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Abstract

The spatial discretization of the single-cone Dirac Hamiltonian on the surface of a topo-
logical insulator or superconductor needs a special “staggered” grid, to avoid the appear-
ance of a spurious second cone in the Brillouin zone. We adapt the Stacey discretization
from lattice gauge theory to produce a generalized eigenvalue problem, of the form
Hψ = EPψ, with Hermitian tight-binding operators H, P, a locally conserved particle
current, and preserved chiral and symplectic symmetries. This permits the study of the
spectral statistics of Dirac fermions in each of the four symmetry classes A, AII, AIII, and
D.
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1 Introduction

Three-dimensional topological insulators are Nature’s way of working around the Nielsen-
Ninomiya no-go theorem [1], which forbids the existence of a single species of massless Dirac
fermions on a lattice. The fermion doubling required by the theorem is present in a topological
insulator slab, but the two species of Dirac fermions are spatially separated on opposite surfaces
[2,3]. On each surface the two-dimensional (2D) Dirac Hamiltonian

HD = ħhvFk ·σ = −iħhvF

�

σx
∂

∂ x
+σy

∂

∂ y

�

(1.1)

emerges as the effective low-energy Hamiltonian, with a single Dirac cone at k = (kx , ky) = 0.
Since it is computationally expensive to work with a three-dimensional (3D) lattice, one

would like to be able to discretize the 2D Dirac Hamiltonian, without introducing a second
Dirac cone. We can draw inspiration from lattice gauge theory, where a variety of strategies
have been developed to avoid fermion doubling [4, 5]. The condensed matter context intro-
duces its own complications, notably the lack of translational invariance and breaking of chiral
symmetry by disorder and boundaries.

In Ref. 6 it was shown how the transfer matrix of the Dirac equation in a disorder poten-
tial can be discretized without fermion doubling. This allows for efficient calculation of the
conductance and other transport properties in an open system [7–9]. Here we apply the same
approach to the Hamiltonian of a closed system, in order to study the spectral statistics.

The Nielsen-Ninomiya theorem forbids a local discretization of the eigenvalue problem
HDψ= Eψ without fermion doubling and without breaking the chiral symmetry relation

σzHD = −HDσz . (1.2)

One way to circumvent the no-go theorem, is to abandon the locality by introducing long-
range hoppings in the discretized Dirac Hamiltonian [10]. Here we follow an alternative route,
following Stacey [11], which is to work with a generalized eigenvalue problem

Hψ= EPψ , (1.3)

with local tight-binding operators H and P on both sides of the equation. Going beyond Ref.
11, we transform the operators H and P such that they remain, respectively, Hermitian and
positive definite in the absence of translational invariance. This favors a stable and efficient
numerical solution, and moreover guarantees that the resulting spectrum is real, not only in
the continuum limit but at any grid size.

A key feature of our approach, compared with the more familiar approaches of Wilson
fermions [12] and Susskind fermions [13], is that both the chiral symmetry (1.2) is preserved
and the symplectic time-reversal symmetry1

σy H∗Dσy = HD . (1.4)

1The complex conjugation operationK in the symmetry relations (1.4) and (1.5) is taken in the position basis. In
momentum representation the relations read σy H∗(−k)σy = H(k) and σx H∗(−k)σx = −H(k). Both symplectic
and particle-hole symmetries are anti-unitary symmetries, with operators T = iσyK and C = σxK that square to
−1 and +1, respectively.
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This also implies the conservation of the product of the chiral and symplectic symmetries,
which is a particle-hole symmetry

σx H∗Dσx = −HD . (1.5)

To demonstrate the capabilities of our approach we calculate the spectral statistics of a dis-
ordered system and show how the numerics distinguishes broken versus preserved chiral or
symplectic symmetry in each of the four symmetry classes of random-matrix theory [14].

The outline of the paper is as follows: In the next section we formulate the generalized
eigenproblem, first following Stacey [11] for a translationally invariant system, and then in-
cluding disorder. The symmetrization that produces a Hermitian H and positive definite P is
introduced in Sec. 3. The locality of the discretization scheme is demonstrated by the con-
struction of a locally conserved current in Sec. 4. By applying different types of disorder, in
scalar potential, vector potential, or mass, we can access the different symmetry classes and
obtain the characteristic spectral statistics for each, as we show in Sec. 5. We conclude in Sec.
6.

2 Construction of the generalized eigenproblem

2.1 Staggered discretization

If we discretize the Dirac Hamiltonian (1.1) on a lattice (lattice constant a), the replacement of
the momentum k by a−1 sin ka produces a second Dirac cone at the edge of the Brillouin zone
(k = π/a). To place our work into context, we summarize methods to remove this spurious
low-energy excitation.

If one is willing to abandon the locality of the Hamiltonian, one can eliminate the fermion
doubling by a discretization of the spatial derivative that involves all lattice points,
d f /d x 7→

∑

n(−1)nn−1 f (x − na). The resulting dispersion remains strictly linear in the first
Brillouin zone. This discretization scheme goes by the name of SLAC fermions [10] in the
high-energy physics literature. It has recently been implemented in a condensed matter con-
text [15].

An alternative line of approach preserves the locality at the expense of a symmetry break-
ing. The simplest way is to couple the top and bottom surfaces of the topological insulator
slab [16, 17]. The coupling adds a momentum dependent mass term µσz(1− cos ka) which
gaps out the second cone, while breaking both chiral symmetry and symplectic symmetry. This
is the Wilson fermion regularization of lattice gauge theory [12,18]. The product of chiral and
symplectic symmetry is preserved by Wilson fermions, which may be sufficient for some appli-
cations [19,20].

It is possible to maintain the chiral symmetry by discretizing the Dirac Hamiltonian on a
pair of staggered grids. Much of the lattice gauge theory literature is based on the Susskind
discretization [13], which applies a different grid to each of the two components of the spinor
wave function ψ. On a 2D lattice it reduces the number of Dirac cones in the Brillouin zone
from 4 to 2. Chiral symmetry is preserved, but symplectic symmetry is broken by the Susskind
discretization (see App. A).

Hammer, Pötz, and Arnold [21,22] have developed an ingenious single-cone discretization
method for the time-dependent Dirac equation. As in the Susskind discretization, different grids
are used for each of the spinor components, but these are staggered not only in space but also
in time. While this method is well suited for dynamical simulations [23, 24], it is not easily
adapted to energy-resolved spectral studies.

An altogether different approach, introduced by Stacey [11, 25], is to evade the fermion-
doubling no-go theorem by the replacement of the conventional eigenvalue problem
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Figure 1: A pair of staggered grids (lattice constant a, lattice vectors ex , ey) used in
the Stacey discretization of the 2D Dirac equation. The wave function and its spatial
derivatives are evaluated at the open lattice points, in terms of the values on the four
neighboring closed lattice points. The basis states 〈n| and |n〉 on the two lattices are
indicated.

HDψ = Eψ by a generalized eigenproblem Uψ = EΦψ. There is now no obstruction to
having a local U and Φ and also preserving chiral and symplectic symmetry.

The Stacey discretization of the transfer matrix was implemented in Ref. 6. In what follows
we show how to apply it to the Hamiltonian, to solve the time-independent Dirac equation on a
2D lattice. In the next subsection we first summarize the results of Ref. 11 for a translationally
invariant system, and then will present the modifications needed to apply the method in the
presence of a disorder potential.

2.2 Translationally invariant system

We seek to discretize the Dirac equation HDψ = Eψ on a 2D square lattice (lattice constant
a). We denote the discretized wave function byψn , with n = (nx , ny) ∈ Z2 labeling the lattice
points at nx ex + ny ey . For ease of notation we will henceforth set vF, ħh, and a to unity.

Staggered discretization a la Stacey means that the wave function and its spatial derivatives
are evaluated on a displaced lattice with sites at the center of the unit cells of the original lattice
(see Fig. 1). The discretization rules are:

∂ψ

∂ x
7→ 1

2(ψn+ex
+ψn+ex+ey

−ψn −ψn+ey
) , (2.1a)

∂ψ

∂ y
7→ 1

2(ψn+ey
+ψn+ex+ey

−ψn −ψn+ex
) , (2.1b)

ψ 7→ 1
4(ψn +ψn+ex

+ψn+ey
+ψn+ex+ey

) . (2.1c)

In distinction to Susskind staggering, the same discretization applies to each spinor compo-
nent.

In momentum representation, ψ(k) =
∑

nψne−ik·n , the discretized Dirac equation reads

U(k)ψ(k) = EΦ(k)ψ(k), (2.2)

with the k-dependent operators

U = −1
2 iσx(e

ikx − 1)(eiky + 1)− 1
2 iσy(e

ikx + 1)(eiky − 1) ,

Φ= 1
4(e

ikx + 1)(eiky + 1) .
(2.3)

4

https://scipost.org
https://scipost.org/SciPostPhys.11.6.105


SciPost Phys. 11, 105 (2021)

Table 1: The four symmetry classes realized by single-cone Dirac fermions [14]. The
table lists the broken (×) and preserved (Ø) symmetries of the Dirac Hamiltonian, in
the presence of a scalar potential V , vector potential A, and mass M . Class A applies
if at least two of the three V, M , A are nonzero.

symmetry symplectic chiral particle-hole class
V 6= 0 6= M × × × A

V 6= 0= M , A Ø × × AII
A 6= 0= V, M × Ø × AIII
M 6= 0= V, A × × Ø D

The dispersion relation

E(k) = ±2
q

tan2(kx/2) + tan2(ky/2) (2.4)

has a single Dirac point at k = 0. The Dirac point at the edge of the Brillouin zone has been
converted into a pole by the Stacey discretization.

2.3 Including a disorder potential

We break translational invariance by including in the Dirac equation a spatially dependent
scalar potential Vσ0, vector potential Axσx + Ayσz , and mass Mσz ,

(−i∇+ eA) ·σψ+ (Vσ0 +Mσz)ψ= Eψ . (2.5)

The electron charge e is set to unity in what follows. The Pauli matrices σ = (σx ,σy) and σz
act on the spin degree of freedom, with σ0 the 2× 2 unit matrix.

On the surface of a topological insulator the mass term represents a perpendicular mag-
netization. Alternatively, we can consider a 2D topological superconductor with chiral p-wave
pair potential, described by the Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =

�

k2

2m
+ V − EF

�

σz + v∆(k ·σ) . (2.6)

The Pauli matrices now act on the electron-hole degree of freedom, electrons and holes are
coupled by the pair potential∝ v∆. Since this coupling is linear in momentum k, the quadratic
kinetic energy k2/2m can be neglected near k = 0. The difference V − EF of electrostatic
potential V and Fermi energy EF then plays the role of the mass term M in Eq. (2.5).

The low-energy physics of the problem is governed by three symmetry relations, the chiral
symmetry (1.2), the symplectic symmetry (1.4), and the particle-hole symmetry (1.5). Chiral
symmetry is preserved by A and broken by V or M . Symplectic symmetry is preserved by V
and broken by M or A. If at least two of the three potentials V, M , A are nonzero all symmetries
of the Dirac Hamiltonian are broken. Finally, if V = 0, A = 0 while M 6= 0 the particle-hole
symmetry (1.5) remains. Table 1 summarizes the symmetry classification [14].

The inclusion of the vector potential requires a separate consideration, in order to preserve
gauge invariance. We delay that to Sec. 4, at first we only include V and M .

To incorporate the spatially dependent terms in the discretization scheme we write the
operators U and Φ in the position basis. In view of the identity

eikα =
∑

n

|n〉〈n|eikα =
∑

n

|n〉〈n + eα| , (2.7)
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we have

U = −1
2 iσxΩ+− −

1
2 iσyΩ−+, Φ= 1

4Ω++ , (2.8)

Ωss′ =
∑

n

�

ss′|n〉〈n|+ s|n〉〈n + ex |+ s′|n〉〈n + ey |+ |n〉〈n + ex + ey |
�

. (2.9)

For later use we also define the factorization Φ = ΦxΦy , with commuting operators Φx ,Φy
given by

Φα =
1
2(e

ikα + 1) = 1
2

∑

n

�

|n〉〈n|+ |n〉〈n + eα|
�

. (2.10)

In these equations the ket states |n〉 refer to sites on the displaced lattice (open lattice
points in Fig. 1), while the bra states 〈n| refer to sites on the original lattice (closed lattice
points). The inner product is defined such that the two sets of eigenstates of position are
orthonormal, 〈n′|n〉= δn,n′ .

We define the potential and mass operators

V =
∑

n

Vn|n〉〈n|, M =
∑

n

Mn|n〉〈n| , (2.11)

where Vn and Mn denote the value at the open lattice point n. With this notation we have the
discretized Dirac equation

Uψ+ (Vσ0 +Mσz)Φψ= EΦψ . (2.12)

The product VΦψ multiplies the value of V on an open lattice point with the average of the
values of ψ on the four adjacent closed lattice points, and similarly for MΦψ.

Eq. (2.12) is a generalized eigenvalue problem, with operators on both sides of the equa-
tion. Neither operator is Hermitian. This is problematic in a numerical implementation, and
we will show in the next section how to resolve that difficulty.

3 Symmetrization of the generalized eigenproblem

We wish to rewrite Eq. (2.12) in the form Hψ = EPψ, with Hermitian H and Hermitian
positive definite P . Such a symmetrization of the generalized eigenvalue problem allows for
a stable and efficient numerical solution2 [26,27]. Moreover, it guarantees real eigenvalues E
and eigenvectors ψE that satisfy the orthogonality relation 〈ψE |P |ψ′E〉= 0 if E 6= E′.

We multiply both sides of Eq. (2.12) by Φ† and note that Φ†U is a Hermitian operator. In
position basis it reads

Φ†U = −iD ·σ, D = (Dx , Dy) , (3.1a)

Dx =
1
8

∑

n

�

2|n〉〈n + ex |+ |n〉〈n + ex + ey |+ |n〉〈n + ex − ey |
�

−H.c , (3.1b)

Dy =
1
8

∑

n

�

2|n〉〈n + ey |+ |n〉〈n + ex + ey |+ |n〉〈n + ey − ex |
�

−H.c. (3.1c)

We thus arrive at the generalized eigenproblem

Hψ= EPψ, P = Φ†Φ ,

H = −iD ·σ +Φ†(Vσ0 +Mσz)Φ .
(3.2)

2Both H and P should be Hermitian and one of these operators should be positive semi-definite to guarantee
real eigenvalues of Hψ= EPψ. Hermiticity alone is not sufficient, see the counterexample H = σx , P = σz with
eigenvalues E = ±i.
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In the translationally invariant case the operators H and P are given by

H = 1
2σx(1+ cos ky) sin kx +

1
2σy(1+ cos kx) sin ky ,

P = 1
4(1+ cos kx)(1+ cos ky) .

(3.3)

Both operators are Hermitian and P is also positive semi-definite. Moreover, P is positive def-
inite if the edges of the Brillouin zone (kx or ky equal to ±π) are excluded from the spectrum.
To ensure that, we can choose an odd number Nx , Ny of lattice points with periodic boundary
conditions in the x- and y-directions (or alternatively, even Nx , Ny with antiperiodicity).

By way of illustration, we work out the expectation value

〈ψ|Φ†Vσ0Φ|ψ〉=
∑

n

Vn|
1
4(ψn +ψn+ex

+ψn+ey
+ψn+ex+ey

)|2 , (3.4)

so the value of the potential on an open lattice point is multiplied by the norm squared of the
average of the wave function amplitudes on the four adjacent closed lattice points.

Eq. (3.2) is local in the sense that the operators H and P only couple nearby lattice sites.
It can be converted into a conventional eigenvalue problem H̃ψ̃= Eψ̃ with ψ̃= Φψ and H̃ a
nonlocal effective Hamiltonian:

H̃ = (Φ†)−1HΦ−1 = UΦ−1 +σ0V +Mσz . (3.5)

In the translationally invariant case, the effective Hamiltonian reduces simply to

H̃ = 2σx tan(kx/2) + 2σy tan(ky/2) . (3.6)

Both chiral symmetry and symplectic symmetry are preserved on the lattice if present in the
continuum description: σzH̃ = −H̃σz when V = 0= M , and σyH̃∗σy = H̃ when M = 0.

4 Locally conserved particle current

In real space the effective Hamiltonian (3.5) produces infinitely long-range hoppings, as in
the SLAC fermion discretization [10,15]. The transformation to the generalized eigenproblem
(3.2) restores the locality of the hoppings. One might wonder whether there is a physical
content to this mathematical statement. Yes there is, as we show in this section the Stacey
discretization allows for the construction of a locally conserved particle current.

We define the particle number

〈ψ̃|ψ̃〉= 〈ψ|Φ†Φ|ψ〉 , (4.1)

corresponding to the density operator

ρ(n) = Φ†|n〉〈n|Φ . (4.2)

With reference to the two staggered grids in Fig. 1, the particle density on an open lattice
point n is given by the norm squared of the average of the wave function on the four adjacent
closed lattice points,

〈ψ|ρ(n)|ψ〉= |14(ψn +ψn+ex
+ψn+ey

+ψn+ex+ey
)|2 . (4.3)

The current density operator is given by

jα(n) = (Φ
†
α)
−1σαρ(n)Φ

−1
α , (4.4)
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or equivalently

jx(n) = σx

∑

n

Φ†
y |n〉〈n|Φy ,

jy(n) = σy

∑

n

Φ†
x |n〉〈n|Φx ,

(4.5)

in terms of the operators Φx ,Φy defined in Eq. (2.10). The current density in the state ψ then
takes the form

〈ψ| jx(n)|ψ〉=
1
4(ψn +ψn+ey

)†σx(ψn +ψn+ey
) ,

〈ψ| jy(n)|ψ〉=
1
4(ψn +ψn+ex

)†σy(ψn +ψn+ex
) .

(4.6)

The current density at an open lattice point is evaluated by averaging the wave function at the
two nearby closed lattice points connected by an edge perpendicular to the current flow.

The local conservation law

−
∂

∂ t
〈ψ|ρ(n)|ψ〉=

∑

α=x ,y

〈ψ| jα(n + eα)− jα(n)|ψ〉 (4.7)

is derived in App. B.
Knowledge of the current operator allows us to introduce the vector potential operator

A=
∑

n An|n〉〈n| such that

lim
A→0

∂H
∂ An

= j(n) . (4.8)

This is satisfied if

H = − iD ·σ +Φ†
�

Vσ0 +Mσz

�

Φ+Φ†
yσxAxΦy +Φ

†
xσyAyΦx +O(A2) . (4.9)

In App. C we check that the Hamiltonian (4.9) is gauge invariant to first order in A. Higher
order terms are nonlocal and we will not include them.

5 Spectral statistics

We have tested the validity and capability of the generalized eigenvalue problem by comparing
the spectral statistics with predictions from random-matrix theory (RMT). Similar tests for
different methods to place Dirac fermions on a lattice have been reported in the particle physics
literature [28–30].

We have solved the generalized eigenproblem

Hψ= EPψ, P = Φ†Φ ,

H = −iD ·σ +Φ†
�

Vσ0 +Mσz

�

Φ+Φ†
yσxAxΦy +Φ

†
xσyAyΦx ,

(5.1)

on a square lattice of size Nx ×Ny . Antiperiodic boundary conditions in the x- and y-direction
account for the π Berry phase accumulated by the spin when it makes one full rotation. The
dimensions Nx , Ny are even to ensure a positive definite Φ (no zero-mode in the spectrum).
The spectrum was calculated for 5·104 realizations of a random disorder, chosen independently
on each site from a uniform distribution in the interval (−δ,δ).

To access the four symmetry classes from Table 1 we took

• Ax , Ay ≡ 0 and random V, M with δ = 15/
p

2 for class A;
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Figure 2: Histograms: Spacing distributions computed from the discretized Dirac
Hamiltonian (5.1), with different types of disorder corresponding to the four symme-
try classes in Table 1. The red dashed line is the prediction (5.2) from random-matrix
theory in the presence of symplectic symmetry (β = 4) and in its absence (β = 2).

• M , Ax , Ay ≡ 0 and random V with δ = 15 for class AII;

• V, M ≡ 0 and random Ax , Ay with δ = 1
4

p
2 for class AIII;

• V, Ax , Ay ≡ 0 and random M with δ = 15 for class D.

The relatively weak disorder in class AIII was chosen in view of the linearization in the vector
potential. For that case we took Nx = Ny = 150, in the other symmetry classes with stronger
disorder we took Nx = Ny = 100.

Symmetry class D is insulating for weak disorder in the mass M ∈ (−δ,δ), it undergoes a
metal-insulator transition at δc = 3.44 [7]. This is the thermal metal phase of a topological
superconductor [31]. The thermal metal can be reached by vortex disorder, as in the network
model studied in Ref. 32, or it can be reached by electrostatic disorder in the BdG Hamiltonian
(2.6), as in the tight-binding models studied in Refs. 7,33. Here we follow the latter approach,
taking δ = 15 much larger than δc , so that we are deep in the metallic regime.

In Fig. 2 we show the probability distribution of the level spacing δE in the bulk of the
spectrum, far from E = 0, where the average spacing 〈E〉 is energy independent. We compare
with the Wigner surmise from RMT [34],

P(s) =

¨

32
π2 s2e−4s2/π in class A, AIII, D ,
218

(9π)3 s4e−64s2/9π in class AII ,
(5.2)

with s = δE/〈δE〉. The characteristic difference between the two distributions is the decay
∝ sβ for small spacings, with β = 4 in the presence of symplectic symmetry, while β = 2 in
its absence. (The case β = 1 of RMT is not realized in a spin-full system.)

In Fig. 3 we make a similar comparison for the density of states near E = 0. In class A and
AII the ensemble averaged density of states ρ(E) is flat in a broad energy range around E = 0.

9
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Figure 3: Density of states in the four symmetry classes, calculated numerically from
the discretized Dirac Hamiltonian (blue solid lines) and compared with the RMT
prediction (5.3) (red dashed lines). Chiral symmetry introduces a linear dip (class
AIII), while particle-hole symmetry introduces a quadratic peak (class D).

Chiral symmetry in class AIII introduces a linear dip in the density of states, while particle-hole
symmetry in class D introduces a quadratic peak. The RMT predictions are [35,36]

ρ(E) =
1
〈δE〉

×

¨

1
2π

2|ε|
�

J2
0 (πε) + J2

1 (πε)
�

in class AIII ,

1+ (2πε)−1 sin(2πε) in class D,
(5.3)

with ε = E/〈δE〉. The mean level spacing 〈δE〉 is computed away from E = 0.
The good agreement between the numerical results from the disordered Dirac equation and

the RMT predictions, evident in Figs. 2 and 3, is reached without any adjustable parameter.
Remaining discrepancies are likely due to a dynamics that is not fully chaotic. (In particu-
lar, incipient localization can explain the shift to smaller spacings noticeable in Fig. 2.) The
computer code to reproduce this data is provided [37].
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6 Conclusion

In conclusion, we have developed and implemented a lattice fermion Hamiltonian that, un-
like the familiar Wilson fermion and Susskind fermion Hamiltonians [12, 13], preserves both
chiral symmetry and symplectic symmetry while avoiding fermion doubling. Our approach is
a symmetrized version of Stacey’s generalized eigenvalue problem [11], which allows for the
construction of a locally conserved particle current. To demonstrate the universal applicabil-
ity of the lattice fermion Hamiltonian we have shown how it can reproduce the characteristic
spectral statistics for each of the four symmetry classes of Dirac fermions.

We mention three topics for further research. Firstly, we have only succeeded in including
the vector potential in a gauge invariant way to first order, so for a flux through a unit cell that
is small compared to the flux quantum. Is it possible to remove this limitation? Secondly, can
we extend the approach to discretize time as well as space? And thirdly, can we incorporate
boundary conditions without breaking the local current conservation?
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A Susskind discretization breaks symplectic symmetry

The staggered discretization of the 2D Dirac equation a la Susskind [13] produces a conven-
tional eigenvalue problem, with a local Hamiltonian. There is a single Dirac cone in 1D but
there are 2 Dirac cones in 2D. Chiral symmetry is preserved, but symplectic symmetry is bro-
ken. To contrast this with the symplectic-symmetry-preserving single-cone Stacey discretiza-
tion used in the main text, we give a brief description of the Susskind discretization, first in
1D and then in 2D.

In 1D the staggering refers to the prescription that the derivative of the A component of
the spinor ψ= (ψA,ψB) is calculated at x = n+1/2, while the derivative of the B component
is calculated at x = n− 1/2. Hence the term kxσx in the Dirac Hamiltonian is substituted by

kxσxψ 7→ −i

�

ψB(n)−ψB(n− 1)
ψA(n+ 1)−ψA(n)

�

⇒ HD 7→ −i

�

0 1− e−∂x

e∂x − 1 0

�

. (A.1)

The exponential e∂x , with ∂x = ∂ /∂ x , is the translation operator: e∂xψ(x) =ψ(x + 1).
In momentum representation, ∂x 7→ ikx , the discretized Hamiltonian reads

H = σx sin kx +σy(1− cos kx) . (A.2)

The corresponding dispersion relation

E(kx) = ±
Æ

2− 2 cos kx (A.3)

has a single Dirac cone at kx = 0 in the Brillouin zone −π < kx ≤ π.
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The 2D generalization is

HD 7→ −
1
2 i

�

0 (1− e−∂x )(1+ e∂y )
(e∂x − 1)(1+ e−∂y ) 0

�

− 1
2 i

�

0 −i(1− e∂y )(1+ e−∂x )
i(e−∂y − 1)(1+ e∂x ) 0

�

= 1
2

�

σx +σy)(sin(kx − ky)− cos kx + cos ky

�

+ 1
2(σx −σy)

�

cos(kx − ky) + sin kx + sin ky − 1
�

. (A.4)

The resulting dispersion relation,

E(kx , ky) = ±
q

2− 2cos kx cos ky , (A.5)

vanishes at k = (0,0) and k = (π,π). (This is the dispersion studied in Ref. 38.) Without
staggering there would also have been Dirac cones at k = (0,π) and (π, 0), so the number of
Dirac cones in the Brillouin zone has been halved by the Susskind discretization.

Chiral symmetry is preserved, HD still anticommutes with σz in its discretized form (A.4).
But symplectic symmetry is broken: σy H∗σy 6= H after discretization. To ensure symplectic
symmetry each Pauli matrix should be multiplied by an odd function of k, while Eq. (A.4)
contains a mixture of odd and even functions of k.

B Derivation of the local conservation law for the particle current

To derive Eq. (4.7) we first note the identity

∂

∂ t
〈ψ|O|ψ〉= i〈ψ|Φ†[H̃, Õ]Φ|ψ〉 , (B.1)

which holds for any operator O, with Õ = (Φ†)−1OΦ−1. The nonlocal effective Hamiltonian H̃
is defined in Eq. (3.5).

We take for O the density operator (4.2), so ρ̃(n) = |n〉〈n|. This projector commutes with
the operators V and M in H̃, what remains is the commutator with UΦ−1:

−
∂

∂ t
〈ψ|ρ(n)|ψ〉= −i〈ψ|Φ†

�

UΦ−1, |n〉〈n|
�

Φ|ψ〉

= i〈ψ|Φ†|n〉〈n|U |ψ〉 − i〈ψ|Φ†UΦ−1|n〉〈n|Φ|ψ〉

= i〈ψ|Φ†|n〉〈n|U |ψ〉+H.c. (B.2)

In the last equality we used that Φ†U = U†Φ.
In terms of the current operator (4.4) we have

iΦ†|n〉〈n|U = 1
2

∑

α=x ,y

(e−ikα + 1) jα(n)(e
ikα − 1)

⇒ iΦ†|n〉〈n|U +H.c=
∑

α=x ,y

�

e−ikα jα(n)e
ikα − jα(n)

�

=
∑

α=x ,y

�

jα(n + eα)− jα(n)
�

. (B.3)

Substitution into Eq. (B.2) gives the conservation law (4.7).
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C Gauge invariant vector potential

To include the vector potential A(r ) in a gauge invariant way in the discretized Dirac equation,
we follow the procedure of minimal coupling: We first discretize without a vector potential,
then perform a U(1) gauge transformation on the lattice, and finally replace the gradient of
the phase field by the vector potential.

We define the gauge field operator

eiθ =
∑

n

eiθn |n〉〈n| , (C.1)

with θn the value of the phase θ (r ) at site n on the displaced lattice (open points in Fig. 1).
With this field we perform the U(1) gauge transformation

H̃ 7→ eiθ H̃e−iθ ,

⇒H 7→ Φ†eiθ (Φ†)−1HΦ−1e−iθΦ

= Φ†eiθUΦ−1e−iθΦ+Φ†(Vσ0 +Mσz)Φ . (C.2)

In the last equation we have used that eiθ commutes with V and M .
To proceed we apply the identity

e−ikαeiθ eikαe−iθ = eiδαθ ,

δαθ =
∑

n

�

θ (n + eα)− θ (n)
�

|n〉〈n| (C.3)

to the operator product

eiθUΦ−1e−iθ = −2i
∑

α=x ,y

σα
eiθ eikαe−iθ − 1
eiθ eikαe−iθ + 1

= −2i
∑

α=x ,y

σα
eikαeiδαθ − 1
eikαeiδαθ + 1

. (C.4)

The gauge transformed Hamiltonian thus takes the form

H = Φ†
�

−2i
∑

α=x ,y

σα
eikαeiδαθ − 1
eikαeiδαθ + 1

+ Vσ0 +Mσz

�

Φ . (C.5)

The vector potential is then introduced by the Peierls substitution

θ (n + eα)− θ (n) =
∫ n+eα

n
A(r ) · d l , (C.6)

where the line integral of the vector potential is taken along a lattice bond. With this prescrip-
tion the substitution can also be applied to vector potentials that do not derive from a gauge
field.

The Hamiltonian (C.5) is Hermitian but nonlocal. If the phase field varies slowly on the
scale of the lattice spacing, the nonlocality can be eliminated by expanding

eiδαθ ≈ 1+ iδαθ ≡ 1+ iAα, A=
∑

n

An|n〉〈n| . (C.7)

Continuing the expansion to first order in Aα, we have

eikαeiδαθ − 1
eikαeiδαθ + 1

= (eikα − 1)(eikα + 1)−1 + 2(e−ikα + 1)−1iAα(e
ikα + 1)−1 +O(A2

α) . (C.8)

Substitution into Eq. (C.5) gives the Hamiltonian (4.9) to first order in the vector potential.
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