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Abstract

We study a Rabi type Hamiltonian system in which a qubit and a d-level quantum sys-
tem (qudit) are coupled through a common resonator. In the weak and strong coupling
limits the spectrum is analysed through suitable perturbative schemes. The analysis
show that the presence of the multilevels of the qudit effectively enhance the qubit-
qudit interaction. The ground state of the strongly coupled system is found to be of
Greenberger-Horne-Zeilinger (GHZ) type. Therefore, despite the qubit-qudit strong cou-
pling, the nature of the specific tripartite entanglement of the GHZ state suppresses the
bipartite entanglement. We analyze the system dynamics under quenching and adiabatic
switching of the qubit-resonator and qudit-resonator couplings. In the quench case, we
found that the non-adiabatic generation of photons in the resonator is enhanced by the
number of levels in the qudit. The adiabatic control represents a possible route for prepa-
ration of GHZ states. Our analysis provides relevant information for future studies on
coherent state transfer in qubit-qudit systems.
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1 Introduction

The quantum Rabi model (QRM) describes the interaction between a two-level system and
a single quantized harmonic oscillator mode. It is one of the most celebrated models in
atomic physics for light-matter interaction [1]. In quantum technology, Rabi-like models are
widely employed to describe the effective physics emerging in a variety of different contexts
ranging from spintronics [2, 3] to trapped ions [4], and from circuit quantum electrodynam-
ics (cQED) [5] to atom-superconducting qubit hybrid schemes [6]. Despite its simple form,
the Rabi model was solved exactly only recently [7,8]. The ground state of the quantum
Rabi model consists of a non-classical highly entangled state of two-level system and bosonic
mode [7,9]. In cQED, different regimes of interaction between the two-level system and the
bosonic field can be explored. In particular, weak and strong coupling regimes are routinely
exploited for read-out and coherent state transfer [10]. Recent studies have demonstrated the
possibility of reaching the ultrastrong and deep strong coupling regimes, too [11,12].

Here, we formulate and study a Rabi-type minimal model describing qubit-qudit inter-
action mediated by a single mode quantum bosonic field. This type of models has emerged
recently in several studies of specific systems where atoms, solid state devices (such as su-
perconducting and quantum dot qubits) are assembled together to form hybrid quantum net-
works [6,13-20]. In this context, entangling quantum systems of heterogeneous nature is
sought intensively [21-23], as such hybrid entangled states could become useful in convert-
ing quantum information between different encodings [24].

We shall see that the physics of our model is particularly interesting in the ultrastrong cou-
pling regime [18,25-28]. In particular, the ground state of the system turns out to be defining
a Greenberger-Horne-Zeilinger (GHZ) entangled state. GHZ states present great significance
among all types of multipartite entanglement [29]. These states exhibit maximal correlations
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between three or more quantum systems. GHZ states have been considered a key resource
in fundamental physics since the early stages of quantum information. They have also been
proven useful in various quantum technologies, including quantum error-correcting codes [30]
and quantum metrology beyond the Heisenberg limit [31].

We point out that the generation of GHZ hybrid entanglement defines a challenging prob-
lem in quantum technology. In cQED, for example, GHZ hybrid entanglement has been
achieved by state-dependent phase shift operations which involve complicated control and
feedback sequences [23,32]. In this context, exploration of the ultrastrong coupling regime
has been demonstrated beneficial for GHZ state preparation [33, 34]. Indeed, our scheme
guarantees a straightforward preparation of hybrid GHZ states, as such states could appear in
the ground state of the QRM at large coupling strengths.

The article is organized as follows: in Sec. 2, we introduce a generalization of the quan-
tum Rabi model to describe the qubit-qudit interaction through the resonator bosonic field. We
demonstrate, through an analytical approach based on adiabatic approximation and perturba-
tive expansion, that hybrid GHZ states constitute the ground state solutions in the ultrastrong
coupling limit. In Sec. 3, we study the bipartite entanglement between the qubit and qudit
mediated by the common resonator, quantified by negativity [35]. We show that the pres-
ence of the GHZ state induces an exponential suppression of the negativity for large values of
the coupling strengths. Dynamical features are investigated in Sec. 4. In particular, we show
the dynamics after quenching the coupling strength, and propose adiabatic state preparation
schemes for the hybrid GHZ states. A short discussion of the main results of the manuscript is
presented in Sec. 5.

2 The qubit-qudit Rabi model

We investigate the physical system schematically pictured in Fig. 1. The scheme features a
qubit (two-level quantum system) and a qudit (d-level quantum system) individually coupled
to a common quantum resonator described by bosonic degrees of freedom. The Hamiltonian
reads (here, and in the rest of this article, we work in units & = 1)

A " Q A A A "
H= w&‘d—?162+QZJ§+[g16X+g2(Jd++Jd_)](c“z‘ +4). (1)

Here, &, , , are the Pauli matrices for the qubit with transition frequency Q, J §’i are the spin
(d—1)/2 operators with level spacing €,, and a(a") is the annihilation (creation) operator for
the bosonic field with frequency w. The coupling strengths g , in Eq. (1) quantify the vacuum-
Rabi splittings. Employing a jargon that is widely used in the literature, we will denote the
qubit and the qudit as “artificial atoms”. For d = 2, our model is equivalent (up to a sign
convention) to the two-qubit quantum Rabi model [36-39]. In contrast to the single qubit
Rabi model, this generalized model is not integrable for general parameter values [37,38].

The eigenvalues and eigenstates of H can be readily obtained numerically. Here, we devise
analytical approximation schemes both in the weak-coupling and in the ultrastrong coupling
regimes.

The weak coupling limit (g;, g, < w), in the presence of strong qubit/qudit-resonator
detuning (2,9, < w), can be treated by means of a Schrieffer-Wolff transformation [5, 40].
In particular, we apply the following unitary transformation to the Hamiltonian Eq. (1):

V =exp(8) = exp[e (476, —a6_ )+ &(aT6_—ad,)
+ey(a'JT —al) +&,(a" Ty —ai))], (2)
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Figure 1: Model schematics. The system is composed of a qubit with level spacing
Q;, an harmonic oscillator (resonator) with characteristic frequency w, and a d-level
quantum system (qudit) with level spacing £2,. The qubit and the qudit are coupled
to the resonator through the coupling constants g 5.
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In the weak coupling limit considered here €;,&; < 1. In particular, at the lowest order in the
expansion, the effective Hamiltonian H. = VAV reads:

N N 1 A n n__ I\" A A
Heg >~ Ho — 5 [[g16,+ g7 +J)]@" +4a),8]

_ ~ata 1
=wa a—

o |2

é-z + Qng _geffé-x(j; +jd_)

1 d>—1 £232 4 (1HY2 1 ()2
_§g2(62+§2) 2 _Z(Jd) +(Jd) +(Jd)
_%gl(el"i'gl), (5)

with renormalized frequencies:!

@ =w+g1(e1—E1)0, +282(e2— E)JZ, (6)
Q=0 —gi(e;— &), (7)
Qy =0y —ga(e2—8&3), (8)
and effective coupling g = [g1(€2+E5)+g2(e1+E1)]/2. InEq. (5), Hy = w&T&—%éz+sz§
is the uncoupled Hamiltonian and [...,...] denotes the commutator. Within our approximation,

the energy spectrum consists of different manifolds characterized by a fixed value of resonator
photon number operator N = 474 (the interactions between different manifolds can be ne-
glected due to the large resonator frequency compared to other energy scales). For the qubit
(d = 2), we have (JA;E)2 =0, (f;)z = 1/4, and the spectrum of the Hamiltonian in Eq. (5) can
be found by diagonalizing a 4 x 4 matrix consisting of two 2 x 2 blocks. In the lowest manifold
(N = 0), the four eigenenergies are given by

1 . ~ 1
Ed=2 =:|:\J Z(Ql iQ2)2+g§ﬁ__— Z Egi(ei-l-gi). (9)
i=1,2

'Here our notations is slightly abusive, since & contains the operators &,,J . However, since we focus on the

N = 0 subspace of the resonator degree of freedom, this notation simplifies the subsequent discussion.

4
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Figure 2: Hamiltonian energy spectrum with qudit dimensions d = 2,3,4. (a)-(f)
Low energy spectrum vs coupling strength g obtained through numerical diagonal-
ization of the full Hamiltonian Eq. (1) (solid). The numerical results are compared
to the low coupling approximations (black dotted-dashed) of Eq. (9) (see also Ap-
pendix A for the qutrit and the ququart cases), and d-order perturbation approx-
imation Eq. (11) (see also Appendix C for the qutrit and the ququart cases) in
the ultrastrong coupling regime (red dashed), for g; = g, = g and (top panels)
Q; =0.15w,0, = 0.1w, (bottom panels) 2; = 0.55w, 2, = 0.5w.

In the general qudit case (d > 3), the eigenenergies can be obtained by computing the
roots of the product of two degree d characteristic polynomials of submatrices of dimen-
sion 2 x d. Simplified expression can be obtained by neglecting the (f;‘)2 terms in Eq. (5),
and performing an approximation similar to the standard rotating wave approximation
6,(JF +J7) ~ 6,J7 +6_JF, valid for Q; ~ Q,. The approximate results in the N = 0
subspace for the qutrit and the ququart are reported in Appendix A.

In the ultrastrong coupling regime, the numerical results to be presented below are cor-
roborated by an analytical approach combining the adiabatic approximation in the displaced
oscillator basis [41] and degenerate perturbation theory. More precisely, we first obtain the
exact spectrum of the reduced Hamiltonian

H=wad'a+g,6,.(a"+a)+ g +J)@"+a), (10)

neglecting the free Hamiltonian of the qubit and qudit in the limit where Q,,Q, < w, and
g1,82 S w. Then, these terms are restored within a perturbative expansion. The eigenstates
of H are product states |0 m Ny, ,,) = |o) ® |m) ® N, ). Here, o =1, are the eigenstates
of &, with eigenvalues £1, [m=0,1,...,d —1) are the eigenstates of the qudit operator
(j;r + fd_) with eigenvalues A,, = —(d —1) + 2m, and |N, ,,) are displaced Fock states [36,
37,41] (see Appendix B). The system yields a two-fold degenerate ground state, obtained
from a displacement of the vacuum state in the resonator {|1,+,0; 1), [{,—,0; _)}, with energy
Ey = —[g, +(d —1)g,]*/w, where |+) (|-)) is the eigenstate of the operator (f;r +jd_) with
the largest(smallest) eigenvalue, i.e., d —1(—d + 1). The corrections to the spectrum of H are
then evaluated through perturbation theory in A’ = —%Qléz +Q,J 7 The lowest (second)
order corrections to the energy are obtained as (see Appendix B and Appendix C for a detailed
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derivation):
w 2 2
Eo=Ey— ————— Qe 01/
T 0T 16(d—1)gig, !
—w 10 —2) QZe e/
16(d —2)g5 +16g182
w8y e—2lei+(d-1)g3)/w? ) 11

42 8(d—1)g18>

where 6; ; is the Kronecker delta.? Notably, the two-fold degeneration of ground state is only

resolved at d-order perturbation theory in H’, with a correction proportional to £ Qg_l (see
Appendix C). The corresponding eigenstates read

1
|\I":|:) :EH T: +90T,+> + | la_) Ol,—) + Z Co’,m(gl, g2)|0’ m, Oo',m)], (12)
(o,m)#(T,+),(1,-)

where C is the normalization factor, and the functions C, ,,(g1,g2) o< e 81/ “’2, e8:/" are
exponentially suppressed with the coupling strengths. As discussed above, the analytical ex-
pression in Egs. (11)-(12) are expected to hold in the regime where the free Hamiltonian terms
of the atoms are treated as perturbations to the interacting system, i.e. 2, <€ w, g7, &>.

In Fig. 2, we display the low-energy spectrum of the Hamiltonian in Eq. (1) as a func-
tion of the coupling strength (with g; = g5) for d = 2 (panels a,d), d = 3 (panels b,e),
and d = 4 (panels c,f). For visualization purposes, we plot the energy as a function of dg;
(with d number of levels in the qudit), since the ground state energy for g; = g, scales as
Ey/w ~ —(dg,/w)? for large values of g;. The analytical expressions obtained in the low-
coupling limit (dotted-dashed) and through perturbation theory in the ultrastrong coupling
regime (dashed) are compared with the solutions obtained through numerical diagonalization
(solid). In the low coupling regime, the analytical expression of Eq. (9) gives a very accurate
description of the spectrum for dg; < 0.4w (see Fig. 2a), and Fig. 2d)). For the general qudit
case, the expressions obtained through RWA approximation reproduce the numerical results
in a less satisfactory way. Still, they correctly reproduce the spectrum for dg; < 0.3w.

For ; = 0.15w, 2, = 0.1w (top panels), an excellent agreement between the strong cou-
pling regime approximations and numerical solutions arises for dg;,dg, 2 0.3w. For higher
Q, and Q, values (©2; = 0.55w,, = 0.5w, bottom panels), the adiabatic approximation
breaks down below dg;,dg, ~ 0.75w (Fig. 2b).

With increasing coupling strengths gi, g5, the higher order correction terms in Eq. (12)
are suppressed exponentially, and the states |¥,) approach the GHZ-type states. Note that
the states [0, ;) = DT(%)IO) and [0, _) = DW—@)IO) are coherent states with
opposite displacement in the phase space, which are asymptotically orthogonal in the limit
g1,82 — 09. As a result, the ground state under such large coupling assumption can be
approximated as:

1
V2
The validity of this approximation is investigated in Fig. 3, where the fidelity between the GHZ
state and the ground state of the Hamiltonian obtained through numerical diagonalization is
plotted as a function of the coupling strength g; = g,. In this manuscript, we define the
fidelity between two pure states |¢), |y) as F = | (¢|¢) |. In agreement with our perturbative

calculation, the fidelity of the ground state with the GHZ state approaches the unit value in
the limit g1 > 21, Q5.

|\IJGHZ> (l T: +, OT,+> + | l) ) 0,L,—>) . (13)

2We have verified that for d = 2, when both equations (9) and (11) are applicable (that is, when taking
gi> ; — 0) they agree at next to leading order.
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Figure 3: Ground state vs GHZ state for g; = g, and different qudit sizes d = 2, 3,4
(top to bottom at g; = 0). Fidelity between the Hamiltonian ground state (obtained
through numerical diagonalization) and the GHZ state Eq. (13) as a function of the
coupling strength for (a) 2; =0.15w,2, =0.1w, (b) ©; = 0.55w, Ny = 0.5w.

3 Negativity

In our scheme, it is interesting to investigate the bipartite entanglement between the qubit and
qudit. We choose to compute negativity [35] as the measure of entanglement. For a bipartite
pure state |p),5 in a d ® d’(d < d’) quantum system, the negativity is defined as

1
Nigy = 5UlI9)as 015l 1), a4

where |¢) 45 (| is the partial transpose of |p)45{¢| and || - ||; is the trace norm. To extract
bipartite pair-wise entanglement in a tripartite system, we use the reduced density matrix of
|¢)apc On subsystem A ® B by tracing over subsystem C: pup = tre|@)apc(@]-

Figure 4 displays the density plot of the negativity as a function of the coupling strengths
g1, 8> in the qubit (Fig. 4a), qutrit (Fig. 4b), ququart (Fig. 4c) cases, for Q; = Q, = 0.1w. Note
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Figure 4: Coupling dependence of the ground state negativity between the qubit and
the qudit. (a)-(c) Density plots of the ground state negativity as a function of g,
and g, for the (a) qubit-qubit, (b) qubit-qutrit, (c) qubit-ququart cases. The plots
are obtained by numerical calculations for 2; = Q, = 0.1w. (d) Cuts of the density
plots for g, = 0.2w, indicated by the dashed lines in panels (a)-(c). The results
obtained through numerical calculations (solid) are compared with the approximate
expression of the negativity Eq. (16) (dashed), obtained in the ultrastrong coupling

regime.
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that the negativity is clearly symmetric under the exchange g; <= g, in the qubit case (since
Q; = Q,), and it becomes gradually more asymmetric by increasing the number of levels.
The bipartite entanglement between the two artificial atoms has a nontrivial response to the
coupling strengths between subsystems. In particular the negativity is maximum for interme-
diate values of the couplings, and it is strongly suppressed at large couplings. The parameters
where the maximum negativity is obtained depend on the number of levels in the qudit and
read: g; = g9 =~ 0.24w (qubit), g; ~ 0.21w, g, ~ 0.17w (qutrit), g; ~ 0.21w, g, ~ 0.14w
(ququart).

For a better visualization, in Fig. 4d we consider cuts of Figs. 4a-c at a fixed value of
g7 = 0.2w. The negativity first rises to a maximum with increased coupling strength g,
before decaying to zero exponentially (as we will discuss below). This phenomenon is re-
ported in Ref. [42] where an approximate expression is derived to explain the curve at weaker
coupling. Here, we obtain an analytical expression for the decaying curve. In addition, our
approach demonstrates that the entanglement suppression is a consequence of the structure of
the entanglement encoded in the ground state [see Eq. (13)]: the tripartite GHZ state at large
coupling limit(g;, g5 — ©0), hinders the bipartite entanglement obtained after tracing out one
of the subsystems, that asymptotically vanishes. This property of the GHZ states results in a
counter-intuitive implication: the strong coupling can destroy entanglement between the two
quantum systems connected by the resonator.

Now we show that the approximate expression of the ground state, i.e., the GHZ state of
Eq. (13), leads to an accurate prediction for the entanglement at large couplings; we can easily
calculate the negativity for those states. Indeed, the corresponding reduced density matrix p’
with resonator degree-of-freedom traced out is a (2d x 2d) matrix and has only four non-zero
matrix elements:

1 ... K

/

p' = (15)

1

2 . e . b)
K ... 1

with K = exp{—2[ g1 +(d —1)g,]%?/w?}. Therefore the analytical expression for the negativity

of the ground state in Eq. (13) is

1 1
N = ElKl = Eexp{—Z[gl +(d—1)g,1*/w?}. (16)

These approximate expressions are displayed (dashed) in Fig. 4. Note that the approximation
describes very accurately the exponential decay of the negativity at large couplings.

We close the section by noting that the negativity measure is not a sufficient test of entan-
glement for systems with dimensions beyond 2 x 3. Under such circumstances, a state with
zero negativity could possibly be a positive partial transpose (PPT) or “bound entangled” state,
which is argued to be metrologically useful [43-45].

4 Dynamics
In this section, we discuss the dynamical evolution of the coupled system. We consider two
complementary cases: the quench dynamics starting from the non interacting state and the

adiabatic preparation of the GHZ state.

4.1 Quench dynamics

We start by discussing the dynamics of the system under non-adiabatic switching of the in-
teraction. We consider the system initially prepared in the ground state of the uncoupled

8
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Figure 5: Fidelity dynamics after quenching the interaction strength. a)-b)-c) Fidelity
between the initial state of the system and the instantaneous state for qubit (a), qutrit
(b) and ququart (c) cases. The initial state is the ground state of the uncoupled
system. The numerical expressions (solid) are compared to approximations (dashed)
derived in the main text Eq. (18). d)-e) -f) Fast fourier transform of the fidelity
evolution for d) qubit, e) qutrit, f) ququart. Parameters are 2; = 0.12w,Q, =0.1w,
and g; = g, = 0.3w.

Hamiltonian Hy, i.e. [1py) = |g00). For simplicity, we consider an instantaneous quench of
the coupling constants to the final values g; = g, = 0.3w. In this case, the time-evolved state
reads

(1)) = e ). 17)

Due to the non-adiabatic control, the state of the system is different from the ground state of
the interacting Hamiltonian after the quench, and evolves in time.

Figures 5a-c display the time evolution of the fidelity between the initial state |,) and
the time evolved state |y (t)) = e it |o) in the qubit, qutrit, and ququart cases, respectively,
for 2; =0.12w and Q, = 0.1w. We note that the dynamics of |,) involves multiple frequen-
cies, and displays a clear dependence on the number of levels of the qudit. An approximate
description of the evolution can be obtained by neglecting the free terms of the atoms in the
Hamiltonian. Namely, we set £; , = 0, and expand [¢),) in the eigenstates basis of H [see
Eq. (10)], ie., [Yo) = Doy (0 MmNy, g 00) [0 mN,,,). For the qubit case, we obtain

+00
F2= 2| > e E (N L [0) 1P + e E (N, o) 2, (18)
N=0

where Ejy = (N —a3) and |(N; .[0) |* = e_“:ztaiN/N!, with a, = (g; £ g;)/w. For the
qutrit and the ququart case the summation in Eq. (18) involves d terms. Such approximated
dynamics is displayed® in Figs. 5a-c using dashed curves. We note that the approximate ex-
pressions capture the initial decrease in fidelity and the amplitude of its oscillations, as well

*In the infinite sum of Eq. (18), we retained terms up to N,,,, = 10, since we verified that the convergence is
quite rapid for our parameter values.
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Figure 6: Operator dynamics after quenching the interaction strength. a)-b)-c) Dy-
namics of the expectation value of a) the qubit population, b) qudit population and
¢) mean photon number. The dashed lines in panel a)-c) are given by Egs. (19),(20).
d)-e)-f) Fast Fourier transform of the expectation value evolution for d) qubit popula-
tion, e) qudit population, f) photon number population. The curves are vertically off-
set by (d —2)/2 for visualization purposes. Parameters are 2; = 0.12w, 2, = 0.1w,
and g; = g, = 0.3w.

as the main frequency components of the evolution. We carried out the frequency analysis of
the dynamical response through the fast Fourier transform of the curves displayed in Figs. 5a-
c.* The results are reported in Figs. 5d-f. In the qubit case (d = 2, Fig. 5d), the analytical
expression of Eq. (18) approximately captures the dominant frequency of the oscillation, with
a small shift towards smaller frequencies. For the qutrit (d = 3, Fig. 5e) and the ququart
(d =4, Fig. 5f), the analytical expression gives a good estimation of the number of harmonics
in the time oscillations; the actual values of the frequencies, instead, are obtained with less
precision. The discrepancies arise because the approximated analytical scheme neglects the
free Hamiltonians of the qubit and the qudit [the second and third terms in the right hand side
of Eq. ()].

Figure 6 displays the time evolution of the expectation values of &, (panel a), J 7 (panel b),
and the mean photon number '@ (panel c) for the qubit, qutrit and ququart cases. Consider
first the qubit population (6,(t)): in all the three cases, the evolution is non-harmonic, and
the number of relevant frequencies increases by increasing the number of levels in the qudit.
In particular, for precise modeling of the dynamic in this regime different Fock number states
must be included in the calculation and neglecting the off-diagonal terms in the basis of H
would provide a poor description of the physics (see the above discussion).

Consider for instance, the time evolution of &, in the qubit case (blue curve in Fig. 6a). We
can work within the approximation exploited above for the strong coupling regime. Namely,
we approximate H with H of Eq. (10), and we write |1),) in the basis of H. By performing the
calculation, it is possible to derive a simple expression for (5,) when g; = g5 (as in the plot

“For better visualization, we subtract the mean value from each curve before performing the Fourier transform,
hence removing the zero-frequency peaks.
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of Fig. 6a), namely

R +00o ( g%)N 5
(6,(t)) ~ Z ' cos(4git/w—Nwt). (19)
= N!

This approximate expression is displayed in Fig. 6a (dashed). In agreement with the results
displayed for the fidelity in Fig. 5a, the approximation leading to Eq. (19) gives good estimates
for both the amplitude and the main frequency of the oscillations. This is confirmed by the
Fourier analysis in Fig. 6d. Similar considerations apply to the time evolution of the expecta-
tion value of (J j). §ince~the qubit system is symmetric under the exchange 1 «— 2A, the approx-
imated evolution H ~ H can be readily obtained from Eq. (19); recalling that J;_, = 6,/2,

we obtain (Jj ,(t)) ~—1/2 Z;O% (4%, cos(4g1 t/w —N wt) [the minus sign comes frorn our
sign convention in Eq. (1)]. As a consequence, the Fourier transform of (J dzz(t)), shown in
Fig. 6e, perfectly reproduces the one displayed in Fig. 6d, up to a factor 2.

Notably, the dynamics of the mean photon number {a"a) is much more regular, as displayed
in Fig. 6¢; for visualization purposes, the various curves are offset by the quantity d —2. The
plot clearly displays two relevant features: i) there is a frequency mode which is independent
of the number of levels in the qudit; ii) the amplitude of the oscillations increases with d.
These features can be discussed retaining the approximation H ~ H. In particular, by applying
the Baker-Hausdorff expansion to the operator e'*a"de ", we derive

(Y(0)la"alp(0)) = 43 +(d —1)g31sin*(wt/2). (20)

The validity of this approximation is investigated in Fig. 6¢ (dashed curves). While we find
a good agreement for the qubit and the qutrit cases, the deviations are more relevant for the
ququart. This result is confirmed by the Fourier transform of the curves, displayed in Fig. 6f;
note that the curves have a vertical offset of (d —2)/2 for visualization purposes. As discussed
above, all the curves share a harmonic component with frequency w, captured by the adiabatic
approximation Eq. (20). This mode represents the primary frequency component in the qubit
(d = 2, blue) and qutrit cases (d = 3, green). The situation is more complex for the ququart
(d = 4, purple), with several sidebands and an enhanced low-frequency oscillation ~ 0.1w.
We conclude this section by emphasizing that the presence of additional levels in the qudit
is beneficial to inducing non-adiabatic photon generation in the ultrastrong coupling regime.

4.2 Adiabatic state preparation

In this section we demonstrate how the state in Eq. (13) can be prepared with high fidelity by
adiabatic evolution:

H(t) = [1—p(t)]Hiy +u(0)H . (21)

The initial state and the final state correspond to the ground state of the Hamiltonians
H,, = H(t = 0) and H, respectively, and u(t) is a function that goes from 0 to 1 when t
goes from 0 to the final evolution time t; u(t) is chosen to be a linear function in our simula-
tions. Here we propose two simple schemes to prepare the hybrid GHZ state: I. switch on the
couplings at fixed frequencies; II. change the frequencies at fixed couplings. In both schemes,
the final Hamiltonian H is set to be the Hamiltonian of the qubit-resonator-qudit system in
Eq. (1).

I. In the first approach, the system is 1n1t1a11zed without coupling terms
g1(t = 0) = go(t =0) =0, ie., H, = Hy = wa'a— —O' + QZJZ During the adiabatic
evolution, the coupling terms are gradually switched on to the final value g = 0.5w, read-
ing g1(t) = g2(t) = u(t)gy, see the inset in Fig. 7a. The main panel of Fig. 7a displays
the evolution of the fidelity between the instantaneous state of the system under the time-
dependent Hamiltonian H(t) and the expected GHZ state at the final time, obtained by setting

11
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Figure 7: Adiabatic state preparation of the GHZ state in the qubit, qutrit, and
ququart cases. (a) Time evolution of the fidelity between the instantaneous state
and the hybrid GHZ state in Eq.(13). The coupling terms g;, g, are adiabatically
switched on at t = 0 and linearly increased to 0.5w, as shown in the inset. (b) State
fidelity with the GHZ state vs time in the adiabatic process where the atoms frequen-
cies are linearly reduced from the initial value 2,9, = 2w to 0.1w, as displayed in
the inset.

g1 = g, = 0.5w in Eq. (13). The different curves corresponds to the qubit, qutrit and ququart
cases. In all the cases, the fidelity is minimum at t = 0 and grows monotonically with time,
reaching the unit value (within numerical accuracy) for t = tp = 500/w. Note that for a
given time the fidelity is maximum in the qubit case, and typically decreases by increasing the
number of levels in the qudit.

II. Here, we keep fixed the coupling terms g;,g,, while tuning the character-
istic frequencies of the artificial atoms. Specifically, the system is initialized to
Hy = wd'a —Q,6,/2 + Q’ng + g6, (a"+a) + gz(f; + jd_)(&"' + &), with the initial transi-
tion frequencies satisfying £ > Q; and Q7 > Q,. In the adiabatic preparation, the artificial
atoms frequencies Q,(t), Q,(t), are linearly reduced to the final values 2; = Q, = 0.1w (see
the inset of Fig. 7b). The corresponding evolution of the fidelity with the final GHZ state is
shown in Fig. 7b. As in the previous case, the fidelity grows monotonically to 1 as time ap-
proaches t in all the cases. Notably, the presence of additional levels in the qudit is displayed
to be beneficial to the process: for a given t > t;/2, the fidelity is larger in the qutrit and
ququart case with respect to the qubit case.

12
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5 Conclusion

We formulated and studied a quantum Rabi type model describing the interaction between a
two-level and a multi-level system mediated by a single mode bosonic field (in quantum tech-
nology such bosonic field is realized by a resonator). In the weak and in the strong coupling
limits, we devised two different analytical schemes. In the weak-coupling limit, the effec-
tive Hamiltonian is obtained through a suitable Schrieffer-Wolff transformation. Assuming
strong qubit/qudit-resonator detuning, the spectrum of the effective Hamiltonian has been
obtained exactly. In the strong coupling limit, the ground state of the system is provided by
a tripartite-entangled state of the GHZ type. A known feature of the GHZ states is that they
do not allow bipartite entanglement between the three partners. As a result, qubit and qudit
cannot be highly entangled, and the correlation between them drops exponentially with in-
creasing coupling in the ultrastrong coupling regime. Such analysis is supported by the study
of the negativity providing the sufficient condition for the qubit-qudit entanglement.

We analyzed the system dynamics both under quenching and adiabatic control of system
parameters (either the couplings or the atoms’ frequencies). The non-adiabatic nature of the
quantum quench leads to the generations of photons in the resonator, with a magnified effect
by increasing the number of levels in the qudit. By adiabatic control, the GHZ states can be
prepared with high fidelity. Both the analysis of the spectrum and the dynamics indicate that
the interaction is effectively magnified by the number of the levels of the qudit. The study of the
dynamics gives preliminary information on the qubit-qudit coherent state transfer. Our work
provides relevant information for applications in quantum technology, particularly for hybrid
quantum networks design [21,22,24,46]. The proposed scheme for the GHZ preparation may
be implemented in cQED platforms, where both ultrastrong and deep strong coupling regimes
have been studied theoretically [47-49] and implemented experimentally [11, 12, 50-52].
Very recently, the ultrastrong coupling regime has been reached in hybrid semiconducting-
superconducting technology [53], too.

The generalization of the Rabi model to the qudit system can be applied to discuss super-
conducting circuits based on transmon qubits. Indeed, the multi-level nature of the energy
spectrum cannot be ignored in these elements due to the weak anharmonicity. These circuits
have been extensively investigated, even in combination with semiconducting qubits [54]. On
the theoretical side, our scheme can be investigated in a more general setting. A certainly
interesting direction to go would be studying the system dynamics in the presence of dissipa-
tion [55].
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A Low coupling spectrum

Here we report the low-coupling approximation of the effective Hamiltonian Eq. (5), obtained
by neglecting the (f‘;t)2 terms, and performing a RWA-like approximation. For the qutritd = 3,

1 Q o
Egq 2_581(61+§1)—gz(€2+§z)i(71—92) , (A1)

1 3 1. 1 ~ ~ 2
E2’3 = —Egl(el + gl)_ 58’2(62 + 52) — EQZ + 5\/[91 + Qz + g2(62 + 52)] + 8gesz, (AZ)

1 3 1. 1 ~ ~ 2
Ep5= _581(61 +&1)— 582(52 +&)+ 592 + 5\/[91 + 0y —gyles +E5)] + 8g2;. (A.3)

For the ququart d =4,

1 3 ~ .
Eoyr = _Egl(el +&1)— 582(62 +E,)£2(0; —3%0,),

1 7 1 /= = 12
Eys3= —581(61 +&1)— Egz(ez +&)+ E\/(Ql +§,)" +16g%, (A4

1 5 ~ 1 ~ ~ 2
Ey5 = _Egl(el +&1)— 582(62 +&))— Q£ E\/[Ql +Qy—2g5(e3+E)] + 12g2%,

1 5 - 1 ~ ~ 2
E¢7= —581(61 +&1)— 582(62 +&)+ 0+ 5\/[91 +Qy +2g9(62+ )] + 12g2%;. (A.5)

B Adiabatic approximation

To diagonalize Eq. (1), we generalize the adiabatic approximation, which was first adopted in
[41] to find solution to the single spin quantum Rabi model. In the adiabatic limit 2;,Q, < w,
the Hamiltonian is approximated as:

H=wa'a+g,6,.(a"+a)+ g, +J)@" +a), (B.1)

where the free energy terms of the atoms have been dropped from Eq. (1).

We consider eigenstates of H in the form |oc mN, ;) = |o) ® |m) ® |N,, ;) where o =1,
are the eigenstates of &, with &,|T, |) = |1, |), Im) are the eigenstates of the qudit spin
operator (f; + jd_). Next we find the eigenvalues of H:

Hlo MmNy ) :Egmla MmNy ) - (B.2)

B.1 Qubit case

The eigenstates of (j;r +j2_) in the qubit basis |0, 1) reads |+) = % (1, £1)7 with eigenvalues
+1. We can derive a set of four eigenvalue equations for the resonator eigenstates [N, ,,):

) + EY
[&“& + (81 gZ)(fl' + d)] INy2) = £|NT +)5 (B.3)
w ’ w ’
N
o (ate),. B,
[a“a—nggz)(a'+a)]lNl,i) - %INH)- (B.4)
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By completing the square:

. EN

[(@"+a)(@+as)]INg 4) = (% +ai) INy£) (B.5)
L EN

[(CAI" - aq:)(& - a:F)] |Nl,i> = ( Cl;i + ai)lNl,i> > (B.6)

where we defined a. = (g; £ g5)/w. Taking w, g;, g, to be real, the left-hand side can be
rewritten in terms of displacement operators D(a) = exp[a(d’ —a)]:

[(@"+ au)(@+ ag)]INy 2) = DT (aw)a’ab(aL)INy 2)
[(@" —az)(@—az)]INy2) = D (—ag)a’aD(—a;)IN, +) . (B.7)

The new eigenstates are displaced Fock number states:

n +
) = bT(E=ER) M=), (B.8)
A +
) = BT (-EIE Ny =), (8.9)
with eigenvalues
EN —pN  — N (g1 +82)° B.10
e =B = @ N=—m (B.10)
2
N _pN  _ (81— 82)
EN =E), = w[N—T]. (B.11)

B.2 Qutrit case

The eigenstates |m) of the qutrit operator (j;r + j; ) with eigenvalues E,, = 0,%2, can
be already obtained through diagonalization: |0) = %(—1/5, 0, V2)T, |+) = %(1, V2, 1T,
|—) = %(1, —+/2, 1)T in the qutrit number basis {|0),|1),|2)}.

The eigenstates |N,, ,,) satisfy the set of six eigenvalue equations:

_ EN
At A At oA ,0
dlax @'+ a)] IN11.0) = —22 Ny o) (B.12)
L w w
N
e +2 . E
ata+ (81%28,) g"‘)(a' + a)} IN: ) = 2 |N; L), (B.13)
L w w
N
. +2 . E
aia— & ~ 82) 41 +a)} N, +) = —:j IN, ). (B.14)

Repeating the steps of the previous section, we obtain the eigenstates:

A g _
Nt = D'(ij)lN)leu,o), (B.15)
Y
NN = DT BET82) Ny = Ny ), (B.16)
T w
2
INY,) = D282 ) vy =Ny L), (B.17)
L w
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with eigenvalues

B.3 Ququart case

g
N 1
[ +2g,)?
BN, =E' =0 N—%], (B.19)
- Sy
B =E, =0 N—%]. (B.20)

The eigenstates |m) of the ququart operator (f;tF + j4_) are obtained as:
jay=3(—v2, V6, —v6, v2)", |b)= }(v6, —v2, —v2, V&), |c) = 5(—v6, V2, V2, V6)T,
|d)= %(ﬁ, V6, V6, v2)T, with eigenvalues Egpea=1-3,-1,1,3}.

Repeating the steps of the previous section, we obtain the eigenstates:

with eigenvalues

B.4 Qudit case

(g1 +3
N = D*(%) IN), (B.21)
+3
INN) =D (—%) INY, (B.22)
A +
NN =D (£ =52 ) v, (B.23)
At +
INY,) =D (—%) IN), (B.24)
N3, = b7 (E=E2 ), (B.25)
) = b (-E=£2) ), (8.26)
—3
INY) = D' (gl gz) IN), (B.27)
. —3
INN,) =D (—%) INY, (B.28)
N _ N _ (g1 +3g2)*
ET,d_El,ﬂ_w[N_T 5 (B29)
+ 2
BN =B = o |:N— (&1 wa) } , (B.30)
N2
BV, =Ef’c=w[z\r—%}, (B.31)
N _pN _ (g1 —382)°
BN =B, = |:N Sl (B.32)

The above explicit results for the eigenvalues and eigenstates can be also obtain in the gen-
eral qudit case by applying two unitary transformations to the adiabatic limit Hamiltonian in
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Eq. (B.1). The transformations are of the Lang-Firsov type [56]:

0, = ela1/@0x@'~0) (B.33)
0, = els2/ )+~ (B.34)

The transformed Hamiltonian can be written as

N . R 2
=oi'a—o| 20 +i)+ 2o, ] . (B.35)
w w

The eigenvalues are found immediately from those of of &, j; +jd_, and 4'd, namely o = %1,
m=—d,—d+2,...,d—2,d,and N =0, 1, ..., respectively. The eigenstates can be corre-
spondingly given as |0, m, N), where after the unitary transformations the oscillator Fock state
is independent of the qubit and qudit state. In the original basis, the eigenstates are found by
applying to these eigenstates the above unitary transformations which, after acting on eigen-
states of &, and f; +fd_, reduce to displacement operators acting on the oscillator states, with
the displacement depending on ¢ and m.

C Perturbation correction to the energy and state

We are interested in resolving the degeneracy in the subspace (denoted by D) spanned by

{IT,+, 0, 4),11,—, 0, _)} with degenerate energy E?Jr = Ef_.
The first order perturbation equation reads [57]:
Holp D) +H'[9pY) = EQp) + EDP ), (€1
and first order energy correction:
1) — (o), (O)[£37 (4}, (O
ED = (DI ). (C.2)

As we show below, all the first order corrections are zero. Since the energy degeneracy in
the subspace of interest D is not lifted by first order corrections, we need to find another good
basis that diagonalize a new matrix M:

gy = 3 QRO

5 (C.B)
0 0

which turns out to be a 2 x 2 symmetric matrix, with Myy = My; and M;; = M;,. Diagonalizing
the matrix M, we obtain the new basis:

L
V2

The energy degeneracy in the subspace with lowest energy is lifted at the second order in
perturbation theory. Therefore, the degeneracy-lifted energies are given by

|,lrbg?)> (| T: +’ 0T,+> + | »L) > 0l,—>) . (C4)

Ee = EO4+E@D =FO 4 My + M, . (C.5)

The first order correction to the ground state are obtained through the formula

5 (m|A |y )

i) o o (C.6)
> B —Ep)
which produces the higher order terms in Eq. (12).
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C.1 Qubit case

The Hamiltonian ﬁdzz in the |o, m, N, ;) basis with row and column order |T,+, O 4),
|~L’ ) Ol,—)) |T’ ) OT’—>3 |l: +’ 0l,+>’ e readS:

[E}, 0 0 0 1T [0 0 ¢t u ..]
0 Ef_ 0 0 0 0 u t
Hyoy=H,+H'=| 0 0 E_ 0 +|t u 00 ,
o 0 0 E, u 't 0 0
(C.7)
where we have defined
1 1
t= _EQZ<0T,+|OT,—) , u= _EQI<0T,+|OL,+> ) (C.8)

and used the symmetry of the coherent states overlaps, which are real numbers in our case,
reading

(OT,+|0T,—> = (Oi,—|0l,+> = eXP(—ZgS/wZ),
(01,410 +) = (0, 107, -) = exp(—2g}/?). (C.9)

Using Eq. (C.3), we can compute the matrix elements of M:

Moo = M = _16: o (@il e, (C.10)
182

Moy = My = 25088 gt gdyo? (C.11)

01 10 82,8

182
and the second order energy corrections
2 2
E;(qz) — _w—(Qfe—"rgf/wz + Q%e—4g§/w2) + me—2(8f+g§)/w2 . (C.12)
16¢18> 88182

C.2 Qutrit case

We proceed as in the previous section and write A 4—3 in the ordered basis | T, 0, OT,O), [1,0,0 l,0>’
| TJ +, OT’+>J | l) ) 0l,—>5 | TJ e 0T,—>) | l’ +, Ol,-ﬁ-); el

EL, 0 0 0 0 O Out Ot O
0O EL 0 0 0 O u 00 t 0 ¢
0 0 Ef 0 0 0 t 000 0 u
Hys=H,+H' |0 0 0 E 0 0 +l0c00uwo . (€13)
0 0 0 0 E, O t 00 uo0o0
0 0 0 0 0 FE 0t uo0OO0
(C.14)
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where we defined

_ 0 _ 10 0
Eg=E),, E=E), E=E_,
V2 1
t= —792 exp(—2g§/co2), u= —591 exp(—ng/wz). (C.15)
The symmetric matrix M of Eq. (C.3) reads:
2 2
Moo = My =— @i e—48t /W _ #6—45/&’
32818 8(g; +8182)

MO]. =M10=0. (C.16)

Since the off-diagonal elements of the matrix M are zero, the degeneration is not resolved at
second order in perturbation theory, and we need to find higher order perturbative contribu-
tions from the Hamiltonian Eq. (C.13). We show here a simplified procedure to obtain the
lowest order correction which resolves the degeneracy, without using the general expression,
which is pretty involved.

The crucial observation is that the matrix can be exactly diagonalized for t = 0, with three
independent rotations in the three subspaces (generated by the base vectors) D; = {|1,0,0; ),
11,0,0,0)}, Do = {IT,+,074), L, +,0, 1)}, Dy = {|I,—,0,_),|1,—0;_)}. More precisely,
the D; subspace is non-degenerate, with eigenvalues E; £ u. On the other hand, the en-

ergy corrections in the Dy, D, subspaces are of order u?, and the degeneration is not re-
2

moved. More precisely, keeping only leading orders in u, we have E, — E, = E, + ﬁ
and Ey —» E, = E, + EZHTZEO The ordered basis where H,_5(t = 0) is diagonal reads
Z(11,0,010) +1.0,0,6)), —=(17,0,01.0) — 11,0,0,))
1/5 > Y5 V1.0 >V 0/)s 1/5 > V> VT.0 >V 0/)s
2
u u
l———— |1, +,0, )+ —|1,—,0,_),
[ Z(Eo—Ez)z]lT te) Ey—E, T 1)
2
u u
1-———|ll,—0, )+ ,+,0 ,
[ 2(]50—]52)2]|l e Ey—E, . Li+)
2
u u
3_50 B e I B ;+3O B
Ey—E; . ) [ 2(}30—]52)2]|l b
2
u u
:+:O + 1-— ,_;O _/ . C.17
Fo—E, IT,+,014) [ 2(E0—E2)2] IT,—,07-) (C.17)

Note that the ground state subspace with energy £, differs from the product state basis only
by terms of order u.

Since the Hamiltonian can be exactly diagonalized with t = 0, we can evaluate the leading
contribution by treating H' = H;_3 —H _5(t = 0) as perturbation of H;_;(t = 0). Namely, we
rewrite the Hamiltonian in the previous basis, reading (keeping terms up to u?)

[E,+u 0 t, ty t_ t_
0 Ei—u t, t_ t_ t,
ty ty, E, 0 0 O
Hys=| t+ t. 0 E, 0 0 ,
t_ t. 0 0 E, O
0 0 0 E

(C.18)
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where

2

—tu t tu

tiz—:t[———] . (C.19)
Eg—Ey, | V2 2vV2(Ey—E,)?

Since t is not explicitly present in the diagonal of the rotated matrix, the first order correction

is zero. The second order correction in ¢t can be computed with degenerate second order

perturbation theory, giving a 2 x 2 symmetric matrix M, with

. - t2 2E,—E,—E
Moo =Mq1 = + ¢ 1 2 322,
Eoy—E;  (Eo—Ey)(Eo—Eq)
N - 3E,—2E, —E
Moy =My = 0 L2 42 (C.20)

(Fo—E)2(Eo—Ep)

This implies that the degeneration is lifted at the third order in perturbation theory. The basis
which diagonalize the matrix M differs from the GHZ state Eq. (13) only by terms of order u,
as discussed in the main text.

C.3 Ququart case

We write H;_, in the basis: | 7,d,004),11,a,004),17,¢,000),14,0,0, ), T,b,00 ), 1 L,¢,0, ),
| T; a, OT’a))l l;daol,d>)- .ot

Hd:4 == I:IO +I:\I/

E,L, O 0 0O O O O O 0 0t 00 OO0 u
0 E,bL, O 0O 0 0 0 O 000t O0O0UuUuO O
0O 0 Ef 0 0O O O O t 00 0Ov uO@O 0
0O 0 0 E; 0 O 0 O 0t 00 uwv 0O
(0 O O O E, O O O +/0 0 v u 00 ¢t O ,
0O 0 0 0 0O E, 0O O 0 0uv 00Ot
0O 0 0 0O O O E; O O u OO0t O0O0O
0 0 0 0 O O 0 E; u 0000 ¢t 0O
(C.21)
where we define:
EO=E?,d, E, =Egc, E2=E?’b, Es =E?’a,
3. % 1 %
t = gﬂze o u=—>0e v =g o (C.22)
The matrix elements of the symmetric matrix M are given by:
w24 3003 A
Moo =My =— e o ————0—=——e o
488182 4(8g; +48182)
MOl == MlO =0. (C.23)

As in the qutrit case, the energy degeneration is not lifted at second order in perturbation the-
ory. The procedure for the determination of higher order corrections discussed in the previous
subsection can be generalized to the ququart case.

We first consider the matrix (C.21) for t = 0. The matrix H;_4(t = 0) is composed of
two orthogonal subspaces of dimension 4, which can be exactly diagonalized. The first sub-
space D3, spanned by the vectors {|1,d,04),1l,a,0,,), 1T,a,01,),ll,d,0, 4))} is charac-
terized by two doubly-degenerate eigenvalues (here written at leading orders in u, v) where
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E, — Ey = Ey +u?/(Ey — E3), E; — E5 = E5 +u?/(E; — E;). The eigenvalues of the ortogo-
nal subspace D, ,, spanned by the vectors {|1,¢,0;.), !, 5,0, ,),IT,b,01),1{,¢,0; ()}, are non
degenerate and read E; — El,ﬂ: =E,+(u=£v)?/(E;—E,), E; — Ez’i =E,—(u£v)?/(E;—E,).

Then, we reintroduce the dependence on t through perturbative expansion in the operator
H' = Hy_4,—H,_4(t = 0). As in the qutrit case the first order correction in t is zero. The second
order corrections in t are computed again with degenerate second order perturbation theory.
The 2 x 2 symmetric matrix M reads

. N t2 t2y? t?u?(2Ey —E; —E3)(Ey+ E, —E; —E

Moy = My; = + 2" + (2Eq 12 3)(Eq + Ey 12 3) ’
EO_El (EO_EI) (EO_EZ) (EO_EI) (EO_EZ)(EO_EB)

. - 2(2E,—E; — E3)t?uv

My =My = 2 L 2 (C.29)

(EO - EI)Z(EO - EZ)(EO - EB) '

Hence, the degeneration of the ground state is removed at the fourth order in perturbation
theory. With a similar expansion in the basis which diagonalize the matrix H;_,(t = 0) (not
shown here), one notes that the basis which diagonalize the matrix M differs from the GHZ
state Eq. (13) only by terms of order u, v, t.
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