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Abstract

Making use of the geometric formulation of the Standard Model Effective Field Theory
we calculate the one-loop tadpole diagrams to all orders in the Standard Model Effective
Field Theory power counting. This work represents the first calculation of a one-loop am-
plitude beyond leading order in the Standard Model Effective Field Theory, and discusses
the potential to extend this methodology to perform similar calculations of observables
in the near future.
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1 Introduction

The Standard Model Effective Field Theory (SMEFT) has become a cornerstone of LHC searches
for physics beyond the Standard Model (SM). The approach of the SMEFT is to search for the
effects of non-resonant heavy new physics, which decouples as 1/Λ, on measurable processes
of the known particles. This approach makes two primary assumptions, that the new physics
is too heavy to directly produce at a collider and that the Higgs boson belongs to an SU(2)L
doublet, as in the SM. With these assumptions the SMEFT is formulated as a tower of higher-
dimensional operators suppressed by the new physics scaleΛ and added to the SM Lagrangian:

LSMEFT = LSM +
∞
∑

n=5

∑

i

ci

Λn−4
Oi . (1)

Each subsequent power of 1/Λ should therefore be suppressed relative to the last, as Λ is a
large mass scale well above that of a given scattering process.

For most LHC relevant processes the leading terms come from dimension-six operators
suppressed by Λ2. There is ongoing discussion on how to handle the truncation of this series in
the literature, i.e. to understand the error associated with truncating the series at a given order.
Many groups have included squares of dimension-six operator contributions to amplitudes
in their work, this allows for an inferred error by comparing results with and without the
dimension-six squared term. This presents a theoretical concern – formally this is not the full
contribution at order 1/Λ4 as it neglects dimension-six squared contributions to the amplitude
as well as dimension-eight operator effects. There is also the more practical issue, that in
many instances the squared term results in more stringent constraints, a result of, for example,
chiral suppression of the interference of the 1/Λ2 term with the SM. This makes a definition
of truncation error in this way less than satisfactory.

An alternative approach is to compute the full contribution up to and including 1
Λ4 effects.

This suffers from the seemingly insurmountable number of parameters in the SMEFT beyond
leading order. This is to a great degree controlled by only considering resonant processes
where four-fermion operators can be neglected as well as making simplifying assumptions on
the flavor structure of the SMEFT. To date three works have considered the full 1

Λ4 dependence
in phenomenological studies. In [1], the authors study associated production of a Higgs boson
with a W by meticulously elaborating all operators contributing via the Hilbert series method
[2–4], and then performing a phenomenological study. Using a similar procedure the authors
of [5] study the Drell Yan process at the LHC. In [6], the authors studied Z-pole observables
and instead used the geometric formulation of the SMEFT which allows for, currently in limited
cases, all orders calculations in the SMEFT power counting (i.e. the 1/Λ power counting).

The geometric SMEFT, or geoSMEFT, was born of an attempt to simplify the one loop
calculation of H → γγ [7, 8] and the resulting background gauge fixing of the SMEFT [9].
Within this context it was realized that the SMEFT could be formulated in terms of field-space
connection matrices of the form:

MI1···In
∼

δnLSMEFT

δφI1
· · ·δφIn

�

�

�

�

L(α,β ,··· )→0

. (2)

These field-space connections are then matrices of products of the Higgs doublet with gener-
ators of SU(2)L , and the evaluation at L(α,β , · · · )→ 0 represents setting various products of
fields and their derivatives to zero. By constructing all gauge-variant, but Lorentz invariant,
products of up to any three of the field strengths, covariant derivatives of the scalar field, and
products of fermions, the geoSMEFT was formulated to include all three-point functions of SM
fields plus arbitrarily many products of scalar fields [10]. This allowed for all-orders (in the
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SMEFT power counting) tree-level studies of the SMEFT in [11]. With all three-point functions
defined to all orders in the geoSMEFT we can now use an alternative approach to studying the
truncation error in the SMEFT. In [6] the full set of Z-pole observables at LEP were studied,
and an alternative truncation error estimate was proposed - varying the dependence on Wilson
coefficients of the 1/Λ4 result in order to infer the error in the strictly 1/Λ2 terms.

With an enormous interest being generated around loop calculations in the SMEFT an im-
portant next obstacle for the geoSMEFT is to define a similar system for estimating truncation
error at one loop. As mentioned above the geoSMEFT only includes vertices of three fields with
an arbitrary number of scalar insertions. As such, the geoSMEFT is currently only suitable for
the calculation of the tadpole diagram. This article demonstrates the ability to calculate the
tadpole at one-loop and all orders in the SMEFT power counting and motivates further devel-
opment of the geoSMEFT in order to allow consistently defined truncation errors at both tree-
and one-loop level.

The article is organized as follows: In Section 2 we define the conventions used in the
paper as well as introduce the set of relevant operator forms which contribute to the one-loop
tadpole diagram, while in Section 3 we outline the Feynman rules derived from the classical
Lagrangian. In Section 4 we gauge fix the geoSMEFT and derive the Feynman rules related to
gauge fixing as well as the Feynman rules for ghosts. Then in Section 5 we give the main result
of this article, the all orders tadpole, and Sec. 6 is dedicated to discussion of the outlook for the
one-loop geoSMEFT and conclusions. The Appendix A includes relevant definitions and rela-
tions from the geoSMEFT which are used throughout this article, while App. B demonstrates
the importance of the Tadpole diagram both phenomenologically and in preserving the gauge
symmetry of the theory beyond tree level.

2 Conventions

In order to define the relevant terms of the Lagrangian for the calculation of the tadpole dia-
gram, we follow the formulation of the geoSMEFT given in [10], as well as the gauge fixing
of [9] and [12]. We begin by defining the field content of the geoSMEFT, the Higgs doublet
of the SM is rewritten in terms of a four-component real scalar field, φ I , by the following
association:

H(φI) =
1
p

2

�

φ2 + iφ1
φ4 − iφ3

�

. (3)

The SU(2)L and U(1)Y gauge bosons, B and W I , are replaced with four component vector
field W A = {W 1, W 2, W 3, B}. These weak-eigenstate fields are transformed to the mass basis
by the matrices:

UA
C ≡
p

gABUBC , V I
K ≡

p

h
I J

VJK . (4)

Above and in what follows latin indices are four-component unless otherwise specified. The
matrices

p
g and

p
h are the inverse-square root expectation value of the field-space connec-

tions:1

hI J =

�

1+φ2c(6)H� +
∞
∑

n=0

�

φ2

2

�n+2

(c(8+2n)
HD − c(8+2n)

H,D2 )

�

δI J

+
Γ I

A,JφKΓ
K
A,Lφ

L

2

�

c(6)HD

2
+
∞
∑

n=0

�

φ2

2

�n+1

c(8+2n)
HD,2

�

, (5)

1Raised indices on field-space connections correspond to inverses of the field-space connection.
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gAB =

�

1− 4
∞
∑

n=0

(c(6+2n)
HW (1−δA4) + c(6+2n)

HB δA4)

�

φ2

2

�n+1�

δAB

−
∞
∑

n=0

�

φ2

2

�n

(φIΓ
I
A,Jφ

J )(φLΓ
L
B,Kφ

K)(1−δA4)(1−δB4) (6)

+

�∞
∑

n=0

c(6+2n)
HW B

�

φ2

2

�n�

[(φIΓ
I
A,Jφ

J )(1−δA4)δB4 + (A↔ B)] .

These field space connections correspond to the products of fields: W A
µνW

B,µν and
(Dµφ)I(Dµφ)J respectively. As the scalar field φ is related to its mass eigenstate field Φ by
the inverse square roots of the expectations of these matrices, they are (in the mass eigenstate
basis) implicitly dependent on

p
h. The matrices U and V take the weak eigenstate fields and

rotate them to the physical basis of the SM, they are given by:

UBC =









1p
2

1p
2

0 0
ip
2

−ip
2

0 0
0 0 c̄W s̄W
0 0 −s̄W c̄W









, VJK =









−ip
2

ip
2

0 0
1p
2

1p
2

0 0
0 0 −1 0
0 0 0 1









. (7)

U and V transform the weak eigenstate basis fields, W and φ, to the physical basis fields
AB = {W+, W−, Z , A} and ΦI = {Φ−,Φ+,χ, h}. Note, h is used to denote the Higgs boson as
well as the field-space connection of Eq. 5. When the h field-space connection is used it has
either indices or appears as

p
h. According to the above, the bosonic fields are rotated to the

mass basis as:
AB = UB

C W C , ΦI = V I
Kφ

K . (8)

The barred Weinberg angles, s̄W and c̄W are defined in the Appendix. In addition to the above
we also have the ghosts for the electroweak gauge bosons, uA = UA

C uC , the gluon field GA

and the corresponding ghost uA
G . The gluons and their corresponding ghosts are transformed

to canonically normalized fields by:

GA =
p

κ−1GA , uA
G =

p

κ−1uA
G , (9)

κ is defined below, and is the field space connection of the combination GA
µνG

A,µν. Script latin
indices are SU(3)c gluon indices. G corresponds to the canonically normalized gluonic field,
while G corresponds to the gluonic field before the kinetic term is transformed. In this article,
fermionic fields only occur in loops and are therefore always summed over, as such we use the
short hand ψ for all fermionic fields.

The full set of operator forms contributing to two- and three-point functions of the SMEFT
was derived in [10]. They include:

hI J (Dµφ)I(Dµφ)J , gABW A
µνW

Bµν , κA
IJ (Dµφ)

I(Dνφ)JWµν
A ,

Yψψ̄1ψ2 , κGA
µνG

Aµν ,

fABCW A
µνW

B,νρW C ,µ
ρ , dAψ̄1σ

µνψ2WA
µν , κABCGA

µνG
B,νρGC,µ

ρ ,

cψ̄1σ
µνTAψ2GA

µν , LIAψ̄1γ
µσAψ2(Dµφ)I .

(10)

The covariant derivative of the four component scalar and the field strength tensors of the
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vectors are then defined as:

(Dµφ)
I =

�

∂ µδI
J −

1
2

W A,µγ̃I
A,J

�

φJ , (11)

W A
µν = ∂µW A

ν − ∂νW
A
µ − ε̃

A
BCW B

µ W C
ν , (12)

GA
µν = ∂µGA

ν − ∂νG
A
µ − f ABCG

B
µG

C
ν . (13)

The matrices γ̃I
A,J and ε̃A

BC are defined in the Appendix. The f ABC are the usual structure
constants of SU(3)c .

In addition to the operators defined in Eq. 10 we also define the all-orders Higgs potential,

V (φ I) =
λ

4

�

φ2 − v2
0

�2 −
∞
∑

n=1

c(4+2n)
H

�

φ2

2

�2+n

. (14)

In the above, v0 is the vacuum expectation value that minimizes the tree-level Higgs
potential for the SM. Spontaneous symmetry breaking occurs in the geoSMEFT for
φ I → vδI4 +

p
h

I J
VJKΦ

K ,2 where v is the vacuum expectation value which minimizes the
tree level potential of the geoSMEFT. c(4+2n)

H is the Wilson coefficient of the dimension 4+ 2n
pure Higgs operator suppressed by the heavy mass scale Λ2n, this Λ dependence is absorbed
into the Wilson coefficient here and for the operators below for convenience. At tree level, re-
quiring the coefficient of the tadpole term in the potential be zero gives the relation between
v0 and v:

t = 0∝ v2 −
1
λ

∞
∑

n=1

(4+ 2n)v2+2n

22+n
c(2n+4)

H − v2
0 . (15)

We note that solving this equation for v2 requires numerical methods for n ≥ 4 as it is a
polynomial of order n+ 1 in v2.

In what follows we will derive the one-loop correction to this result to all orders in the
SMEFT power counting. The choice of t = 0 at one loop corresponds to the FJ tadpole scheme
[13], with this choice we choose to expand about the true (one-loop) vacuum. This simplifying
choice means tadpole diagrams need not be included in one-loop calculations (the tadpole and
its counter term exactly cancel), however the loop improved vacuum expectation value needs
to be used in tree level calculations. Further, this one-loop result is required to demonstrate
the gauge invariance of observables, such as the masses of the gauge bosons in the on-shell
renormalization scheme [14,15]. This is discussed in Appendix B as well as in the conclusions.

The terms from Eq. 10 which contribute to the one-loop tadpole diagram are those which
involve a single Higgs boson coupling to two fermions, gauge bosons, or additional scalars. As
such the last two lines do not contribute as they include three or more particles other than the
Higgs boson and therefore only contribute at higher loop order. In the case of the connection
LIA there is no contribution as these operators correspond to the Hermitian derivative form,
(H†←→D µH)(ψ̄γµψ), which causes the Higgs-fermion couplings to vanish identically. While
the operators coupling the Higgs boson to gluons will result in scale-less loop integrals which
vanish identically, we retain them as the all-orders Feynman rules derived from the κAB op-
erator form are the simplest and serve as intuitive examples of how the rules are derived.
Reproducing the all-orders form of the relevant connections from [10] we have (in addition

2This is a convenient choice of how to realize spontaneous symmetry breaking in the geoSMEFT which is con-
sistent with 〈H†H〉= v2/2 [12].
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to Eqs. 5 and 6 above):

κA
IJ = −

1
2
γI

4,JδA4

∞
∑

n=0

c(8+2n)
HDHB

�

φ2

2

�n+1

−
1
2
γI

A,J (1−δA4)
∞
∑

n=0

c(8+2n)
HDHW

�

φ2

2

�n+1

−
1
8
(1−δA4)[φKΓ

K
A,Lφ

L][φMΓ
M
B,Lφ

N ]γI
B,J

∞
∑

n=0

c(10+2n)
HDHW,3

�

φ2

2

�n

(16)

+
1
4
εABC[φKΓ

K
B,Lφ

L]γI
C ,J

∞
∑

n=0

c(8+2n)
HDHW,2

�

φ2

2

�n

,

Yψpr = −
(∼)
H (φI )[Yψ]

†+
(∼)
H (φI )

∞
∑

n=0

c(6+2n)
ψH,pr

�

φ2

2

�n+1

, (17)

κ =

�

1− 4
∞
∑

n=0

c(6+2n)
HG

�

φ2

2

�n+1�

. (18)

Where
(∼)

H is the Higgs doublet for leptons and down quarks, and εi jH
j for up quarks. The matri-

ces Γ I
A,J and γI

A,J are given in the Appendix for brevity. We have also usedφ2=φ IφI=φIδ
I JφJ .

The c(n)i are the Wilson coefficients of operators of dimension n and are suppressed by a factor
of Λn−4 which has been absorbed into their definition for the sake of compactness of these and
the following expressions. The inverse-square root of gI J and hI J are the matrices of Eq. 4
which, with the matrices U and V , take the weak eigenstate fields to the mass eigenstate fields
of the SMEFT. Latin indices A, B, · · · are those associated with the four-component representa-
tion of the gauge boson indices for SU(2)L×U(1)Y , I , J · · · are are the four-component indices
associated with the four-component real scalar field, and A,B are associated with color indices
of the gluons. Fermonic indices are generally suppressed.

The above is all that is needed to define the relevant all-orders three-point functions for
the classical Lagrangian in the geoSMEFT:

Lcl(φ
I , W A,GA,ψ) = hI J (Dµφ)

I(Dµφ)
J − V (φ) + gABW A

µνW
B,µν + κGA

µνG
A,µν

+κA
IJ (Dµφ)

I(Dνφ)
JWµν

A +
∑

ψ

Yψ̄1ψ2 . (19)

In Section 4 we will choose to adopt the background field method of gauge fixing. Therefore in
the discussion of the classical Lagrangian that follows we will double the bosonic field content
of the above Lagrangian as:

Lcl(φ
I , W A

µ ,GA
µ ,ψ)→ Lcl(φ

I + φ̂ I , W A+ Ŵ A,GA + ĜA,ψ) . (20)

Where the hatted fields are referred to as the background fields and the unhatted as the quan-
tum fields. The choice of the background field method has various advantages, one of which
is the preservation of the naive Ward Identities as discussed in [12,16,17]. This methodology
has been adopted in many SMEFT related publications because of its nice properties, see for
example [7,18,19]. In this methodology the quantum fields are gauge fixed, while the back-
ground fields are not. As fermionic fields are not involved in the gauge fixing they are not split
into background and quantum fields. As such all external particles for a given amplitude cor-
respond to background field while internal lines are quantum fields. Therefore in what follows
we derive the couplings of the background Higgs boson field, ĥ, to two quantum fields.
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3 The all-orders vertices

In order to define the relevant three-point functions for the one-loop tadpole diagrams we must
obtain the relevant Feynman rules from Eq. 10. We will do this while preserving the form of the
field-space connections when possible in order to maintain results that are manifestly all orders
in the 1

Λn power counting. The Feynman rules that follow were checked using FeynRules.
They can be understood as follows: the subscript of a field in {} corresponds to the momenta,
Lorentz indices, and color indices with the same subscript on the right side of the equations
below. In the case of a field with no subscript, the Feynman rule does not depend explicitly on
that field’s properties.

The simplest Feynman rules to derive are from the field space connections gAB, κAB, and
Yψpr as the Higgs dependence is purely in the connection matrix. Varying Eq. 18 with respect
to the background field ĥ gives the coupling of a Higgs boson to two gluons:

{ĥ, G1, G2} = i
­

δκ

δĥ

·

�p

κ−1
�2
Π1,2δ

A1A2 . (21)

Where, for convenience, we have defined,

Π1,2 ≡ (p
µ2
1 pµ1

2 − p1 · p2η
µ1µ2) . (22)

It should be noted there are implied rotations of the quantity φI within the field-space connec-
tions such as κ: beyond leading order

p
κ is a function of φ I =

p
h

I J
VJKΦ

K . Explicitly taking
the variations gives instead:

{ĥ, G1, G2} → i
p

h
44 �p

κ−1
�2

vT

∞
∑

i=0

v2n
T (n+ 1)

2n−2
c(6+2n)

HG Π1,2δ
A1A2 . (23)

Similarly for the yukawa-like couplings:

{ĥ, ψ̄r ,ψr} = −i

®

δYψr r

δĥ

¸

= i

p
h

44

v
M̄ψ,r r − i

p
h

44

p
2

∞
∑

n=0

c(6+2n)
ψH,r r

v2n+2

2n+1
(2n+ 2) . (24)

As only like-flavors will contribute to the Tadpole diagram we have only considered diagonal
entries of Yψ and substituted in terms of the barred tree-level masses of the fermions. The
tree-level fermion mass to all orders is simply the expectation of the field connection Y of
Eq. 17:

M̄ψ = 〈(Yψ)†〉 . (25)

The remaining terms are more complicated than the above, as such we only write the vertex
functions in terms of variations on the field-space connections. Some examples of the field-
space connections expanded in terms of Wilson coefficients can be found in the Appendix. The
coupling to two gauge bosons coming from gAB is given by:

{ĥ, W+
1 , W−

2 } = −i
­

δg11

δĥ

·

(
p

g11)2Π1,2 , (26)

{ĥ, A1, A2} = −iΣAAΠ1,2 , (27)

{ĥ, Z1, Z2} = −iΣZ ZΠ1,2 , (28)

(29)

7

https://scipost.org
https://scipost.org/SciPostPhys.11.5.097


SciPost Phys. 11, 097 (2021)

ΣAA ≡
4
∑

A,B=3

�

c̄2
W

­

δgAB

δĥ

·

p
gA4pgB4 + 2c̄W s̄W

­

δgAB

δĥ

·

p
g3ApgB4 + s̄2

W

­

δgAB

δĥ

·

p
g3Apg3B

�

, (30)

ΣZ Z ≡
4
∑

A,B=3

�

c̄2
W

­

δgAB

δĥ

·

p
g3Apg3B − 2c̄W s̄W

­

δgAB

δĥ

·

p
g3ApgB4 + s̄2

W

­

δgAB

δĥ

·

p
gA4pgB4

�

= ΣAA(s̄W →−c̄W , c̄W → s̄W ) . (31)

In order to form a tadpole diagram from the connection κA
IJ one of the covariant derivatives

must generate a vector boson while the other must correspond to the background Higgs boson,
as such the rules are straightforward to derive as well:

{ĥ1, W+
2 , W−

3 } = ḡ2
p

g11
p

h
44

v
�

(〈κ1
13〉 − i〈κ1

14〉)p
µ2
1 pµ3

2 − (〈κ
1
13〉+ i〈κ1

14〉)p
µ3
1 pµ2

3

+
�

〈κ1
13〉[p1 · p3 − p1 · p2] + i〈κ1

14〉[p1 · p2 + p1 · p3]
�

ηµ2µ3
�

, (32)

{ĥ1, Z2, Z3} = −i
p

h
44

ḡZ v
��

c̄W
p

g33 − s̄W
p

g34� 〈κ3
34〉+

�

s̄W
p

g44 − c̄W
p

g34� 〈κ4
12〉
�

×
�

pµ2
1 pµ3

2 + pµ3
1 pµ2

3 − p1 · (p2 + p3)η
µ2µ3

�

. (33)

No coupling to the photon is generated as one of the vector bosons must come from the covari-
ant derivative which has no A dependence for the Higgs boson. In simplifying these expressions
we have used:

〈κ1
13〉= −〈κ

1
24〉= −〈κ

1
31〉= 〈κ

1
42〉= 〈κ

2
14〉= 〈κ

2
23〉= −〈κ

2
32〉= −〈κ

2
41〉 , (34)

〈κ1
14〉= 〈κ

1
23〉= −〈κ

1
32〉= −〈κ

1
41〉= −〈κ

2
13〉= 〈κ

2
24〉= 〈κ

2
31〉= −〈κ

2
42〉 , (35)

〈κ4
12〉= −〈κ

4
34〉 . (36)

In addition to the fact κA
IJ is antisymmetric. As the rules for interactions derived from κA

IJ nec-
essarily depend on the momentum of the background Higgs boson (i.e. one of the derivatives
must be acting on the Higgs boson) these rules will not contribute to the tadpole diagram.

Finally, the Feynman rules arising from the field-space connection hI J are slightly more
complicated as the background Higgs boson can come from either the metric or the (Dµφ)
terms. These operator forms also contribute not only to Higgs-gauge couplings, but also to
Higgs-goldstone couplings. For ĥ sourced from the field space connection we have the follow-
ing rules:

{ĥ,Φ0
1,Φ0

1} = −i
­

δh33

δĥ

·

(
p

h
33
)2 p1 · p2 , (37)

{ĥ,Φ+1 ,Φ−2 } = −i
­

δh11

δĥ

·

(
p

h
11
)2 p1 · p2 , (38)

{ĥ, h1, h2} = −i
­

δh44

δĥ

·

(
p

h
44
)2 p1 · p2 , (39)

{ĥ, W+
1 , W−

2 } = i
­

δh11

δĥ

·

M̄2
W (
p

h
11
)2ηµ1µ2

, (40)

{ĥ, Z1, Z2} = i
­

δh33

δĥ

·

M̄2
Z(
p

h
33
)2ηµ1µ2

. (41)

The coupling ĥγγ vanishes identically, which follows from the fact the operator forms of the
field-space connection hI J correspond to rescalings of the SM Higgs couplings to vector bosons.
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In the case that ĥ is sourced from the covariant derivative terms we have two contributions.
The first is from the 〈h〉 which can only generate ĥ-vector three point functions:3

{ĥ, W+
1 , W−

2 } = 2i
p

h
44 M̄2

W

v
ηµ1µ2

, (42)

{ĥ, Z1, Z2} = 2i
p

h
44 M̄2

Z

v
ηµ1µ2

. (43)

As above, the ĥγγ coupling vanishes identically. Secondly, ĥ couplings to goldstone bosons
from variations of the metric with respect to the goldstone bosons could be present, however
they vanish identically.

In addition to the above we need to include terms like c(2n−4)
H (H†H)2n. The Feynman rules

for ĥ coupling to two quantum fields can be generalized from Eq. 4.2 of [10] by using the
multinomial coefficient:

{ĥ, h, h} = −2i(
p

h
44
)3v

�

3λ−
∞
∑

n=3

1
2n

�

2n
1,2, 2n− 3

�

v2n−4c(2n)
H

�

, (44)

{ĥ,Φ0,Φ0} = −2i(
p

h
33
)2
p

h
44

v

�

λ−
∞
∑

n=3

1
2n−1

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

, (45)

{ĥ,Φ+,Φ−} = −i(
p

h
11
)2
p

h
44

v

�

2λ−
∞
∑

n=3

1
2n−2

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

. (46)

In the above the multinomial for ĥh2 can be understood to come from (v+ ĥ+h)2n terms, the
Φ0 rule from [(Φ0)2+2ĥv+ v2]n, and the rule for Φ± from [2|Φ+|2+2ĥv+ v2]n. This explains
the minor differences between the Feynman rules above.

The above constitute all the rules from the classical Lagrangian necessary to perform the
calculation of the tadpole diagrams to all orders in the SMEFT power counting, what remains
are the gauge-fixing and ghost contributions.

4 Gauge fixing the geoSMEFT

Background gauge fixing for the SMEFT was performed first in [9]. This was first done for the
gluons in [18], then later repeated in [16] in a manner more consistent with the gauge fixing
of the weak gauge bosons of [9] which is adopted here. The gauge fixing terms are given by:

LGF = −
ĝAB

2ξW
GAGB −

κ

2ξG
GA

colorG
A
color , (47)

GA = ∂µW A,µ − ε̃A
BCŴ B

µ W Cµ +
ξ

2
ĝABφ I ĥIK γ̃

K
B,J φ̂

J , (48)

GA
color = ∂µGµ,A − g3 f ABC Ĝµ,BGµC . (49)

Where in the above, unhatted fields are understood to be quantum fields and the hatted field-
space connections are the normal field space connections (i.e. ĝ and ĥ) with all quantum fields
set to zero. This notational choice is also the case below in the ghost Lagrangian. Starting with
the gluonic gauge fixing as it is the simplest we obtain the Feynman rule:

{ĥ, G1, G2} =
i
ξG

­

δκ

δĥ

·

(
p

κ−1)2pµ1
1 pµ2

2 δ
A1A2 . (50)

3Also ĥΦ0,±-vector couplings which do not contribute to the Tadpole diagram.
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In the case of the electroweak gauge fixing a coupling of the background Higgs field to gauge
bosons can be obtained from the variation with respect to the field-space connection of Eq. 47
and the square of the derivative term of Eq. 48. The second terms of Eqs. 48 and 49 cannot
contribute as they include a background gauge field, while the final term allows for a ĥ coupling
to goldstone bosons when all but one of the ĝ, ĥ, and φ̂ are set to their expectation values.
This results in the following Feynman Rules:

{ĥ, W+
1 , W−

2 } =
i
ξW

­

δg11

δĥ

·

(
p

g11)2pµ1
1 pµ2

2 , (51)

{ĥ, A1, A2} =
i
ξW
ΣAApµ1

1 pµ2
2 , (52)

{ĥ, Z1, Z2} =
i
ξW
ΣZ Z pµ1

1 pµ2
2 , (53)

{ĥ,Φ+,Φ−} = −i
M̄2

W

v

�

2
­

δh11

δĥ

·

(
p

h
11
)2v + 2

p

h
44
+
�

δg11

δĥ

�

(
p

g11)
2v
�

ξW , (54)

{ĥ,Φ0,Φ0} = −i
M̄2

Z

v

�

2
­

δh33

δĥ

·

(
p

h
33
)2v + 2

p

h
44
−ΣZ Z v

�

ξW . (55)

Note no ĥ coupling to two quantum Higgs bosons is generated.
The ghost Lagrangian was also derived in [9],4 it is reproduced here excluding any terms

with gauge fields as they cannot contribute to the one-loop Tadpole diagram (the ghost La-
grangian is by definition quadratic in the ghost fields):

Lghost = − ĝABūB
�

∂ 2 +
ξW

4
ĝAD(φJ + φ̂J )γ̃I

CJ ĥIK γ̃
K
DLφ̂

L
�

uC − κ̂ ūG
A∂

2uG
A . (56)

As was the case for the gauge fixing terms, ĥūu couplings can be obtained either from a vari-
ation with respect to one of the field-space connections or explicitly from φ̂, ĥ, or ĝ:

{ĥ, ūG
1 , uG

2 } = i
­

δκ

δĥ

·

(
p

κ−1)2p2
2δA1A2

, (57)

{ĥ, ūW+

1 , uW+

2 } = −i
�­

δh11

δĥ

·

M̄2
W (
p

h
11
)2ξ+ 2M̄2

W

p

h
44
ξ− (pg11)2

­

δg11

δĥ

·

p2
2

�

= {ĥ, ūW−

1 , uW−

2 } , (58)

{ĥ, ūγ1, uγ2} = iΣAA p2
2 , (59)

{ĥ, ūZ
1 , uZ

2 } = iΣZ Z p2
2 − iM̄2

Z

�

2
p

h
44
+ (
p

h
33
)2
­

δh33

δĥ

·�

ξ . (60)

In the case of the ghosts associated with the photon, the ξ dependent term vanishes identically.
This is analogous to the case of the classical contribution from the field space metric hI J , see
the discussions around Eqs. 41 and 43. Note that in the case of the ghost for the photon field
we have used the notation uγ to distinguish the field from the four-component ghost field uA.
With the above, all Feynman rules necessary to calculate the tadpole diagram at one loop and
to all orders in the SMEFT expansion are now defined.

5 The all-orders SMEFT tadpole

The one loop diagrams that contribute are shown in Figure 1, as was noted in Section 2 the
Feynman rules coupling the Higgs boson to gluons as well as those coupling the Higgs boson

4Here we have adopted the sign choice of [18].
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ψ W/Z uW/uZ φ±/φ0/h

Figure 1: One loop diagrams contributing to the Tadpole. The photon and gluons and
their corresponding ghosts do not contribute as they are massless the loop integrals
are identically zero.

to colored ghosts do not contribute to the tadpole diagram as the loop integral is scaleless.
Making use of dimensional regularization in d = 4− 2ε dimensions, the fermionic couplings
result in the following contribution at one loop:

TψH = −
Nc M̄ψ

4π2

�

δYψ

δĥ

�

A0(M̄ψ) (61)

=
Nc M̄ψ

4π2

p

h
44
�

M̄ψ

v
−

1
p

2

∞
∑

n=0

v2n+2

2n+1
(2n+ 2)c(n)

ψH

�

A0(M̄ψ) (62)

=
Nc M̄ψ

4π2

�

M̄ψ

v
−

v
4

�

2
p

2vc(6)
ψH + M̄ψ[c

(6)
HD − 4cH�]

�

−
v4

8

p
2
�

c(8)
ψH + [4c(6)H� − c(6)HD]c

(6)
ψH

�

+
M̄ψ

32

�

4c(8)HD + 4c(8)HD,2 − 3[c(6)HD − 4c(6)H�]
2
�

�

A0(M̄ψ) +O
�

1
Λ6

�

. (63)

Where we have used the Passarino-Veltman scalar A function,

A0(M) = M2

�

1+
1
ε
− γE + log

�

4πµ2

M2

��

. (64)

The three equivalences of Eq. 63 show first the geoSMEFT result, the result with the varia-
tion of the field-space connection written explicitly in terms of the relevant Wilson coefficients
while keeping the compact form for the transformations that canonically normalizes the Higgs
background field, and finally the full expansion in terms of the Wilson coefficients to order 1

Λ4 .
The barred quantities are not expanded as they are more closely related to input parameters
that would be chosen in a phenomenological study, this also serves to simplify the expressions
so they fit in paper format. This demonstrates that the geoSMEFT trivially sums the Wilson
coefficient dependence of the SMEFT. In a traditional SMEFT approach one would enumerate
all the contributing operators to a given order in the SMEFT power counting and the corre-
sponding Feynman rules, perform the calculations, and again expand to a given order. Here
we perform the all orders calculation and can expand to a given order after the full calculation
is performed.

The compactness of the expressions also allows for a cleaner understanding of cancellations
in the theory such as in the case of cancellations between gauge-boson, ghost, and goldstone
boson contributions as we see next. Below we neglect to expand in terms of individual Wilson
coefficients until the terms are added together as many simplifications occur after summing
the diagrams. In the case of the W and Z bosons we have:

T W
H =

M̄2
W

16π2

�

(
p

g11)2
­

δg11

δĥ

·

−
2
v

p

h
44
−
­

δh11

δĥ

·

(
p

h
11
)2
�

�

2M̄2
W − 3A0(M̄W )− ξW A0(

Æ

ξW M̄W )
�

,

T Z
H =

M̄2
Z

32π2

�

ΣZ Z −
2
v

p

h
44
−
­

δh33

δĥ

·

(
p

h
33
)2
�

�

2M̄2
Z − 3A0(M̄Z)− ξA0(

Æ

ξW M̄Z)
�

. (65)

11

https://scipost.org
https://scipost.org/SciPostPhys.11.5.097


SciPost Phys. 11, 097 (2021)

The ghost terms give (again, as the photon ghost term is scaleless the contribution is identically
zero):

Tu±
H =

M̄2
W

8π2

�­

δg11

δĥ

·

(
p

g11)2 −
2
v

p

h
44
−
­

δh11

δĥ

·

(
p

h
11
)2
�

ξW A0(
Æ

ξW M̄W ) , (66)

TuZ

H =
M̄2

Z

16π2

�

ΣZ Z −
2
v

p

h
44
−
­

δh33

δĥ

·

(
p

h
33
)2
�

ξW A0(
Æ

ξW M̄Z) , (67)

and for the goldstone bosons we find:

TΦ
±

H =
M̄2

W

16π2

�

2
v

p

h
44
+
­

δh11

δĥ

·

(
p

h
11
)2 +

�

δg11

δĥ

�

(
p

g11)2
�

ξW A0(
Æ

ξW M̄W ) (68)

+
v

32π2
(
p

h
11
)2
p

h
44
�

4λ−
∞
∑

n=3

1
2n−3

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

A0(
Æ

ξW M̄W ) ,

TΦ
0

H =
M̄2

Z

32π2

�

2
v

p

h
44
+
­

δh33

δĥ

·

(
p

h
33
)2 −ΣZ Z

�

ξW A0(
Æ

ξW M̄Z) (69)

+
v

64π2
(
p

h
33
)2
p

h
44
�

4λ−
∞
∑

n=3

1
2n−3

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

A0(
p

ξM̄Z) .

Noting the raised indices in δg11 for the Φ± contribution, we see that the ξW dependent parts
of the W and Z loops are cancelled exactly by the ghost and goldstone terms, and only the λ
and c(n)H gauge-parameter dependent terms remain for the scalars. This is exactly as was found
for the SM Tadpole in the background field methodology [7]. Interestingly, the behavior goes
beyond the SM-like interactions and also holds for the interactions which only occur in the
SMEFT, i.e. those proportional to δg and δh, as well. This also means that the λ and c(n)H terms
are gauge dependent and therefore so is the tadpole. This is also consistent with [7], where
they found this dependence exactly cancels against that of the Higgs two-point function and
the loop contributions in the process H → γγ at order 1

Λ2 in the SMEFT, leaving the observable
process H → γγ gauge invariant as it must be.

The sum of the vectors, ghosts, and goldstone bosons, neglecting λ and c(n)H dependence
is given by:

T V,u,Φ
H =

M̄2
W

16π2

�

(
p

g11)2
­

δg11

δĥ

·

−
2
v

p

h
44
−
­

δh11

δĥ

·

(
p

h
11
)2
�

�

2M̄2
W − 3A0(M̄W )

�

+
M̄2

Z

32π2

�

ΣZ Z −
2
v

p

h
44
−
­

δh33

δĥ

·

(
p

h
33
)2
�

�

2M̄2
Z − 3A0(M̄Z)

�

. (70)

In order to demonstrate the compactness of this expression we expand the quantity in brackets
for the W contribution to O(1/Λ4) in terms of the Wilson coefficients:
�

(pg11)2
¬

δg11

δĥ

¶

− 2
v

p
h

44
−
¬

δh11

δĥ

¶

(
p

h
11
)2
�

= − 1
v

�

2+ v2

2

�

c(6)H� − c(6)HD + 8c(6)HW

�

+ v4

16

�

12c(8)HD − 20c(8)HD,2 + 64c(8)HW + 3(c(6)HD − 4c(6)H�)
2 + 16(4c(6)H� − c(6)HD)c

(6)
HW + 128c(6)HW

��

+O
�

1
Λ6

�

.
(71)

In the case of the Z contribution the result depends on many more operator coefficients, as
well as the barred mixing angles due to the dependence in ΣZ Z .
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The last remaining contribution is from the quantum Higgs boson, which gives:

T h
H =

1
32π2

(
p

h
44
)2
�

M̄2
H

­

δh44

δĥ

·

+ v
p

h
44
�

6λ−
∞
∑

n=3

1
2n−1

�

2n
1,2, 2n− 3

�

v2n−4c(2n)
H

��

A0(M̄H) .

(72)

The sum of all the above contributions to TH in the SM limit agrees with [7], providing a
useful cross check of the result. To the extent of the authors knowledge the 1/Λ2 result does
not exist in the literature in the background formalism.

With all of the contributions included we can then choose a renormalization condition
related to the tadpole. Returning to Eq. 14 we obtain the coefficient of the tadpole term:

t ≡
p

h
44

v
16

�

16λ(v2
0 − v2) +

∞
∑

n=1

(4+ 2n)v4+2n−1

22+n
c(4+2n)

H

�

. (73)

Choosing t = 0 corresponds to the proper ground state [13,14] and is the scheme we choose
here. At tree level this simply reproduces the condition in Eq. 15. At one loop this corresponds
to cancelling the entire tadpole contribution. Introducing δt as a counter term, we have the
renormalization condition,

t = t0 −δt = 0 , (74)

where t0 corresponds to the tree level contribution. Choosing t = 0 corresponds to:

δt = −TH

= +
∑

ψ

Nc M̄ψ

4π2

�

δYψ

δĥ

�

A0(M̄ψ)

−
M̄2

W

16π2

�

(
p

g11)2
­

δg11

δĥ

·

−
2
v

p

h
44
−
­

δh11

δĥ

·

(
p

h
11
)2
�

�

2M̄2
W − 3A0(M̄W )

�

−
M̄2

Z

32π2

�

ΣZ Z −
2
v

p

h
44
−
­

δh33

δĥ

·

(
p

h
33
)2
�

�

2M̄2
Z − 3A0(M̄Z)

�

(75)

−
v

32π2
(
p

h
11
)2
p

h
44
�

4λ−
∞
∑

n=3

1
2n−3

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

A0(
Æ

ξW M̄W )

−
v

64π2
(
p

h
33
)2
p

h
44
�

4λ−
∞
∑

n=3

1
2n−3

�

n
1, 1, n− 2

�

v2n−4c(2n)
H

�

A0(
p

ξM̄Z)

−
A0(M̄H)
32π2

(
p

h
44
)2
�

M̄2
H

­

δh44

δĥ

·

+ v
p

h
44
�

6λ−
∞
∑

n=3

1
2n−1

�

2n
1,2, 2n− 3

�

v2n−4c(2n)
H

��

.

which depends on four barred masses (counting the barred fermion mass only once), four field-
space connections plusΣZ Z , λ, and the sum over c(n)H . Treating the sums as a single entity gives
a total dependence on eleven quantities. Conversely, the standard model result depends on
four masses and λ. Expanding the tadpole result in terms of the Wilson coefficients of the
SMEFT and maintaining barred mass dependence instead gives 12 parameters at dimension
six and 21 at O(1/Λ4) with 9 additional parameters at each subsequent order.5 In this context
the geoSMEFT represents a clear calculational advantage over the traditional approach to the
SMEFT.

Further, as we saw in the discussion about the gauge, goldstone, and ghost terms, the
compactness of the geoSMEFT expressions allows for a straightforward cancellation of terms

5The number of new parameters in hI J , gAB , and Y at a given dimension above six stays constant, see Table 1
of [10].
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which would be unclear when expanded in terms of the many Wilson coefficients contributing
to each process. Similar simplifications of expressions can be expected for higher n-point func-
tions, and as these expressions will generally be more complicated than those of the tadpole
this simplification is crucial to an analytic understanding of the SMEFT expansion at one loop.

6 Conclusions

We have constructed the Feynman rules necessary for the calculation of the tadpole diagram
within the framework of the geoSMEFT. In doing so we have included, for the first time, the
gauge fixing of the geoSMEFT and the all-orders Feynman rules related to gauge fixing which
include a single background Higgs boson and two other particles. We proceeded to calculate
all diagrams contributing to the process. The results allowed us to fix the minimum of the
Higgs potential at one loop and to all orders in the SMEFT power counting. In doing so we
demonstrated the simplicity of expressions obtained in the geoSMEFT as compared with those
expanded in terms of the Wilson coefficients which is necessary in standard approaches to
the SMEFT. Further we obtained not only the first one-loop calculation including full next
to leading order results in the SMEFT, but the first one-loop calculation including all orders
contributions in 1/Λn. As discussed in the introduction and Appendix B, the tadpole diagram
is not only essential to fully defining one-loop results, such as the masses of the gauge bosons,
but is also essential for the gauge invariance of the theory at one loop. This demonstrates the
foundational nature of this work toward future precision calculations in the geoSMEFT.

Beyond the scope of the calculations contained in this article, we note that the geo-SMEFT
is currently defined to include vertices of up to any three particles accompanied by arbitrarily
many scalar field insertions. This has presented the opportunity for many all-orders results
at tree level [6, 11] and their projection to order 1/Λ4 in phenomenological studies. This al-
lows for the possibility to perform a truncation error analysis more consistent with the SMEFT
than those commonly used where partial dimension-six squared results are used to estimate
the truncation error. While few additional one-loop calculations are currently possible in the
framework of the geoSMEFT, it is possible to systematically extend the geoSMEFT to include
any N particles plus arbitrarily many scalar field insertions. In particular, the expansion in the
vacuum expectation value can be defined for arbitrary n–point functions by simply defining
the field-space connections for ever increasing numbers of fields, i.e. for increased numbers of
variations in Eq. 2. The derivative expansion is more difficult as, beyond three points functions,
arbitrary powers of the momenta can be included leading to an infinite number of operators
contributing to any given n–point function [10]. Nonetheless, the derivative expansion can
separately be truncated at a given order. This will allow for the all orders in (v/Λ)n, as well
as (p/Λ)n to a truncated order, calculation of all two-point functions in the near future and
subsequently higher n–point functions. With all orders results at tree- and one-loop level we
can then define a fully consistent truncation error associated with the SMEFT. This is an im-
portant step toward a precision program for the studies at the High Luminosity LHC as well as
for supporting and informing the case for next generation colliders.
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A Useful geoSMEFT definitions and relations

The following definitions and geometric relations are used extensively throughout this work
in order to simplify expressions and retain them in the geometric formulation. These relations
can be found in [10]. The following matrices are used to define the covariant derivatives, field
strength tensors, and field-space connections:

γI
1,J =







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0






, γI

2,J =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0






, (76)

γI
3,J =







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0






, γI

4,J =







0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0






, (77)

as well as:

Γ I
1,J =







0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0






, Γ I

2,J =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, (78)

Γ I
3,J =







−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1






, Γ I

4,J =







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






. (79)

The quantities with tildes are defined as:

ε̃A
BC = g2ε

A
BC , with ε̃1

23 = g2 and ε̃4
BC = 0 ,

γ̃I
A,J =

�

g2γ
I
A,J ,

g1γ
I
A,J ,

for A= 1, 2,3 ,
for A= 4 .

(80)

The relation between barred and unbarred couplings is:

ḡ2 = g2
p

g11 = g2
p

g22 , (81)

ḡZ =
g2

c2
θZ

�

c̄W
p

g33 − s̄W
p

g34�=
g1

s2
θZ

�

s̄W
p

g44 − c̄W
p

g34� , (82)

ē = g1

�

s̄W
p

g33 + c̄W
p

g34�= g1

�

c̄W
p

g44 + s̄W
p

g34� . (83)

The above expressions make use of the barred mixing angles:

s2
θZ
= g1(

p
g44 s̄W−

p
g34 c̄W )

g2(
p

g33 c̄W−
p

g34 s̄W )+g1(
p

g44 s̄W−
p

g34 c̄W )
, (84)

s̄2
W =

(g1
p

g44−g2
p

g34)2

g2
1[(
p

g34)2+(pg44)2]+g2
2[(
p

g33)2+(pg34)2]−2g1 g2
p

g34(pg33+pg44)
. (85)
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The barred masses are given by:

M̄2
W =

ḡ2
2

4

Æ

h11
2
v2 , (86)

M̄2
Z =

ḡ2
Z

4

Æ

h33
2
v2 , (87)

M̄2
A = 0 . (88)

Expanding the elements of the field-space connections of Eqs. 5, 6, and 16–18 become compli-
cated very quickly, supporting the use of the geometric approach. Some examples of elements
of the matrices include:

p
g11 = 1+ c(6)HW v2 +

1
2

�

c(8)HW + 3(c(6)HW )
2
�

v4 , (89)

p

h
44
= 1+

1
4

�

4c(6)H� − c(6)HD

�

v2 +
1
32

�

3(c(6)HD − c(6)H�)
2 − 4c(8)HD − 4c(8)HD,2

�

v4 +O
�

1
Λ6

�

.

B Relevance of the tadpole to renormalization

Here we outline the importance of the tadpole to renormalization. We proceed by outline
the renormalization procedure to arrive at the implications of the tadpole diagram in the FJ
tadpole scheme, we do not employ the BFM here for simplicity. We loosely follow the notation
of [15]. The fields are renormalized as follows:

h0 =
Æ

ZĥhR , (90)

W±
0 =

p

ZW W±
R . (91)

The fourth component of the real scalar field is renormalized as:

φ4 = v0 + ĥ0→ Zv vR +δv +
p

ZhhR . (92)

Expanding the scalar potential of Eq. 14 about the tree level vacuum expectation value and
adding the one-loop tadpole contribution we find:

t = −2λRvRδv + TH ≡ δt + TH . (93)

This defines the relationship between δt and δv, in the main text δt is chosen such that t = 0.
This is equivalent to the choice:

δv =
1

2λRv2
R

TH =
1

M2
H,R

TH . (94)

Employing an on-shell renormalization scheme as in [15] the one loop shifts in masses of
the vector bosons (V =W, Z) are given by:

m̄2
V,R

m̄2
V

= 1+ 2
δv
v
−
δm2

V

m2
V

, (95)

where δv corresponds to the correction outlined above, and δm2
V corresponds to the explicit

contribution from the transverse part of the one-loop two-point functions:

δm2
V = Re[ΣV V

T (M
2
p )] . (96)
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In this way we can see from Eq. 95 that even in the FJ tadpole scheme employed in this
article, the one-loop tadpole is still phenomenologically relevant as it shifts the masses of
the gauge bosons. Further, as the tadpole was found to be gauge-parameter dependent in
Sec 5, we see that the gauge-independence of results such as the shifted masses depend on the
tadpole diagram. In this way we have demonstrated the importance of the tadpole diagram
to the future one-loop geoSMEFT program both phenomenologically and in terms of gauge
invariance of the theory, which is necessary for the consistency of the QFT.
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