ). 47)
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The matrix S coincides with the modular S-matrix of the corresponding SU(2) WZW model
with level k [16]. From (47), we can see that

which is consistent with (46).

In general, the generator of non-anomalous Z, center symmetry of a WZW model on G is
given by Wilson line of a representation R whose spin takes either an integer or a half-integer
value.? One can then readily determine the Z, action by computing the ratio of two modular
S-matrix elements,

S/
Ug—1(CIWr(C) = 5

Wr/(C), (49)
OR/
which is in perfect agreement with the action of automorphism group (27).

From the boundary point of view, a symmetry operator Ug(C) of spin s is related to a
Verlinde line £; associated with a primary of conformal weight h = s. The Verlinde line is a
topological defect line that preserves the left and right chiral algebra [48]. It acts on a primary

state \qbk) by

S;
L | ). (50)

So,k

Ly |dx) =

Here, S; denote the (i, k) entry of S-matrix where the conformal weight of i-th primary is
given by h = h’. The vacuum representation is labeled by i = 0.

3 Models with Unbroken SUSY

We propose that the WZW models listed in the table 1 can be fermionized to supersymmetric
theories having supersymmetric Ramond vacua. There are four different types of such WZW
models. We choose one illustrative example of each type, and demonstrate explicitly that they
satisfy the SUSY conditions. We put emphasis that the SU(12);, Sp(12); and SO(24); WZW
models can be described as theories of compact bosons on the root lattices of the Lie groups
G.

All of those models except the SU(4), WZW model are recently shown to have N' = 1
supersymmetric vertex operator algebras [35], which supports our proposal.

A-type We define the A-type models as the WZW models on the special unitary groups having
the primary of h = 3/2. The A-type involves SU(12),, SU(6),, SU(4); and SU(2)g WZW
models, as listed in table 5. Note that the models in A-type obeying the constraint kN = 12.

As an illustration, let us choose the SU(12) WZW model with level one. We start with the
diagonal modular invariant partition function of the model

11

Zp(1,7)= ).

2
Xi(T)‘ . (51)
i=0

Here y; (i =0,1,..,11) denote the characters for the primaries whose SU(12) representations
and conformal weights h; are summarized in table 6. The Z,, center symmetry of the model
is known to be anomalous, but has the non-anomalous Z, subgroup. The Z, center symmetry

2The possible anomalies of Z, symmetry in bosonic CFTs are carefully discussed in [47]. In particular, Z,
symmetry becomes anomalous when the generator has spin either }1, or % modulo 1.
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Table 5: List of A-type WZW models satisfying the supersymmetry conditions after the fermion-
ization. The four theories in this table have the non-anomalous Z, symmetry, a subgroup of
the center symmetry. The difference between Z and Zj is given by a constant for each model.
It suggests that their fermionic theories in the correspondence have supersymmetric Ramond
vacua.

G || m | G || Z | G || Zm | G || %
SU(12), | 11 | Z— 288 || SU(4); | 2 | Zg—32 || SU(6), | EY | Zg—72 || SU(2)6 | 2 | Zp—4

Table 6: SU(12),: primaries labeled by i are characterized by weights h and SU(12) Dynkin la-
bels. Their characters are denoted by y;(7). We highlight the primary related to the Z, subgroup
of center symmetry Z,,.

i|h Rep Zy i | h Rep Zs
0| 0 [1;0,000,0000000 | + || 6 [ 3 [ (00,0,0,0,0,1,0,0,0,0,0) | +
1|3 | 0:1,00,0,0000000 | - || 7 | 2| (0;0,0,0,0,0,0,1,00,00) | -
2| 2 1 (00,1,0,0,0,0,0,0000) | + || 8 | # | (0;0,0,0,0,0,0,0,1,0,0,0) | +
3| 2 | 000,1,0000,0000 | - || 9| 2 | 0;0,0,0,0,0,0,0,0,1,0,0) | -
4| %] 00,0,0,1,0,0,0,0000 | + || 10| 2 | (0;0,0,0,0,0,0,0,0,0,1,0) | +
512 (000001000000 | - || 11| 3 | (0;0,0,0,0,0,0,0,0,0,0,1) | -

is generated by the Verlinde line defect £;_3/, associated with the primary of h = 3/2. This
implies that the Z, action on each primary of h; is given by

S .
Zoy: i) — Licspalhi) = %Ihﬁ = (1) |h;), (52)
which is consistent with (27). Here Shi,hj denotes (i, j)-entry of the modular S-matrix where
the conformal weights of i and j-th primaries are given by h; and h;. We should stress here that
the primary of h = 3/2 is even under Z,, and thus the Z, center symmetry is non-anomalous.

The partition function of B = B/Z, is given by summing over the discrete Z, gauge back-
grounds (4),

Zp(T,7) = %[2(1,1)(@ )+ Zig 1y(T, ) + Z(1,6)(T, T) + Z(g. (7, f)] , (53)
where
Zayy(t, %) =Zg(7, %) = Trﬂu[qLO_c/z“qio—c/Z‘*],
Zig (T, T) = TrHu[E%qLo—C/24qio—c/24]’ 5
Z(g)(7,7) = TrHt[qLO_C/Z“qio—C/%]’ (54)

Lo—c/24—io—c/z4]

Zg (T, 7) ETrHt[E%q q

Here, H,, (H,) stands for the Hilbert space of B on S in the untwisted (twisted) sector and g is
a group element of Z,. It is straightforward from the Z, action (52) to determine Z, 1)(7, T),

Z(g,1)(T,’L_')= Z |)(i(T)|2— Z |){i(T)

i even i odd

2
>

(55)
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and the rests of (54) can be also readily obtained by performing modular transformations on
Z(g,1)(7,T). To be more precise,

Z1,0)(7,T) = Z(g1)(—1/7,—1/7) (56)
= {(Xofé + X175+ Xada+ X7Hn1 + XsT10) F (C-C)} + |X3|2 + |X9 ’

5

and

Z(g’g)(’f,f) =Z(1’g)(T+ 1,’34‘1) (57)
2

B

= {(_Xofé + X175 — XaXa+ X7Hn — XsZ10) + (C~C)} + {X3|2 + |X9

where we used the modular S- and T-matrix (25) for the last equality of each equation. The
orbifold partition function thus becomes

Zp(t,7)= Z |Xi(T)|2 + {(Xl)?s +x7711) + (CC)} + |X3|2 + |X9{2~ (58)

i even

Since y; — x5 = 12 and y1; — x7 = 12, we finally see that the difference between Zz and Zj3
is constant

Zz(t,7)=2Zp(7,7)—288. (59)

It strongly suggests that the generalized Jordan-Wigner transformation could map B to a su-
persymmetric theory F with supersymmetric vacua.

To see this, let us apply (5) to construct the partition functions of the corresponding
fermionic theory F. One can first express the NS partition function as

- 1 - - - _
2350, 1) = 2] Z0(0. 1) + 2 (1. 8) + Z,)(7. 1)~ Zg (7, ) ] (60)
Plugging (51), (55), (56), and (57) into (60), one obtains

ZB(r, 1) = |X0 +X6|2 + \Xz "')(4|2 + \Xs "‘)(10|2
=S + 2| )|,

where the NS-sector characters are given as

(61)

F5(2) = xo(T) + 26(7) =q % (1+143g +924¢7 + -+ ),
leS(T)=X2(T)+X4(T)=X8(T)+X10(T) (62)
=qi 72 (66 +495q2 +2718g + -+ ).
The above two characters (62) has appeared in [34] as the solutions of the second-order mod-

ular linear differential equation for I'y. Similarly, one can obtain the partition functions in
other sectors as follows,

—_— _ 1 _ B _ _
2555, 1) = 5[ 20,17 D)+ Zg 1) (7. 1) = 21,9 (7, B + Zg (7, T)
2

3

=lxo—x6|" + 12— xal” + x5 — 110
78z, 7) = %[Z(Ll)(r, )= Zig 1y (T, ) + Z(1,9(T, ) + Z(g (7, 7) | .
=t 2l 4 x|+ V2| + [VEr
ZR(z,7) = %I:Z(Ll)(’t, )= Ze ) (1. F) — Z1,9(7, B) — Z(g (7, 7) |

== 25"+ |xr— | =122 +122.
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Table 7: SU(2)4: primaries labeled by i are characterized by weights h and SU(2) Dynkin la-
bels. Their characters are denoted by y;(7). We highlight the primary related to the Z, center
symmetry. The partition functions for F in the NS and R sectors are also presented.

i|h| Rep |Zy||i| h | Rep |Zy||i|h| Rep |Zy||i| h | Rep | Zy
ololwo| +[[2]5]|6n]| - el +l6|n] @3] -
2loe |+ 132wy | - ||s|2|es| +

P P T S NN

Table 8: SU(4)5: primaries labeled by i are characterized by weights h and SU(4) Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the Z, subgroup of
center symmetry Z,. The partition functions for F in the NS and R sectors are also presented.

il|h Rep Zo|l i | R Rep Zy || 1| R Rep Zy|| 1| R Rep Zy
0[0[@000 [+ ]|[5]|&E]0r2zo]-[10]F]@e|+]15]2] 0102 | -
11210003 |- |65 @®200|+|[11]& 002D |- 16| 2 | @LoD |+
2210030 |+ (|72 |@oon|-|12] % |@wo2n|+||17|2|aoLy | -
318 ©300|-1{8]28]w©210|+]13|2|020D]- 18] ©LLD ]|+
41810012 [+ 9] 2| @100 |- |14|%] @010 |+ 19]2| @110 -

2

N T

>

z3= ‘Xs + 19’2"")(7 + X11‘2"“‘/E)fl‘2‘*"ﬁ){g'z‘i"ﬁxlg'zﬂﬁx15‘2+‘\/§x17‘2+'\/§;519'2_

Based on the facts that the Virasoro primary of h = 3/2 appears as the NS vacuum descendant
and Z; becomes constant, it is likely that the fermionic theory constructed from the SU(12);
WZW model is supersymmetric.

We notice that the SU(12); WZW model can describe the Abelian quantum Hall state at
filling fraction v = % discussed in [49]. To see this, we consider an action below

1 . : 1 .
S=—K:: | ANdA +— B AdA", 64
47 ”f anql 64)

where B is the U(1) electromagnetic background field. Here the K-matrix K;; is the Cartan
matrix of su(12) and ¢ =(1,0,0,---,0). The filling fraction is then determined by
iy 11
— (r-1 _
v=(K")qq;= IER (65)
To make the discussion concise, we skip analyzing the other examples in the A-type models
in details, but rather provide a few essential facts in tables 7, 8 and 9 from which one can easily
construct the partition function of F in each spin structure.

A’-type Among the WZW models on SU(N), we pay special attention to the SU(4), WZW
model. This model contains three h = 3/2 primaries of the Dynkin labels (0; 0,0, 4), (0; 4, 0,0)
and (0; 1,2, 1). The Verlinde line associated with the representation (0; 1,2, 1) does not gener-
ate a discrete symmetry. Moreover, the lines for the representations (0; 0, 0,4) and (0; 4, 0,0)
generate the Z, center symmetry rather than the Z, symmetry. It is the line defect £;_; that
realizes the non-anomalous Z, symmetry of our interest, which is a subgroup of the center
symmetry.

Let us then gauge the above Z, symmetry. Although the orbifold theory B = SU(4),/Z
has the modular invariant partition function disobeying (12), it has not only a primary of
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Table 9: SU(6),: primaries labeled by i are characterized by weights h and SU(6) Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the Z, subgroup of
center symmetry Zs. The partition functions for F in the NS and R sectors are also presented.

i| h Rep Zy i h Rep Z, i h Rep Zy
0] 000000 |+ 7|35 ]|©oooLy| - | 14|5%] 101000 | +
12000002 |+ | 8|2]0©0011,0| - ||[15] 2 | (01,0001 | +
2| % 1000020 [ + | 9|3 |©011,00 | - || 16| & | 100010 | +
3] 32| ©00200 | + ||10]| 2 |@©11,000 | - |17 ] ] ©00101 | +
41 % 1002000 | + || 11| 2 | (11,0000 | - || 18| 52 | (0;1,0,0,1,0) | -
5| 2020000 | + |12 3 | (001010 | + || 19| 2 | (1;0,0,1,0,0) | -
6| 32| 100001 | - ||13] B | 010100 | + |20 5| 001001 | -

2

7%= %0+ x3‘2+‘)(1 + ){2'2+‘X4 + Xs'zﬂ)(lz + X15‘2+‘X13 + )514‘2""%16 + x17

J

Z;= |XG+X8|2+ |X9+)611|2+ |X18 +Xzo|2+ |‘/§X7|2+ {‘/5119|2-

Table 10: SU(4)4/Z,: primaries labeled by i are characterized by weights h. Their characters
i are expressed by the characters of SU(4), WZW model. We highlight the primary related to
the Z, symmetry.

i|h Ti Zy || i | h i Zy || i | h Ti Z,
0] 0 | xaoo0 + 10040 | + || 4] % | X010+ 20030 | - 3 xeo20 | +
1] 3 | X004+ X000 | * || 5| % | 0103+ X301 | - 2| 20202 | +
2 % X(2;0,0,2) T X(0:2,2,0) 61 1 | xao12+txa210 | + || 10 % X(1;1,1,1)

3 f_?, 20,022 T X2:200 | - || 7 % X©0;1,21) T X101 |+

h = 3/2 again but also a new quantum Z, symmetry generated by the Verlinde line £;_, /2
associated with the primary of h = 3/2. To be more precise, we present the orbifold partition
function below,

7
Z5(r,2) = > |1l + 2| 78| + 2] 70|+ 2| 710" (66)
i=0

where the conformal characters y(7) for B are defined in table 10. In addition, table 10
summarize the Z, action on the primaries of orbifold theory B.

Since Z, is non-anomalous, we can further gauge the symmetry which leads to the orbifold
partition function,

Ziz,(m = D a2 D) |5+ (st 2ads) +(9),  ep
i=0,1,6,7 j=8,9,10

that finally differs to Zz(7, 7) by the constant
Zg(T,f)—Zg/iz(T,f)Zf%. (68)

It is then natural to expect that the orbifold SU(4)4/Z, can be fermionized to a supersymmetric
theory.
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Table 11: List of C-type WZW models satisfying the supersymmetry conditions after the fermion-
ization. Each of three models in this table has a Z, center symmetry. Based on the fact that
(Zs — Zg) is constant, their fermionic models are expected to have supersymmetric Ramond
vacua.

G |c| zg || G |e| 2z || G |c| 2z
Sp(4)s ‘ 5 ‘ Z5—16 H Sp(6), ‘ 7 ‘ Z5—36 H Sp(12); ‘ 2 ‘ 75— 144

Table 12: Sp(6),: primaries labeled by i are characterized by weights h and Sp(6) Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the center symmetry
Z,.

i|h| Rep |Zy||i|h| Rep |Zy||]i|h| Rep |[Zy||i|h]| Rep |2
0[0]@000 | +|3]3|@woro|+]|6]f|wLon|-|9]F]w0LLo]| -
1120002 |+ ||[4]1]@1Lon |+ ||7]2%]@©020]+
22| @oon | - |52 0oy | - ||8] 2| @200+
Indeed (5) gives the fermionic partition functions below
~ ~ 12 ~ ~ 12 ~ ~ |2

ZB =|go+ 1| + |6+ Hr| +2|Hs+ 0|

7N = 50— |2+ |F6— 27" + 2|75 — 70|

B =\go— 1| +|fe— 2| +2|Hs—Fo 69)

Zy = |22+23{2+ |)?4+925~2+ |‘/§)?10~2:
Z;: |)22_)?3{2+ |f4_f5}2 =62+ 02

We can see that the NS vacuum has the primary of h = 3/2 as a descendant, which is able to
play a potential role as the supersymmetry current. Based on the fact that Z ?_-(T, 7) becomes
constant, we also see that there are non-trivial cancellations between bosonic and fermionic
contributions beyond the vacuum. Since the model under study has no free fermion, it could
be explained by the existence of the supersymmetry.

C-type As presented in table 11, the C-type includes the WZW models on the symplectic
group Sp(2N) that obey the supersymmetric conditions after fermionization. They are Sp(4)s,
Sp(6),, and Sp(12); WZW models, all of which have a primary of h = 3/2. The rank and the
level of the each C-type model are also constrained by a relation kN = 6.

We choose the Sp(6), WZW model to discuss the fermionization in details. The modular
invariant of partition function of this model is

9

ACRIEDNPACS

i=0

2 (70)

where y; are the conformal characters for the primaries of h;. See table 12 where the group
representation and the conformal weight h; of each primary are summarized.

The model has the Z, center symmetry, generated by the Verlinde line defect £_3,, asso-
ciated with the primary of h = 3/2. One find the transformation rules for ten primaries of the
model under Z, in table 12.

Let us consider the orbifold B = B/Z,. Based on the Z, actions and modular matrices, one
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Table 13: Sp(4);: primaries labeled by i are characterized by weights h and Sp(4) Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the center symmetry
Zz .

i|h| Rep |Zy||1 ]| h Rep | Zy || i |h | Rep [Zy|| i |h | Rep | Zy
olo]@oo| + (3|2 w2l +]6]l2]@wrn] - [[9]z]030] -
1121003 + [[4]2|@10] - ||7|3]|@20]| +
202 @oD| + |55 |01 - [|[8]1]@©21)] +

Z¥ =|1o+ X1‘2+‘X2 + 13‘2+\x7 + s, 2% = 24 +xs12+\\/§)(6i2+\*/§)(9\2-

Table 14: Sp(12),: primaries labeled by i are characterized by weights h and Sp(12) Dynkin
labels. Their characters are denoted by y;(7). We highlight the primary related to the center
symmetry Z,. The partition functions for F in the NS and R sectors are also presented.

Rep Zo,
(1;0,0,0,0,0,0) | +
(0;0,0,0,0,0,1) | +
(0;0,0,0,0,1,0) | -

Rep Zo || 1| R Rep Z,
(0;1,0,0,0,0,0) | - || 6 % (0;0,0,1,0,0,0) | -
(0;0,0,0,1,0,0) | +
(0;0,1,0,0,0,0) | +

oA W~
SN RS I

N = Of~
Q& e of =

2 =po+ [ +ua+usfs 75 =|ra+ xa[+ V204"

can compute various twisted partition functions

Zen= 2. lul'= > |u

i=0,1,3,4,7,8 i=2,5,6,9

2

J

_ _ _ _ 1
Zagy = |x2|" + 2" + {rods + 2324+ 2576 + 2778) + ()}, 71
2 2 _ _ _ _
Zigg) = |){2| + |X9{ + {(—Zoll — X3Xat XsXe— X7Xs) + (C-C)} )
which leads to the orbifold partition function below
. 2 - 2
Zg= > |ul + D\l + (xsi6 + ). (72)
i=0 i=7

Since ys — x¢ = —6, we can see that Z; and Z differ by a constant 36. It is then natural to
expect that a fermionic model dual to the model of our interests respects the supersymmetry.
Applying the fermionization with use of (71), we indeed verify that

2

5

2 (73)

>

25 = |0+ 11 |” + |2s + 2al” + |27 + 28
7y = |X0—X1|2+ |23 —xal® +1x7— 28
ZR=|ys+ 26"+ |V22| + [V2ro

2R ==l =6

As proposed, the model has the h = 3/2 Virasoro primary as a vacuum descendant, and the
Z}} becomes an index, namely constant.

We do not repeat the same exercise for other C-type WZW models listed in table 11. In-
stead, we provide a summary of how fermionization computes the partition functions of F in
the four spin structures in table 13 and 14.
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Table 15: List of D-type WZW models satisfying the supersymmetry conditions after the fermion-
ization. Each has a non-anomalous Z, symmetry, a subgroup of center symmetry. Since Zz and
Z differ by constant, we expect that their fermionic theories have supersymmetric vacua in the
Ramond sector.

Ge |c| 2zg || G || zg || G |c| 2
S0(8); ‘ B ‘ Z5—128 H S0(12), ‘ 11 ‘ Zs—144 H S0(24); ‘ 12 ‘ Z5—576

N

Table 16: SO(12),: primaries labeled by i are characterized by weights h and SO(12) Dynkin la-
bels. Their characters are denoted by y;(7). Primaries i = 1, 2, 3 are the generator of Z’g, Zg , Zg,
respectively. We highlight the primary related to the Z, subgroup of the center symmetry Z, X Z,.

i| h Rep z5 |28 |zS || i | h Rep 7| 78 | 28
0] 0] 2000000 | + | + |+ 7|2 [@1,0000D] + ]| - | -

1] 2] 0000002 | + | + |+ 88| wo0001n| - |+ -

211 | 0200000 | + | + | + || 9% ] aL00000]| - |+ -

3| 3 | 0000020 | + | + | + | 10| 3 | ©000L00) | + | + | +
41 1| 1:00000D | - | - | + [[11] 2 | ©01,0000 | + | + | +
502 ©1,00010 | - | - | + |12 2] ©001000 | - | + | -

6| 2| 1000010 | + | - | -

D-type From table 15, the D-type models refer to the SO(2N ), WZW models containing
h= % primary. One can see that SO(24);, SO(12), and SO(8); WZW models are the member
of D-type where the rank and the level are constrained by the condition kN = 12. We choose
the SO(12), WZW model as an interesting example of the D-type models, and verify that it
has all the features proposed above.

The model of our interests is a rational CFT with ¢ = 11 and has 13 primaries whose
S0O(12) representations and conformal weights can be found in table 16. Note that there
are three candidates generating Z, symmetry. They are Verlinde defects associated with the
primaries of h = 3/2 and h = 1. Former and latter generate the Z’;‘ and Z’ZB symmetries whose
actions on 13 primaries are presented in table 16.

One can show that gauging the Zg results in the non-diagonal modular invariant partition
function,

2 (74)

12
Zpyz8(T,T) = |20 +12|2 +| +X3|2 +ZZ Fz
i=8

which agrees with the diagonal modular invariant partition function of the SU(12); WZW
model (51). The conformal embedding [50] can explain the above coincidence.
Let us now move on the the orbifold B = B/ Z’;. From the Z‘;‘ action in table 16, one obtains
12

Zan(©, D)= D [z, Zen(n D= |u@) = D] |u@),

i=0 ie At ieA-
Za,g) (7, %) = { (xof1 + X203 + 267 + XsTo + X10411) + (c.0)}
2 2 2 (75)
+|X4(T)| +\)(5(T)| +|)(12(T) )
Zg (T, 7)= { (_XO)Zl —XoX3— XeX7+ XsXo— 110)211) + (C-C)}
2 2 2
+|X4(T)| +\X5(T)| +|X12(T) >
where A* ={0,1,2,3,6,7,10,11} and A~ = {4,5,8,9, 12}.
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Table 17: SO(24),: primaries labeled by i are characterized by weights h and SO(24) Dynkin la-
bels. Their characters are denoted by y;(7). Primaries i = 1,2, 3 are the generator of Z’;‘, Zg , Zg,
respectively. We highlight the primary related to the Z, subgroup of the center symmetry Z, x Z.

The partition functions for F in the NS and R sectors are also presented.

i|h Rep zy |75 | ZS || i | h Rep zy | 78 | Z§
0| 0] (10,0,0,0,0,0,0,0,0,0,0,0) | + | + + % (0;1,0,0,0,0,0,0,0,0,0,0,0) | - + -
%1 (0;0,0,0,0,0,0,0,0,0,0,0,1) | + | - 21 (0;0,0,0,0,0,0,0,0,0,0,1,0) | - | - | +
NS 2 R 2
Zr =‘Xo+J(1 ) Z}'=‘XZ+X3"
The partition function of /3 is then given by
7 , & )
Zg(T,’_F)=Z|Xi(T)| +Z | 2D + xsito + 2o 7s (76)
i=0 i=10
which differs from Zg by a constant value 144. This is because yg — yo = —12. We thus

expect that (5) with Z’; would transform the SO(12), WZW model to a fermionic theory that
preserves the supersymmetry.

Indeed, applying the generalized Jordan-Wigner transformations, one can see from the
partition functions in four spin structures below

2

5

2

b

Z0(7,7) = |X0+X1|2+ |Xz+l3{2 + |X6+X7~2+ |X10+X11
Z0(7,7) = |Xo—)(1|2+ |Xz—l3~2 + |Xs—l7~2+ |X10—7511
ZR(v, %) = |5 + 20| + [V2ra|” + [V2us|" +|V2110|"

2

(77)

25, 8) = |1 — 20| =122

that a candidate for the supersymmetry current appears a descendant of the vacuum, and that
the partition function Zj is constant. Thus we propose that the SO(12), WZW model can
fermionize to a supersymmetric theory. It is consistent with the recent result in [35] that this
model has the A/ =1 SVOA.

We avoid doing the same exercise for the SO(24); WZW models, but present useful facts
in table 17 to study the fermionic models dual to them. As a final remark, it turns out that
the SO(24); WZW model can be fermionized to the well-known model exhibiting the Co,
moonshine phenomenon [31, 51].

SO(N)s-type It is easy to show that every WZW model on the SO(N) group has a primary
of h = 3/2 when the level k = 3. We can further propose that the SO(N); WZW models can
be mapped to supersymmetric models via the fermionization.

Let us illustrate SO(8); WZW model as a representative example. The model under study
has 24 primaries whose SO(8) representations and the conformal weights are presented in
table 18. Note that the model has Z/z‘ X Zg X Zg symmetry, each of which can be generated by
the Verlinde lines associated with three h = 3/2 primaries. Gauging any of these Z, symmetries
would lead to essentially the same orbifold, which manifests the triality of SO(8).
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Table 18: SO(8)4: primaries labeled by i are characterized by weights h and SO(8) Dynkin labels.
Their characters are denoted by y;(t). Primaries i = 1,2,3 are the generator of Z4, 75,75,
respectively. We highlight the primary related to the Z, subgroup of the center symmetry Z, x Z.

i | h Rep zy | 25| ZS || i | R Rep zy | 75 | z§
0]0/[@0000 |+ |+ ]+ 123 ]w@oLn|+]|+]+
12100003 |+ | -|-|13]2]|@wLoL0|+ |- -
2 | 23 103000 | - |+ | - [|14] 2| ®wooL| - |+ | -
31300030 - | - |+ ||15|2|@wLo0n]| - | - |+
418 1@0002 | + |+ |+ |16 %] @2000]|+|+|+
5 1% @o00n | + | - | - ||17|&]0002D |+ | - | -
6 | 2| ©1020 | - | +| - [|18| % | 21000 ]| - | + | -
712102010 - | - |+ ||[19&]00012]| -] - |+
8 | 5 0020 | + |+ |+ ||20] 2| @®w0o100 | + |+ |+
9 1202000 | + | - | - |20 Z|©010D |+ | - | -
10| 2101002 | - |+ | - |[22] £ | @©1100 | - | + | -
11| %5]@0010]| - | -]+ |[|[23|2|©0oLL,0]| -] -]+

Choosing the Zg to construct the orbifold 5. Based on the Zg action, one can show that

_ 2 2
Zgn(m )= 2 [l = 25l
i even i odd
Za,g(7,7) = Z (XiXi+2 +C0)+ Z (XiXi+2 +c0),
i=0,4,8, i=1,5,9, (78)
12,16,20 13,17,21
Zg (T, T)=— Z (XiXi+2 +C0)+ Z (XiXi+2 +c0) .
i=0,4,8, i=1,5,9,
12,16,20 13,17,21

It implies that the orbifold partition function Zz(7, 7) becomes

_ 2 _
Zp(7,7) = Z ||+ Z (XiXi+2 +c0), (79)
i even i=1,5,9,
13,17,21

which disagree with Zz(7, 7) only by a constant,
Zp(7, %) — Z5(7, %) = 128. (80)

Thus, the SO(8); WZW model satisfies the SUSY conditions.
One can verify that, in the fermionic model F mapped by the Jordan-Wigner transfor-
mation, the h = 3/2 primary behaves as the supersymmetry current, and that the partition
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Table 19: Five WZW models related to spontaneously broken supersymemtric RCFTs.

G | ¢ |G | c || G | c | G || G |c
(E;)y | 133/10 || (Eg)y | 13/2 || SU(8)5/Z, | 63/5 || 50(16),/7Z, | 15 || SU(16),/Z, | 15

Table 20: (E,),: primaries labeled by i are characterized by weights h and E, Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the center symmetry

i|h| Rep |Z2||i|h| Rep |ZZ||i|h| Rep |Zz
0020000000 |+ 2] 2% | 00000001 | - [[4]| % | ©00000100) | +
1| 32100000020 |+ || 3|325]10000010 | - || 5] 15 | 01000000 | +
function in the Ramond-Ramond sector becomes constant:
ZB(r, 1) = \Xo + )(2|2 + |X4 + )(6|2 + |X8 + )C10|2 + \X12 + )(14\2
+ |Xl6 + 7618|2 + |X20 + X22 ’
ZB(r, 1) = \XO—X2|2 + |X4—X6|2 + |X8—X10|2 + \X12—X14\2
2 2
+ |16 — + | x20— ,
|X16 X18| |X20 X22 (81)

Z%(7,%) = \Xl +Xs|2+ |15+X7|2+ |X9+X11|2+ ’113+X15~2
2

)

+ |X17+Xl9|2+ |)521 + Xo3
Z%(r,7) = \X1‘X3|2+ |X5—X7|2+ |X9—X11|2+ ’113—)(15\2
+ |X17—X19|2+ |X21—2(23|2 =0°+82+82+0°+0°+0°.

These results strongly suggest that the fermionic model F corresponding to the SO(8); WZW
model preserves the supersymmetry.

Other models in this type basically share the same features without the triality, and we skip
the detailed analysis for simplicity.

4 Models with Spontaneously Broken SUSY

The goal of this section is to present further examples of fermionic RCFTs satisfying SUSY con-
ditions. Specifically, we propose that the five models in table 19 can satisfy the SUSY conditions
after fermionization. The common feature of the five fermionized theories is Zfr('r, 7) =0,
unlike the models studied in the previous section. This implies that the supersymmetry is
spontaneously broken in those models.

E-type E-type models refer to the (E;), and (Eg), WZW models. Both of them has an non-
anomalous Z, symmetry.

For the (E;), WZW models, the Z, symmetry can be identified as the outer automorphism
of the affine e, algebra, or equivalently the center symmetry, and is generated by the Verlinde
line associated with a primary of h = 3/2. We can find the Z, action on each primary of the
model in table 20. It is straightforward to compute the Z, orbifold partition function Zz. It
turns out that Zz agrees with Zz, namely, the orbifold B returns back to the original model

B. This eventually results in a vanishing Z;. To see this, we use (5) to compute the partition
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Table 21: (Eg),: primaries labeled by i are characterized by weights h and Eg Dynkin labels.
Their characters are denoted by y;(7). We highlight the primary related to the center symmetry
Z,. The partition functions for F in the NS and R sectors are also presented.

| i
|E|(QQQQQQQLM| -|‘2‘

| Rep | Z,
‘muppppppp)‘+

i|h] Rep | Z, || i | h | Rep | Z, | h
0|0|(maqqqqqam| - |1 3

function for F in each spin structure,

2

5

2% =xo+ | +lrat sl 25 == +|ra—1s
Zgzhﬁbf+~6mf,2;=0 (82)

As expected, they satisfy the SUSY conditions and Zf,i =0.

Let us move onto the WZW model for (Eg),. The Verlinde line related to a primary of h = %
provides the Z, action on each primary as presented in table 21. In contrast to E, case, one
cannot identify the Z, symmetry as the center symmetry. Nevertheless we proceed to apply
the generalized Jordan-Wigner transformation with the above Z, symmetry, and obtain the
partition functions for F below,

Loz =|Van

We see that all SUSY conditions are satisfied. Because any primary in the R-sector cannot satu-
rate the unitarity bound AR > 34> the Ramond vacua break the supersymmetry spontaneously.
As a remark, the partition functions (83) can be expressed in terms of the elliptic theta

functions and Dedekind eta function. More explicitly, one can show

2 SR _
, Zy=0. (83)

5 _
, ZP = |Xo—)(z

ZP = |X0 + X2

31 7
Yo— 22 = (%)2 +31(ﬁ)2 , 84)
n

Therefore, the NS-sector partition function (83) can be identified with the single-character
solution of the fermionic modular differential equation [34].

Orbifold type We start from the WZW models for SO(16),, SU(16); and SU(8),. Analogous
to the SU(4)4 WZW model, all of them have a primary of h = 3/2 for which the Verlinde line
cannot generate a Z, symmetry. Instead, it is a line defect associated with the h = 2 primary
that generates a Z, symmetry. One can then construct the Z, orbifold theory B by employing
(4). The orbifold partition functions have a form of non-diagonal modular invariant, and the
chiral symmetry is enhanced by the weight-two primary.

Let us demonstrate the details of the WZW model for SU(8),. The h = 2 primary, labeled
by i = 4 in table 22, is now associated with the Z, generator. It is easy to show that the
partition function of orbifold theory B = SU(8),/Z, is given by,

Zg= |}(0 + )(4|2 + |X2 +X6|2 + |X16 + Xzo}z + }7518 +X22{2 + 2‘)(32}2 +2}X34|2

2 2 2 2 2 2 (85)
+|X1+X5| +|X3+X7| +|X17+221| +|X19+X23| +2|Xzs| +2|Xss

>

Using the modular S-matrix of B, which is obtained via the block-diagonalization, we can
see how the quantum Z, symmetry of the orbifold theory B acts on each primary (see table
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Table 22: SU(8),: primaries labeled by i are characterized by weights h and SU(8) Dynkin
labels. Their characters are denoted by y;(7). We highlight the primary related to the center

symmetry Z,.

i h Rep Z, i h Rep Zy i | h Rep Z,
0| 0 [20000000 | + [ 123 | 0;001,1,000 | - [[24] 35 | 0;0,1,0,0,1,0,0) | -

1| % ]©0000002 | + || 13| 23] 00110000 | - || 25| 2| (01001000 | -

2 | 2100000020 | + | 14| 2| 0;1,1,0,0000 | - || 26| % | 1;00,1,0,0,00) | -

3| £ 100000200 | + || 15| 2 | (1,000,000 | - || 27| 2 | 0;0,1,0,00,0,1) | -

4 | 2 | 00002000 | + | 16| 2 | (00010100 | + | 28| & | 0;1,0,0,0,0,1,0) | -

5| 2100020000 | + || 17| £ | 0;0,1,0,1,0,00) | + || 29 | & | (1;0,0,0,0,1,0,0) | -

6 | 2 |0:0200000 | + | 18| £ | 01,010,000 | + || 30| & | 0;0,00,1,0,0,1) | -

7 | % | 02000000 | + |[ 19| 2 | (1;0,1,00000) | + || 31 | 3 | (0;00,1,00,1,0) | -

8 | 21 (1;0,0,0,0001 | - || 20| 2 | (01000001 | + | 32| Z | (0;0,1,0,0,1,00) | +
9 | 18100000011 | - | 21| Z | (10000010 | + | 33| 3% | 0;1,0,0,1,000) | +
10 % (0;0,0,0,0,1,1,00 | - | 22| £ | (0;0000,1,01) | + || 34 | % | (1;0,0,0,1,0,0,0) | +
11 | 328 1 0,0,0,0,1,1,00) | - || 23| £ | (0;0,0,0,1,0,1,0) | + || 35 | 35 | (0:0,0,1,0,0,0,1) | +

Table 23: SU(8),/Z,: primaries labeled by i are characterized by weights h. Their characters
#i(7) are expressed in terms of the characters of SU(8), WZW model (see table 22). We highlight
the primary related to the Z, symmetry.

ilh| & |Z|i|h| & |ZL|i|lh| & |Z|i|h]| 7|
00 xotaa| + 3| 3] 2ty | - 6] 18 | xas+xaa | + || 935|233 -
1 aZ; xitxs| - || 4 % XietXo | T |7 42;—7 X191t Xo3 | - 10 1% X34 | t
2 % Xotxe | + || O % Xi7+tXa | - || 8 % X32 + || 11 % X35 | -

23). Applying the generalized Jordan-Wigner transformation to (85) with the quantum Z,
symmetry, we can analyze the fermionic partition function with each spin structure. Explicitly,
we find

)

z¥ = |Xo +Xat 22t )Ce|2 + |)616 + 20+ X18 + X22l” + 20132 + X34 ’
Z¥ = |)(0 +Xa— 22 —Xe|2 + |)(16 + 20— X18 — X22|” + 20 X320 — X34 ’
R 2 2 2
Zy= |Xl +Xs+ X3 +Z7| + |Xl7+121 +)(19"’)(23| +2|)633 + X35
] 2 2 2
Zy= |Xl +Xs— X3 —X7| + |Xl7 +X21 —X19—Xz3| +2|X33 —X35| =0,
which indeed satisfy the SUSY conditions. Moreover, none of the primaries involved in the
Ramond partition function Z; saturate the supersymmetric unitarity bound h® > 21 . These
results strongly suggest that the orbifold SU(8),/Z, can be fermionized to a spontaneously
broken supersymmetric model.

Our next model of interest is the SU(16); WZW model. The 16 primaries of the model
are labeled by i = 0,1,---,15, and their conformal weights and SU(16) representations are
summarized in table 24. Although the center symmetry Z itself is anomalous [52, 53, 54], its
Z,, subgroup turns out to be free from the 't Hooft anomaly. The generator of Z, symmetry can

be identified as the Verlinde line associated with the primary of h = 2. The partition function
of the orbifold theory B = SU(16),/Z, then becomes

B

(86)

)

Zg= |X0+Xs|2+ |X4+X12|2+ |Xz+)(10|2+ \X6+X14|Z- (87)

To search for a supersymmetric model, we start with the orbifold theory B. The theory B has
a Z, global symmetry. One can read off the Z, action from the Verlinde line associated with
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Table 24: SU(16),: primaries labeled by i are characterized by weights h and SU(16) Dynkin la-
bels. Their characters are denoted by y;(7). We highlight the primary related to the Z, subgroup
of the center symmetry Zg.

Rep Zos
(1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) | +
(0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,1) -
(0;0,0,0,0,0,0,0,0,0,0,0,0,0,1,0) | + || 10

Rep Zos,
(0;0,0,0,0,0,0,0,1,0,0,0,0,0,0,0) | +
(0;0,0,0,0,0,0,1,0,0,0,0,0,0,0,0) -
(0;0,0,0,0,0,1,0,0,0,0,0,0,0,0,0) | +

| ~-.

N O o AW =R O~
SIS |5 Bl v PIB o Bl5 of =
Ble o1 BlL vl GG o5 KIS | =

(0;0,0,0,0,0,0,0,0,0,0,0,0,1,0,0) - 11 (0;0,0,0,0,1,0,0,0,0,0,0,0,0,0,0) -
(0;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0) | + 12 (0;0,0,0,1,0,0,0,0,0,0,0,0,0,0,0) | +
(0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0) - 13 (0;0,0,1,0,0,0,0,0,0,0,0,0,0,0,0) -
(0;0,0,0,0,0,0,0,0,0,1,0,0,0,0,0) | + 14 (0;0,1,0,0,0,0,0,0,0,0,0,0,0,0,0) | +
(0;0,0,0,0,0,0,0,0,1,0,0,0,0,0,0) - 15 (0;1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) -

Table 25: SU(16),/Z,: primaries labeled by i are characterized by weights h. Their characters
¥i(7) are expressed in terms of the characters y; of the SU(16); WZW model (see table 24). We
highlight the primary related to the Z, symmetry.

| & | Z|i|n| @ |Z

| & |7 | i
‘X4+X12|+||3|§|X6+X14| -

|i]h |
0|0|X0+Xs|+”1|%|)(2+)(10| |

h
3
2

the h = 3/2 primary, as presented in table 25. The fermionization then gives the fermionic
partition functions

2 N& 2
, ZP = |X0+Xs_)(4_)(12
2 | 2
, Z;=|X2+X10—XG—X14| =0.

7% =|xo+xs+ 24+ 212
Z% = |X2+X1o+le+ll4

B

(88)

It turns out that the NS vacuum contains the spin-3/2 current, and furthermore the Z; van-
ishes. Because the SUSY conditions are all obeyed, (88) can be considered as the partition
functions of a supersymmetric RCFT. Note that the alternative expressions for (88) are given

by
"03 15 ,ﬁs 3
Yot xstXatXi2= ; -30| — |,

n
9,115 9.3
Xo+)(s—%4—%12:(—4) +30(—4) , (89)
n n
9,\1° 8,3
Xot X0t Xet X14= ? +30 ; ,

from which one can identify the partition functions (88) as the solution of the first order
fermionic modular differential equation [34].

The WZW model for SO(16), involves 15 primaries whose quantum numbers are summa-
rized in table 26. There are three Verlinde lines related to the Z, symmetry. We denote them as
ZE‘,ZQ3 and Zg which are associated with the primaries labeled by i =1, 2, 3 respectively. Only
two of them are independent generators, and they can be identified with the center symmetry
Zo % Zo of SO(16). However, the primary of h = 3/2 is associated to none of non-anomalous
discrete symmetries.

Let us consider an orbifold with Z’g generated by the Verlinde line £;_,. We choose the
primary of i = 1 for an illustration, but the other choice, i.e., i = 3 would lead to essentially
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Table 26: SO(16),: primaries labeled by i are characterized by weights h and SO(16) Dynkin la-
bels. Their characters are denoted by y;(7). Primaries i = 1,2, 3 are the generator of Z’;‘, Zg , Zg,
respectively. We highlight the primary related to the Z, subgroup of the center symmetry Z, x Z.

i| h Rep zo | ZE | ZS || i | h Rep zy | Z8 | Z§
0] 0 [ (200000000 | + | + | + 5 1 00000001 | - [ + | -

1| 2 | 000000002 | + | + | + 3 | 131,00,00000 | - | + | -

2| 1020000000 | + | + | + || 10| 2| 000000100 | + | + | +
3| 2000000020 | + | + | + || 11| Z | (001,000,000 | + | + | +
4| 21100000000 | + | - | - || 12|23 |©00001,000 | - | + | -

50 21 10000010 | + | - | - ||13]2] 000100000 | - | + | -

6| 22| (1;00000010 | - | - | + | 14| 3 | 000010000 | + | + | +
7| 21010000001 | - | - | +

the same result. A straightforward computation shows that the Z‘g orbifold partition function
reads

Z50(16),/78 = |20 "‘)(1|2 +|x2+ )(3|2 + 210 "')(11|2 +2\X14|2 "‘2|)C4|2 + 2|Xs\2- (90)

We remark that the orbifold theory BA = S0(16),/ Zfz‘ has an non-anomalous Z‘g symmetry
which is now generated by the Verlinde line £;_; associated with the primary of h = 1. The
first four terms of (90) are even under Z‘g and the other terms are odd. One can further apply
the transformation (4) with ZA to arrive at a non-diagonal partition function,

Lz = |X0 +txitxet 13\2 +2\X10 + )(11|2 + |2X14\2- 9D

We return to the diagonal partition function of the WZW model for SO(16), and take an
orbifolding with Zg symmetry generated by the Verlinde line £;_;. As a consequence, we find
a non-diagonal invariant

14
Zgyon = o+ 1| + |+ 2 42D 2] 92)
=8

The orbifold theory B =n8 /Z’;g possesses the non-anomalous Zg symmetry associated with
the h = 2 primary. An orbifold with Zg symmetry provides the partition function

Zgs 78 = |20+ 11+ 12 +Xs|2+2|)(10+)(11|2+ |2){14|2- (93)

and this process reproduces the orbifold partition function (91).

We remark that the orbifold partition functions (91) and (93) exactly agree with (87).
Therefore, the supersymmetric nature of SO(16), WZW model is identical to that of the
SU(16); WZW model.

Remarks So far, we explore the fermionic RCFTs that satisfy the SUSY conditions. Those
fermionic RCFTs arise as a consequence of the orbifold or fermionization with respect to a
non-anomalous Z, symmetry of the WZW model.

Here we point out that the supersymmetric RCFTs are not always obtained by orbifold or
fermionization with help of an non-anomalous Z, symmetry. A prominent example is the so-

called non-BPS solution of the fermionic second-order modular differential equation at ¢ = 3

2
found in [34]. Two independent solutions in both NS and R-sectors at ¢ = 3—29 were shown to be
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expressed in terms of the (Eg)4 characters. Using those solutions, we can construct partition
functions of a supersymmetric theory. However the partition function in each sector cannot
be tied with any discrete Z, symmetries of (Eg); WZW model.

A similar phenomenon happens for the Sp(14),, SU(10), and Sp(10); WZW models. Us-
ing the block-diagonalization of the modular S-matrix, one can construct the partition func-
tions for their corresponding fermionic models F satisfying the SUSY conditions. However, it
is not clear if those partition functions for F are originated from the Z, symmetry of the WZW
models.

5 Comments on the Read-Rezayi States

In this section, we explore the possibility of emergent supersymmetry on the edges of the
generalized Pfaffian Hall states proposed by Read and Rezayi [15]. It is shown in [55] that a
product of the U(1)kn+2) theory and the Z; parafermion CFT followed by the diagonal Zj
quotient,

U(Dgars2) % (SUR)/U(1)a1)
Zy

) (94)

can describe the edge excitations of the Read-Rezayi states at filling fraction

k

__k 5
Y kMt 2 ©5)

where (k — 1) and M are nonnegative integers. Here an odd (even) M is for the fermionic
(bosonic) state. We show that the generalized Jordan-Wigner transformation provides further
evidence for an emergent supersymmetry on the edges of the specific Read-Rezayi states with
(k=2,M =1) and (k =4, M = 1)[36, 37].

To see this, let us briefly review the U(1) theory and Z; parafermion CFT for the later
purpose. The U(1) theory with level [ is a free-boson theory on a circle of radius R = +/I. For
an even integer [, the U(1) theory becomes rational, namely, the partition functions can be
expressed in terms of a finite number of primary states. The characters of individual primaries
are given by

xi(f) = %Zqé(”%)z, (96)

nez
where A = 0,%+1,%2,..,£(I/2—1),1/2. The S-transformation rule of the character (96) is
given by
_ 2midp

1
Xi(—1/7)=ﬁ;e l xL(T). 97)

On the one hand, the Z; parafermion CFT is a coset model SU(2);/U(1)9. Thus, the

central charge of the Z; parafermion CFT is given by ¢ = kg—fz —1=2kD The 7, parafermion

k+2 -
CFT involves @ primaries with conformal weights
(L+2) m?
k
= -, 98
bm = 4(k+2) 4k 98)
where the range of the quantum numbers ¢ and m is given by
{(t,m)|0<t <k, ~+2<m<{ L—me2zZ}. (99)
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Table 27: U(1)g x Ising model: The conformal characters f; of 24 primaries (i =0,1,---,23)
can be expressed in terms of the characters of the U(1)g theory and the Ising model, denoted by
8 and v ’g 2. We highlight the primaries related to the discrete ZC symmetry of the theory.

i|h fi |zo|Z8|zZ$ || i | R fi zo | Z8 | Z5 || i | h fi | zy | Z8 | Z§
o0 [xevi, |+ |+ ]+ Tlovie |+ |+ +]16]3 X? 20 -1 -1+
1 % lg %,1 -t % Xgl/)%,z + |- - 17 % Xs 20 -
2| 3 | asdo |+ |+ [+ 10 3 | asviy | - | - | |18 F | xS, |+ |+ |+
3 % X?¢§,2 + 11 % 7(381!’%,0 + |- - 19 % Xg %,1 + |+
4l g (adbio | - | - F 2] i, | | |+ |20 3| 283, + | +
5| %6 | 1050 | + 13| 7 | 2593 |20 [ | | -
6| & |xsl, |+ |+ |+ | 14] 3 | a8vdo | 4| 4| {225 | A+ - |+
7| % x5 %,1 I RER R Zgl/)%,z - - [ 23| % b2 %,0 - -

We denote the characters of primaries by q,b’gm in what follows. The characters of the Z;
parafermion CFT takes the form of

(L2 (k2)2  (mik)?
Ui = (3 30 Yy

i,j<0 1,j<0

(100)
o (ER—(i2)(k+2)%  (mik)?
(2 -2 Jevig @ * )
i<0,j>0 i<0,j<0
and their S-matrix is given by [56]
2 mn’ C+1)(+1
S i sm( M) : (101)
’ v k(k + 2) k+2

the Read-Rezayi state with (k = 2,M = 1) Armed with the characters and the modular
S-matrix of the U(1) theory and the Z; parafermion theory, let us analyze an orbifold

U(1)g x (Ising model)
Zy ’

B= (102)

proposed to describe the edge modes of the Read-Rezayi state at v =1/2.

Let us first consider a product theory B = U(1)g x (Ising model) that has 24 primaries
whose conformal weights and characters are given in table 27. There are three Verlinde lines
Ly_1, L=y and L;,_; that generate Z4, 75 and Z$. The Zj can be identified as that of the

Ising model while Zg as that of the U(1)g theory. The Zg is the diagonal subgroup of Z‘g X Z’ZS .
The orbifold partition function follows from (4) with Zg applied to diagonal modular in-

variant partition function Zg = Zizio If:1? of U(1)g x (Ising model),

11
Zg= Z |f2n|2 + {(f1f_13 + fafi7 + fsfis + fofio + fofas + fi1far) + (C-C)}- (103)

n=0

We can see that Zg and Zj differ by a constant, Zg — Zz = 3. We therefore expect that the
orbifold B can be fermionized to a supersymmetric theory F.
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Based on the web described in table 3, partition functions for F can be determined as,
2 = |fo+ fual” + o+ frof + [fat fro|” + [fo+ faol* + [fo+ frs|” + [fro + foz
2 = |fo=fual + U= ool "+ [fa = frol + o= ool + Ifo = frsl "+ 110~ foz

2= |fi+ fus| + s+ fio + |fs+ s+ o+ frof+ |fo + fas]” + [fur + fn
28 =—|fi = fua| = |fs = fuir[* = 1fs = fus| = |Fr = frol" = [fo = foa|" = [ i1 = |

=-12-12-02-02-0%-12, (104)

2

3

2

3

2

>

which are in perfect agreement with those of [57]. Since (104) satisfies the SUSY conditions,
we propose that there exists an emergent supersymmetry on the edges of the (k =2,M = 1)
Read-Rezayi state. Moreover, we observe that the above partition functions (104) coincide
with those of the A/ = 2 unitary supersymmetric minimal model at ¢ = 3/2. To find the
explicit expressions of the A = 2 super-Virasoro characters at ¢ = 3/2, readers are referred to
[58, 59]. It strongly suggests that the N = 2 supersymmetry can emerge on the edges of the
(k =2,M = 1) Read-Rezayi state.

the Read-Rezayi state with (k =4,M = 1) We next analyze the orbifold theory

_ U(1)g4 x (Z4 parafermion CFT)
= Z,

B

> (105)

proposed to describe the edge modes of the Read-Rezayi state with (k =4, M = 1).

U(1)94 X% (Z4 parafermion CFT) has two copies of Z, symmetries, one of which is origi-
nated from that of U(1),4 and the other from that of the parafermion theory. Although the
Z4 X Z, symmetries are anomalous, one can show that their diagonal subgroup Z, becomes
non-anomalous. It is the Verlinde line £;,_3/, associated with Xlzg 1/)12 that generate the non-
anomalous Z, symmetry. We can gauge the non-anomalous Z,4, which results in the orbifold
(105) that has 60 primaries whose conformal weights and conformal characters can be found
in table 28. There are two the Verlinde lines £;_, /2 which generate essentially the same Zo
symmetry.

We can fermionize the bosonic theory (105) with help of the Z, symmetry. The fermionic
partition function in each spin structure follows from (5) applied to a diagonal partition func-

tion Zg = .7 Ifil%,
ng = |fo +f33|2 + |f2 +f31|2 + |f5 +f34|2 + |f6 +f38|2 + |f9 "‘f37|2
+ |f11 "‘f42}2 + }flS "'f45|2 + {f14 "'f4o|2 + |f17 +f46|2 + |f18 +f49|2
+ |f20 "‘f53|2 + |f22 "‘fs1|2 + |f25 "‘f54|2 + |f26 +f58|2 + |f29 + fs7 2’
ZE\I} = |f0_f33|2 + |f2_f:;1}2 + ‘fs_f34|2 + |f6_f38|2 + |f9_f37{2
+ |f11 _f42}2 + }f13_f45|2 + |f14_f40|2 + |f17_f46|2 + |f18_f49|2
+ |f20_f53|2 + |f22_f51|2 + |f25 —f54|2 + |fze—f58|2 + |f29—f57 ?
Z8 = |fy + fool |+ fas| + |fat Fol +1f7 + Frol” 4 |fs + fool”
+ |f1o "‘f43|2 + |f12 "‘f41|2 + |f15 "‘f44|2 + |f16 +f48|2 + |f19 +f47|2
+ |f21 "‘fsz}2 + }fzs +f55|2 + {f24 "'f50|2 + |f27 +f56|2 + |f28 + f59 2,
ZE = |f1 _f32|2 + |f3—f35|2 + |f4_f30|2 + |f7_f36|2 + |fs—f39|2
+ |f1o—f43}2 + }flz—f41|2 + {fls —f44|2 + |f16_f48|2 + |f19_f47|2
| for—fsa + [fas = s+ |faa = Fsol* + [for —fso|” + | fos = Fi] -

(106)
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Table 28: (U(l)24 x (Z4 parafermion CFT)) /(Z,): The conformal characters f; of 60 primaries
(i=0,1,---,59) can be expressed in terms of the characters of the U(1),, theory and the Z,
Parafermion CFT, denoted by y 11:24 and a,bifjn“. We highlight the primaries related to the discrete
Z, symmetry of the theory.

i | h fi Zy|| i | h fi Zy|| i | h fi Zy
0 [ 0| xd*istaiawi, | +]120] 5 | 23, +aievio [+ 40| 3 | xa*vis+aigvi, |+
1| 5| 225+ aiawie | - || 21| & | xdawiotassvisy | - || 41| & | miotadivd, | -
2 | 3| 2o taaws, |t |22 3 | adtiotaievs, |+ 42| 5| xdiotadivs, |+
3| 3| aisviatadti, | - |23 | m | aloviotadivia | - || 43 | m | Btwiatadivde | -
41§ | xiatadevie | - || 24| B | aioviatafvi, | - | 44| | Mot aiivi, | -
S| 1| aigwiatadio |+ ([ 25| 5 | xdtiot it |+ || 45| 3 | xiotasivi, |+
6 | & | Wi tadsws, |+ |26 & | xS aid, |+ 46| § | 2T a3eg, |+
75| B ey |- | 27 | G| aiivtirassed, | - || 47| 3| s iyt | -
8 | G| 2% tatewdy | - |28 | m | aitvi sty | - | 48] & | i raidvg, | -
9 % 95124 §,1+X12§ Al},l + || 29 % X§4¢§,1+X§f ‘11,1 + || 49 411 X§4¢2,4+1123w1,0 +
10 | 13 | xg*s ot adgwi, | - || 30| § | ati il s | - | 50| B | A, adevd L, | -
11| g | z3d,+aiavd, |+ |31 ] 8 | 2@, tadevd, |+ 5| 6 | xioviatadsvl, |+
12| 35 | xdMs,+adds, | - |32 | 1 | 2.t aisws, | - || 52| 2 | xS, aieds, | -
13| § | x* i ot aiivi, |+ (33| 3 | aeME ot atavis |+ 53| 8 | Alovi ot adivi, | +
14| § | 23", aiiws o | + || 34| 5 | xSt adevi o |+ || 54| & | xiovia v, | +
15 | 53 | xg*iataaavt o | - || 35| § | 2ME ot aiavis | - | 55| B | At ot aievds | -
16 | g | 235 +23tds | - |36 | 13 | ai* st aiavs | - || 56| & | x3tWEstadivs | -
17| 3 | B+ aiews o |+ (|37 | B | 3 W3staiews o | + || 57 | & | aitvistaaivd o | +
18 | § | a3t syt aidvds |+ |38 | T | aPE L tafevds | | 58 | & | aiv Lt adiwis | +
19 5 | 3%ds+adiws o | - 1|39 | B | s+ adsvis | - || 59| B | atE o +adivis | -

It is clear that the SUSY conditions are all satisfied by (106); let us take a closer look at
the g-expansion of the NS vacuum given below

fo+ faz=a 1 +q+2¢%2 +3¢> +4¢52 + 6>+ |, (107)

where we can see that the NS vacuum has descendants of h = 1 and h = 3/2. Those de-
scendants are likely to play roles of the U(1) R-symmetry and the supersymmetry currents of
N = 2 supersymmetry. Moreover, ZE__ takes a constant value and thus becomes an index,

ZR=124040+12+0+1>+0+0+0+0+0+12+0+0+12. (108)

In fact, we can verify that the partition functions (106) agree with those of the sixth unitary
N = 2 supersymmetric minimal model at ¢ = 2 [58, 59]. Especially, (107) correspond to the
NS vacuum character of the /' = 2 super-Virasoro vacuum character at ¢ = 2. Therefore, we
propose again that there can exist an emergent A/ = 2 supersymmetry on the edges of the
Read-Rezayi state of (k = 4, M = 1), briefly mentioned in [36].
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A Fermionization of the Parafermion CFT

The prime goal of this appendix is to apply the generalized Jordan-Wigner transformation to
the Z, parafermion CFT. We choose Z, subgroup of Z, symmetry to explore the fermionized
parafermion CFT. Therefore, k ought to be even integers. Furthermore, the weight formula
(98) suggests that the weight % primary can exist only for k < 8. To avoid the free-fermion
issue, we only consider Zg and Zg parafermion CFT.

Z¢ parafermion CFT Z¢ parafermion CFT has 21 primaries and the central charge is 5/4.
We consider the Z, subgroup of Z¢ to apply fermionization (5). The weight 3/2 primary with
(£ = 6, m = 0) generate the Z, symmetry of interest and £ even (odd) primaries are even (odd)
states under the Z, subgroup.

It is easy to find the partition functions of F for each spin structure. The generalized
Jordan-Wigner transformation provides the following partition functions.

ZNS |¢66+w60| +W’zz+¢4z| +|¢44+¢4 2|
Y50+ wGol + g +vEul + e s+ LI
ZNS |¢66 ¢60| +W’zz ¢42| +|¢44 Ys 2|
+|¢2,o_‘p4,o| +|w6,4_¢6,2| +|w6,—4_¢6,—2 ’
Z; =[yS, + ‘/’g,1|2 +[9e s + ‘/’g,—lf + S s+ ‘/’g,3|2
+H|V2YS[*+ | v2es L[+ [Vavs, [
Z]EE:|1/)?’1—1/)g’1|2+|¢g’5—¢g”_1\2+|¢g’_3— g,3|2:12+12+0'

3

(109)

B

The above partition functions (109) satisfy the SUSY conditions. Especially, the primary of
Ramond sector with weight h = % saturate the unitarity bound. Thus, we expect that the
Ramond sector ground state preserves supersymmetry.

Zg parafermion CFT Our next target is to fermionize the Zg parafermion CFT with central
charge ¢ = 7/5. We first note that the weight-two primary of ({ = 8, m = 0) has a role of
the generator for Z, symmetry. The Z, action on each primary is readily obtained from the
S-matrix, the { even representations are Z, even while ¢ odd are Z, odd. An orbifold partition
function in turn takes the form of

Zg=[gs + 3ol + VG s+ ¥Rl + W30+l
+[ve e+ wial +2wial 2l
+[w3, + wg,zlz +[Pg s +‘l’2,—2|2 + 9§ ¢+ ¢3,2|2
+ g6+ ¢§,_2|2 + 2|¢i,—2|2 + 2|¢§,2|2'

(110)

In the Z, orbifold theory B, the weight-3/2 primary acquire a role of the generator of new
Z,, symmetry. Under the Z, symmetry, the first and second lines of (110) are even while the
third and fourth lines are odd. After some computation, we find that the fermionization of Zj
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provides the following partition functions.

2

5

2

B

NS __ |.;,8 8 8 8 |2 8 8 8 8 |2 8 8
Zf = |w8,8 + ws,o + ‘/’8,—4 + ‘/’s,4| + |¢2,0 + ¢6,0 + '4’6,—4 + ‘P6,4| + {‘/’4,4 + 1/’4,0
NS _ .8 8 8 8 |2 8 8 8 8 |2 8 8
Zf - |w8,8 + ws,o _‘/’8,—4 - "/’8,4| + |"‘rb2,o + ¢6,o _"ps,—4 _‘/’6,4| + {‘/’4,4 - "/’4,0
R _|.,,8 8 8 8 |2 8 8 8 8 |2 8 8
Zz= W55+ Wes+Wee T e | +|WE ot Vs TYEe T | +|YE o+,

R _ 1.8 8 8 g8 |2 8 8 8 8 |2 8 8 |2
Zf—|‘/’2,2+‘/’6,2_‘/’6,6_‘/)6,—2| +|¢8,—6+¢8,2_¢8,6_w8,—2| +|¢4,—2_‘/)4,2| :
(111

2

J

Especially, the R-sector partition function Z R vanishes. Therefore the partition functions (111)
satisfy the SUSY conditions, however the Ramond ground state possesses broken supersym-
metry in contrast to (109).
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