
SciPost Phys. 11, 104 (2021)

On computing non-equilibrium dynamics following a quench

Neil J. Robinson?, Albertus J. J. M. de Klerk† and Jean-Sébastien Caux‡

Institute for Theoretical Physics, University of Amsterdam,
Postbus 94485, 1090 GL Amsterdam, The Netherlands

? neil.joe.robinson@gmail.com , † a.j.j.m.deklerk@uva.nl , ‡ j.s.caux@uva.nl

Abstract

Computing the non-equilibrium dynamics that follows a quantum quench is difficult,
even in exactly solvable models. Results are often predicated on the ability to compute
overlaps between the initial state and eigenstates of the Hamiltonian that governs time
evolution. Except for a handful of known cases, it is generically not possible to find these
overlaps analytically. Here we develop a numerical approach to preferentially generate
the states with high overlaps for a quantum quench starting from the ground state or
an excited state of an initial Hamiltonian. We use these preferentially generated states,
in combination with a “high overlap states truncation scheme” and a modification of
the numerical renormalization group, to compute non-equilibrium dynamics following a
quench in the Lieb-Liniger model. The method is non-perturbative, works for reasonable
numbers of particles, and applies to both continuum and lattice systems. It can also
be easily extended to more complicated scenarios, including those with integrability
breaking.

Copyright N. J. Robinson et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 22-11-2020
Accepted 17-09-2021
Published 09-12-2021

Check for
updates

doi:10.21468/SciPostPhys.11.6.104

Contents

1 Introduction 2
1.1 Layout 3

2 The Lieb-Liniger model 4
2.1 Bethe Ansatz Solution 4

2.1.1 Characterizing eigenstates via integers: Logarithmic Bethe equations 5
2.1.2 Equilibrium and non-equilibrium properties 5

2.2 The Quench Protocol 6
2.2.1 Formulation in terms of a perturbed Hamiltonian 6

3 Developing a high overlap states truncation scheme 7
3.1 The ideal truncation scheme 7
3.2 The truncated spectrum approach 8
3.3 Numerical renormalization group extension 8
3.4 Ordering by an alternative metric 10

3.4.1 Convergence of the ground state energy with matrix element metric 12

1

https://scipost.org
https://scipost.org/SciPostPhys.11.6.104
mailto:neil.joe.robinson@gmail.com
mailto:a.j.j.m.deklerk@uva.nl
mailto:j.s.caux@uva.nl
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.11.6.104&amp;domain=pdf&amp;date_stamp=2021-12-09
https://doi.org/10.21468/SciPostPhys.11.6.104


SciPost Phys. 11, 104 (2021)

3.4.2 The overlaps: Convergence and structure 13
3.5 Efficient generation of high overlap states 15
3.6 Checking convergence within the high overlap states truncation scheme 16

3.6.1 Convergence of the energy 18
3.6.2 Convergence of the overlaps 19
3.6.3 Convergence of local expectation values 20

4 Non-equilibrium dynamics from the high overlap states truncation scheme 21
4.1 The return amplitude and the fidelity 21
4.2 Time evolution of local observables 22

4.2.1 Comparison to the coordinate Bethe ansatz 23
4.2.2 The long time limit: The diagonal ensemble 24
4.2.3 An example with larger numbers of particles 25

5 Introducing the Matrix Element Renormalisation Group 26
5.1 The matrix element renormalization group algorithm for the ground state 26
5.2 Results from the matrix element renormalization group for the ground state 28
5.3 The matrix element renormalization group algorithm for excited states 31
5.4 Results from the matrix element renormalization group for excited states 33

6 Conclusions 34

A Matrix elements 36
A.1 Matrix elements of Ψ†(0)Ψ(0): determinant representation 36
A.2 Off-diagonal matrix elements of g2(0): determinant representation 37
A.3 Matrix elements of gK(0) 37

A.3.1 Diagonal elements 38
A.3.2 Off-diagonal elements 38

References 38

1 Introduction

Non-equilibrium strongly correlated systems have been the subject of intense study over the
last decade [1–10]. Spurred on by experiments in ultra-cold atomic gases [11–13], questions
of a fundamental nature have taken the center stage: What general principles govern proper-
ties of a non-equilibrium system? Are there non-equilibrium phases that have no equilibrium
analogue? How does an isolated quantum system equilibrate and thermalize when time evo-
lution is unitary? In the process of addressing such questions, it was realized that conservation
laws play a central role in the description of non-equilibrium physics, strongly restricting the
dynamics that can occur and the processes that govern equilibration [6, 14–21]. Nowhere is
this more evident than in integrable models, where the presence of an extensive number of
local conservation laws leads to an absence of thermalization [14,15].

Integrable quantum many-body systems may, at first glance, appear to be little more than
an academic curiosity. One may imagine that for an extensive number of local conservation
laws to exist, there must be an extreme fine-tuning of a many-body Hamiltonian, and hence
there is little chance of them being realized in an experimental system. Fortunately, this is not

2

https://scipost.org
https://scipost.org/SciPostPhys.11.6.104


SciPost Phys. 11, 104 (2021)

the case. Perhaps the simplest non-trivial example is the Lieb-Liniger model [22–24] of delta-
function interacting bosons confined to a single spatial dimension, which is almost perfectly
realized in many cold atomic gas experiments (see, e.g., Ref. [11,25–27]), including those that
probe non-equilibrium dynamics. Thus integrability, and the influence of conservation laws,
can be directly examined in experiment.1

As a result, non-equilibrium dynamics of the Lieb-Liniger model has received a significant
amount of theoretical attention [34–58]. In many of these studies the system is driven out of
equilibrium via a quantum quench [59] of the interaction strength. Analytical studies have
focused on cases where the initial states are eigenstates of the Lieb-Liniger model with either
c = 0 or c =∞, due to simplifications (both cases being ‘non-interacting’ in nature) that allow
one to explicitly compute overlaps between the initial state and eigenstates of the Hamiltonian
governing time evolution. With these overlaps at hand, expectation values of local operators
in the long-time limit can be computed via, for example, the quench action method [5, 19].
Generally, accessing the real-time dynamics of observables is still an outstanding challenge –
away from the mentioned special initial states it is not known how to proceed. Analytically,
one does not know how to compute the overlaps, a crucial ingredient for existing approaches,
whilst numerically it is tough to deal with continuum models in a rigorous and well-controlled
manner. Brute force computations, using the coordinate Bethe ansatz, are limited to very small
numbers of particles, N ∼ 5, and scale super-exponentially as ∝ (N !)2 without additional
approximations [41,45].

In this work, we develop a novel numerical approach, motivated by the truncated spectrum
approach [60], that allows one to compute overlaps. Our algorithm allows us to efficiently ex-
press the initial state in terms of the most important eigenstates of the Hamiltonian governing
time evolution. With these overlaps at hand, we can then study the structure of the over-
laps away from analytically tractable limits, compute real-time dynamics, and access the long
time limit via the diagonal ensemble [15]. Here we present proof-of-principle computational
results for interaction quenches in the Lieb-Liniger model for a reasonably small number of
particles (although, we note, well beyond the reaches of ‘brute force’ coordinate Bethe ansatz
computations [41,45]).

The truncated spectrum approach has recently been used to compute overlaps and non-
equilibrium dynamics in both the Ising field theory [61–65] and the sine-Gordon model [66–
69]. There are some fundamental differences between the approach taken here and those
previously considered. We will explicitly work with a strongly correlated computational basis
formed from eigenstates of an interacting integrable quantum system. Strong correlations are
then inherently built into the basis, in contrast to the non-interacting bases of the Ising and
sine-Gordon models. Furthermore, our approach abandons the conventional, energy-ordered,
Hilbert space truncation metric and instead we are able to preferentially target the states con-
tributing the largest overlaps. Our approach reduces the computational cost of calculations by
orders of magnitude, as we will see below.

1.1 Layout

In Sec. 2 we introduce the system that we study, the Lieb-Liniger model, and its exact Bethe
ansatz solution. We also discuss our quench protocol and formulation of the quench problem
in terms of a perturbed Hamiltonian. Following this, in Sec. 3 we first describe the “ideal”
numerical solution to the quench problem, and then discuss the development of the high over-
lap states truncation scheme (HOSTS) – an attempt to construct precisely this. To do so, we

1This is despite the fact that integrability is broken, albeit weakly, in experiments. The timescales for observing
integrability breaking can be anomalously long, with the system exhibiting so-called ‘prethermalization’ [8,28–31],
where the proximity to an integrable point still strongly restricts the dynamics. At very long times the system is
still expected to thermalize [31–33].
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describe how the basic truncated spectrum approach works and apply it to the problem. This
reveals that: (i) the traditional truncated spectrum approach is not well-suited to the problem;
(ii) numerical renormalization group extensions of this method are also not well-suited to the
problem. The numerical renormalization group results give us inspiration for an alternative
algorithm, based upon a better “ordering metric” for the Hilbert space truncation. We explore
this and, putting all these results together, can construct the initial state to reasonable accuracy
at some (not insignificant) burden.

With this high overlap states truncation scheme in place, we then explore how to preferen-
tially generate high overlap states for the truncation scheme. This is discussed in Sec. 3.5 and
we illustrate its application in efficiently constructing a given initial state to high precision for a
non-perturbative quench. This is not easily achievable within the conventional truncated spec-
trum approach. We also provide a number of additional convergence checks of our initial state
in this section. With this algorithm at hand, we are able to compute real time non-equilibrium
dynamics following a quench, as discussed in Sec. 4, and access the long-time limit via the
diagonal ensemble.

In Sec. 5 we study strongly non-perturbative quenches, where numerical renormalization
group approaches within the high overlap truncation scheme need some modification. A mod-
ified algorithm, the matrix element renormalization group (MERG), is detailed in this section.
We illustrate problems of the HOSTS algorithm and the success of MERG in computing non-
equilibrium dynamics following strongly non-perturbative quenches. Furthermore, we intro-
duce a general version of the matrix element renormalization group algorithm able to deal
with excited states as well as ground states. We conclude in Sec. 6, where we also suggest a
number of future directions for studies.

2 The Lieb-Liniger model

The Lieb-Liniger model describes indistinguishable bosons confined to move in a single spa-
tial dimension, which are coupled via an ultra-local density-density interaction. On a ring of
circumference R the Hamiltonian reads [22,23]

H(c) =

∫ R

0

dx
�

ħh2

2m
∂xΨ

†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)
�

. (1)

Here m is the mass of boson and c is the interaction strength. Here we will focus on the case
of repulsive interactions, c > 0, and henceforth we set 2m= ħh= 1 to define our units. We will
consider the case of unit density N/R= 1 herein.

2.1 Bethe Ansatz Solution

The Lieb-Liniger model is integrable and exactly solvable [22–24]; N -particle eigenstates
|{λ}N 〉 are characterized by a set of N real rapidities {λ}N = {λ1, . . . ,λN} that satisfy the
Bethe equations

e−iλ jR =
N
∏

l=1
l 6= j

λl −λ j + ic

λl −λ j − ic
. (2)

These states have momentum P({λ}N ) and energy E({λ}N ) given by

P
�

{λ}N
�

=
N
∑

j=1

λ j , E
�

{λ}N
�

=
N
∑

j=1

λ2
j . (3)
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Integrability of the model is realized through an infinite family of conserved quantities, whose
eigenvalues take the form

Qn

�

{λ}N
�

=
N
∑

j=1

λn
j , n= 1,2, . . . , (4)

where Q1 = P, Q2 = E. We work with eigenstates |{λ}N 〉 that are normalized as [24,70]:

〈{λ}N |{λ}N 〉= cN
∏

j<l

(λ j −λl)2 + c2

(λ j −λl)2
det N , (5)

where N is the N × N “Gaudin matrix”, with elements

N jl = δ jl

�

R+
N
∑

k=1

K(λ j ,λk)
�

− K(λ j ,λl) (6)

and

K(λ,µ) =
2c

c2 + (λ−µ)2
. (7)

2.1.1 Characterizing eigenstates via integers: Logarithmic Bethe equations

The N -particle eigenstates, |{λ}N 〉, can be characterized via sets of unique sets of quantum
numbers, {I}, which are integer or half-odd integer (depending on the parity of the particle
number N). There is a one-to-one correspondence between sets of quantum number and sets
of rapidities, defined via the Logarithmic Bethe equations

λ jR= 2πI j − 2
N
∑

l=1

arctan

�

λ j −λl

c

�

, (8)

where the quantum numbers satisfy

I j ∈
�

Z+ 1
2 for N even ,

Z for N odd ,
(9)

and a Pauli principle, I j 6= Il for j 6= l.
The mapping between quantum numbers and rapidities satisfies λ j > λl if I j > Il (due to

the monotonic nature of the second term on the right of Eq. (8)). From the definition of the
energy in terms of the rapidities, Eq. (3), it follows then that the ground state configuration
of quantum numbers is a “Fermi sea” of quantum numbers that are symmetrically distributed
about the origin. In the large c limit, the rapidities crystallize on to λ j → (2π/R)I j , as if
noninteracting fermions.

2.1.2 Equilibrium and non-equilibrium properties

The Lieb-Liniger model is perhaps the simplest non-trivial integrable model, with many of its
equilibrium properties being well understood. This includes both thermodynamic properties
and correlation functions of local operators [24, 71–73]. There are also known expressions
for scalar products [74], as well as determinant representations of matrix elements of local
operators in the eigenbasis [74–79], some of which are detailed in the appendix (and will
be used further in this work). Recently, exact results for the full counting statistics and local
correlation functions have been obtained [54].
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Non-equilibrium properties of the model following a quantum quench are much less well
understood, with important studies only emerging over the past six years [34–40, 42, 43, 47,
48]. Such studies have been rather restricted, relying on knowledge of the overlaps of eigen-
states of the Hamiltonian at different interaction strengths. These can, in some special limits,
be extracted from integrability of the model and simplifications which occur in those limits.
Away from these cases, such studies of non-equilibrium properties are hampered by lack of
knowledge of the overlaps and a dearth of techniques for calculating them.

Recently, there have been a number of works that study the emergence of non-equilibrium
steady states in the Lieb-Liniger, in the context of dynamics starting from inhomogeneous
initial states [44,49,50,52–58]. These studies have been enabled by the generalized hydrody-
namics framework [44,80], an adaptation of hydrodynamics to the case of integrable systems.
This framework has also allowed the computation of the Drude weight in the Lieb-Liniger
model [81]. To be clear, we will be considering only cases with translational invariance here,
i.e. global quantum quenches.

2.2 The Quench Protocol

We consider the following problem. The system is initialized in the ground state of the Lieb-
Liniger model (1) at interaction strength ci > 0. At time t = 0 the interaction strength is
instantaneously changed ci → c f > 0 and the system subsequently evolves in time according to
H(c f ). Of interest to us is how to compute the time evolution and long-time limit of expectation
values of observables for generic values of the initial and final interaction strengths, ci and c f .

For approaches such as the quench action [5, 19] a crucial role is played by the overlaps.
The overlaps describe how an initial state |Ψi〉 is projected onto the eigenstates |{λ}(n)N 〉 of
H(c f ), the Hamiltonian governing time evolution

|Ψi〉=
∞
∑

n=0

|{λ}(n)N 〉 〈{λ}
(n)
N |Ψi〉

︸ ︷︷ ︸

the overlaps

. (10)

Thus the overlaps directly determine how the initial state evolves in time

|Ψi(t)〉 ≡ e−iH(c f )t |Ψi〉=
∞
∑

n=0

e−iE({λ}(n)N )t |{λ}(n)N 〉〈{λ}
(n)
N |Ψi〉 . (11)

Analytically computing the overlaps is a formidable task, even with the toolbox of integrability
at hand. Indeed, it is generally not known how to perform such a calculation, with analytical
overlaps having only been obtained in a handful of tractable cases [37,82–97].

2.2.1 Formulation in terms of a perturbed Hamiltonian

The time evolved state, Eq. 11, requires knowledge of how the initial state (the ground state
of H(ci), the initial Hamiltonian) is expressed in terms of eigenstates of the final Hamiltonian,
H(c f ). If we can construct the initial Hamiltonian directly in the basis of eigenstates of the
final Hamiltonian, diagonalization would yield the overlaps directly. In practice, we are dealing
with a continuum bosonic model, so one must truncate the constructed Hamiltonian to obtain
a finite matrix that one can diagonalize. This is a so-called truncated spectrum approach or
approximation.

The manner in which we are formulating this problem, working directly with strongly
correlated basis states, is different to previous applications of truncated spectrum approaches
to non-equilibrium dynamics [61–68]. In these cases, a computational basis of non-interacting
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fermions/bosons was used, with both the initial state and final eigenbasis being constructed
from these computational states.

For the case at hand, we are able to construct the initial Hamiltonian in the final ba-
sis through exact knowledge of eigenstates and matrix elements from integrability of the
model [78,79]. We begin by writing the Hamiltonian in the form

H(ci) = H(c f ) + (ci − c f )

∫ R

0

dx Ψ†(x)Ψ†(x)Ψ(x)Ψ(x) . (12)

In this manner, we have written the initial Hamiltonian as a ‘perturbation’ of the final Hamilto-
nian.2 In the ground state (zero momentum) sector with fixed particle number N , the matrix
elements of the initial Hamiltonian can then be written as

〈{λ}(m)N |H(ci)|{λ}
(n)
N 〉= δn,mE

�

{λ}(n)N

�

+ (ci − c f )R 〈{λ}
(m)
N |

�

Ψ†(0)
�2�
Ψ(0)

�2|{λ}(n)N 〉 . (13)

Here, as above, |{λ}(n)N 〉 are N particle eigenstates of the final Hamiltonian H(c f ). We will often
call these “computational basis states”. We see from (13) that we require matrix elements of
the operator g2(0) =

�

Ψ†(0)
�2�
Ψ(0)

�2
between computational basis states. Known results for

these are recapitulated in Appendix A.

3 Developing a high overlap states truncation scheme

3.1 The ideal truncation scheme

At the heart of the problem under study is how to truncate the initial Hamiltonian, constructed
in the computational basis, to obtain optimal convergence of physical quantities. The time
evolved wave function (11) clearly points the way. Consider organizing the computational
basis by the magnitude of the overlap w(n) = |〈{λ}(n)|Ψi〉|. Truncation to the Ntot computational
states with highest overlaps

|Ψ(t)〉approx =
Ntot
∑

n=0

e−iE({λ}(n))t |{λ}(n)〉〈{λ}(n)|Ψi〉, (14)

will give bounded errors for (bounded) physical observables. That is, saturating the norm of
the state |Ψi〉 to

s(Ntot) = 1−
Ntot
∑

n=0

�

�〈{λ}(n)|Ψi〉
�

�

2
, (15)

the maximal error εmax[·] on the time evolution of a bounded operator A is

εmax

�

A(t)− A(t)approx

�

= s(Ntot)maxm,n(Am,n) , (16)

Here A(t)approx is the operator evaluated within the time evolved approximate state |Ψ(t)〉approx,
Am,n = 〈{λ}(m)|A|{λ}(n)〉 are the matrix element of operator A in the computational basis, and
maxm,n(Am,n) denotes its maximal value. Thus if s(Ntot) is sufficiently small, for any bounded
operator the errors are small.

An expansion such as Eq. (14) is all well and good, but we do not a priori know the overlaps.
Thus we are unable to order the computational basis according to the overlaps, and we must

2For the approach that is being discussed, the strength of this ‘perturbation’ (ci − c f ) does not need to be small.
This will be explicitly demonstrated in the results that follow.
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develop an approach that mimics this. This is the subject of the remainder of this section,
where we develop a “high overlap states truncation scheme”. We do so in a sequence of steps,
drawing inspiration from conventional truncated spectrum methods, adaptations, and their
failures, to eventually arrive at an efficient high overlap states truncation scheme.

3.2 The truncated spectrum approach

The Lieb-Liniger model is a continuum field theory of interacting bosons. The Hilbert space is
spanned by infinitely many states, and the Hamiltonian is thus a matrix with infinite dimen-
sions. In the formulation of our problem as a perturbed Hamiltonian, Sec. 2.2.1, the perturbed
Hamiltonian is a dense matrix in the computational basis. To proceed, we have to truncate
the Hilbert space in some manner to obtain a finite matrix, which can then be diagonalized to
obtain the eigenstates (and their energies) and hence the overlaps.

As a starting point, we take inspiration from standard truncated spectrum methods [60,
98,99]. If the perturbing operator in Eq. (12) is renormalization group relevant, it will:

1. Flow to strong coupling as the renormalization group is taken to the low energy limit,
leading to a strong mixing between low-energy states in the computational basis |{λ}(n)〉.

2. Flow to weak coupling in the ultraviolet (high energy), meaning that high energy states
|{λ}(n)〉 are approximate eigenstates of the perturbed Hamiltonian too.

3. As a corollary to the above points, the operator cannot strongly couple low-energy and
high-energy states in the computational basis.

In our scenario, in the non-interacting limit the perturbing operator has scaling dimension
‘zero’.3 This is similar to the scenario encountered in the 1 + 1D φ4 theory, which has been
studied extensively with truncated spectrum methods [101–111]. This suggests that perhaps
the same method may achieve success here.

The simplest possible truncation, motivated by the ‘decoupling’ of low- and high-energy
computational basis states, is to introduce an energy cutoff Λ and consider all computational
states with energy below the cutoff. This is the truncation originally envisaged by Yurov and
Zamolodchikov in the context of perturbed conformal field theories [98,99]. Convergence of
the ground state energy (for example) can then be checked as a function of the cutoff energy
Λ. As a first example, we show an example of this for the ci = 20 ground state of ten particles
(constructed in terms of c f = 10 computational basis states) in Fig. 1. The convergence of the
ground state energy with Λ is consistent with an exponential fit (although, we note, that we
do not have many decades of data to fit over).

For many models (see the review article [60]) it has been found that convergence can be
slow, requiring energy cutoffs far beyond those one can treat with exact diagonalization. This
can be seen clearly in Fig. 1: to get the ground state energy to within just 1% of the exact value,
we would expect to have to include many hundreds of thousands of states. Various techniques
have been developed to counter this, as discussed in [60], ameliorating the effects of the
cutoff. In the following section we discuss and implement one such approach: a numerical
renormalization group extension.

3.3 Numerical renormalization group extension

To combat slow convergence of the eigenstates and eigenvalues, we supplement the truncated
spectrum procedure with a numerical renormalization group extension. The numerical renor-

3That is, the two-point function of the free bosonic field is logarithmic in form. In the conformal field theory
context [100], this reflects the fact that Ψ is not a primary field. See, e.g., Ref. [101] for a detailed discussion of
the analogous case in the scalar φ4 model.
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Figure 1: The ground state energy E0 (compared to the exact result Eexact) and the
number of basis states Ns as a function of the energy cutoff Λ. The ground state of
the Hamiltonian (1) with ci = 20 is constructed in terms of eigenstates for c f = 10,
with N = 10 particles at unit density, using the truncated spectrum approach.

malization group was first introduced by Wilson to tackle the Kondo problem [112] and since
then has become a vital tool for tackling impurity problems [113], including in the context
of dynamical mean field theory (see, e.g., Ref. [114]). Its application to truncated spectrum
methods was first suggested by Konik and Adamov in 2007 [115], and has since been ap-
plied to tackle a number of problems beyond the reach of the plain truncated spectrum ap-
proach [116–121].

The numerical renormalization group procedure for the truncated spectrum approach is
formulated as follows:

1. Construct the computational basis {|{λ}( j)〉} and order by energy E({λ}( j)).

2. Construct a truncated Hamiltonian from the first Ns +∆Ns computational basis states,
�

|{λ}(1)〉, . . . , |{λ}(Ns+∆Ns)〉
	

and diagonalize it to obtain approximate energies and eigen-
states,

�

|E(1)〉, . . . , |E(Ns+∆Ns)〉
	

.

3. Discard the highest ∆Ns approximate eigenstates
¦

|E(Ns+1)〉, . . . , |E(Ns+∆Ns)〉
©

, from the
truncated Hamiltonian.

4. Construct a new basis of Ns +∆Ns from the remaining Ns approximate eigenstates and
the next ∆Ns states in the computational basis.

5. Construct the Hamiltonian in this new basis, and diagonalize it to obtain new approxi-
mations to the eigenstates and their energies.

6. Return to the third step.

This process is continued, obtaining new approximate eigenstates after each cycle of steps 3
to 5, until the required convergence of the ground state energy/eigenstate is reached or the
computational basis is exhausted. With such a procedure, it is possible to construct the ground
state of a perturbed Hamiltonian in terms of many hundreds of thousands or millions of the
computational basis states [116,122].
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Figure 2: Convergence of the approximate ground state energy E0 with the num-
ber of basis states, as computed using the truncated spectrum procedure (TSA) and
its numerical renormalization group extension (NRG-E). The ci = 20 ground state
of the Hamiltonian (1) is constructed in terms of c f = 10 eigenstates for 10 parti-
cles. NRG-E is performed with Ns = 600 and ∆Ns = 200 (corresponding to an initial
energy cutoff of Λ ≈ 50). We plot every other NRG-E step; excellent agreement
between the results of the numerical renormalization group and the truncated spec-
trum approach is seen (left panel). The numerical renormalization group procedure
can access number of basis states far beyond those accessible to full diagonalization
(right panel).

As an illustration, in Fig. 2 we present the convergence of the ground state energy E0 with
ci = 20 as a function of the number of computational basis states considered in the numerical
renormalization group procedure. The computational basis is formed from eigenstates of the
Hamiltonian with c f = 10. As a first check, the numerical renormalization group procedure
(performed with Ns = 600 and ∆Ns = 200, corresponding to an energy cutoff at the first step
of the procedure of Λ≈ 50) is compared to full diagonalization in Fig. 2(a). Despite the small
size of the numerical renormalization group Hamiltonian (of total dimension Ns+∆Ns = 800),
we see that the obtained results accurately reproduce the full truncated spectrum results of
Fig. 1. The numerical renormalization group does, however, allow us to consider many more
basis states than can be tackled with with full exact diagonalization in a time and memory
efficient manner. This is illustrated in Fig. 2(b), where we consider 280,000 computational
basis states in our numerical renormalization group procedure. This allows us to converge
energies to below 3.5%4 at the end of the procedure, which is significantly smaller than the
level spacing E1 − E0 for the parameters under consideration.

3.4 Ordering by an alternative metric

As can be seen in Fig. 2(b), the convergence of the ground state energy E0 with the number of
basis states is slow: To reach a precision of 2% it is likely that one will need to consider more
than 106 basis states. It is also evidence that the convergence obtained within the numerical
renormalization group procedure has a lot of structure: there are steps of the procedure where
the ground state energy is approximately constant, whilst at other steps it rapidly drops. One
can then ask: is there an alternative ordering of the computational basis states that prioritizes
the “important” states, where these large drops occur, and so improve the convergence?

To begin tackling this problem of modifying the ordering metric, we follow the suggestions

4This corresponds to approximately 11% with respect to the Fermi energy.
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Figure 3: The configurations of quantum numbers {I j}, see Eq. (8), characterizing
the first 100 basis states ordered via the matrix element metric, Eq. (17) for the
ci = 20 to c f = 10 quench with N = 10 particles. The total basis was formed from
273,358 states generated by the ABACUS scanning routine. The highest weight states,
according to the metric, have lowest ‘state number’. Note that some of the highest
weight states contain high momentum (large quantum number 2I j) excitations.

of Refs. [18, 119, 122, 123] (see also the discussion in [60]) and take a pragmatic approach.
We order the computational basis states according to the values of the matrix elements

�

�

�〈{λ}(n)N |g2(0)|Ẽ j〉
�

�

� , j = 0, 1,2. (17)

Here |Ẽ j〉 are the three lowest energy eigenstates of the initial Hamiltonian, i.e. those states
we are trying to construct. In practice, |Ẽ j〉 are first constructed via the truncated spectrum
approach with a small energy cutoff (corresponding to circa two thousand states) and these
approximate eigenstates are then used to construct the matrix elements (17). This procedure
attempts to capture those states |{λ}(n)N 〉 that hybridize with and contribute most strongly to
the low energy states.

To get some understanding of how this change of metric, Eq. (17), modifies the states
being considered within the numerical renormalization group procedure, we present the con-
figurations of quantum numbers {I j} (recall Eq. (9)) that characterize the one hundred highest
weight states according to this metric. We show these in Fig. 3. There is clearly a significant
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Figure 4: A comparison between the numerical renormalization group (NRG-E) re-
sults of Fig. 2(b) and the modified numerical renormalization group with matrix
element ordering (NRG-ME). We see that the alternative ordering leads to massive
improvement in the convergence of the ground state energy (and similar improve-
ment is seen in low-lying excited states) for fixed number of basis states. NRG-ME
was performed with Ns = 600, ∆Ns = 120 with a total of 280,000 basis states.

change in ordering of the states as compared to energy ordering. Most of the highest weight
states under the metric (17) describe pairs of “highly excited quantum numbers” that have
moved away from the “Fermi sea” of quantum numbers centered on zero, leaving behind holes.
We see that in a family of states with fixed configuration of quantum numbers close to zero,
states containing the most excited quantum numbers generally have highest weight. It is also
apparent that one of the highest weight states is the ground state of the final Hamiltonian.

3.4.1 Convergence of the ground state energy with matrix element metric

The reordering presented in Fig. 3 seems a little surprising, but leads to considerable improve-
ment in the convergence of the numerical renormalization group results. This is shown in
Fig. 4, where after only seven numerical renormalization group steps, the convergence of the
ground state energy is already lower than that obtained with over 105 steps of the energy-
ordered numerical renormalization group procedure. For the computational basis considered,
we have essentially saturated our approximate representation of the initial state. With this sig-
nificant improvement in convergence, we work with alternative (non-energy ordered) metrics
in the remainder of this work.

The problem with the procedure as laid out, at the moment, is there is still a need to
generate a very large computational basis, compute the weight according to the metric (17),
reorder, and then perform the numerical renormalization group procedure. The total size of
this computational basis essentially introduces an energy cutoff and this limits the extent to
which we can saturate the approximate representation of the state.

Crucially, insights from the following two sections will allow us, in Sec. 3.5, to throw off
the shackles of needing to generate a large computational basis to matrix element order, and
instead we will realize a way to preferentially generate the high overlap states.
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Figure 5: The overlaps 〈{λ}(n)|Ψi〉 between the ground state of the Lieb-Liniger model
with ci = 20 and eigenstates |{λ}(n)〉 of the c f = 10 Lieb-Liniger model with energy
E({λ}(n)). The ground state |Ψi〉 is constructed in terms of the NRG-ME procedure,
and we present results after 50 and 100 steps, showing that the dominant overlaps
are well-converged. This is not surprising in light of Fig. 4.

3.4.2 The overlaps: Convergence and structure

Beyond examining the convergence of the energy, other checks are critical in ascertaining the
validity of results obtained within the truncated spectrum and its numerical renormalization
group extensions. Above, we are able to compute exactly (from the Bethe ansatz) the energy
to which our obtained state should be approaching, giving us a quantitative measure of conver-
gence. We have seen that convergence can be obtained provided a sufficiently large number
of eigenstates are included in the computational basis.

Having constructed an approximation to our initial state, we directly have the overlaps at
hand. These are essential for computing non-equilibrium dynamics and the long time steady
state following a quench. It is worthwhile, at this point, to examine that the overlaps them-
selves are well converged (which should follow directly from the convergence of the energy).
In Fig. 5 we plot the square of the overlaps |〈Ψi|{λ}(n)〉|2 as a function of the energy E({λ}(n))
of the computational basis state |{λ}(n)〉.5 Results are presented at two well-separated steps of
the numerical renormalization group procedure (conducted with metric (17)). We see clearly
that large overlap computational basis states large have well-converged overlaps, being almost
identical at the two different steps of the procedure. The computational states with very small
overlaps are physically unimportant (recall Sec. 3.1) and clearly subject to floating point errors
of the numerical implementation.

A significant message to take from Fig. 5 (and implicitly from Fig. 4) is that computational
basis states with large energies can contribute significantly to the initial state. Indeed, in

5We note that these overlaps are related to the statistics of work done [124]:

P(W ) =
∑

n

δ
�

W − E({λ}(n)N )
�

�

�

�




Ψi

�

�{λ}(n)N

�

�

�

�

2
,

giving the coefficients of the delta functions. This quantity has been studied, for example, in the Ising field theory
in Refs. [61,63].
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Figure 6: The configurations of quantum numbers {I j}, see Eq. (9), characterizing
the 100 computational basis states with highest overlaps in the ci = 20 ground state
constructed in terms of c f = 10 eigenstates. These were obtained from a numerical
renormalization group procedure with the basis ordered according to the metric (17).
States with larger overlaps appear towards the bottom of the figure.

Fig. 5 we see a band of “high overlap states” with square overlaps ∼ 10−4 − 10−5 extending
out to high energies. We note that the results of Fig. 5 are well-converged with numerical
renormalization group step, but cannot be well-converged with regards to increasing the size
of the computational basis. This is evident from the fact that our procedure produces states
with 〈Ψi|Ψi〉approx = 1, and there is no reason to believe high overlap states stop at energy
E({λ}(n)) = 180, the effective energy cutoff of our computational basis. Note that this does
not imply that physical quantities are not well converged with the size of the basis (we indeed
observe that physical quantities are well converged).

With convergence at fixed computational basis size confirmed for the high overlap states,
let us now illustrate the structure of these high overlap states. From the point of view of
analytical calculations, there are only a handful of examples where overlaps can be com-
puted [37,42,43,84,85,125], so numerical routines have significant potential when brought
to bear on such a problem.

For the ci = 20 → c f = 10 quench, the configurations of the quantum numbers in the
highest 100 overlap states are shown in Fig. 6. The states are organized from highest weight
(bottom of the plot) to lowest weight (top of the plot). We see that the highest weight overlap
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is with the ground state of the final Hamiltonian in this case. As we proceed up the plot, we
see a pair of excited integers move away from the Fermi sea about the origin, and the holes
left behind moving around within the Fermi sea.

At first glance, it may be a little surprising that the high overlap state integers shown in
Fig. 6 are ordered so differently to those of matrix element metric, Fig. 3. In some sense,
this tells us that we are dealing with an “easy quench” where the overlaps rapidly converge
converge if we get approximately the correct ordering metric. In the next section we will
construct an alternative metric, taking some inspiration from the information in Fig. 6 and
combining it with other knowledge, that more accurately reproduces the optimal ordering.

3.5 Efficient generation of high overlap states

In the previous sections we have established the efficacy of ordering the computational basis
based upon information about the perturbing operator (recall Sec. 2.2.1). However, as we have
already highlighted, there is a clear issue with the procedure that has been discussed. This
is best illustrated by Figs. 4 and 5: The saturation of the error in the ground state energy in
this modified numerical renormalization group procedure is ultimately set by the energy cutoff
of the truncated basis on which we perform the new ordering. The behavior of the overlaps
as a function of energy, Fig. 5, clearly shows that high energy computational basis states can
contribute significantly to the initial state. Indeed, we see in Fig. 5 that computational basis
states with E ∼ 102 − 103 can have square overlaps as large as ∼ 10−4.

Following this procedure, if we wish to achieve precision of sub-1% in the energy of the
state for ten particles, we will need to first generate a large basis of size ∼ 106, then order
according to the metric (17), and then perform a truncated spectrum or numerical renormal-
ization group procedure. The ordering step requires computing matrix elements for all com-
putational basis states. This is computationally costly, even if much more efficient than work-
ing with an energy-ordered numerical renormalization group procedure. Instead, it would
be much better if we could preferentially generate the high overlap states necessary for our
algorithms.

In this section we will formulate such a preferential state generation procedure. This will
be based upon the philosophy of the ABACUS (Algebraic Bethe Ansatz-based Computation of
Universal Structure factors) Hilbert space scanning algorithm. A general overview of this
approach, developed to tackle the computation of equilibrium dynamical correlation functions,
can be found in Ref. [126].

The essential insight for applying ABACUS-inspired methods to the non-equilibrium prob-
lem at hand is contained within Figs. 6. There one can see that the largest overlap is with the
ground state of the final Hamiltonian, herein denoted |{λ}(0)〉. The matrix element metric,
Eq. (17), then approximately orders the states that hybridize most strongly with |{λ}(0)〉 via
the perturbing operator g2(x), i.e. the |{λ}(n)〉 that maximize

∫

dx 〈{λ}(0)|g2(x)|{λ}(n)〉 ∝ δ(P0 − Pn) 〈{λ}(0)|g2(0)|{λ}(n)〉 . (18)

Here we use the short hand Pn = P({λ}(n)). Formulated in this manner, the case for applying
an ABACUS-like algorithm is clear. Consider computing the equilibrium dynamical correlation
function of g2(x):

Sg2
(k,ω)∝

∫ ∞

−∞

∫ ∞

−∞
dx dt ei(kx+ωt)〈{λ}(0)|g2(x , t)g2(0)|{λ}(0)〉 . (19)

Here g2(x , t) = eiH t g2(x)e−iH t is the time evolved g2 operator. The dynamical correlation
function S(k,ω) can be evaluated by inserting the resolution of identity between the two
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operator and summing the resulting Lehmann spectral representation

Sg2
(k,ω)∝

∑

n

δ(ω− En + E0)δ(k− Pn + P0)
�

�

�〈{λ}(0)|g2(0)|{λ}(n)〉
�

�

�

2
. (20)

Once again, we use a short hand notation En = E({λ}(n)). Thus the states with highest weight
under the metric (17) are (approximately) those that contribute most strongly to Eq. (20) –
the problem that ABACUS was designed to tackle.6

We are, of course, not aiming to compute equilibrium correlation functions here, but in-
stead non-equilibrium dynamics. By approximating the initial state in the metric (17) by
|{λ}(0)〉 we can motivate an ABACUS-like scheme to generate the states with high weight on
this metric. We can, however, draw some inspiration from perturbation theory to construct
a better metric. If we have the state with the highest overlap with the state we are trying to
construct (here this state is |{λ}(0)〉), the perturbation theory tells us the first order term in the
expansion for the approximation state should be

|Ψi〉approx = |{λ}(0)〉+ (ci − c f )R
∑

m 6=0

〈{λ}(m)|g2(0)|{λ}(0)〉
E0 − Em

|{λ}(m)〉+O(g2) . (21)

Thus a better metric is obviously apparent: we should organize our computational basis states
according to the their weights

w
�

|{λ}(n)〉
�

=

�

�

�

�

〈{λ}(n)|g2(0)|{λ}(0)〉
En − E0 + ε

�

�

�

�

. (22)

Here ε is a simple numerical factor introduced to avoid a divergence for the case of (n) = (0)
(we take ε = 0.1). States generated in an ABACUS-like scanning according to their matrix
elements weights can easily be post-sorted according to (22).7

Implementing this procedure, the 400 highest weight states for the ci = 20 → c f = 10
quench for ten particles are shown in Fig. 7. This is clearly rather different to the pure matrix
element ordering, Fig. 3, and is much more in keeping with the results shown in Fig. 6. In
the next section we will see that this ordering leads to excellent convergence of the initial
state energy, and the ordering may be close to optimal in some scenarios (we will later see an
example where this does not appear to be the case). In light of the data presented in Fig. 7, it
is hardly surprising that energy-ordering the basis fails to give good convergence: Even within
the first 400 state there are states with highly excited quantum numbers, i.e. states with high
energies. As we are now able to generate computational basis states without an implicit (or
explicit) energy cutoff, we expect to be able to saturate the energy of the initial state to a much
larger extent (recall Fig. 4).

We call this procedure a “high overlap states truncation scheme.” We note that we used
both ABACUS and an independently written Hilbert scanning routine within this manuscript.
This has helped provide independent checks of the preferential state generation for all our
results.

3.6 Checking convergence within the high overlap states truncation scheme

With a high overlap states truncation scheme at hand, there is no longer an energy cutoff within
the computational basis. The presence of an energy cutoff ultimately governed the value to

6If the largest overlap was not a ground state, the same procedure could be implemented with |{λ}(0)〉 replaced
with the largest overlap state, with obvious modifications to Eqs. (21) and (22).

7We note that ABACUS-like scanning routines do not generally produce states contributing to Eq. (20) in a
monotonically decreasing manner [126]. Thus post-sorting for a consistent truncation scheme is a necessity in any
case.
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Figure 7: The configurations of integers {I j} in the first 400 states generated via pref-
erential scanning and ordered according to the metric (22) for the ci = 20→ c f = 10
quench. (Highest weights correspond to lowest state numbers.) Notice the similarity
with Fig. 6, the output of the NRG-ME procedure; the preferential scanning algorithm
efficiently generates those basis states with largest overlaps.
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Figure 8: The convergence of the energy E0 of the ci = 20 ground state constructed in
terms of c f = 10 eigenstates via the numerical renormalization group within the high
overlap states truncation scheme (HOSTS). (a) E0 as a function of number of basis
states; Nmax ≈ 3.9 × 105 states are generated via ABACUS and ordered according
to their weights (22). (b) E0 as a function of the lowest included weight in the
first two hundred steps of the numerical renormalization group procedure for two
different total basis sizes, Nmax. In both (a) and (b) the numerical renormalization
group procedure is performed with Ns +∆Ns = 800 and ∆Ns = 160. Convergence
of E0 to under 1% is achieved with only a few thousand basis states, cf. Fig. 4. The
convergence w.r.t. the Fermi energy is also smaller than 1% towards the end of the
procedure.

which the energy of the initial state could saturate in the previous sections (for example, in
Fig. 4 the maximum saturation to within ∼ 0.035Eexact). This means that now we can saturate
agreement to much less than 1%, while doing so at a significantly decreased computational
burden.

Before discussing this in more detail, it is worth first re-evaluating how we assess conver-
gence within the high overlap states truncation scheme. So far, we have checked how the
energy of the state varies with the number of computational basis states, but it is not entirely
clear how one and if one can extrapolate these results to understand the exact one. There is,
for example, no obvious scaling law for the energy as a function of number of basis states.

Within our truncation scheme, a central role is played by the weights of the computational
basis states under the metric (22). One potential option for assessing convergence of computed
quantities is to plot against this weight (i.e., plotting quantities as a function of the smallest
considered weight (22)). We will see that this leads to a reasonable extrapolation scheme, as
compared to the number of considered computational basis states.8

3.6.1 Convergence of the energy

Let us now examine the convergence of the energy of the initial state constructed with the basis
of high overlap states via the numerical renormalization group. This is shown, as a function
of the number of basis states in Fig. 8(a). The computational basis states are generated pref-
erentially by running the ABACUS algorithm for 30 seconds and then reordering the generated
states according to the metric (22). This yields an ordered basis of 220,743 states, on which

8We note that as we study a continuum model, we cannot guarantee that we generate all states above a given
weight of the metric (22), especially when this becomes small. Additional checks, such as convergence of results
with the number of states generated and ordered according to the metric (22) must also be performed.

18

https://scipost.org
https://scipost.org/SciPostPhys.11.6.104


SciPost Phys. 11, 104 (2021)

(a) (b)

−10

−8

−6

−4

−2

0

1.5 2 2.5 3 3.5 4 4.5

lo
g
1
0

( |
〈{
λ
}(

n
) |Ψ

i〉|
2
)

log10

(
E({λ}(n))

)

Step 10
Step 20
Step 30

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

20 40 60 80 100 120 140 160 180

lo
g
1
0

( |
〈{
λ
}(

n
) |Ψ

i〉|
2
)

Energy, E({λ}(n))

Step 10
Step 20
Step 30

Figure 9: (a) The convergence of the overlaps at different steps of the numerical
renormalization group procedure implemented within the high overlap states trun-
cation scheme. The ci = 20 ground state constructed is constructed in terms of
c f = 10 eigenstates. Parameters of the procedure are as in Fig. 8. (b) A focused
region of the plot, to be compared directly with Fig. 5.

we subsequently perform the numerical renormalization group procedure (in fact, we see that
excellent convergence is achieved for basis sizes accessible to full diagonalization). We see
very rapid convergence of the initial state energy, requiring only a few thousand computa-
tional states to obtain a convergence of under 1%. This should be contrasted to the traditional
energy ordering, see Figs. 1 and 2, where we would likely require > 106 computational basis
states to reach the same level of convergence.

In Fig. 8(b) we also present the convergence of the initial state energy E0 as a function
of the lowest weight (22) included in each iteration of the numerical renormalization group
procedure. We show data for two different total basis sizes Ntot, which shows that at very small
included weights there is some dependence on Ntot. This implies that our preferential state
generation routine has not generated all the computational basis states with weights above a
given small value.

3.6.2 Convergence of the overlaps

We have just seen that the high overlap states truncation scheme yields excellent convergence
of the initial state energy. Let us now turn attention to the overlaps themselves, and how these
converge. We present example data in Fig. 9 for the ci = 20 → c f = 10 quench with ten
particles. In Fig. 9(a) we present the overlaps (as a function of energy of the computational
basis state) at three steps of the numerical renormalization group procedure. From this figure,
we can make a few observations.

Firstly, we observe that the high overlap states truncation scheme is indeed preferentially
targeting high overlap states. The overlaps generated at early stages of the numerical renor-
malization group procedure are larger and remain well converged at later steps. Secondly, we
see that the quench generates very high energy states: by just the thirtieth step of the pro-
cedure, we are probing states with energies E({λ}(n))� 104 (for reference, the ground state
energy is Eexact = 26.9684027 . . .). Thirdly, there appear to be clear “families of states” within
this plot, whose overlaps at high energies can quite easily be predicted by extrapolation.

We can directly compare the results of our computation to those in Fig. 5, obtained from
the original matrix element ordering without preferential generation of high overlap states. As
compared to Fig. 9(b), we see that the high overlap states truncation scheme avoids dealing
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Figure 10: The difference between the expectation value of g2(0) in the con-
structed ci = 20 ground state (expressed in terms of c f = 10 eigenstates) and
the exact value. Data is presented for N = 10 particles, where the exact result is
〈g2(0)〉exact = 0.0238263. (a) Convergence with the number of basis states; (b) con-
vergence with lowest included weight, according to the metric (22).

with the large number of low overlap states (as it was constructed to do), targeting instead the
few high overlap states within the energy window of Fig. 5. The truncation scheme is clearly
working as desired.

3.6.3 Convergence of local expectation values

We have focused thus far on obtaining the energy of the initial state to high precision. One
may ask is this convergence criteria is indeed the same as correctly constructing the initial
state? In this section we turn our attention towards local properties of the constructed state.
In particular, we consider the behavior of expectation values of local operators within both the
exact initial state and the approximation initial state. This will allow us to establish that we
are correctly reproducing local observables within the state, not only its energy.

To start with our study of local correlations, let us note a trivial point. Particle number
N is conserved within the Hamiltonian, which when combined with translational invariance
ensures that the expectation value of the local density within all eigenstates (and the approx-
imate initial state) satisfies 〈{λ}N |Ψ†(x)Ψ(x)|{λ}N 〉= N/R by construction. Thus our state of
course satisfies this restriction, by construction.

Convergence of the energy implies that local expectation values of the operators appearing
within the Hamiltonian should also be converging. We confirm this in Figs. 10 and 11, where
we present the difference between the constructed and exact values of expectation values of
g2(0) and ∂xΨ

†(0)∂xΨ(0), respectively. We see that the former operator, g2(0), is not quite so
well converged as ∂xΨ

†(0)∂xΨ(0). This makes some sense: we construct the state to ensure
the energy is well converged, and in the large c limit of the Lieb-Liniger model it is the kinetic
energy that dominates the interaction energy (this is particularly apparent in the c =∞ limit,
where the model maps to non-interacting fermions). Nonetheless, we do see that we are
correctly capturing expectation values of local operators within the constructed states and,
when plotted as function of lowest included weight, the convergence to the exact value seems
reasonable.
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Figure 11: The difference between the expectation value of ∂xΨ
†(0)∂xΨ(0) in

the constructed ci = 20 ground state (expressed in terms of c f = 10 eigen-
states) and its exact value. Data is presented for N = 10 particles, where
〈∂xΨ

†(0)∂xΨ(0)〉exact = 2.22032.

4 Non-equilibrium dynamics from the high overlap states trunca-
tion scheme

Having developed the high overlap states truncation scheme, we have so far used it to construct
an initial state (motivated by non-equilibrium dynamics) and we have studied the properties of
this approximate state. In this section we turn our attention to computing the non-equilibrium
dynamics following the c = ci → c f sudden quantum quench. The time evolved state can
easily be obtained from Eq. (11), truncated to include Ntot terms via the high overlap states
truncation scheme, as in Eq. (14). We use such a representation to first examine the time
evolved wave function via the return amplitude and the fidelity, before turning our attention
to the time evolution of local observables.

4.1 The return amplitude and the fidelity

To begin, we consider a particularly simple quantity to evaluate: the return amplitude

〈Ψi|Ψi(t)〉 ≈
Ntot
∑

n=0

e−iE({λ}(n) t
�

�〈{λ}(n)|Ψi〉
�

�

2
. (23)

This return amplitude has received significant attention in the context of quantum quenches,
where it was realized that

f (t) = − lim
R→∞

1
R

log 〈Ψi|Ψi(t)〉 , (24)

can display non-analytic behavior, related to dynamical quantum phase transitions (see, e.g.,
[127] for a review and [128] for an example experiment). The absolute value squared of the
return amplitude,

F(t) = |〈Ψi|Ψi(t)〉|2, (25)
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Figure 12: The real part of the return amplitude (23) (left) and the fidelity (25)
(right) following the quench ci = 20 → c f = 10 in the Lieb-Liniger model, start-
ing from the ci ground state with N = 10 particles at unit density, N/R = 1.
(kF = π(N − 1)/R is the Fermi wave vector in the c = ∞ limit.) In both cases,
we show the time evolution for three sizes of the truncated Hamiltonian (a matrix of
size Ntot × Ntot). Both these quantities rapidly converge with the number of states,
see the convergence of the initial state energy for comparison in Fig. 8.

is known as the fidelity.
Here the return amplitude and the fidelity will serve as useful test-beds for understanding

the effect truncation of the Hilbert space has on non-equilibrium quantities. This may, in prin-
ciple, be quite different to the behavior shown in the convergence of the initial state energy
studied above. This is because the energies of the eigenstates |{λ}(n)〉 entering Eq. (14) are un-
bounded, while each term appearing within the return amplitude (and the fidelity) is bounded.
Indeed, we see precisely this difference in Fig. 12, where we show the time evolution of the
return amplitude and the fidelity at short times. For small numbers of states in the truncated
Hilbert space, Ntot, both of these quantities are well converged, unlike the initial state energy
for the same number of states, see Fig. 8. This is particularly convenient, as we can achieve
excellent convergence of time evolved physical quantities for (very) small number numbers of
states.

We note that bench marking convergence of time evolution with the return amplitude,
or the fidelity, is also convenient as it involves evaluating only a single sum over the final
eigenstates. It can, thus, be evaluated very efficiently even if one requires Ntot large. In the
next subsection, we consider time evolution of local observables, which requires evaluating a
double sum over the truncated Hilbert space.

4.2 Time evolution of local observables

Having examined the return amplitude, which depends solely on the time evolved wave func-
tion, we turn our attention to the non-equilibrium behavior of local observables O. These are
computed by evaluating the double sum over the truncated Hilbert space

〈O(t)〉i ≡ 〈Ψi(t)|O|Ψi(t)〉

=
Ntot
∑

n,m=0

e−it[E({λ}(n))−E({λ}(m))]〈Ψi|{λ}(m)〉〈{λ}(m)|O|{λ}(n)〉〈{λ}(n)|Ψi〉. (26)

Clearly for any observable of interest O we require knowledge of the matrix elements between
the Bethe eigenstates, 〈{µ}(m)|O|{λ}(n)〉.
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Figure 13: The time evolution of the local observable g2 =
�

Ψ†(0)
�2
(Ψ(0))2 follow-

ing a quench ci = 20→ c f = 10 in the Lieb-Liniger model, starting from the ground
state at ci with N = 10 particles at unit density, N/R = 1. (kF = π(N − 1)/R is the
Fermi wave vector at c =∞.) Results are shown for a number of different trun-
cated basis sizes, Ntot, which illustrates the excellent convergence of g2(t) for small
numbers of states.

Having understood how the truncation of the wave function affects the return amplitude,
we check whether the same excellent convergence occurs in the time evolution of local quanti-
ties. We focus on the operator O = g2(0), whose matrix elements are given in Appendix A. Its
time evolution, g2(t) = 〈Ψ(t)|g2(0)|Ψ(t)〉, is shown in Fig. 13 for the same quench as before.
We observe convergence properties similar to the return amplitude and the fidelity, see Fig. 12,
i.e. excellent convergence for small numbers of states within the truncated Hilbert space.

The results of this subsection, taken with those of the previous one, are strongly suggestive
that we will be able to efficiently generate the time evolution of observables for relatively large
numbers of particles with modest computational resources. We show an example of this in
Sec. 4.2.3.

4.2.1 Comparison to the coordinate Bethe ansatz

As a check of our results, we turn our attention to results within the literature. In particular, in
Ref. [45] a quench of the interaction parameter ci = 100→ c f = 3.7660 was considered via the
coordinate Bethe ansatz. This is a large, challenging quench where the interaction parameter
changes drastically. The energy density between the initial ci ground state and the final ground
state c f is significant and presumably many excitations are generated in the quench. This is a
challenging scenario for any numerical approach, and it will allow us to assess the precision
of our results. (We note that calculations of non-equilibrium time evolution at finite ci and c f
are very limited in the literature.)

The coordinate Bethe ansatz calculations of Ref. [45] are computational intensive, and
scale very poorly with particle number. Data is limited to cases with just small numbers of
particles, N = 5 in the case at hand [45]. Our algorithm is currently limited to even numbers
of particles, to avoid technical issues in dealing with coinciding rapidities that often occur with
N odd. Thus we will compare the N = 5 results of Ref. [45] to N = 4 data obtained within
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Figure 14: The time evolution of the local observable g2(0) following the
ci = 100 → c f = 3.7660 in the Lieb-Liniger model starting from the ground state
at ci with unit density. Exact data (dashed line) computed via the coordinate Bethe
ansatz with N = 5 particles (from Ref. [45]) is compared to high overlap states trun-
cation scheme (HOSTS) computations with N = 4 particles. HOSTS results for higher
numbers of particles are discussed in Sec. 5.

our high overlap states truncation scheme (we will discuss N = 6 later).
Our comparison to results of the coordinate Bethe ansatz is shown in Fig. 14, where the

data from Fig. 4 of [45] was extracted directly from the image. For N = 4 particles, our data
is generated with Ntot = 5000 states via full diagonalization (i.e. we do not need to use the
numerical renormalization group). We see excellent agreement up to the finite size revival
time. This is promising, as the computational effort within our scheme is rather modest in
such a scenario. These results further confirm that the high overlap states truncation scheme
is correctly capturing all of the physics within the problem.

4.2.2 The long time limit: The diagonal ensemble

Beyond accessing finite time dynamics of observables, we can also access the long-time limit,
t →∞. Here a number of simplifications occur, as detailed in many works (see, e.g., [15]);
for example, with the overlaps at hand, we can compute the diagonal ensemble result for the
long-time limit [15]

〈O〉DE =
∑

j

〈{λ}( j)|O|{λ}( j)〉
�

�

�〈{λ}( j)|Ψi〉
�

�

�

2
. (27)

This describes the infinite time limit of the time-averaged observables in the large system size
limit (see, e.g., the discussion in the appendix of [45])

lim
T→∞

1
T

∫ T

0

dt〈Ψi(t)|O|Ψi(t)〉 → 〈O〉DE . (28)

If the observable O relaxes to a stationary value in a sufficiently fast manner then that long
time limit of the expectation value (without time averaging) will be reproduced

lim
t→∞
〈Ψ(t)|O|Ψ(t)〉 → 〈O〉DE . (29)
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Figure 15: The scaling with Ntot of the diagonal ensemble result (left panel) for
ci = 20 → c f = 10 quench with N = 10 particles. The dotted line shows a linear
extrapolation to Ntot =∞. A comparison of the Ntot = 3500 data of Fig. 13 with the
extrapolated diagonal ensemble result for the long time limit (right panel).

see, for example, Ref. [129]. As such, the diagonal ensemble can be a computationally conve-
nient way to access the infinite time limit if overlaps are known.

We illustrate that our truncation scheme can evaluate the diagonal ensemble in Figs. 15.
We first study the convergence of the diagonal ensemble result as a function of the truncated
Hilbert space dimension (left panel), before comparing the extrapolated Ntot →∞ result to
the real-time dynamics shown in Fig. 13 (right panel). We see well-behaved and rapid con-
vergence of the diagonal ensemble value to its “non-truncated” limit, and that it captures well
the values to which local observables relax at intermediate times. We note that fluctuations
about the diagonal ensemble value within the real time dynamics are large for the system sizes
considered.

We note that expectation values of local operators, long after a quench in an integrable
model, are expected to be described by a generalized Gibbs ensemble [6]. In the case of the
Lieb-Liniger model, one can run into issues constructing this ensemble because of the asymp-
totic behavior (in rapidity space) of the steady state root distribution, which leads to diverging
expectation values of ultra-local charges. This can, in principle, be remedied by working with
a different set of charges (see, e.g., Ref. [48]), but we do not pursue that approach here.

4.2.3 An example with larger numbers of particles

So far, we have examined quenches with relatively small numbers of particles, N = 4,6, 10.
It is worth emphasizing that even for these numbers of particles, exact calculations via the
coordinate Bethe ansatz are computationally expensive, and exact calculations with N = 10
corresponding to summing∝ (N !)2 ∼ 1.3×1013 terms. To even contemplate exact evaluation
for N = 20 particles,∝ 5.9× 1036 terms, seems futile. Instead the high overlap states trun-
cation scheme, in combination with the numerical renormalization group, gives one a handle
on such problems.

Here, we consider the ci = 20→ c f = 10 quench for a larger numbers of particles (N = 20)
as an illustrative example. We leave detailed study, both of larger numbers of particles and
different quenches (as well as expanding on results presented above), to future works [130].
Results for the energy convergence and the time evolution of the fidelity, F(t), are shown in
Fig. 16.
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Figure 16: Example calculation showing (a) the energy convergence of the initial
state; (b) the time evolution of the fidelity for N = 20 particles, for the quench
ci = 20→ c f = 10.

5 Introducing the Matrix Element Renormalisation Group

In this section, we consider a perturbing operator (ci− c f )Rg2(0) whose matrix elements, with
respect to some of the computational basis states, are large compared to the energy differ-
ence between these states and the unperturbed ground state. We call quenches for which the
perturbing operator satisfies this property “strongly non-perturbative”. In such cases relying
solely on the metric (22) discussed in the previous section, which was motivated by leading or-
der perturbation theory, is no longer justified. Higher order terms are expected to be relevant
and, as a result, we need to modify the way we select and order states. Not only this, but we
need to re-examine the assumptions behind the numerical renormalization group procedure
discussed in Sec. 3.3, and modify these accordingly. In the final part of this section we show
how the resulting procedure allows us to not only treat quenches where the initial state is a
ground state, but also those where it is an excited state.

As matrix elements of the perturbing operator become large, contributions of a given com-
putational basis state to the ground state mediated via other intermediate computational basis
states can become relevant. This corresponds to the second order terms in Eq. (21) no longer
being negligible compared to the first order terms. However, such contributions are not con-
sidered in the standard numerical group procedure as discussed in Sec. 3.3. As a result, these
contributions are missed when states are not by chance included in the same step of the renor-
malization group procedure. We will see that these contributions can play an important role
for strongly non-perturbative quenches, so they need to be taken into account.

An illlustration of how naively applying the algorithms developed thus far can lead to
inaccurate results for strongly non-perturbative quenches is shown in Fig. 17. The initial steps
still correspond to the results obtained from diagonalising the full truncated Hamiltonian, but
as the number of iterations increases, the discrepancy becomes larger.

5.1 The matrix element renormalization group algorithm for the ground state

To deal with the problem for strongly non-perturbative quenches discussed in the previous
section, we develop a reworking of the numerical renormalization group procedure that we
refer to as the matrix element renormalization group. The main differences between the matrix
element renormalization group and the conventional renormalization group algorithm are:
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Figure 17: An example calculation showing that for strongly non-perturbative
quenches there can be a large discrepancy between the results from full diagonal-
isation and the NRG-extension of HOSTS. We consider the ci = 100→ c f = 3.7660
quench for N = 6 particles, cf. Fig. 14. N +∆Ns = 800 is fixed within each data set.

1. The approximate eigenstates obtained at each step of the algorithm (from diagonaliza-
tion of a truncated Hamiltonian) are kept, unlike in the conventional case where one
discards ∆Ns states at each iteration.

2. When introducing new computational basis states, we select which of the previously ob-
tained approximate eigenstates to include in the Hamiltonian using a weighing function
based on the quadratic terms in the perturbation-series expansion of the wave function
(21) instead of including the approximate eigenstates with the lowest energies.

The matrix element renormalization group takes seriously the idea that matrix elements of
the perturbing operator, rather than energies, are the important quantity when operators are
not strongly renormalization group relevant. The central idea is that computational basis states
|{λ}( j)〉 included at a given step can mediate strong coupling between the approximate ground
state and approximate “excited states” obtained at an earlier iteration. These “approximate
states” must then be included in the truncated Hamiltonian at this diagonalization step to
ensure an accurate description of the ground state. So, instead of blindly removing the high
energy approximate “excited states” at each step of algorithm (as in the conventional numerical
renormalization group), we keep all approximate eigenvectors, and at each iteration include
the states most important for mediating the coupling between the approximate ground state
and the newly added states from the computational basis.

Let |Ω〉 be the ground state of the final Hamiltonian, then the steps of the matrix element
renormalization group are as follows:

1. Generate the computational basis via preferential state generation from the ground state
|Ω〉. Order the states in the computational basis according to the metric in Eq. (22), to
obtain {|{λ}( j)〉}.

2. Construct a truncated Hamiltonian from the first Ns +∆Ns computational basis states,
�

|{λ}(1)〉, . . . , |{λ}(Ns+∆Ns)〉
	

and diagonalize this Hamiltonian to obtain the first approx-
imate eigenstates

�

|E1〉, . . . , |ENs+∆Ns
〉
	

with energies {E1, . . . , ENs+∆Ns
}. These approxi-
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mate eigenstates replace the first Ns +∆Ns states in the computational basis, and are
ordered such that E1 < · · ·< ENs+∆Ns

.

3. Define a new basis of Ns+∆Ns eigenstates for the truncated Hamiltonian by adding the
next ∆Ns states from the computational basis

�

|{λ}( j)〉
	

to the approximate eigenvector
with the lowest energy |E1〉 as well as the Ns−1 approximate eigenstates {|Ei〉}i>1 whose
“second order weight”, given by

w2 (|Ei〉) =
∑

j

〈Ei|δH|{λ}( j)〉〈{λ}( j)|δH|E1〉

(E1 − E( j){λ})(E1 − Ei)
. (30)

is largest. Here δH = cR × g2(0) is the perturbing operator (see Sec. 2.2.1), the sum
ranges over all ∆Ns newly added computational basis states, and E( j){λ} = E({λ}( j)) are
the energies of the newly added computational basis states.

4. Construct the truncated Hamiltonian in this new basis and diagonalize it to obtain
Ns +∆Ns new approximate eigenstates. These newly constructed approximate eigen-
states replace the states in the computational basis used to construct the truncated
Hamiltonian.

5. Return to the third step.

This process is continued, obtaining new approximate eigenstates after each cycle of steps 3
to 5, until the required convergence of the ground state energy/eigenstate is reached or the
computational basis is exhausted.

The matrix element renormalization group has some slight disadvantages when compared
to the conventional numerical renormalization group. Firstly, it is more memory intensive:
a complete set of approximate eigenstates must be retained in the procedure, while in the
conventional routine we only need keep track of Ns such approximate eigenstates.9 Secondly,
the matrix element renormalization group has a higher computational burden since it requires
the computation of the second order weight for all approximate eigenvectors at the start of
each iteration. However, we have seen that the conventional numerical renormalization group
fails to produce accurate results for strongly non-perturbative quenches (see Fig. 17) so these
savings in memory and computations compared to the matrix element renormalization group
are moot.

There are a couple of alternative, complementary, schemes that could be used to construct
the initial state. Firstly, there exist “sweeping” improvements of the conventional numerical
renormalization group (see, e.g., their discussion in [60]). If succesful however, this additional
would certainly come at a higher computational cost than directly using the matrix element
renormalization group. Secondly, one could invoke iterative diagonalization (via, e.g., Lanczos
or Davidson) within a given truncated basis. In such a procedure, one would have to check
convergence of results with basis size, but one can (in principle) deal with very large bases.
How quickly such iterative diagonalization converges, with our matrix being dense, is not clear.
We have yet to explore this avenue, but it is an interesting direction for future works.

5.2 Results from the matrix element renormalization group for the ground state

With the matrix element renormalization group algorithm in place, we can employ it to tackle
problems that are inaccessible to the conventional numerical renormalization group.

9In practice, since we need at most Ns approximate eigenvectors at any one time, these eigenvectors do not
have to be stored in memory.
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Figure 18: Top row: Matrix element renormalization group (MERG) and numeri-
cal renormalization group (NRG) for the ci = 20 → c f = 10 quench for N = 10
particles, computed within the high overlap states truncation scheme. (a) The con-
vergence of the initial state energy as a function of number of basis states; (b) the
convergence of the overlaps at different steps of the MERG procedure (cf. Fig. 9).
Bottom row: MERG and full diagonalization results for the N = 4 particle quench
ci = 100→ c f = 3.7660: (c) the convergence of the energy of the initial state with
the number of basis states; (d) the time evolution of g2(t) with 2500 basis states.

However, in the first case, we check that the matrix element renormalization group cor-
rectly reproduces results in cases where the conventional numerical renormalization group
approach works. This is a basic sanity check: can we reproduce the initial state and its dy-
namics in these simpler cases. Our first example is ci = 20→ c f = 10 quench studied earlier
in this work. We present the convergence of the energy and the overlaps in Figs. 18(a)–(b).
In particular, Fig. 18(b) should be compared to Fig. 9 obtained previously. We see excellent
agreement between the conventional numerical renormalization group and the matrix element
renormalization group in this scenario.

As a second check, we turn our attention to the harder quench considered in the previous
section for N = 4 particles, ci = 100 → c f = 3.7660. Here we check against full diagonal-
ization of the truncated Hamiltonian (as the required number of states for excellent conver-
gence is rather small), as shown in Figs. 18(c)–(d). The matrix element renormalization group
gives results in excellent agreement with full diagonalization of the same basis, both in terms
of energy of the initial state, Fig. 18(c), and the non-equilibrium dynamics of observables,
Fig. 18(d).

With the matrix element renormalization group correctly reproducing both full diagonal-
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Figure 19: The convergence of the initial state energy E0 for N = 6 particle quench
ci = 100 → c f = 3.7660 obtained with the matrix element renormalization group
(MERG). MERG is performed with Ns = 720 and ∆Ns = 80. Conventional numerical
renormalization group approaches breakdown in this scenario (for the same Ns,∆Ns)
as shown in Fig. 17. Full diagonalization results, for the same number of basis stats,
are shown for comparison.

ization (in small bases) and conventional numerical renormalization group (in large bases)
results, we examine the problematic scenario discussed in the previous section. In this strongly
non-perturbative quench, the matrix element renormalization group is vital for correctly con-
structing the initial state. In scenarios where the conventional numerical renormalization
group fails to produce results which agree with results obtained by diagonalization of the full
truncated Hamiltonian, such as the one illustrated in Fig. 17, the matrix element renormaliza-
tion group continues to produce results that agree with great accuracy as is shown in Fig. 19.

In Fig. 19 we see a number of features. Firstly, we note that the agreement between the
results obtained by full diagonalisation of the truncated Hamiltonian and using the matrix ele-
ment renormalization group are in excellent agreement. Secondly, regardless of the procedure,
the convergence of the initial state energy shows some plateaus and jumps, which implies that
the metric (22) is not the perfect one. Understanding how to construct the most convergent
metric for a given problem is an outstanding challenge, which requires further investigations.
Thirdly, we see that for N = 6 particles the problem is very challenging: By including 50, 000
states, we still only achieve initial state energies correct to within ∼ 5.5% (∼ 10% w.r.t. the
Fermi energy). Whilst a better ordering metric might improve this, it still seems likely that
strongly nonperturbative quenches will present a significant numerical challenge. This is fur-
ther supported by Fig. 20, where we show the time evolution of g2(t) as compared to results
from the coordinate Bethe ansatz discussed previously. We see that even a truncated wave
function (14) with 50,000 states included does not accurately realize the short time dynamics
of observables. At longer times, once the steady state plateau is approached (and high en-
ergy modes have dephased, effectively averaging to zero), the truncated wave function does
describe g2(t) well.

30

https://scipost.org
https://scipost.org/SciPostPhys.11.6.104


SciPost Phys. 11, 104 (2021)

0.001

0.01

0.1

1

0.001 0.01 0.1 1

g 2
(t
)

Time k2F t

Bethe Ansatz
MERG Ntot = 10000
MERG Ntot = 20000
MERG Ntot = 30000
MERG Ntot = 40000
MERG Ntot = 50000

Figure 20: The time evolution of the local observable g2(0) following the
ci = 100→ c f = 3.7660 in the Lieb-Liniger model starting from the ground state at ci .
Exact data (dashed line) computed via the coordinate Bethe ansatz with N = 5 parti-
cles (from Ref. [45]) is compared to matrix element renormalization group (MERG)
calculations with N = 6 particles.

5.3 The matrix element renormalization group algorithm for excited states

In contrast to conventional renormalization group techniques, which at most target the first
few excited states in addition to the ground state, the matrix element renomalization group
can also be used to target more highly excited states. Furthermore, the algorithm can construct
these states without the need to construct all the states of lower energy making the procedure
a more efficient tool to target excited states than the methods discussed thus far. In order to
do so we have to make some changes to the algorithm described in Sec. 5.1.

To understand why we need to change the algorithm in Sec. 5.1 in order to consider ex-
cited states, let us consider what happens if we replace the ground state with an excited state
in the algorithm. This state will henceforth be referred to as the seed state. First of all, the
preferential state generation routine leads to a different computational basis, as we now con-
sider |{λ}(0)〉 in Eq. (22) to be an excited state. In particular, the ground state may not have a
high weight according to this metric, so it may not even be included in the computational basis
obtained via preferential state generation. Second of all, the algorithm retains the lowest en-
ergy approximate eigenstate |E1〉 at every step, and selects the approximate eigenstates most
relevant to this approximate eigenstate based on the second order weight. This means that
the selection rules are still set to promote the convergence of the lowest energy eigenstate,
rather than an excited state. Finally, it is generally unclear which eigenstate of the perturbed
Hamiltonian corresponds to which of the approximate eigenstates obtained by the algorithm,
as energies of different excited states can be very similar and even degenerate.

Before we discuss how we resolve these issues, note that every step of the algorithm rep-
resents a mapping between the states used to construct the truncated Hamiltonian and the
approximate eigenstates obtained by diagonalization. To identify which of the approximate
eigenstates a given state used in the basis for the truncated Hamiltonian is mapped to, we
compute the overlaps between this state and all newly obtained approximate eigenstates. The
approximate eigenstate with the largest overlap is then said to be its image provided that the
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RG-step is “small enough”. This allows us to track the approximate eigenstate derived from
the seed state throughout the procedure.

The main assumption behind our method of tracking the seed state is that the number of
states added at every step of the routine is small enough, so that no single iteration wildly
changes the (image of) the seed state. What step size is small enough for this assumption to
hold depends on the quench and seed state under consideration.10 However, there are some
general methods by which one can check if an appropriate step size has been chosen. Firstly,
one can consider the overlaps computed at each iteration of the routine and verify that there
is only one state with a significant overlap. Secondly, one can rerun the routine with a smaller
step size and check that it produces the same results. With the preferential scanning routine
in place, by which the most significantly states are identified and included first, the start of
the routine is where the changes are most drastic and therefore the procedure is most likely
to break down there. As a result, the checks proposed here need not be time-consuming.

Now that we have established how we can track the seed state, we note that we can replace
the lowest energy approximate eigenstate with the image of the seed state in the second order
metric used in Eq. (31). This change, together with the replacement of the ground state with
an arbitrary seed state in the preferential scanning routine results in a routine designed to
optimize the convergence of the approximate eigenstate associated to the seed state. The
resulting algorithm can be summarized as follows.

Let |Ω〉 be some eigenstate of the final Hamiltonian, which in this case can be an excited
state, then the steps of the matrix element renormalization group are as follows:

1. Generate the computational basis via preferential state generation from the seed state
|Ω〉. Order the states in the computational basis according to the metric in Eq. (22), to
obtain {|{λ}( j)〉}.

2. Construct a truncated Hamiltonian from the first Ns +∆Ns computational basis states,
�

|{λ}(1)〉, . . . , |{λ}(Ns+∆Ns)〉
	

and diagonalize this Hamiltonian to obtain the first approx-
imate eigenstates

�

|1〉, . . . , |Ns +∆Ns〉
	

with energies {E1, . . . , ENs+∆Ns
}.

3. Compute the overlaps between |{λ}(0)〉 and the newly acquired approximate eigenvec-
tors {|1〉, . . . , |Ns +∆Ns〉}. Then relabel the approximate eigenstates such that |1〉 refers
to the approximate eigenstate with the largest overlap.

4. Take the next ∆Ns computational basis states |{λ}( j)〉 and compute the “second order
weight” for each of the approximate eigenstates |i〉 with i > 1 obtained in previous
steps:

w2 (|i〉) =
∑

j

〈i|δH|{λ}( j)〉〈{λ}( j)|δH|1〉

(E1 − E( j){λ})(E1 − Ei)
. (31)

Here δH = cR× g2(0) is the perturbing operator (see Sec. 2.2.1), the sum ranges over
all the newly added computational basis states, and E( j){λ} = E({λ}( j)) are the energies of
the newly added computational basis states.

5. Form a truncated basis consisting of |1〉, the Ns − 1 states in {|i〉
	

i>1 with the largest
w2-weight, and the ∆Ns computational basis states introduced in step 4, construct the
truncated Hamiltonian in this basis and diagonalize it to obtain Ns +∆Ns new approxi-
mate eigenstates {|1′〉, . . . , |(Ns +∆Ns)′〉}.

10It may happen that no step size is small enough when we consider a very strong quench and/or a highly excited
state.
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6. Compute the overlaps between |1〉 and the newly acquired approximate eigenvectors,
and replace |1〉 by the approximate eigenvector with the largest overlap. Replace the
remaining approximate eigenvectors used to form the truncated basis in step 5 with the
remaining newly obtained approximate eigenvectors.

7. Return to the fourth step.

This process is continued, obtaining new approximate eigenstates after each cycle of steps 4
to 6, until the required convergence of the eigenstate is reached or the computational basis is
exhausted.

This version of the matrix element renormalization group is not more memory intensive
than the routine presented for constructing ground states and it is only slightly more compu-
tationally intensive. The additonal computational cost comes from computing the overlaps at
each iteration.

5.4 Results from the matrix element renormalization group for excited states

As mentioned in Sec. 5.3, one of the subtleties that arises when considering the matrix eleme-
nent renormalization group for excited states is that, even though we know that we construct
an approximate eigenstate of the perturbed Hamiltonian, we do not necessarily know a priori
what eigenstate this will correspond to. For the interaction quench considered here, the most
natural eigenstate of H(ci) to end up with when starting from an eigenstate of H(c f ) is the
eigenstate with the same quantum numbers. In this section we show some preliminary results
to verify this claim, although we do note that to assert with more certainty that this claim is
true, more properties of the eigenstates other than the energies would have to be considered.
This is left to future works.

Consider again the quench from ci = 20 to c f = 10. In the following we present the
results obtained from running the algorithm three times with three different seed states, whose
doubled quantum numbers are given by

State A: {−9,−7,−5,−3,−1, 1,3, 5,7, 9} , (32)

State B: {−11,−7,−5,−3,−1, 1,3, 5,7, 11} , (33)

State C: {−17,−13,−9,−5,−1, 1,5, 9,13,17} . (34)

The results for the energy convergence of the approximate eigenstates corresponding to these
seed states obtained from the matrix element renormalization group are shown in Fig. 21. In
order to keep track of the convergence, we again consider the percentual error of the energy
only this time with respect to a different target energy of the each of the runs. The target
energy Eexact is taken to be the energy of the eigenstate of H(ci) with quantum numbers
identical to those of the seed state under consideration. We note that even though we only
consider data for the energy convergence here, we have still computed the expansion of the
approximate eigenstates in terms of the eigenstates of the intiial basis, so could still compute
the time evolution of operators if we please to do so.

The rate of convergence of the run seeded by the lowest excited state, state B, is compara-
ble to the convergence when considering the ground state, state A. On the other hand, when
considering a run seeded by a highly excited state, state C, the convergence shows character-
istics reminding us of the strongly non-perturbative quenches considered in section Sec. 5.2.
Also, in order to keep track of the right approximate eigenstate throughout the procedure, we
had to significantly alter the parameters characterizing the size of the renormalization group
steps to Ns = 75 and ∆Ns = 25.

The fact that considering higher energy states requires a decrease in step size is what
currently limits how high the energy of the seed states may be. To overcome this limitation,
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Figure 21: The convergence of the states A, B, and C, for the N = 10 particle
quench ci = 20→ c f = 10 obtained using the matrix element renormalization group
(MERG). For state A, and B, MERG is performed with Ns = 700 and ∆Ns = 100,
whereas for state C, MERG is performed with Ns = 75 and ∆Ns = 25.

we would have to reorder the computational basis so that single steps of the procedure do
not change the targeted approximate eigenstate as violently. Nevertheless, even without such
alterations, our current algorithm goes beyond what one could target using the conventional
renormalization group techniques we discussed at the start of this paper, because in that case
one would have to construct all lower energy eigenstates.

6 Conclusions

Even in the presence of integrability, the computation of non-equilibrium dynamics following a
quantum quench remains a great challenge for theory. Well-controlled numerical approaches
are vital for accessing the physics away from analytically tractable limits, including for the
cases of finite-time dynamics of observables. Here we have presented a proof-of-principle in-
vestigation of finite-c to finite-c quenches in the Lieb-Liniger model using a high overlap states
truncation scheme, in combination with full diagonalization, the numerical renormalization
group, and a new matrix element renormalization group algorithm. We have worked with in-
teracting computational basis states, which intrinsically have built-in strong correlations, and
we have systematically constructed initial states in terms of high overlap states, for quenches
starting from ground states as well as excited states. Using these, we have computed both
real-time dynamics and the long-time limit of physical observables following a quench.

In our development of a high overlap states truncation scheme, and the matrix element
renormalization group, we have highlighted the important role played by the ordering of the
computational basis. Applying the conventional metric, energy of the computational basis
states, we observe poor convergence of properties of the initial states. This poor convergence
means applying conventional “truncated spectrum methods” (in their naive form) requires the
use of unfeasibly many computational basis states. By modifying the metric, to a “matrix ele-
ment” focused one that takes into account the structure of the operator coupled to the quench
parameter, we achieve orders-of-magnitude improvement in the convergence of properties of

34

https://scipost.org
https://scipost.org/SciPostPhys.11.6.104


SciPost Phys. 11, 104 (2021)

the initial state with truncated Hilbert space size. This was studied in detail in Sec. 3. Along
the way, we were able to develop a routine that preferentially generates the states with high
overlap following a quench, and this enabled efficient convergence of the initial state energy
to sub-percent precision.

This improved convergence opened the door to computing non-trivial non-equilibrium dy-
namics for numbers of particles far beyond the reach of brute force computations. This was
discussed in Sec. 4. Convergence of real-time non-equilibrium dynamics of local observables
with the number of computational basis states was surprisingly fast: for N = 10 particles
ci = 20 → c f = 10 quench, well-converged results for time evolution of g2(0) are obtained
with just thousands of states (some of which are of very high in energy). The long-time limit
was also shown to be efficiently accessed via the diagonal ensemble, with results agreeing with
the intermediate time dynamics, as expected.

In the case of strongly non-perturbative quenches, we found that conventional numerical
renormalization group improvements have to be significantly modified to achieve accurate
results. This modification, the so-called matrix element renormalization group, takes seri-
ously that the properties of the perturbing operator should govern the whole procedure. We
found this modification to be necessary in the “large quench” studied previously in the liter-
ature [45], ci = 100→ c f = 3.7660, when considering more than four particles. Our results
were compared to the coordinate Bethe ansatz results of Zill et al. [45], and were found to
be in excellent agreement. We note, however, that such strongly non-perturbative quenches
remain challenging problems, with the quench projecting the initial state on to many states
with sizable overlaps. This makes it tough to tackle even relatively small numbers of particles,
even with our computationally efficient approach. This seems like an insurmountable problem
without introducing additional approximations, beyond the scope of this work, or alternative
Hilbert space ordering metrics.

Finally, we considered the construction of excited states of the perturbed Hamiltonian. We
wrote down a variant of the matrix element renormalization group algorithm able to directly
construct excited states of a perturbed Hamiltonian in terms of the eigenbasis of another Hamil-
tonian without having to construct all lower energy eigenstates. This allows one to consider
more highly excited states than one normally could using the truncated spectrum approach
and focusses the computational resources on this particular eigenstate rather than it being a
less well-converged side-product of trying to converge the approximate eigenstate represent-
ing the ground state of the perturbed Hamiltonian.

The presented high overlap states truncation scheme, combined with full diagonalization
and renormalization group improvements, can be applied to many other models and scenarios.
Perhaps the most interesting is to consider the case with integrability-breaking where, provided
matrix elements of the integrability-breaking terms are known, one can directly apply the same
approach. This enables, for example, non-perturbative studies of prethermalization (see, e.g.,
Refs. [8,28–31]) in continuum quantum gases. Other interesting directions include extensions
to other integrable continuum models, such as two-component Bose and Fermi gases or the
sine-Gordon regime away from the ultra-relevant perturbation limit [67]. Finally, we would
like to point out that the method developed in this paper provides, in principle, all the in-
gredients necessary to compute for example the time evolution of the entanglement entropy.
In order to come to a tractable computation one can convert the overlaps coming from the
NRG-routines to a root distribution and then use the quasi-particle picture formulas for the
entanglement entropy, see e.g. [131, 132]. However, in order to ascertain the accuracy of re-
sults obtained in this way, a careful quantitative study of finite-size effects is required in order
to determine if we can accurately match results in the thermodynamic and scaling limits. We
leave addressing this challenge to future work.

Extending these methods to lattice models should also be possible, using strongly corre-
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lated integrable eigenstates. Such an algorithm may complement existing ones: being able to
tackle longer times, but smaller systems, than the time-dependent density matrix renormal-
ization group, but larger system sizes than exact diagonalization. It may also be interesting
to implement the ideas behind the matrix element renormalization group to lattice and impu-
rity models, invoking a Wilsonian numerical renormalization group-like picture with strongly
correlated basis states. These points remain for future works.

The approach implemented within this work for simulating continuum one-dimensional
models provides an alternative, complementary approach to continuum matrix product state
methods [133, 134]. Utilizing the solvability of a proximate integrable point, time evolution
is easy within our approach and can be performed to long times with high precision. This
opens the door to novel, non-perturbative studies of non-equilibrium dynamics in models of
relevance to cold atomic gases.
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A Matrix elements

In the main text, we have made use of many known expressions for matrix elements of opera-
tors. In this appendix, we provide a summary of these results taken from Refs. [74,75,78,79].

A.1 Matrix elements of Ψ†(0)Ψ(0): determinant representation

Expectation values of the density operator Ψ†(0)Ψ(0) are fixed by the U(1) number conserva-
tion and translational invariance to read

〈{µ}N |Ψ†(0)Ψ(0)|{µ}N 〉
〈{µ}N |{µ}N 〉

=
N
R

. (35)

That is, the expectation value is simply the average density.
Off-diagonal matrix elements can be expressed in terms of a single determinant, as can

easily be obtained from [75]. These read:

〈{µ}N |Ψ†(0)Ψ(0)|{λ}N 〉= iJ1 ({µ}N , {λ}N )
N
∏

j=1

�

V+j − V−j
�

N
∏

j,k=1

�

λ j −λk + ic

µ j −λk

�

×
det

�

δ jk + U jk(λp)
�

V+p − V−p
, (36)
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where, explicitly, {µ}N 6= {λ}N . In the above, we use the following notations for functions and
matrices:

J1 = P({λ}N )− P({µ}N ) , (37)

V±j =
N
∏

m=1

µm −λ j ± ic

λm −λ j ± ic
, (38)

U jk(λp) =
i

V+j − V−j

∏N
m=1(µm −λ j)

∏N
m 6= j=1(λm −λ j)

�

K(λ j ,λk)− K(λp,λk)
�

, (39)

and K(λ j ,λl) is given in Eq. (7). Notice that J1 implies that the matrix element element of
the density operator between non-identical states within the same momentum sector vanish.

A.2 Off-diagonal matrix elements of g2(0): determinant representation

An efficient, single determinant representation for the off-diagonal matrix elements of g2(0)
is provided by Piroli and Calabrese [79]:

〈{µ}N |g2(0)|{λ}N 〉=
(−1)N

6c
J2 ({µ}N , {λ}N )

N
∏

j=1

�

V+j − V−j
�

N
∏

j,k=1

�

λ j −λk + ic

λ j −µk

�

×
detN (δ jk + U jk(λp,λs))

(V+p − V−p )(V+s − V−s )
.

(40)

Here explicitly: (i) the sets of rapidities do not coincide ({µ}N 6= {λ}N ); (ii) no individual
elements of the sets coincide (µ j 6= λk ∀ j, k). In Eq. (40) the following functions and matrices
are required:

J2 =
�

P
�

{λ}N
�

− P
�

{µ}N
�

�4
+ 3

�

E
�

{λ}N
�

− E
�

{µ}N
�

�2

− 4
�

P
�

{λ}N
�

− P
�

{µ}N
�

��

Q3

�

{λ}N
�

−Q3

�

{µ}N
�

�

, (41)

U jl(λp,λs) =
i

V+j − V−j

∏N
m=1(µm −λ j)

∏N
m=1,
m 6= j
(λm −λ j)

�

K(λ j ,λl)− K(λp,λl)K(λs,λ j)
�

. (42)

Furthermore V±j is given in Eq. (38), K(λ j ,λl) is defined in Eq. (7), Q3({λ}) is given by Eq. (4),
and λp,λs are arbitrary complex numbers.

Within the main text, we consider states within the same momentum sector, where

J2({µ}N , {λ}N )
�

�

�

P({µ}N )=P({λ}N )
= 3

�

E({λ}N )− E({µ}N )
�2

. (43)

A.3 Matrix elements of gK(0)

We now recount known results for matrix elements of the operator

gK(0) =
�

Ψ†(0)
�K�
Ψ(0)

�K
, (44)

as derived by Pozsgay [78]. We have implemented these expression both for the diagonal
elements of g2(0).
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A.3.1 Diagonal elements

The diagonal elements of gK(0) are given by:

〈{λ}N |gK(0)|{λ}N 〉
〈{λ}N |{λ}N 〉

= (K!)2
∑

{λ+}∪{λ−}
|{λ+}|=K

�

∏

j>l

λ+j −λ
+
l

(λ+j −λ
+
l )

2 + c2

�

×
detM
detN , (45)

where M is an N × N matrix with elements

M jl =

�

(λ j)l−1, for l = 1, . . . , K ,
N jl for l = K + 1, . . . , N .

, (46)

and N is the Gaudin matrix, see Eq. (6). Here it should be understood that the rapidities are
ordered as {λ}=

�

{λ+}, {λ−}
	

. Whilst this is a sum of determinants, so not as computationally
efficient to evaluate as the previous single determinant representation, it is still relatively easy
to compute numerically.

A.3.2 Off-diagonal elements

The off-diagonal matrix elements for gK(0) read:

〈{λ}N |gK(0)|{µ}N 〉= cK(K!)2
∑

{λ+}∪{λ−}
|{λ+}|=K

 

∏

o,`

λ−o −λ
+
`
+ ic

λ−o −λ
+
`

!

×

∏

i, j(λi −λ−j + ic)
∏

m<n(µm −µn)
∏

r<s(λ−r −λ−s )
det W , (47)

where W is an N × N matrix with elements

W j,l =(µ j)
l−1 , for l = 1, . . . , K , (48)

W j,K+l =
ic

(µ j −λ−l )(µ j −λ−l + ic)

+
ic

(λ−l −µ j)(λ−l −µ j + ic)

N
∏

o=1

(λ−l −µo + ic)(λ−l −λ0 − ic)

(λ−l −µo − ic)(λ−l −λo + ic)
, (49)

and the Bethe states are normalized as in Eq. (5).
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