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Abstract

We advance two alternative proposals for the island contributions to the entanglement
negativity of various pure and mixed state configurations in quantum field theories cou-
pled to semiclassical gravity. The first construction involves the extremization of an
algebraic sum of the generalized Renyi entropies of order half. The second proposal in-
volves the extremization of the sum of the effective entanglement negativity of quantum
matter fields and the backreacted area of a cosmic brane spanning the entanglement
wedge cross section which also extremizes the generalized Renyi reflected entropy of
order half. These proposals are utilized to obtain the island contributions to the en-
tanglement negativity of various pure and mixed state configurations involving the bath
systems coupled to extremal and non-extremal black holes in JT gravity demonstrating
an exact match with each other. Furthermore, the results from both the proposals match
precisely with the island contribution to half the Renyi reflected entropy of order half
providing a strong consistency check. We then allude to a possible doubly holographic
picture of our island proposals and provide a derivation of the first proposal by deter-
mining the corresponding replica wormhole contributions.
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1 Introduction

The black hole information loss paradox is one of the most intriguing puzzles of modern the-
oretical physics [1–5]. This paradox arises during the process of black hole evaporation after
a particular time called the Page time when the fine grained entropy of the radiation becomes
greater than its coarse grained entropy. However, this is forbidden in any quantum system
undergoing a unitary time evolution [6]. The recent resolution to this puzzle has revealed a
novel formula for the fine-grained entropy of the Hawking radiation which involves extrem-
ization over regions in black hole spacetime known as the “Islands" [7–10]1,which is expressed
as follows

S[Rad] =min
§

extIs(Rad)

�

S[Rad∪Is(Rad)] +
Area[∂ Is(Rad) ]

4GN

�ª

. (1)

1A different approach towards the resolution to the information loss puzzle has been explored in [11, 12].
According to this approach, a copy of the information inside the black hole is always available outside and hence
the Page curve is trivial ( See [13] for a recent review.)
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Rad in the above equation refers to the radiation which is modeled as a subsystem in the
bath, Is(Rad) corresponds to the island for the radiation subsystem and ∂ Is(Rad) denotes its
boundary. The island formula described above takes into consideration a missing saddle in
Hawking’s calculation arising due to spacetime “replica wormholes" in the gravitational path
integral for the Renyi entanglement entropy, which dominates at late times during the black
hole evaporation [14,15]. The island formulation has led to a variety of fascinating directions
involving exciting developments ranging from the information loss paradox in flat spacetime
to puzzles in cosmology [16–49].

Although the island formula is applicable to generic spacetimes, it was inspired by the
Ryu-Takayanagi (RT)/Hubeny-Rangamani-Takayanagi (HRT) formula for computing the en-
tanglement entropy of a subsystem in a holographic CFTd [50–53], specifically its quantum
corrected formula proposed in [54,55]. The proposal in [55], involves a co-dimension two sur-
face known as the “quantum extremal surface" obtained by extremizing the generalized entropy
which is defined as the sum of the area of the RT surface and the entanglement entropy of bulk
quantum matter fields across the RT surface. If there are many such extremal surfaces, the
one which leads the minimum generalized entropy has to be chosen. The island contribution
to the generalized entropy is then computed utilizing eq.(1). The quantum extremal surface
thus obtained characterizes the fine-grained entropy of the subsystems in quantum field the-
ories, coupled to semi-classcial gravity. Recently an equivalent maximin procedure has been
proposed to determine the quantum extremal surface [56]. Furthermore, the bulk domain of
dependence of the HRT surface known as the “entanglement wedge" [57–59] played a vital role
in determining the island for the Hawking radiation [9].

The fine grained entropy or the von Neumann entropy is a valid measure of the entangle-
ment for bipartite systems in pure states, for example when we consider the bipartite system
to be a black hole and the entire Hawking radiation emitted by it. Hence, the island construc-
tion for the entanglement entropy is sufficient as long as it is required to compute the Page
curve or the quantities related to the bipartite entanglement between the black hole and the
radiation. However, if we are interested in the structure of entanglement within the Hawk-
ing radiation, then we have to resort to mixed state entanglement or correlation measures.
This is because the von Neumann entropy is neither a valid measure of the entanglement of
a mixed state nor of its correlations. In the context of holography several such mixed state
correlation and entanglement measures have been explored. Specifically, there is the entan-
glement of purification whose holographic dual was proposed as the minimal entanglement
wedge cross section in [60, 61] ( See [62–65], for detailed studies of various aspects of the
EWCS ). The island construction for the multipartite generalization of this quantity has been
recently explored in [66]. Another significant measure in this context, is the reflected entropy
proposed in [67], which is defined as the entanglement entropy of a subsystem and its copy in
a canonically purified mixed state. Quite interestingly, an island construction for the reflected
entropy has been proposed in [68,69]. These constructions have revealed interesting insights
into the structure of correlations in within the Hawking radiation.

Note that in quantum information theory, both the entanglement of purification and the
reflected entropy receive contributions from classical as well as quantum correlations. In con-
trast, a characteristic mixed state entanglement measure has to obey various axioms such as
the monotonicity property under local operations and classical communication (LOCC) [70].
There are various such measures namely entanglement of formation, entanglement of distil-
lation, concurrence etc. However, most of these measures are hard to compute for generic
quantum states especially in extended systems such as quantum field theories. One of the
computable measures which provides an upper bound on the distillable entanglement 2 is

2In quantum information theory the term “distillable entanglement" refers to the number of Bell pairs one may
extract from a given quantum state utilizing only LOCC.

3

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

known as “entanglement negativity" proposed by Vidal and Werner in [71]. A replica technique
was developed for this quantity in [72, 73] and furthermore, it was utilized to compute the
entanglement negativity for various mixed state configurations in two dimensional relativistic
conformal field theories (CFT2). A replica technique was also advanced to study the entangle-
ment negativity in Galilean conformal field theories in [74]. The progress in [72, 73], led to
the interesting question of the holographic construction for the entanglement negativity, which
for pure states was attempted in [75]. Following this, a holographic entanglement negativity
proposal for the configuration involving a connected single interval in a zero and a finite tem-
perature CFT2 was presented in [76–78]. Furthermore, the holographic conjectures for the
mixed states of the adjacent and the disjoint intervals were proposed in [79,80] and [81–83]
respectively. The above mentioned holographic constructions for the entanglement negativity
involved a specific algebraic sum of the areas of the co-dimension two extremal surfaces (
geodesics in AdS3 ). The particular combination of which extremal surfaces appeared in the
sum was determined by the mixed state in question. A plausible higher dimensional exten-
sion of the above mentioned holographic proposals and their applications to subsystems with
rectangular strip like geometry were explored in [84–89].

An alternative proposal for the holographic entanglement negativity involves the minimal
area of a backreacted cosmic brane on the EWCS [90]. For the specific subsystems involving
spherical entangling surface, the effect of the backreaction may be determined explicitly, and
the entanglement negativity in such cases is simply proportional to the area of the EWCS. For
more generic scenarios, it was recently proposed in [91] that the holographic entanglement
negativity is simply given by half of the Renyi reflected entropy of order half. The results
from the two proposals i.e [90, 91] and [76, 79, 81] described above, match for all the cases
in the AdS3/CFT2 scenario except for the case of a single interval at a finite temperature. The
reason for this mismatch was determined in [92] to be originating from an incorrect choice of
the minimal EWCS for this configuration. Furthermore, upon computing the correct minimal
EWCS, the result matches exactly with that determined from the combination of the bulk
geodesics proposed in [76] and that obtained from the replica technique results in the large
central charge limit in [78].

The above mentioned holographic proposals lead to the significant question concerning
the island construction for the entanglement negativity. In this article, we address this ex-
tremely interesting issue by proposing two alternative constructions to determine the island
contributions to the entanglement negativity of various pure and mixed state configurations
in quantum field theories coupled to semiclassical gravity. The first one involves the extrem-
ization of an algebraic sum of generalized Renyi entropies of order half which is inspired by
the holographic construction of [76,79,81]. Our second proposal is inspired by the quantum
version of the holographic entanglement negativity construction described in [90]. This in-
volves extremizing the sum of the area of a backreacted brane on the EWCS and the effective
entanglement negativity of quantum matter fields coupled to semiclassical gravity. Further-
more, motivated by [91], we argue that the second proposal is equivalent to extremizing half
the generalized Renyi reflected entropy of order half. We then apply our proposals to compute
the island contributions to the entanglement negativity of several pure and mixed state con-
figurations in non-gravitating bath systems coupled to extremal and non-extremal black holes
in Jackiw-Teitelboim (JT) gravity coupled to matter described by a large-c CFT2. Following
the model in [8], we consider the bath to be in flat spacetime and impose transparent bound-
ary conditions at the interface of the black hole and the bath. We compute the entanglement
negativity of the pure and mixed state configurations involving two disjoint intervals, adjacent
intervals, and the single interval. We demonstrate that the results from our two proposals
match exactly in all the configurations considered. Furthermore, we show that results from
both proposals match explicitly with the corresponding result obtained from extremizing half

4

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

the generalized Renyi reflected entropy of order half. This serves as a strong consistency check
for both of our proposals3. Following this, we allude to a possible double holographic picture
of our island proposals for the entanglement negativity. Finally, we provide a proof of our is-
land proposal-I for the entanglement negativity of all the pure and mixed states considered in
the present article, by determining the corresponding replica wormhole contribution through
the techniques developed in [15,35,93].

The article is organized as follows: In section 2 we review the island constructions for the
entanglement entropy and the reflected entropy briefly. In section 3 we propose our island
constructions for the entanglement negativity of various pure and mixed state configurations.
In section 4 we employ our island proposals to determine the entanglement negativity for the
pure and mixed state configurations involving disjoint, adjacent and single intervals in a bath
system coupled to an extremal black hole in JT gravity with the matter described by a large-c
CFT2. In section 5 we apply our island constructions to obtain the entanglement negativity for
various pure and mixed configurations in the bath system coupled to an eternal black hole in JT
gravity with the matter. In section 6, we briefly describe a possible double holographic picture
for our island proposals. In section 7 we provide a derivation of our island proposal-I for
the entanglement negativity by considering the corresponding replica wormhole contribution.
Finally, in section 8 we conclude with a summary of our results and discussions.

2 Review of the Island Constructions

In this section, we provide a concise review of the island construction for the entanglement
entropy as described in [9] and that for the reflected entropy as developed in [68,69].

2.1 Islands for the Entanglement Entropy

We begin by a brief review of the quantum Ryu-Takayanagi formula which inspired the island
proposal for the entanglement entropy. The quantum corrected expression for the holographic
entanglement entropy as described in [55] (as a modification to [54]) is expressed as follows

S(A) =min
XA

§

extXA

�

Area(XA)
4GN

+ Sbulk

�

ΣXA

�

�ª

, (2)

where A denotes the subsystem in a holographic CFT, XA is a co-dimension 2 surface anchored
to the subsystem-A, and Sbulk

�

ΣXA

�

is the von Neumann entropy of the bulk quantum fields
in the time slice of the entanglement wedge denoted as ΣXA

. If there are many such extremal
surfaces then the one with the minimum value has to be considered. The surface which is
obtained by the above extremization followed by the minimization procedure is known as the
quantum extremal surface (QES). The expression within the brackets in the above equation is
known as the generalized entropy

Sgen(X) =
Area(X)

4GN
+ Sbulk (ΣX) . (3)

Note that the definition of the generalized entropy is applicable to a co-dimension two surface
( denoted as X above ) in a generic spacetime and not restricted to holography [55].

Motivated by the quantum RT formula described above, it was proposed in [9], that the
entanglement entropy of a region A in a quantum field theory coupled to semiclassical gravity

3It would be very interesting to directly compute the entanglement negativity of various pure and mixed state
configurations considered here, in a corresponding BCFT along the lines of [18, 25, 32, 48] for the entanglement
entropy. This would serve as another strong consistency check for our island proposals and we are currently
engaged in exploring this exciting issue.
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is obtained by an expression analogous to the generalized entropy which is extremized over
gravitational regions known as “islands"

S(A) =min
Is(A)

§

extIs(A)

�

Area[∂ Is(A)]
4GN

+ Seff[A∪ Is(A)]
�ª

. (4)

Note that in the above equation Is(A) is the island corresponding to the subsystem-A and
∂ Is(A)denotes its boundary, “min” indicates that if there are more than one extremal surfaces
one with the minimum generalized entropy is chosen, and Seff is the effective entanglement
entropy of quantum matter fields coupled to semiclassical gravity. We emphasize here that
although inspired by holography, the above expression is applicable to generic spacetimes and
not restricted to asymptotically AdS gravitational configurations.

2.2 Islands for the Reflected Entropy

Having reviewed the island construction for entanglement entropy we now proceed to briefly
describe the same for the reflected entropy. As explained in [67], the reflected entropy SR(A : B)
of a bipartite system AB involves the canonical purification of the given mixed state ρAB by
doubling its Hilbert space to define

�

�

p
ρAB

�

ABA∗B∗ . Note that A∗ and B∗ are the copies of the
subsystems A and B respectively. The reflected entropy SR(A : B) is then defined as the von
Neumann entropy of the subsystem AA∗ as follows

SR(A : B) = S (AA∗) . (5)

The authors in [67], not only proposed this new measure in quantum information theory,
but also developed a replica technique for it. The technique was then utilized to compute the
reflected entropy of two disjoint intervals in a CFT2. Furthermore, it was described in [94,95]
that one may prepare a purified state |pρAB〉 corresponding to a given mixed state ρAB of a
holographic CFT by gluing the entanglement wedge of AB to the entanglement wedge of its CPT
conjugate A∗B∗ along the RT/HRT surfaces of AB and A∗B∗. Following this, it was described
in [67], that the reflected entropy defined to be the von Neumann entropy of AA∗ in the state
|pρAB〉, is simply given by the area of RT/HRT surface of the subsystem AA∗ in this newly
sewed manifold. It was then demonstrated that the RT/HRT surface of the subsystem AA∗ is
twice the value of minimal EWCS. Following this, the authors of [67] developed a quantum
corrected version of their proposal for a bipartite system-AB in a holographic CFT which is
given as follows [67]

SR(A : B) =minextQ

§

2〈Area[Q = ∂ a ∩ ∂ b]〉
4GN

ª

+ Sbulk
R (a : b)

= 2 EWCS+ Sbulk
R (a : b) . (6)

Figure 1: Schematic for the holographic construction of reflected entropy. Figure
modified from [67,69]
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In the above equation the leading term corresponds to twice the value of EWCS, a and b corre-
spond to two bulk regions in the entanglement wedge of the subsystem AB that are separated
by the EWCS as depicted in fig.[1] and Sbulk

R (a : b) denotes the effective reflected entropy of
bulk matter fields in the semiclassical region ab.

Quite recently, an island construction for the reflected entropy was proposed in [68, 69]
which may be stated as follows

SR(A : B) =min extQ′

§

2Area(Q′ = ∂ IsR(A)∩ ∂ IsR(B))
4GN

+ Seff
R (A∪ IsR(A) : B ∪ IsR(B))

ª

. (7)

Observe that in the above equation Seff
R is the effective reflected entropy of bulk quantum

matter fields on a fixed semiclassical gravitational region, IsR(A) and IsR(B) correspond to
the reflected entropy islands for the subsystems A and B respectively. We emphasize here
that IsR(A) and IsR(B) in general need not coincide with the respective entanglement entropy
islands Is(A) and Is(B). However, they obey the condition that IsR(A)∪ IsR(B) = Is(A∪ B).

3 Island Proposal for the Entanglement Negativity

In this section, we develop two alternative proposals to obtain the island contributions to
the entanglement negativity for various pure and mixed state configurations in quantum field
theories coupled to semiclassical gravity.

Before proceeding to describe our island constructions, let us note that entanglement neg-
ativity is defined for a bipartite system in a quantum state ρAB as follows

E (A : B)≡ log







ρ
TB
AB








 . (8)

The Hilbert space HAB of the bipartite system-AB is assumed to be factorized asHAB =HA⊗HB.
In the above equation the superscript TB denotes the operation of partial transpose on the
density matrix ρAB which is defined as follows

D

iA, jB
�

�

�ρ
TB
AB

�

�

� kA, lB
E

= 〈iA, lB |ρAB| kA, jB〉 , (9)

where iA, kA and jB, lB correspond to the basis states of the subsystem A and B respectively.

Furthermore,







ρ
TB
AB








 denotes the trace norm which is given by the absolute sum of the eigen

values of the partially transposed density matrix.

3.1 Proposal-I: Islands for Entanglement Negativity from a Combination of Gen-
eralized Renyi Entropies

As discussed earlier, a replica technique proposed in [72,73], was utilized to compute the en-
tanglement negativity for various pure and mixed state configurations of a CFT2. Following
this, a holographic construction was advanced in [76, 78, 79] to determine the entanglement
negativity of a holographic CFT2 through a specific algebraic sum of the areas of extremal sur-
faces (lengths of geodesics in the dual bulk AdS3). For example, the holographic entanglement
negativity of two disjoint intervals A and B in proximity is given by [81]

E = 3
16GN

[LA∪C +LB∪C −LA∪B∪C −LC] (10)

=
3
4
[S(A∪ C) + S(B ∪ C)− S(A∪ B ∪ C)− S(C)] , (11)
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where C denotes the interval sandwiched between A and B, LY denotes the length of a geodesic
anchored on the subsystem Y , and GN corresponds to the 3 dimensional gravitational constant.
Note that in order to arrive at the last expression from the eq.(10), we have used the Ryu-
Takayanagi proposal for holographic entanglement entropy which for a subsystem-Y is given
as [50–52]

SY =
LY

4GN
. (12)

The numerical coefficient 3
16GN

in front of the area terms in eq.(10) has an important physical
significance. In this context, it is crucial to recall that the holographic dual of the Renyi entropy
of a subsystem-A in a CFT is given by the area of a cosmic brane with a tension in the dual
bulk AdS spacetime [96]. This is expressed as follows

n2 ∂

∂ n

�

n− 1
n

S(n)(A)
�

=
Area ( cosmic brane n)

4GN

n2 ∂

∂ n

�

n− 1
n

A(n)
�

= Area ( cosmic brane n) , (13)

where S(n)(A) is the nth Renyi entanglement entropy for subsystem-A and the subscript n the
RHS indicates that the tension of the cosmic brane depends on the replica index. Note that
A(n) is related to S(n) as follows

S(n) =
A(n)

4GN
. (14)

We will now utilize the following result which states that the quantity A(n) related to the area
of a back reacting cosmic brane is proportional to that of the corresponding cosmic brane with
vanishing backreaction (A) as described in [75,90,97]

lim
n→1/2

A(n) = X hol
d A . (15)

Observe that Xd in the above equation is a dimension dependent constant and the subscript
d denotes the dimension of the holographic CFTd . Note that the above relation holds only
for configurations involving entangling surfaces with spherical symmetry and Xd is explicitly
known to be of the following form

Xd =
1
2

xd−2
d

�

1+ x2
d

�

− 1 (16)

xd =
2
d

�

1+

√

√

1−
d
2
+

d2

4

�

. (17)

In the AdS3/CFT2 scenario this constant may be determined from the above expressions to be
X2 =

3
2 . From the above discussion, it is clear that we may re-express the conjecture given in

eq.(10) [81], as follows

E =
X2

8GN
[LA∪C +LB∪C −LA∪B∪C −LC] .

We now utilize the result given in eq.(15), in the AdS3/CFT2 scenario i.e L(1/2) = χ2L, to
rewrite the above expression as follows

E = 1
8GN

�

L(1/2)A∪C +L(1/2)B∪C −L(1/2)A∪B∪C −L(1/2)C

�

(18)

=
1
2

�

S(1/2)(A∪ C) + S(1/2)(B ∪ C)− S(1/2)(A∪ B ∪ C)− S(1/2)(C)
�

, (19)
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where, S(1/2)(Y ) in the above equation denotes the Renyi entropy of order half for the sub-
system Y . In order to arrive at the last line of the above equation we have used eq.(14).
Following the same procedure as above we may re-express the holographic conjecture for the
entanglement negativity of the adjacent intervals in [79] as

E = 1
2

�

S(1/2)(A) + S(1/2)(B)− S(1/2)(A∪ B)
�

. (20)

Similarly, the holographic conjecture for the entanglement negativity of a single interval [76]
may be expressed as follows

E = lim
B1∪B2→Ac

1
2

�

2S(1/2)(A) + S(1/2)(B1) + S(1/2)(B2)− S(1/2)(A∪ B1)− S(1/2)(A∪ B2)
�

. (21)

Inspired by the above construction, we will propose below the island contribution to the entan-
glement negativity for various pure and mixed state configurations in terms of a combination
of the generalized Renyi entropies of order half. However, before we discuss our island pro-
posals, we briefly review the generalized Renyi entanglement entropy and comment on the
analytic continuation to n= 1

2 .

3.1.1 Generalized Renyi Entropy

Here we provide a concise review of the island construction for the generalized Renyi entropy
considered in [35]. Consider a quantum field theory coupled to gravity defined on a hybrid
manifoldM=Mfixed∪Mbulk, whereMfixed is non-gravitating with a fixed background metric,
while Mbulk contains dynamical gravity. We assume that the quantum matter fields extend
freely to the fluctuating geometry of Mbulk as well. The generalized Renyi entropy is computed
through a path integral on a replica geometry Mn = Mfixed

n ∪Mbulk
n obtained by taking a

branched cover of the original manifold with branch cuts along the subsystem A on each copy.
The Renyi entropy is then given by

(1− n)S(n)gen(A) = log Trρn
A = log

Z [Mn]
(Z [M1])

n , (22)

where ρA is the reduced density matrix and Z [Mn] and Z [M1] corresponds to the path inte-
gral on the replicated and the original manifold respectively.

Assuming that the bulk geometry can be treated semiclassically, we can make a saddle
point approximation to the gravitational path integral to write

Z [Mn] = e−Igrav[Mbulk
n ]Zmat[Mn] , (23)

where Igrav corresponds to the Euclidean semiclassical gravitational action and Zmat[Mn] de-
notes the path integral for the quantum matter fields on the manifold Mn.

Next we assume that the bulk geometry retains the boundary replica symmetry, and con-
sider the theory on the quotient manifold M̃n = Mn/Zn. For a Hawking type saddle, the
quotiented geometry M̃n has conical defects on the branch cut along A with deficit angle
∆φn = 2π(1− 1/n) sourced by a backreacted cosmic brane γA homologous to the subsystem
A on the boundary. Supposing that the backreaction is small enough such that the replicated
geometry is still a saddle to the gravitational path integral [35,54,55], we have:

Igrav[Mbulk
n ]≈ n Igrav[M̃bulk

1 ] +
n− 1
4GN

A(n)(γA) , (24)
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where A(n)(γA) is related to the area of the backreacted cosmic brane as described by eq.(13).
Substituting equations (23) and (24) in eq.(22) we obtain the Renyi entropy as [35]

S(n)gen(A) =
A(n)(γA)

4GN
+

1
1− n

log
Zmat[Mn]
(Zmat[M1])

n

=
A(n)(γA)

4GN
+ S(n)eff (A).

(25)

In the above equation S(n)eff corresponds to the effective Renyi entropy of the bulk quantum
matter fields. Note that in order to arrive at the last equation we simply used the definition for
the Renyi entropy of the effective quantum matter fields. We emphasize here that the correct
Renyi entropy is obtained by extremizing the above generalized entropy with respect to the
position of the cosmic brane γA.

The authors in [14,15] demonstrated that when the effective matter entropy is compara-
ble to the gravitational entropy, another saddle arising from the spacetime replica wormhole
may provide the dominant contribution to the gravitational path integral. Whenever this new
saddle becomes dominant, the generalized Renyi entropy gets non-perturbative instanton-like
contributions. Assuming the replica symmetry remains unbroken, the quotiented geometry
corresponding to this non-trivial saddle point has no conical singularity at the boundaries of
A. Instead, there will be additional Zn fixed points on the replica wormhole, which are the
boundaries of a new region within the bulk manifold Mbulk

n , called the entanglement island.
Therefore for the replica wormhole saddle, the analog of eq.(24) is [35]:

Igrav[Mbulk
n ]≈ n Igrav[M̃bulk

1 ] +
n− 1
4GN

A(n)(∂ Is(A)) . (26)

Once again in order to arrive at the above equation it was assumed that the backreaction is
small enough to keep the replica manifold a solution to Einstein’s field equations. This leads
to the following form for the generalized Renyi entropy

S(n)gen(A) =
A(n)[∂ Is(A)]

4GN
+ S(n)eff (A∪ Is(A)) , (27)

where Is(A) corresponds to the island of A and S(n)eff corresponds to the effective Renyi entropy
of the quantum matter fields coupled to semiclassical gravity. One consistency check of the
above derivation is that it reproduces the well known island formula for the entanglement

Figure 2: Schematic for the path integral representation of the replicated manifold
for the generalied Renyi entropy. Figure modified from [35]
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entropy in the limit n → 1 [9, 35]. The analytic continuation of the above expression for
n→ 1

2 gives the following result for the generalized Renyi entropy of order half

S(1/2)gen (A) =
A(1/2)[∂ Is(A)]

4GN
+ S(1/2)eff (A∪ Is(A)) , (28)

where S(1/2)eff corresponds to the effective Renyi entropy of order half of the quantum matter
fields coupled to semiclassical gravity.

Proposal-I

We will now develop our construction to obtain the island contributions to the entanglement
negativity for various pure and mixed state configurations in terms of the generalized Renyi
entropy of order half derived in eq.(28). For the case of mixed state of disjoint subsystems we
propose that the island contribution to the entanglement negativity is therefore given by

Egen(A : B) =
1
2

�

S(1/2)gen (A∪ C) + S(1/2)gen (B ∪ C)− S(1/2)gen (A∪ B ∪ C)− S(1/2)gen (C)
�

E(A : B) =min(extQ′′{Egen(A : B)}), (29)

where C is the subsystem sandwiched between A and B, Q′′ = ∂ IsE(A) ∩ ∂ IsE(B) and S(1/2)gen
indicates the generalized Renyi entropy of order half given in eq.(28). IsE(A) and IsE(B) corre-
spond to the islands for the entanglement negativity of A and B respectively. Note that IsE(A)
and IsE(B) after extremization need not in general coincide with the islands for entanglement
entropies of A and B. However, as in the case of reflected entropy [68, 69], they obey the
condition that IsE(A) ∪ IsE(B) = Is(A∪ B). We also emphasize here that Egen(A : B) defined
above naively appears to have lot more parameters than the one coming from Q′′ but we will
see that in all the cases we consider here the entanglement negativity will indeed depend only
on the parameter Q′′ which needs to be fixed by extremization as stated in our proposal above.
Note that the combination of the subsystems appearing in eq.(29) is exactly same as that for
the holographic entanglement negativity described by eq.(19) as proposed in [81, 82]. Note
that the subsystem C is an interval in a CFT2. However for generic disjoint subsystems A and
B in higher dimensions, the choice of C needs more careful examination.

The result for the adjacent subsystems may be obtained by sending C → ; (where ; denotes
null set ) in eq.(29) which leads to4

Egen(A : B) =
1
2

�

S(1/2)gen (A) + S(1/2)gen (B)− S(1/2)gen (A∪ B)
�

E(A : B) =min(extQ′′{Egen(A : B)}), (30)

where Q′′ = ∂ IsE(A)∩∂ IsE(B). For the case of a single connected subsystem, we propose that
the generalized entanglement negativity is given by a combination of the generalized Renyi
entropies of order half as follows

Egen(A : B) = lim
B1∪B2→Ac

1
2

�

2S(1/2)gen (A) + S(1/2)gen (B1) + S(1/2)gen (B2)

− S(1/2)gen (A∪ B1)− S(1/2)gen (A∪ B2)
�

E(A : B) =min(extQ′′{Egen(A : B)}), (31)

4Note that recently in [93], the authors explicitly computed the entanglement negativity for the quantum states
of a random tensor network which are toy models for a restrictive set of holographic states described as fixed area
states which exhibit a flat entanglement spectrum. Observe that when the entanglement spectrum is flat, all the
Renyi entropies corresponding to a given subsystem X are simply equal Sn(X ) = S(X ). In particular, when we
consider the analytic continuation to n = 1

2 which results in S(1/2)(A) = S(A), our proposal expressed in eq.(30)
exactly reduces to the result obtained in eq.(4.14) of [93].
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where B1 and B2 are two auxiliary subsystems on either side of A and the entanglement negativ-
ity is computed in the bipartite limit B1 ∪ B2→ Ac , Q′′ = ∂ IsE(A)∩ ∂ IsE(B). Once again, note
that this particular combination of the generalized Renyi entropies of order half is inspired
by the conjecture for the holographic entanglement negativity of a single interval proposed
in [76,84] which involves a combination of entanglement entropies given by eq.(21). Observe
that the auxiliary systems B1 and B2 are intervals in a CFT2, however, for a generic subsystem-A
in a higher dimensional theory, the choice of B1 and B2 needs more careful examination.

3.2 Proposal-II: Islands for Entanglement Negativity from EWCS

In this subsection, we propose an alternative construction to obtain the island contribution
to the entanglement negativity which is inspired by the bulk quantum corrected expression
for the holographic entanglement negativity as described in [90, 91]. According to [90] the
quantum corrected holographic entanglement negativity is given as follows

E(A : B) =minextQ

§

〈A(1/2)[Q = ∂ a ∩ ∂ b]〉
4GN

ª

+ Ebulk(a : b) ,

(32)

where A(
1
2 ) corresponds to the area of the backreacted cosmic brane on the EWCS and Ebulk

refers to the entanglement negativity of quantum matter fields in the bulk regions across
EWCS. Note that this proposal is analogous to the quantum corrected holographic entangle-
ment entropy construction proposed by Faulkner, Lewkowycz, and Maldacena in [54]. How-
ever for the island construction, we would need an analog of the Engelhardt-Wall prescription
for the quantum corrected holographic entanglement entropy [55], which for the holographic
entanglement negativity, we propose to be as follows

E(A : B) =min extQ

§

〈A(1/2)[Q = ∂ a ∩ ∂ b]〉
4GN

+ Ebulk(a : b)
ª

, (33)

where a and b correspond to the bulk co-dimension one regions separated by the EWCS.
We now generalize the above formula to obtain the entanglement negativity by considering

the island contributions as follows

Egen(A : B) =
A(1/2)

�

Q′′ = ∂ IsE(A)∩ ∂ IsE(B)
�

4GN
+ Eeff (A∪ IsE(A) : B ∪ IsE(B))

E(A : B) =min(extQ′′{Egen(A : B)}), (34)

where IsE(A) and IsE(B) correspond to the islands for entanglement negativity of A and B
respectively, obeying the condition that IsE(A)∪ IsE(B) = Is(A∪ B). Note that in general, the
individual islands for the entanglement negativity IsE(A) and IsE(B) need not correspond to the
islands for entanglement entropy Is(A) and Is(B) or the islands for the reflected entropy IsR(A)
and IsR(B). However in most of the cases we consider here, we will see that they indeed match
with the islands for the reflected entropy. The quantity Eeff in the above equation corresponds
to the effective entanglement negativity of the quantum matter fields coupled to semiclassical
gravity.

In the above construction, we utilized the quantum corrected version of the holographic
entanglement negativity in [90] given by eq.(33) to develop a proposal for island contribution
to the entanglement negativity described by eq.(34). However, the holographic entanglement
negativity proposal of [90] was concisely stated in [91] to be given by the Renyi reflected
entropy of order half. A natural question then arises whether we can state our island proposal
in eq.(34) more concisely in terms of the generalized Renyi reflected entropy of order half.
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Before we describe this island proposal, we first review the path integral representation of the
generalized Renyi reflected entropy considered in [68] and discuss its analytic continuation to
n= 1

2 .

3.2.1 Generalized Renyi Reflected Entropy

We now focus on the replica construction for computing the generalized Renyi reflected en-
tropy for a bipartite system AB on a hybrid manifold M=Mfixed ∪Mbulk as before in section
3.1.1. However, for the gravity dual of the Renyi reflected entropy Sn,m

R gen(A : B) one resorts to
a more complicated replica technique than that for the Renyi entropy [54, 67]. To this end,
one prepares the purifier state |ρm/2

AB 〉 which is a replicated version of |pρAB〉 discussed in
section 2.2, by first performing a replication of the geometry in the index m ∈ 2Z. One may
then compute the Renyi entropy of AA∗ after performing another replication in the Renyi index
n ∈ Z. The gravitational path integral on the resulting replica geometry Mm,n =Mfixed

m,n ∪M
bulk
m,n

comprising of mn copies of the original geometry is then computed as follows

Z[Mm,n] = TrAA∗
�

TrBB∗
�

|ρm/2
AB 〉〈ρ

m/2
AB |

��n
. (35)

We are now going to focus on the replica wormhole saddle assuming that the replica symmetry
Zm× Zn remains unbroken. Analogous to the case of the Renyi entropy, the quotient manifold
M̃m,n =Mm,n/(Zm× Zn) has conical defects at the positions of the m-type and n-type cosmic
branes corresponding to replications in different directions. There are n m-type branes for
n-replicas of m purifier manifolds which land on the boundaries of the entanglement island
Is(A∪ B), and two n-type branes corresponding to the remnant Z2 CPT symmetry which land
on the cross-section of the islands [68]. Therefore, the analog of (23) in this case reads

log Z
�

Mm,n

�

(A∪ B) =− Igrav[Mbulk
m,n ] + logZmat[Mm,n]

≈−mn Igrav[M̃bulk
1,1 ]− n

m− 1
4GN

Am [∂ (IsR(A)∪ IsR(B))]

− 2
n− 1
4GN

A(n) [∂ IsR(A)∩ ∂ IsR(B))] + logZmat[Mm,n].

(36)

This leads to the following expression for the generalized Renyi reflected entropy given by

Sn,m
R gen(A : B) =

1
1− n

log
Z
�

Mm,n

�

�

Z
�

Mm,1

��n

=
A(n)(∂ IsR(A)∩ ∂ IsR(B))

2GN
+

1
1− n

log
Zmat[Mm,n]
�

Zmat[Mm,1]
�n

=
A(n)(∂ IsR(A)∩ ∂ IsR(B))

2GN
+ Sn,m

R eff(A∪ IsR(A) : B ∪ IsR(B)) , (37)

which gives the island formula for the reflected entropy in [68] for m → 1, n → 1. Observe
that in order to arrive at the last line of the above expression, we have simply utilized the
definition of the effective Renyi reflected entropy Sn,m

R eff of the quantum matter fields.
Note that the relative order of the analytic continuation in the replica indices m and n is

important from the dual field theory side. In the large central charge limit of the CFT2 the
dominant channel for the conformal block could change if the order is reversed [98]. For the
bulk calculations, we inherently assume that the dominant channel has already been chosen
and the precise entanglement wedge is prepared first. Therefore, we choose to analytically
continue m → 1 first, which treats the m-type branes in the probe limit. Subsequently, the
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analytic continuation n→ 1
2 which involves the backreactions from the n-type branes alone,

leads to the following form for the generalized Renyi reflected entropy of order half

S(1/2)R gen (A : B) =
A(1/2)(∂ IsR(A)∩ ∂ IsR(B))

2GN
+ S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) . (38)

Inspired by [91], we propose that the island contribution to the entanglement negativity
of a quantum field theory coupled to semiclassical gravity is obtained by extremizing half the
generalized Renyi reflected entropy of order half, which corresponds to a different analytic
continuation of eq.(37) which is m→ 1, n→ 1

2 .

Egen(A : B) =
S(1/2)R gen (A : B)

2
,

E(A : B) =min(extQ′{Egen(A : B)}), (39)

where Q′ = ∂ IsR(A)∩∂ IsR(B) and S1/2
R gen(A : B) is the generalized Renyi reflected entropy which

we obtained in eq.(38). Note that the area term in eq.(34) and eq.(39) are identical only if
the islands for the reflected entropy and the entanglement negativity are exactly the same. We
will see that this condition holds for the cases that we will consider in this article providing a
consistency check for our proposal-II.

This concludes the description of our proposals. We now turn our attention to the ap-
plication of our proposals to systems involving the baths coupled to the extremal and the
non-extremal black holes in JT gravity with matter described by a large-c CFT2. We will
demonstrate that eq.(34) and eq.(39) give exactly the same results for the entanglement neg-
ativity in all the cases we consider in the present article, providing a consistency check for our
proposal-II. Furthermore, we will demonstrate that the island contributions to the entangle-
ment negativity obtained from proposal-I and proposal-II match precisely for all the pure and
mixed states we consider. This will provide substantial evidence to our proposals.

4 Extremal Black Hole in JT Gravity Coupled to a Bath

4.1 Review of the model

Having described our proposal for the island contributions to the entanglement negativity in a
quantum field theory coupled to semiclassical gravity, we now proceed to apply our conjectures
to various pure and mixed state configurations in a bath coupled to an extremal black hole in
JT gravity with matter described by a CFT2, as considered in [10]. This model consists of a zero
temperature black hole coupled to a bath described by the same CFT2 as that of the quantum
matter, living only on one half of two dimensional Minkowski space. The bath is coupled
to the extremal black hole through transparent boundary conditions at the interface of the
asymptotic boundary of AdS2 and the half Minkowski space. Furthermore, we will consider
the CFT2 to be in its large-c limit so that we could utilize the factorizations of higher point
correlation functions as considered for reflected entropy in [68]. The action for this model is
given by

I =
1

4π

∫

d2 x
p

−g [φR+ 2 (φ −φ0)] + ICFT , (40)

where φ corresponds to the dilaton field and φ0 denotes a constant that contributes to the
topological entropy and ICFT is the CFT2 action of the matter coupled to JT black hole. The
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metric in the Poincare coordinates and the dilaton profile are given by the following expressions

ds2 =
−4d x+d x−

(x− − x+)2
, φ = φ0 +

2φr

(x− − x+)
. (41)

The authors in [10], obtained the following expression for the generalized entropy which
characterizes the fine grained entanglement entropy of a single interval [0,b] in the bath

Sgen(a) = φ0 +
φr

a
+ Seff, Seff =

c
6

log

�

(a+ b)2

a

�

+ constant . (42)

In the above equation, the interval [−∞, a] is the island located outside the JT black hole,
which corresponds to a single interval [0,b] in the bath. The end point of the island denoted as
a in the above equation can be found by extremizing the above expression for the generalized
entropy. Note that in the above equation, the authors in [10] have utilized the units in which
4GN = 1. We will be using the same units for the rest of our article as well.

4.2 On the Computation of S(1/2)gen

Note that in order to use our proposal in eq.(29), we need a general expression for S(1/2)gen
defined by eq.(28) analogous to Sgen given by eq.(42). As the matter CFT2 is in its large-c
limit, S(1/2)gen has two possibilities depending on whether the interval is large or small. Consider
the configuration in which the interval denoted by [c1, c2] is large. In this case, we obtain the
generalized Renyi entropy of order half as

S(1/2)gen ([c1, c2]) =A(1/2)(a(c1)) +A(1/2)(a(c2)) + S(1/2)eff ([c1, a(c1)]∪ [c2, a(c2)])

=A(1/2)(a(c1)) +A(1/2)(a(c2)) + S(1/2)eff ([c1, a(c1)]) + S(1/2)eff ([c2, a(c2)]) , (43)

where a(c1) and a(c2) denote the end points of the island corresponding to the interval [c1, c2].
Observe that in the last step we have used the result that when the interval is large enough, the
leading contribution to the four point function of twist operators characterizing
S(1/2)eff ([c1, a(c1)]∪[c2, a(c2)]) factorizes into the product of two 2-point functions as described
in [9]. Hence this leads to

S(1/2)gen ([c1, c2]) = 2φ0 +
3φr

2
(

1
a(c1)

+
1

a(c2)
) +

c
4

�

log
(a (c1) + c1)

2

a (c1)ε
+ log

(a (c2) + c2)
2

a (c2)ε

�

.

(44)

Note that in order to arrive at the above result we have used the following result for A(1/2)

and S(1/2)eff ([c1, a(c1)]

A(1/2)(x) = φ0 +
3φr

2x
, (45)

S(1/2)eff ([c1, a(c1)] =
c
4

�

log
(a (c1) + c1)

2

a (c1)ε

�

, (46)

where x is the point in JT gravity whose area is being computed and S(1/2)eff [c1, a(c1)] was
obtained through the twist correlator with appropriate Weyl transformation factors taken into
account as described in [10]. The justification for the above expression for A(1/2)(x) comes
from the computation of the entanglement negativity of a TFD state dual to a bulk eternal
black hole in JT gravity explicitly computed in the Appendix A.1. We have demonstrated in
the appendix that the topological part of A(1/2) remains the same as that of A. However,
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the dynamical part of A(1/2) is proportional to the corresponding dynamical part of A with
the proportionality constant given by X2 =

3
2 . We assume that the same result holds for the

extremal black hole case, as it is a purely geometric relation.
Consider now the configurations in which the interval [c1, c2] is small enough to have no

island contribution to its generalized Renyi entropy. Hence, in such cases the area term in
eq.(28) vanishes and we get a simple result for the generalized Renyi entropy of order half,
for a single interval in a CFT2 which is given as follows

S(1/2)gen ([c1, c2]) = S(1/2)eff ([c1, c2]) =
c
2

log[
c1 − c2

ε
] . (47)

As argued above depending on the length of the intervals |c1 − c2|, there are only two possi-
bilities for S(1/2)gen ([c1, c2]). This can be better understood from the double holography picture.

When the interval is large, S(1/2)gen gets an island contribution and hence becomes sum of the
lengths of two backreacting cosmic branes, whereas when the interval is small, the contribu-
tion is received only from the length of a single backreacting cosmic brane.

4.3 Disjoint Intervals in the Bath

In this section, we compute the entanglement negativity for the mixed state of two disjoint
intervals in a bath, in the model described above. Here we consider different phases by taking
into account distinct possibilities for the size of the subsystems and the distance between them
as in [68]. We compute the entanglement negativity for this configuration using two different
methods. First one involves an algebraic sum of the generalized entropies of order half inspired
by [81, 82] . The second method involves the sum of the area of a backreacted cosmic brane
and the effective entanglement negativity of quantum matter fields which was inspired by [90].
We will demonstrate that the entanglement negativities computed from both proposals match
exactly for all the phases. Following this we will also compute the same utilizing the island
generalization of Renyi Reflected entropy of order half based on [91]. We will show that once
again the result determined exactly reproduces the entanglement negativity obtained using
the above mentioned proposals.

Phase-I

Consider the disjoint intervals A ≡ [b1, b2] and B ≡ [b3, b4] in the bath. In this phase, we
consider A and B to be large enough to have a connected entanglement island described by
[a, a′] and [a′, a′′] respectively, with a non trivial entanglement wedge cross-section similar
to [68]. However, note that in phase-I, the two intervals A and B are in proximity. This implies
that the interval C ≡ [b2, b3] between A and B is very small, and therefore, does not admit an
island.

Proposal-I

We now utilize our proposal given in eq.(29) to compute the island contribution to entan-
glement negativity in phase-I described above. Utilizing the results in eq.(43) or eq.(47) de-
pending on the size of various intervals in eq.(29), we get the following expression for the
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Figure 3: Schematic for the islands proposal-I for the entanglement negativity of the
mixed state configuration for disjoint intervals in phase-I. The circled curves denote
the backreacted cosmic branes in the double holographic picture of our proposal-I.

generalized Renyi entropies of order half

S(1/2)gen (A∪ C) =A(1/2)(a) +A(1/2)(a′) + S(1/2)eff ([b1, a]) + S(1/2)eff ([b3, a′]) ,

S(1/2)gen (B ∪ C) =A(1/2)(a′) +A(1/2)(a′′) + S(1/2)eff ([b2, a′]) + S(1/2)eff ([b4, a′′]) ,

S(1/2)gen (A∪ B ∪ C) =A(1/2)(a) +A(1/2)(a′′) + S(1/2)eff ([b1, a]) + S(1/2)eff ([b4, a′′]) ,

S(1/2)gen (C) = S(1/2)eff ([b2, b3]) =
c
2

log[
b2 − b3

ε
] . (48)

Quite interestingly, in the double holography picture we may visualize each of the above ex-
pressions for the generalized Renyi entropies of order half to be a particular sum of the length
of backreacted cosmic branes which are depicted by circled numbers in fig.[3].

We now substitute the appropriate expressions for S(1/2)eff and A(1/2) given by eq.(45) and
(46) respectively, in eq.(48) to obtain the required generalized Renyi entropies of order half.
Substituting thus obtained expressions in our proposal given by eq.(29) we obtain the gener-
alized entanglement negativity to be as follows

Egen = φ0 +
3φr

2a′
+

c
4

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log a′ − log (b3 − b2)
�

. (49)

Note that in order to obtain the above results we utilized the fact that the subsystem C is very
small due to the proximity limit of A and B. This in turn implies that the subsystem-C does
not admit any island. However, A and B are considered to be large enough to admit their
respective islands, and a′ can be found by extremizing the above expression. The resulting
equation could be solved in the limit b2→ b3. This leads to the following

2a′ = b3 + 6
φr

c
+

√

√

b2
3 + 36

φr

c
b3 + 36

φ2
r

c2
. (50)

Note that a′ ends on the EWCS and the above expression matches exactly with the island for
reflected entropy in [68] .
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Figure 4: Schematic for island proposal-II for the entanglement negativity of the
mixed state configuration of disjoint intervals in phase-I. The gray region here and
for the rest of the figures corresponds to the entanglement wedge of the subsystem-
AB. The blue dotted line denotes the EWCS in the double holographic picture. The
above figure is modified from [68].

Proposal-II

Having computed the entanglement negativity for the disjoint interval configuration in phase-I
using our island proposal-I, we now proceed to obtain the same utilizing proposal-II given in
eq.(34). The area term in eq.(34) is given by

A(1/2)(a′) = φ0 +
3φr

2a′
, (51)

where we have used eq.(45). Apart from the area term, we need to determine the effective
entanglement negativity of quantum matter fields whose computation we describe below.

Eeff through the emergent twist operators

Here we will compute the effective entanglement negativity through the replica technique
of [72,73] by considering the emergent twist fields arising due to the appearance of an island.
The configuration for two disjoint intervals with appropriate twist operators corresponding to
the subsystem and the island, is as shown in figure below Note that in this phase the subsystem-
B is very large which essentially renders one of the end point of the corresponding island
a′′ → −∞. Since, the infinities of the bath and the JT brane are identified as in [10], the
twist and the anti-twist operators located at these two infinities merge to give identity to the
leading order in the OPE. This identification is depicted in the figure above by the black line.

The effective entanglement negativity Eeff(A∪ IsE(A) : B ∪ IsE(B)) can be written in terms
of twist operators as follows

Eeff (A∪ IsE(A) : B ∪ IsE(B)) = lim
ne→1

log
¬

τne
(b1)τne

(a)τne
(b2)τne

(b3)τ
2
ne
(a′)

¶

, (52)

where τne
denotes the twist operators described in [72,73] and ne denotes that the Renyi index

is even. The limit ne → 1 has to be understood as an analytic continuation of even sequences
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in ne to ne = 1. The above five point correlator factorizes in the limit of large c for the channel
corresponding to the phase I configuration as follows

log
¬

τne
(b1)τne

(a)τne
(b2)τne

(b3)τ
2
ne
(a′)

¶

= log



τne
(b1)τne

(a)
�

¬

τne
(b2)τne

(b3)τ
2
ne
(a′)

¶

= log

�

Ω
∆
τ2

ne (a′)
1

(a+ b1)
2∆τne

Cne

(b3 + a′)
∆
τ2

ne (b2 + a′)
∆
τ2

ne (b3 − b2)
2∆τne

−∆
τ2

ne

�

,

where the dimension of twist operators ∆τne
and ∆τ2

ne
are given by [73]

∆τne
=

c
24

�

ne −
1
ne

�

, ∆τ2
ne
=

c
12

�

ne

2
−

2
ne

�

. (53)

We now obtain the effective entanglement negativity for the configuration of disjoint interval
in phase I using eq.(52) and (53) as

Eeff =
c
4

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log a′ − log (b3 − b2)
�

+ const. (54)

Note that we have also included anti-holomorphic contribution in the above equation. Having
obtained the effective entanglement negativity we may now utilize eq.(51) to obtain the area
term. Substituting the area term in eq.(51) and the above result for the effective entangle-
ment negativity in eq.(34) of our island proposal-II, we obtain the generalized entanglement
negativity to be

Egen = φ0 +
3φr

2a′
+

c
4

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log4a′ − log (b3 − b2)
�

. (55)

Note that this equation is exactly the same as the one obtained using proposal-I given by
eq.(49). Hence, on extremizing the above equation as suggested in eq.(34), we get the same
expression for a′ as derived in eq.(50).

E(A : B) through the generalized Renyi reflected entropy

As described in [68], the Renyi reflected entropy of order “n" for the phase depicted in the
figure above, is given by

S(n,m)
R eff (A : B) =

1
1− n

log

¬

σgA
(b1)σg−1

A
(a)σg−1

A
(b2)σgB

(b3)σgAg−1
B

�

a′
�

¶

mn
¬

σgm
(b1)σg−1

m
(a)σg−1

m
(b2)σgm

(b3)
¶n

m

, (56)

where σgA
, σgA−1

and σgB
, σgB−1

are the twist operators at the end points of subsystems A and
B respectively. σgAg−1

B
is the intermediate operator that gives the dominant contribution in the

OPE of σgA
and σg−1

B
as described in [67]. The twist operator correlation functions appearing

in the above equation factorize in the large central charge limit in the required phase as follows
¬

σgA
(b1)σg−1

A
(a)σg−1

A
(b2)σgB

(b3)σgAg−1
B

�

a′
�

¶

mn

=
¬

σgA
(b1)σg−1

B
(a)
¶

mn

¬

σg−1
A
(b2)σgg

(b3)σgAg−1
B

�

a′
�

¶

mn

= Ω2∆n
�

a′
� 1

(a+ b1)
2n∆m

Cn,m

(b3 − b2)
2n∆m−2Λn (b3 + a′)2∆n

1

(b2 + a′)2∆
(57)

Also,
¬

σgm
(b1)σg−1

m
(a)σg−1

n
(b2)σgm

(b3)
¶

m
=

1

(a+ b1)
2∆m

1

(b3 − b2)
2Λm

. (58)
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Figure 5: Schematic for the island proposal-II for the entanglement negativity of
the disjoint intervals in phase-I. The emergent twist operators corresponding to the
reflected entropy are depicted. Figure modified from [68]

Substituting eq.(57), eq.(58) in eq.(56) and taking the limit m → 1 followed by n → 1
2 , we

obtain the effective Renyi reflected entropy of order half for the disjoint intervals in phase-I is
given by

S(1/2)R eff =
c
2

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log4a′ − log (b3 − b2)
�

. (59)

This gives the following expression for generalized Renyi reflected entropy of order half

S(1/2)R gen (A : B) = 2
�

φ0 +
3φr

2a′

�

+
c
4

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log 4a′ − log (b3 − b2)
�

.

(60)

As described earlier, the islands for the reflected entropy and the entanglement negativity
coincide, and hence, we have used eq.(51) for the area term in eq.(60) to arrive at the above
equation. Upon utilizing the proposal described by eq.(39) along with eq.(60), we obtain the
following expression for the generalized entanglement negativity

Egen(A : B) = φ0 +
3φr

2a′
+

c
4

�

log
�

b3 + a′
�

+ log
�

b2 + a′
�

− log4a′ − log (b3 − b2)
�

. (61)

Note that this expression precisely matches with the result obtained using our proposal given
in eq.(34) for the entanglement negativity of disjoint intervals in phase-I described by eq.(55).
Hence, the extremization once again leads to the same solution as in eq.(50). This demon-
strates that the two equations for our proposal-II given by eq.(34) and eq.(39) for this phase
exactly match as expected. Furthermore this result precisely agrees with the entanglement
negativity obtained from proposal-I described by eq.(49).

Phase-II

We will now use the conjecture we have proposed to compute the entanglement negativity
of disjoint interval in phase-II depicted in the figure above. Unlike phase-I, in this phase, the
subsystem A is small and hence does not have any island associated with it as was described
in [68].
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Figure 6: Schematic for the island proposal-I for the entanglement negativity of the
mixed state configuration of the disjoint intervals in phase-II.

Proposal-I

In order to obtain the entanglement negativity using our proposal-I we first utilize the appro-
priate expressions for different subsystems depending on whether they are large or small as
given by eq.(44) and eq.(47) respectively. Note that as the subsystem-A is considered to be
small in phase-II of the disjoint interval configuration. Since the subsystem-C is already small
due to the proximity approximation which we are using, the corresponding generalized Renyi
entropy of order half for the subsystem A∪ C is obtained by eq.(47). This is in contrast to the
phase-I where A∪C was considered large enough to have an island. This leads to the following
expressions for the required generalized Renyi entropies of order half

S(1/2)gen (A∪ C) = S(1/2)eff ([b1, b2]) =
c
2

log[
b1 − b2

ε
]

S(1/2)gen (B ∪ C) =A(1/2)(a) +A(1/2)(a′′) + S(1/2)eff ([b2, a]) + S(1/2)eff ([b4, a′′])

S(1/2)gen (A∪ B ∪ C) =A(1/2)(a) +A(1/2)(a′′) + S(1/2)eff ([b1, a]) + S(1/2)eff ([b4, a′′])

S(1/2)gen (C) = S(1/2)eff ([b2, b3]) =
c
2

log[
b2 − b3

ε
] . (62)

Substituting the above expressions for various entropies in our conjecture described by eq.(29),
we obtain the entanglement negativity in the proximity limit b2→ b3 as

E(A : B) =
c
4

�

log (b3 + a) + log (b3 − b1)− log (b1 + a)− log (b3 − b2)
�

. (63)

Quite interestingly, the area terms in eq.(29), precisely cancel in this phase and hence do
not contribute the entanglement negativity. Note that a is simply determined by the island
for entanglement entropy and the expression for it is once again given by eq.(50) with b3
replaced by b1 [10, 68]. We will see below that the vanishing of the area term has a nice
physical interpretation from proposal II.

Proposal-II

In phase-II of the disjoint interval configuration, the area term vanishes as there is no inter-
section of the islands for A and B denoted as Q′′ which is to be extremized over in proposal-II
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Figure 7: Schematic for the island proposal-II for the entanglement negativity for
the mixed state configuration of the disjoint intervals in phase-II. Figure modified
from [68].

as described by eq.(34). Since the matter CFT2 is in its large-c limit, E e f f in eq.(34) may be
computed through the correlators of the corresponding emergent twist operators. We describe
this computation below.

Eeff through the emergent twist operators

In this phase, the subsystem-A does not admit any island. The diagram for disjoint intervals in
phase II is schematically shown in fig[7]. Then the effective entanglement negativity for this
configuration may be written in terms of four point twist operators as

Eeff(A∪ IsE(A) : B ∪ IsE(B)) = lim
ne→1

log



τne
(b1)τne

(b2)τne
(b3)τne

(a)
�

. (64)

Now, the effective entanglement negativity for two disjoint intervals in this phase may be
calculated using the monodromy technique [81,99], and is given by

Eeff(A∪ IsE(A) : B ∪ IsE(B)) =
c
4

log
�

(b3 − b1)(b2 + a)
(b1 + a)(b3 − b2)

�

. (65)

Note that the area term is zero in this phase as there is no island for the subsystem A in
this phase as depicted in fig.[7]. Hence substituting the above expression for the effective
entanglement negativity in our proposal-II described by eq.(34) we obtain the entanglement
negativity to be

Egen(A : B) =
c
4

log
�

(b3 − b1)(b2 + a)
(b1 + a)(b3 − b2)

�

. (66)

Observe that a = a(b1) ≈ a(b2) is simply determined by the island for entanglement entropy
and the expression for it is once again given by eq.(50) with b3 replaced by b1 [10,68].

E(A : B) through the generalized Renyi reflected entropy

Here we will determine the effective Renyi reflected entropy of quantum matter fields for
disjoint intervals in phase II and utilize it to compute the entanglement negativity through
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Figure 8: Schematic of the island proposal-II for the entanglement negativity of the
disjoint intervals in phase-II. The emergent twist operators depicted for the reflected
entropy. Figure modified from [68]

the generalized Renyi reflected entropy of order half. Following this we will demonstrate that
the result obtained reproduces the entanglement negativity we computed above using our
alternative island proposals.

The effective Renyi reflected entropy in this phase is given by [68]

S(n,m)
R eff (A∪ IsR(A) : B ∪ IsR(B)) =

1
1− n

log

¬

σg−1
B
(a)σgA

(b1)σg−1
A
(b2)σgB

(b3)
¶

mn
¬

σgm
(b1)σg−1

m
(a)σg−1

m
(b2)σgm

(b3)
¶n

m

. (67)

The conformal block F(x , h, hp) that gives the dominant contribution to the above four point
function in the channel we are interested is as follows [67,68]

ln F(x , h, hp) = −4h log(x) + 2hp log

�

1+
p

1− x
2
p

x

�

, (68)

where h is the scaling dimension of the twist operators and hp corresponds to the scaling
dimension of the intermediate operator whose block gives dominant contribution to the four
point function given as

h=
cn
�

m2 − 1
�

24m
(69)

hp =
2c
�

n2 − 1
�

24n
. (70)

This leads to the following expression for the effective Renyi reflected entropy

lim
m→1

S(n,m)
R eff =

1
1− n

2hp ln

�

1+
p

1− x
2
p

x

�

. (71)

Note that the order of limits of m and n are important in choosing the correct dominant block.
However, once we choose the right block as we have done here then the order could be reversed
for computational simplicity [98]. Taking the limit n→ 1

2 in the above equation, we get the

23

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

following expression for the effective Renyi reflected entropy of order half in the limit b2→ b3

S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) =
c
2

�

log (b3 + a) + log (b3 − b1)

− log (b1 + a)− log (b3 − b2)
�

. (72)

As shown in [68] there is no island for the reflected entropy corresponding to the subsystem-A
in this phase. This is analogous to what happens for the island corresponding to the entangle-
ment negativity of A. Hence the area term in our island proposal given by eq.(39) vanishes.
Therefore, we get the entanglement negativity of the bipartite system AB by substituting the
above equation in eq.(39) to be as follows

E(A : B) =
c
4

�

log (b3 + a) + log (b3 − b1)− log (b1 + a)− log (b3 − b2)
�

. (73)

Once again the expression for a is given by eq.(50) with b3 replace by b1 [10, 68]. Observe
that the above result matches precisely with the result we obtained using our proposal in
eq.(34). Furthermore, the above expression for the entanglement negativity of disjoint inter-
val in phase-II, matches precisely with the corresponding result obtained in eq.(63) utilizing
proposal-I.

Phase-III

Proposal-I

In phase III depicted above the subsystems C separating A and B is taken to be large. In
this limit one could use the large interval result for the generalized Renyi entropy of order
half given in eq.(44) for various subsystems appearing in the conjecture we have proposed in
eq.(29). This leads to various cancellations leading to a vanishing result for the entanglement
negativity in this phase

E(A : B) = 0 . (74)

The double holographic picture of the above discussion is depicted in fig.[9a] and fig.[9b].
However, note that we have utilized the doubly holographic model only for the purpose of
illustration and we are not performing any computations in the double holographic models in
the present article.

(a) Phase-III when subsystem-A does not admit an island.
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(b) Phase-III when subsystem-A admits an island.

Figure 9: Schematic of island proposal-I for the entanglement negativity of the mixed
state configuration of the disjoint intervals in phase-III.

Proposal-II

As described above in phase-III, the subsystems are separated by a large distance hence Eeff = 0
and the entanglement wedge is disconnected as depicted in fig.[10a] and fig.[10b]. Hence,
there is no intersection of the islands for the entanglement negativity of A and B and the area
term in eq.(34) vanishes. Furthermore, the effective entanglement negativity is zero as the
intervals are far apart from each other. This leads to the vanishing entanglement negativity
E(A : B) = 0 for this phase. This may be seen clearly from the double holography picture
where the entanglement negativity is given by the area of the backreacted EWCS in the bulk,
that may end on the JT brane. We will describe this in more details in section.6. Since, the
entanglement wedge is disconnected in the bulk as shown in fig.[10a] and fig.[10b], it leads
to E(A : B) = 0. By similar arguments one may easily show that S(1/2)R (A : B) = 0. This implies
that the results from two proposals once again match precisely in phase-III of the disjoint

(a) Phase-III when subsystem-A does not admit an island. Figure modified from
[68].
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(b) Phase-III when subsystem-A admits an island.

Figure 10: Schematic of the island proposal-II for the entanglement negativity of the
mixed state configuration of the disjoint intervals in phase-III.

interval configuration.

4.4 Adjacent Intervals in the Bath

In the previous subsection we computed the island contribution to the entanglement negativity
for the mixed state of the disjoint intervals in the bath. In this subsection, we will determine
the island contribution to the entanglement negativity for the case of adjacent intervals in
the bath. We consider the configuration of adjacent intervals described by the subsystems
A≡ [0, b1] and B ≡ [b1, b2]. Note that the subsystem A includes the origin. We will compute
the entanglement negativity as a function of b1 while keeping b2 fixed. The subsystem A
always has an island while the existence of island for B depends upon its size.

Phase-I

Proposal-I

Let us begin by computing the entanglement negativity for the adjacent intervals in phase -I,
in which b1 or the subsystem A is small. We first utilize the appropriate expressions for the
generalized Renyi entropy of order half for different subsystems depending on whether they
are large or small as given by eq.(44) and eq.(47). Upon substituting thus obtained expression
in our island proposal-I for the entanglement negativity of the adjacent interval case given by
eq.(29), we obtain

Egen(A : B) = φ0 +
3φr

2a(b1)
+

c
4

log

�

(a(b1) + b1)2

ε a(b1)

�

. (75)

Note that in order to arrive at the above equation, we have used eq.(47) for the generalized
Renyi entropy of order half corresponding to the interval A as it is small and eq.(47) for the
intervals B and A∪ B in our conjecture given in eq.(30). Furthermore a(b1) appearing in the
above equation is once again determined by the entanglement island for A and is obtained
from eq.(50) by replacing b3 with b1, and a′ by a(b1) which leads to
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Figure 11: Schematic of the island proposal-I for the entanglement negativity of the
mixed state of the adjacent intervals in phase-I

2a(b1) = b1 + 6
φr

c
+

√

√

b2
1 + 36

φr

c
b1 + 36

φ2
r

c2
. (76)

Proposal-II

After obtaining the result for the entanglement negativity of adjacent intervals in phase-I,
using proposal-I, we now proceed to determine the same utilizing proposal-II. We begin by
computing the effective entanglement negativity through the emergent twist operators on the
JT brane. Following that we will calculate half the reflected entropy of order half through the
corresponding emergent twist operators.

Eeff through the emergent twist operators

As described earlier in phase I, we consider b1 to be small such that B has an entanglement
island associated with it. The required configuration with the appropriate twist operators is as
shown in the above fig.[12]. The effective entanglement negativity Eeff(A∪ IsE(A) : B∪ IsE(B))
for the configuration of adjacent intervals in phase I may be computed as follows

Eeff (A∪ IsE(A) : B ∪ IsE(A)) = lim
ne→1

log
¬

τ2
ne
(b1)τ

2
ne
(a(b1))

¶

= lim
ne→1

log



Ω
∆
τ2

ne (a(b1))
1

(b1 + a(b1))
2∆

τ2
ne





=
c
4

log

�

(a(b1) + b1)2

ε a(b1)

�

.

(77)

Note that we have also included the anti-holomorphic part in the above equation. We may
now substitute the above result for the effective entanglement negativity in eq.(34) to obtain

E(A : B) = φ0 +
3φr

2a(b1)
+

c
4

log

�

(a(b1) + b1)2

ε a(b1)

�

, (78)
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55

Figure 12: Schematic of the island proposal-II for the entanglement negativity of the
mixed state of the adjacent intervals in phase-I. Figure modified from [68].

where, we have used the expression for the backreacted area of a point on the JT brane which
we obtained by replacing a′ by a(b1) in eq.(51). Once again a(b1) is determined by the island
for entanglement entropy given in eq.(76).

E(A : B) through the generalized Renyi reflected entropy

In this configuration the emergent twist operators are located as depicted in the figure above.
The Renyi reflected entropy in this phase is given by

S(n,m)
R eff (A∪ IsR(A) : B ∪ IsR(B))

=
1

1− n
log

¬

σg−1
B gA
(a(b1))σg−1

A gB
(b1)σg−1

B
(b2)σgB

(a(b2))
¶

mn
¬

σg−1
m
(b2)σgm

(a(b2))
¶n

m

. (79)

In the large-c limit of the CFT2, the above correlation function factorizes as follows

〈σg−1
B gA
(a(b1))σg−1

A gB
(b1)σg−1

B
(b2)σgB

(a(b2))〉mn

≈ 〈σg−1
B gA
(a(b1))σg−1

A gB
(b1)〉〈σg−1

B
(b2)σgB

(a(b2))〉mn

=
1

�

a(b1) + b1

�4∆n
�

a(b2) + b2

�2n∆n
(80)

¬

σg−1
m
(b2)σgm

(a(b2))
¶

m
=

1
�

a(b2) + b2

�2∆n
. (81)

Substituting the above correlations in eq.(79) we obtain the following expression for the
effective Renyi reflected entropy of order half

S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) =
c
2

log

�

(a(b1) + b1)2

εa(b1)

�

. (82)
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Figure 13: Schematic of the island proposal-II for the entanglement negativity of
the adjacent interval configuration in phase-I. The emergent twist operators for the
reflected entropy are depicted. Figure modified from [68].

Substituting the above expression for the effective Renyi reflected entropy and the area term
given by eq.(51), in eq.(38) for the generalized Renyi reflected entropy we obtain

S(1/2)R gen (A : B) = 2(φ0 +
3φr

2a(b1)
) +

c
2

log

�

(a(b1) + b1)2

ε a(b1)

�

. (83)

We may now utilize the above expression for the generalized Renyi reflected entropy of order
half to compute the island contribution to the entanglement negativity of the adjacent interval
in phase-I using our proposal in eq.(39) as follows

Egen(A : B) = φ0 +
3φr

2a(b1)
+

c
4

log

�

(a(b1) + b1)2

ε a(b1)

�

, (84)

where, a(b1) in the above equation is given by eq.(76). Observe that the above expression pre-
cisely matches with the result we obtained for the entanglement negativity in eq.(78) using our
proposal in eq.(34). Furthermore, in this particular phase, the approximation a(b1) ≈ a(b2)
holds and the results from the two proposals for the island contributions given by eq.(75) and
eq.(84) match precisely for phase-I of the adjacent interval configuration.

Phase-II

Having obtained the entanglement negativity for the adjacent intervals in phase-I we now now
turn our attention to phase-II, where the length of the interval A denoted by b1 is taken to be
large keeping b2 fixed. This in turn reduces the size of the subsystem B and hence, there is no
island corresponding to it.

Proposal-I

In order to utilize our conjecture we first notice that in this phase b1 is close to b2 as a result
the interval B is considered to be small. In this limit a(b1)≈ a(b2). This leads to the following
result for the entanglement negativity determined from our island proposal in eq.(30)

Egen(A : B) =
c
4

log
�

(a+ b1)(b2 − b1)
ε(a+ b2)

�

. (85)
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Figure 14: Schematic of the island proposal-I for the entanglement negativity of the
mixed state of the adjacent intervals in phase-II

Note in this phase a(b1) ≈ a(b2) as depicted in fig.[14] and in this approximation the area
term simply cancels out leading only to the effective term. Hence, a = a(b1) ≈ a(b2) in the
above equation is given by eq.(76).

Proposal-II

Having obtained the entanglement negativity through proposal-I. We now proceed to deter-
mine the same through proposal-II. Note that the area term in the proposal-II described by
eq.(34) does not given any contribution to the entanglement negativity as there is no island
corresponding to B in this phase. We will now compute the effective entanglement negativity
contribution in this phase by considering the appropriate twist operators.

Eeff through the emergent twist operators

For this phase, b1 is large such that the interval B does not admit an island. The entire island
belongs to A and a(b1)≈ a(b2). This configuration is shown in figure below. Then the effective
entanglement negativity for this phase is given by

Eeff(A∪ IsE(A) : B ∪ IsE(B)) = lim
ne→1

log
¬

τ2
ne
(b1)τne

(a(b2))τne
(b2)

¶

=
c
4

log
�

(a(b2) + b1)(b2 − b1)
ε(a(b2) + b2)

�

+ const.
(86)

Note that in the above equation we have included the anti-holomorphic contribution. We may
now compute the entanglement negativity using our island proposal-II given by eq.(34) to
obtain

E(A : B) =
c
4

log
�

(a(b2) + b1)(b2 − b1)
ε(a(b2) + b2)

�

+ const . (87)

Observe that the area term in eq.(34) did not contribute to the above result as the island for
the subsystem-B vanishes for this phase.
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Figure 15: Schematic of the island proposal-II for the entanglement negativity of the
mixed state of the adjacent intervals in phase-II. Figure modified from [68]

E(A : B) through the generalized Renyi reflected entropy

In this configuration the emergent twist operators are located as depicted in the figure above.
The Renyi reflected entropy in this phase is given by

S(n,m)
R eff (A∪ IsR(A) : B ∪ IsR(B)) =

1
1− n

log

¬

σgA
(a(b2))σg−1

A gB
(b1)σg−1

B
(b2)

¶

mn
¬

σg−1
m
(b2)σgm

(a(b2))
¶n

m

. (88)

The above three point function was obtained in [67] and is given as
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mn
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¬

σg−1
m
(b2)σgm

(a(b2))
¶

m
=

1
(b2 + a(b2))2∆m

. (89)

Upon utilizing the above results for the correlation functions in eq.(88) we obtain the following
expression for the effective Renyi reflected entropy of order half to be

S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) =
c
2

ln
�

4 (b2 − b1) (b1 + a(b2))
ε(b2 + a (b2))

�

, (90)

where, we have re-introduced the UV cut-off ε to make the expression inside the logarithm
dimensionless. Since, the area term in eq.(38) once again vanishes as the island for the sub-
system is negligible we get the following expression for the entanglement negativity by sub-
stituting the above result in eq.(39).

E(A : B) =
c
4

ln
�

4 (b2 − b1) (b1 + a(b2))
ε(b2 + a (b2))

�

. (91)

Furthermore, notice that in this phase the area term in our proposal-II described by eq.(39)
vanishes as there is no non trivial intersection of the islands for A and B. Note that a(b2) in
the above equation is obtained from eq.(76) by replacing b1 with b2. However as explained
earlier in this phase we have a(b1) ≈ a(b2). Observe that the above result matches exactly
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Figure 16: Schematic of the island proposal-II for the entanglement negativity of the
mixed state configuration of the adjacent intervals in phase-II. The emergent twist
operators required for the computation of the reflected entropy are depicted. Figure
modified from [68]

with the expression for the entanglement negativity determined in eq.(87) using our proposal
described by eq.(34). Furthermore, upon considering the approximation a(b1)≈ a(b2) which
is suitable for this phase, the above equation precisely matches with the result we obtained
for the entanglement negativity of the adjacent interval configuration from proposal-I given
by eq.(85) .

Note that the measure of reflected entropy for the configurations involving the disjoint and
the adjacent intervals in various phases discussed above, was studied in [68]. The behavior
of the entanglement negativity is quite similar to that of the reflected entropy for these cases.
However, this is because the entangling surfaces involved have spherical symmetry and the
area of the backreacted cosmic brane appearing in the expression for the entanglement neg-
ativity (see eq.(39)), is proportional to the area of the extremal surface without backreaction
in the reflected entropy eq.(7). Same arguments hold for the effective terms in eq.(39) and
eq.(7) as these also correspond to the area terms in the double holographic picture,. We will
describe this issue in detail in section 6.2.

4.5 Single Interval in the Bath

Phase-I

Having obtained the island contributions to the entanglement negativity for the mixed state
configuration of the disjoint and the adjacent intervals in the bath, we now proceed to deter-
mine the entanglement negativity of a single interval A= [b1, b2] in the bath by considering
the appropriate islands. We first describe the computations in phase-I, in which A is consid-
ered to be large enough to receive contribution from the island corresponding to it in the JT
spacetime. Note that if we include the boundary point which is at the interface of the JT and
the bath, in the interval B1 as depicted in fig.[17] below, then in the limit B1 ∪ B2 → Ac , the
full system A∪ B1 ∪ B2 is in a pure state. This is in contrast to the mixed state of the disjoint
and the adjacent intervals we had considered previously.
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Proposal-I

We first compute the entanglement negativity of a single interval using our proposal described
by eq.(31) involving a combination of generalized Renyi entropies of order half. In order
to obtain these generalized Renyi entropies for various subsystems in eq.(31), we need to
examine the sizes of these intervals in question. Since in the bipartite limit B1∪B2→ Ac which
describes the rest of the bath, we consider these two intervals to be large enough to admit their
respective islands. Also in this phase, the interval A is large, and hence it admits an island. We
utilize the large interval limit of generalized Renyi entropy of order half described in eq.(44) to
obtain each of the term in eq.(31). This leads to the following expression for the generalized
entanglement negativity

Egen(A) = 2φ0 +
3φr

2

�

1
a(b1)

+
1

a(b2)

�

+
c
4

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

ε2a(b1)a(b2)

�

+ const . (92)

Proposal-II

We now turn our attention towards the entanglement negativity of a single interval in phase-I
utilizing proposal-II described by eq.(34) and eq.(39). We begin by obtaining the effective
entanglement negativity through the emergent twist operators which we explain below.

Eeff through the emergent twist operators

As described above, for a single interval configuration in phase I, we take the interval A to be
large enough to have an island. This phase is shown in figure below along with the appropriate
twist operators. Note that as depicted by light blue curve in the figure the infinities of the bath
and the JT brane are identified. This in turn leads to the merging of twist and the anti-twist
operators which to the leading order of the OPE expansion gives identity. This will hold for
the rest of the figures in this article.

Then the effective entanglement negativity of quantum matter fields for this phase may be

Figure 17: Schematic for the islands proposal -II for the entanglement negativity of
a a single interval-A in phase-I.
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computed as follows

Eeff(A∪ IsE(A) : B ∪ IsE(B)) = lim
ne→1

log
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ne
(b1)τ

2
ne
(b2)τ

2
ne
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2
ne
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¶
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2
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ne
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log
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(a(b1) + b1)2

εa(b1)

�

+
c
4

log
�

(a(b2) + b2)2

εa(b2)

�

,

(93)

where we have also included the anti-holomorphic contribution. We now utilize proposal-II
described by eq.(34) to obtain the entanglement negativity of a single interval in phase-I as
follows

E(A : B) = 2φ0 +
3φr

2

�

1
a(b1)

+
1

a(b2)

�

+
c
4

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

ε2a(b1)a(b2)

�

+ const , (94)

where we have used the result in eq.(51) for the backreacted area term in eq.(34). We observe
that in the limit b1 → 0, the entanglement negativity for single interval A reduces to the
entanglement negativity of adjacent intervals with the interval B to be very large in phase I
given by eq. (77).

E(A : B) through the generalized Renyi reflected entropy

S(n,m)
R eff (A : B) =

1
1− n

log
D

σgAg−1
B1
(b1)σgB2

g−1
A
(b2)σg−1

A gB1
(a(b1))σg−1

B2
gA
(a(b2))

E

mn
. (95)

Note that unlike the earlier cases, in eq.(95) there is no denominator. This is due to the fusion
of the twist and the anti-twist operators leading to the identity. We will consider A to be large
enough such that in the large-c and large interval limit the above correlation function factorizes
into

D

σgAg−1
B1
(b1)σgB2

g−1
A
(b2)σg−1

A gB1
(a(b1))σg−1

B2
gA
(a(b2))

E

mn

≈ 〈σgAg−1
B1
(b1)σgB2

g−1
A
(b2)〉mn〈σg−1

A gB1
(a(b1))σg−1

B2
gA
(a(b2))〉mn . (96)

55

Figure 18: Schematic of the island proposal-II for the entanglement negativity of a
single interval in phase-I.
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Upon utilizing the above relation in eq.(95) we obtain the following expression for the Renyi
reflected entropy in the limit m→ 1

S(n,1)
R eff (A∪ IsR(A) : B ∪ IsR(B)) =

c(n+ 1)
6n

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

16ε2a(b1)a(b2)

�

, (97)

where ε is the UV cut-off introduced to make the argument of the log dimensionless. We may
now obtain the effective Renyi reflected entropy of order half to be as follows

S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) =
c
2

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

16ε2a(b1)a(b2)

�

. (98)

Upon using the above expression and the result for the backreacted area given by eq.(51), in
eq.(38) we may obtain the generalized Renyi reflected entropy of order half to be as follows

S(1/2)R gen (A : B) = 4φ0 + 3φr

�

1
a(b1)

+
1

a(b2)

�

+
c
2

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

16ε2a(b1)a(b2)

�

. (99)

Having obtained the generalized Renyi reflected entropy of order half, we may now express
the entanglement negativity according to proposal-II described by eq.(39) as follows

Egen = 2φ0 +
3φr

2

�

1
a(b1)

+
1

a(b2)

�

+
c
4

log
�

(b1 + a(b1))
2 (b2 + a(b2))

2

16ε2a(b1)a(b2)

�

. (100)

Note that the above result matches precisely with eq.(94) for the entanglement negativity
obtained using our proposal described by eq.(34). Furthermore, it is also to be observed that
the above result precisely matches with eq.(92) which was determined utilizing proposal-I.

As described earlier, the quantum system of single interval-A with its complement described
by the rest of the system, forms a pure quantum state. One could easily understand this idea
from the one dimensional point of view where the entire JT brane is replaced by its dual
quantum mechanical C F T1 coupled to the half line described by the bath CFT2. In this case
one expects that the entanglement negativity is given by the Renyi entropy of order half. To
demonstrate this first observe that the generalized entanglement negativity we have obtained
in eq.(100) is

Egen(A : B) = S(1/2)gen (A) , (101)

where we have used the definition for the generalized Renyi entropy of order half given in
eq.(28) to re-express the RHS of eq.(100). This in turn implies that upon extremization we
obtain

E(A : B) = S(1/2)(A) . (102)

For a quantum system in pure state, the above relation is expected to hold from quantum
information theory as was demonstrated in [72,73]. This serves as a strong consistency check
for the result we have obtained.

Phase-II

In this subsection we compute the entanglement negativity of the single interval A= [b1, b2] in
the bath. We obtain the entanglement negativity when the length of the interval A is small and
hence it does not admit an island corresponding to it. We term this configuration as phase-II.
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Proposal-I

We begin by considering the proposal-I for single interval described by eq.(31). As described
above in phase-II length of the interval A is small and hence the generalized Renyi entropy
of order half corresponding to it is given by eq.(47) where as for the rest of the subsystems
in eq.(31) we utilize eq.(44). In this approximation, the entanglement negativity of single
interval comes out to be

E(A) = c
2

log
�

b2 − b1

ε

�

. (103)

Once again since this is a result with no island contribution it is identical to the expression
obtained in [72,73].

Proposal-II

We will now proceed to compute the entanglement negativity of a single interval in phase-II
using proposal-II.

Eeff through the emergent twist operators

As explained above in this phase, we take A to be small such that it does not admit an island.
The figure for this phase is depicted below. Then the effective entanglement negativity is given
by the two point twist correlators as

Eeff = lim
ne→1

log
¬

τ2
ne
(b1)τ

2
ne
(b2)

¶

=
c
2

log
�

b2 − b1

ε

�

,
(104)

where the anti-holomophic contribution is also included. Notice that as there is no island
corresponding to A and hence, the area term in eq.(34) vanishes. Upon substituting the above
expression for the effective entanglement negativity in eq.(34) for our proposal-II, we obtain

Figure 19: Schematic of the island proposal-II for the entanglement negativity of a
single interval in phase-II.

36

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

the entanglement negativity to be

E(A) = c
2

log
�

b2 − b1

ε

�

. (105)

Observe that once again the result we obtained using our proposal-I which is given by eq.(103)
matches precisely with the above expression obtained using proposal-II. Furthermore as can
be easily checked the RHS of the above equation is simply the Renyi entropy of order half
for a single interval for the no-island scenario as expected from quantum information theory
[72,73].

5 Eternal Black Hole in JT Gravity Coupled to a Bath

In this section, we proceed to apply our island proposals to determine the entanglement nega-
tivity of various mixed state configurations in a bath coupled to an eternal black hole solution
in Jackiw-Teitelboim gravity with matter fields. The bath is described by matter fields on a
separate rigid manifold, characterized by a two-dimensional conformal field theory [10]. In
addition we will also assume that the CFT2 is endowed with a large central charge, and we
will utilize the large-c factorization of higher point twist correlators.

5.1 Review of the model

The model first considered in [10] consists of JT gravity living on a AdS2 region, sewed together
with two rigid Minkowski regions on each side which we refer to as the baths. In addition
we consider a large-c CFT2 living on the whole manifold which can pass freely through the
AdS boundaries on which transparent boundary conditions are imposed. The action for two-
dimensional Jackiw-Teitelboim (JT) gravity reads [10] (we set 4GN = 1)

I = −
φ0

4π

�∫

Σ

R+ 2

∫

∂Σ

K

�

−
1

4π

∫

Σ

φ(R+ 2)−
φb

4π

∫

∂Σ

2K + ICFT , (106)

where φ is the dilaton field, φb is its boundary value, Σ denotes the AdS2 region and K is the
trace of the extrinsic curvature. The term within the parenthesis is the usual Einstein-Hilbert
action endowed with the proper boundary term which, in two dimensions, is topological and
therefore φ0 measures the topological entropy. We focus on the two sided eternal black hole
solution with the dilaton. The Penrose diagram of the model is shown in fig.[20].

Following [9,68,69], we may write down the metric and dilaton profiles for the black hole
exteriors. We will choose two different coordinate charts to describe the geometry, namely
the global coordinates (w+, w−) which covers the entire patch, and the Rindler coordinates
(y+, y−)L/R which cover respectively the left/right Rindler patches (the left BH exterior+the
left bath and similarly for the right). In Rindler coordinates, the metrics for the black hole
exterior and the respective baths are given by

ds2
in = −

4π2

β2

d y+d y−

sinh2
�

π
β (y− − y+)

� , ds2
out = −

d y+d y−

ε2
, (107)

where ε is the UV cut-off in the corresponding boundary theory. As already mentioned
y±L = t ∓ z covers the left exterior and the bath while y±R = t ± z covers the right exterior
and the corresponding bath. Under the transformation

w± = ±e±
2πy±R
β , w± = ∓e∓

2πy±L
β , (108)
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Figure 20: Penrose diagram for the eternal black hole coupled to two rigid Minkowski
regions referred to as baths. Figure modified from [69].

the metrics become

ds2
in = −

4dw+dw−

(1+w+w−)2
, ds2

out = −
β2

4π2ε2

dw+dw−

w+w−
. (109)

By re-expressing the above metrics in a general form ds2 = −Ω−2dw+dw−, the conformal
factors can be read off immediately:

Ωin =
1+w+w−

2
, Ωout =

2πε
β

p
w+w− . (110)

The dilaton is only defined in the gravity region Σ and is given by

φ = φ0 +
2πφr

β
coth

�

π

β
(y− − y+)

�

= φ0 +
2πφr

β

1−w+w−

1+w+w−
, (111)

with φb = φr/ε at the boundary.

5.2 On the Computation of S(1/2)gen

In this subsection we make some general comments on the computation of S(1/2)gen for generic
intervals in the above bulk AdS2 plus the bath manifold, outside the black hole horizons.
Relying on the large central charge behaviour of the matter CFT2, we may again consider two
possibilities depending on the size of the interval. For a large enough interval [c1, c2] lying
within the fixed geometry of the baths, we get an entanglement island [a(c1), a(c2)]. The
effective Renyi entropy of order half adopts a similar factorization as eq.(43) owing to the
large central charge behaviour of the four point twist correlator. Therefore, we may write
down the generalized Renyi entropy of order half for this generic single interval configuration
as

S(1/2)gen ([c1, c2]) =2φ0 +
3πφr

2β

�

coth
�

2πa(c1)
β

�
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
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 .
(112)
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Note that in writing the above expression we have used the fact that the geometric backreaction
to the “Renyi area" in eq.(29) may be written in the form

Area1/2(x) = φ0 +
3πφr

2β
coth

�

2πx
β

�

. (113)

We will demonstrate the above expression for the area of the backreacted region in JT gravity
in appendix A.1. Furthermore, we note that the topological contribution φ0 does not get
affected by the backreaction, while the backreaction of the dynamical part acquires a factor
X2 =

3
2 .

Next we look at the configuration where the interval [c1, c2] is much smaller and therefore
does not admit an entanglement island. In that case, we get the standard CFT2 result for a
single interval at finite temperature

S(1/2)gen ([c1, c2]) = S1/2
eff ([c1, c2]) =

c
2

log
�

β

πε
sinh

�

2π(c1 − c2)
β

��

. (114)

We will make use of the results in Eqs.(112) and (114) for computing the entanglement neg-
ativity for various bipartite mixed state configurations involving different subsystems in the
bath as well as the black hole exteriors in the following.

5.3 Disjoint Intervals in the Bath

In this section, we compute the entanglement negativity for the mixed state configuration
of two disjoint intervals in the left and the right baths, respectively. First we compute the
entanglement negativity using the proposal eq.(29) involving a specific algebraic sum of the
generalized Renyi entropies of order half inspired by [81,82]. In this context, we will promote
the matter CFT2 to be holographic and digress into a doubly holographic picture [9] of the
above configuration, arguing for the consistency of the formula used. Later we will also com-
pute the entanglement negativity for the same configuration using our island proposal given
in eq.(34) and demonstrate that the results match exactly.

Proposal-I

At t = 0 we consider the intervals A= [−b, 0] and B = [0, b] in the left and right Minkowski
regions respectively. In this symmetric setup, at early times the corresponding entanglement
islands in the black hole spacetime will be the entire bulk Cauchy slice, with a cross-section
a′ splitting it ( see fig.[20]). At late times the entanglement islands of A and B becomes dis-
connected and therefore the corresponding island for the entanglement negativity disappears.
We will be looking at the early time picture throughout this subsection. The double holog-
raphy picture of the system under consideration is shown in fig.[21]. Note that in this case
the subsystem C sandwiched between A and B extends over parts of both the right and the
left Minkowski regions; particularly the infinities of the Minkowski patches may be identified,
which is depicted by the thin light blue curve. The justification of this construction comes from
the fact that the CFT2 in the entire bath region coupled to semiclassical gravity is together in
the thermofield double state which is pure.

We compute the entanglement negativity between the subsystems A and B using the pro-
posal in eq.(29). We will perform computations in global coordinates (w+, w−). Let w±1 denote
a′, w±2 denote the endpoint of the left bath, and w±3 denote the endpoint of the right bath. In
addition we set w±1 = δ, by symmetry. Utilizing (112),(113) and (114) we can readily obtain
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.

Figure 21: Schematic of the island proposal-I for the entanglement negativity of the
mixed state of the disjoint intervals in the bath coupled to an eternal black hole

the generalized entanglement negativity as

Egen(A : B) =φ0 +
3πφr

2β
1−δ2
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+

c
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e2πt/β −δ e−2πb/β
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δ e−2πb/β − e−2πt/β

�2

(1+δ2) cosh2
�

2πt
β

�



 .
(115)

In writing this expression, we have used the fact that in taking the specific linear combinations
of the generalized Renyi entropies in eq.(29), all the terms except those depending solely on
δ, get cancelled. Again this is an artifact of our proposal, which dictates that this expression
has to be extremized with respect to the position of the intersection of the islands for the
entanglement negativity Q′ = ∂ IsE(A)∪ ∂ IsE(B), which is nothing but the δ dependent term
above. This provides a strong consistency check of our proposal. Also note that we have
assumed that the subsystem C sandwiched between A and B is very small conforming to the
proximity limit b→∞, and therefore is denied an entanglement island.

We now extremize the expression (115) with respect to the position of the intersection of
the islands for the entanglement negativity, namely over δ, which leads to the symmetric limit
δ → 0, in the proximity limit b →∞. Therefore, the total entanglement negativity for the
symmetric setup of two disjoint intervals in the left and right baths, is given by

E(A : B) = φ0 +
3πφr

2β
+

c
4

log2−
c
8

log





cosh2
�

2πt
β

�

ε2 e4πb/β



 . (116)

Next we will look at another consistency check of our formalism from the double holography
picture in fig.[21] for which we take the CFT2 matter fields to be holographic as well. From
usual AdS3/CFT2 we know that the Renyi entropy for an interval in the CFT2 may be computed
in terms of the area of a backreacted cosmic brane homologous to the interval [96]. The
backreacted cosmic branes corresponding to the different subsytem entropies are shown in
fig.[21]. Reformulating the proposal in eq.(29) in terms of these bulk cosmic branes it is
easy to see that the area contribution to the entanglement negativity manifestly shows the
cancellation of the terms independent of the position of the intersection of the islands for the
entanglement negativity Q′ and therefore provides a justification for the earlier calculations.
The effective entanglement negativity is simply obtained from the linear combination of 3d
bulk geodesic lengths as follows

Eeff =
3
4
(L2 +L1 −L3) , (117)
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which may be rewritten in terms of the different subsystem entropies and the final expression
matches with the effective part of the entanglement negativity in eq.(115). Note that in writing
eq.(117), we have already assumed the proximity limit given by b→∞, as well as the purity
of the entire Cauchy slice of the AdS2 bulk plus the bath.

Note that the double holography picture relies heavily on the dynamics of the end-of-the-
world “Planck" brane as described in section 6.2. We may, therefore, consider modified 3d bulk
geodesics in the dual locally AdS3 spacetime which gets an endpoint contribution whenever
they land on the end-of-the-world brane. Therefore, we can re-express the total holographic
entanglement negativity as the linear combination of these modified 3d bulk geodesics. At this
point, it is important to mention that we have used the doubly holographic model only for the
purpose of illustration and we are not performing any computations in the double holographic
models in the present article.

Proposal-II

Next we will compute the entanglement negativity of for the time-reflection symmetric config-
uration of two identical subsystems A and B in the left and the right baths using the conjecture
in eq.(34). At early times AB has an entire Cauchy slice of the gravity region as its entanglement
island (shown in orange in fig.[20]). At late times the entanglement island is disconnected
and SR(A : B) = 0. We will be looking at the early time phase only, when we have a non-trivial
intersection of the islands for the entanglement negativity Q′.

Eeff through the emergent twist operators

We now compute the effective semiclassical entanglement negativity using the emergent twist
operators which arise due to presence of the entanglement islands. Similar to subsection (4.3),
the effective entanglement negativity Eeff(A∪ IsE(A) : B ∪ IsE(B)) for the connected phase of
the entanglement island may be written in terms of twist operators as follows

Eeff = lim
ne→1

log
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ε2

w+12w−12w+13w−13

w+23w−23(1+w+1 w−1 )2

�

+ const.

=
c
8

log





1
ε2

e4πb/β(δ e−2πb/β + e−2πt/β)2(δ e−2πb/β + e−2πt/β)2

(1+δ2) cosh2
�

2πt
β

�



+ const.,

(118)

where we have used eq.(108) and (110) for coordinate transformation and conformal factors,
respectively. Substituting eq.(113) for A(1/2) and the effective entanglement negativity we
obtained above, in our proposal for the generalized entanglement negativity given by eq.(34),
we have:

Egen(A : B) =φ0 +
3πφr

2β
1−δ2

1+δ2

+
c
8

log





1
ε2

e4πb/β(δ e−2πb/β + e−2πt/β)2(δ e−2πb/β + e−2πt/β)2

(1+δ2) cosh2
�

2πt
β

�



+ const .

(119)

Note that the above result for the generalized entanglement negativity matches exactly with
the corresponding expression we obtained in eq.(115) through proposal-I.

41

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

E(A : B) through the generalized Renyi reflected entropy

Next we perform the computation of the entanglement negativity for the two disjoint intervals
described above from the Renyi reflected entropy of order half. The effective Renyi reflected
entropy for the connected phase of the entanglement islands corresponding to A∪ B may be
computed using techniques developed in [67]:

S(n)R eff(A∪ IsR(A) : B ∪ IsR(B))

=
1

1− n
log





Ω
2∆n
1 〈σgA

(w2)σgB g−1
A
(w1)σg−1

B
(w3)〉

〈σm(w2)σm(w3)〉





=
1

1− n
log

�

Ω
2∆n
1 Cn,m w−4∆n

12 w−4∆n
13 w−4n∆m+4∆n

23

w−4n∆m
23

�

= −
c

12

�

1+
1
n

�

log

�

Ω2
1

�

−w+23w−23

w+12w−12w+13w−13

�

(2m)−2

�

,

(120)

where in the last step we have used the relations [67]

2∆n =
c

12

�

n−
1
n

�

, Cn,m = (2m)−4∆n . (121)

Setting m→ 1 and using eq.(110) one gets for the Renyi reflected entropy in the state |pρAB〉:

S(n)R eff =
c

12

�

1+
1
n

�

log

�

4
ε2

w+12w−12w+13w−13

w+23w−23(1+w+1 w−1 )2

�

+
c
6

�

1+
1
n

�

log 2 , (122)

where we have introduced the UV cut-off ε to make the argument of the log dimensionless.
Now substituting for the coordinates of different points we get, after some simple algebra

S(n)R eff =
c

12

�

1+
1
n

�

log





4
ε2

e4πb/β(δ e−2πb/β + e−2πt/β)2(δ e−2πb/β + e−2πt/β)2

(1+δ2) cosh2
�

2πt
β

�



 . (123)

Substituting eq.(113) for A1/2 and the above expression for the effective Renyi entropy of
order half in eq.(38) we obtain

S(1/2)R gen (A : B) =2φ0 +
3πφr

β

1−δ2

1+δ2

+
c
4

log





4
ε2

e4πb/β(δ e−2πb/β + e−2πt/β)2(δ e−2πb/β + e−2πt/β)2

(1+δ2) cosh2
�

2πt
β

�



 . (124)

Therefore, the generalized entanglement negativity may now be obtained by substituting the
above result in eq.(39) as:

Egen(A : B) =φ0 +
3πφr

2β
1−δ2

1+δ2

+
c
8

log





4
ε2

e4πb/β(δ e−2πb/β + e−2πt/β)2(δ e−2πb/β + e−2πt/β)2

(1+δ2) cosh2
�

2πt
β

�



 . (125)
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Note that the above expression for the generalized entanglement negativity matches precisely
with the result we obtained in eq.(119) by an equivalent proposal in eq.(34). Furthermore it
also matches with the entanglement negativity determined using proposal-I in eq.(115).

We must extremize this expression over the position of a′, namely over δ. Note at this point
that we must take the proximity limit b→∞, since otherwise we end up in the disconnected
phase of the entanglement island. The extremization is fairly straightforward in this limit and
corresponds to δ → 0, which is consistent with the symmetry of the setup. Therefore, the
entanglement negativity between the subsystems A and B is given by

E =
�

φ0 +
3πφr

β

�

−
c
8

log





cosh2
�

2πt
β

�

4ε2 e4πb/β



 , (126)

which matches exactly with eq.(116) validating our proposals.
In [68] the authors computed the reflected entropy for the above configuration of two

disjoint intervals in the left and the right baths, respectively. It is interesting to note that the
entanglement negativity computed in eq.(126) or (116), looks quite similar to the correspond-
ing result for the reflected entropy in [68]. This subtlety in the behaviour of the entanglement
negativity arises from the fact that for spherical entangling surfaces, the area of the backre-
acted cosmic brane appearing in the entanglement negativity computations is proportional to
the area of the original cosmic brane without backreaction [90].

5.4 Adjacent Intervals in the Bath and the Black Hole

In this subsection, we will look at a different scenario of two adjacent intervals, one inside
the right bath and the other outside the black hole horizon. In fig.[22] the left/right quantum
system is divided into two, RL/R and BL/R, which we interpret as the subsystems in the bath
and black hole exterior, respectively. We may identify ĨL/R as the islands for the entanglement
negativity in the bath RL/R. Note that ĨR ∪ B̃R constitute the whole right bulk, but in general
ĨR and IR are not the same. Also the subsystem B̃R in the bulk has no notion of island. We will
again compute the entanglement negativity for this configuration using the proposed formulae
in eqs.(30) and (34).

Figure 22: Schematic for the mixed state configuration of the adjacent intervals in
the bath and the black hole. Figure modified from [69]
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Proposal-I

We first compute the entanglement negativity our proposal in eqs.(30), by taking into the
account for the fact that the subsystem B̃R in the AdS2 bulk is lacking an entanglement island.
As shown in fig.[22] , RR joins B̃R at P = [b, t]. When the entanglement island is connected, ĨR
meets B̃R at Q′ = [−a, t], which corresponds to the island for the entanglement negativity after
extremization. It is easy to infer from fig.[22], that the islands for the entanglement negativity
ceases to exist when the entanglement islands of the left and the right bath subsystems become
disconnected as dictated by the phase transition of the entanglement entropy of RL and RR.
We will be interested in the connected phase of the entanglement island and therefore a non-
trivial intersection of the islands for the entanglement negativity, in the following. We again
compute in global coordinates, rendering the CFT2 in its ground state, using the conformal
map (108). Using equations (113),(112) and (114) we obtain the generalized entanglement
negativity as

Egen(RR : B̃R) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 . (127)

The extremization with respect to the position of Q′ leads to the following

csch
�

2πa
β

�

=
β c

12πφr

sinh
�

π(a−b)
β

�

sinh
�

π(a+b)
β

� , (128)

which incidentally is identical to the constraint on the entanglement island for a single interval
[0, b] inside the bath [15]. For b ≥ β

2π and φr
β c � 1, an approximate solution to the above

equation reads

a ' b+
β

2π
log

�

24πφr

β c

�

, (129)

showing that the islands for the entanglement negativity extend slightly outside the horizon.
Having computed the entanglement negativity for the above configuration of two adja-

cent intervals, we next promote the matter CFT2 to be holographic and look at the doubly

Figure 23: Schematic of island proposal-I for the entanglement negativity of the
mixed state of the adjacent interval in the bath and the black hole
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holographic model for this configuration. The double holography picture is shown in fig.[23],
where the bulk geodesics corresponding to the different subsystem entropies are shown. Once
again, the cancellation of the Renyi areas except that of Q′ is manifest from fig.[23], while the
effective part of the entanglement negativity is given by the combination of 3d bulk geodesics
as

Eeff(RR ∪ ĨR : B̃R) =
3
4

�

Seff(RR ∪ ĨR) + Seff(B̃R)− Seff(RR ∪ ĨR ∪ B̃R)
�

=
3
4
((L1 +L2) +L1 −L2)

=
3
2
L1.

(130)

The geodesic length L1 may be related to the corresponding subsystem entanglement entropy,
which leads to the correct answer in eq.(127).

Once again, we may write down the total entanglement negativity in terms of the modified
bulk geodesics in the braneworld scenario of double holography, similar to the case of two
disjoint intervals. The modified geodesics pick up a contribution in terms of the area of a
backreacted dilaton whenever they cross the Planck brane. We again stress on the fact that in
the present article, we are only using the doubly holographic model as a visual aid, and not as
a computational tool.

Proposal-II

We now turn our attention to compute the island contribution to the entanglement negativity
of mixed state configuration of the adjacent intervals in the bath and the black hole, utilizing
our proposal in eq.(34).

Eeff through the emergent twist operators

We consider two adjacent subsystems B̃R and RR similar to subsection (4.4) for the extremal
black hole case. This configuration of two adjacent subsystems is illustrated in fig.[22]. Since
B̃R lies in the black hole region, it has no island. The subsystem RR in the bath connects B̃R
at P ≡ [b, t] and its island ĨR joins B̃R at Q′ ≡ [−a, t]. We will only do the computation
here when the entanglement islands of the left and the right bath subsystems are connected.
Then the effective entanglement negativity Eeff(RR ∪ ĨR : B̃R) for the configuration of adjacent
subsystems is given by

Eeff(RR ∪ ĨR : B̃R) = lim
ne→1

log

®�

∏

i

Ω
2∆i
i

�

τne
(0)τ2

ne
(Q′)τ2

ne
(P)τ(∞)

¸

, (131)

where we have taken the arguments of twist operators in global coordinates. The above four
point function can be factorized into the product of two 2-points functions in the large c limit
as

¬

τne
(0)τ2

ne
(Q′)τ2

ne
(P)τ(∞)

¶

≈



τne
(0)τ(∞)

�

¬

τ2
ne
(Q′)τ2

ne
(P)
¶

. (132)

Substituting eq.(108), eq.(110) and (132) in eq. (131), the effective entanglement negativity
may be obtained to be as follows

Eeff =
c
4

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 . (133)
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Substituting eq.(113) for A(1/2) and the effective entanglement negativity we determined
above, in eq.(34), we obtain the generalized entanglement negativity as follows

Egen(RR : B̃R) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 . (134)

Note that this matches exactly with the generalized entanglement negativity obtained through
proposal-I in eq.(127).

E(RR : B̃R) through the generalized Renyi reflected entropy

We now proceed to compute the effective contribution to the entanglement negativity for the
above configuration of two adjacent intervals in the black hole exterior and the bath from the
corresponding Renyi reflected entropy of order half. To proceed we will need to investigate a
slightly different proposal [69] for the reflected entropy in the scenario of eternal black holes
in JT gravity. The formula for the reflected entropy between the intervals RR and B̃R, proposed
in [69], reads

SR(RR : B̃R) =min extQ

�

2A(Q′ = ∂ ĨR ∩ ∂ B̃R)
4GN

+ Seff
R (RR ∪ ĨR : B̃R)

�

. (135)

As an illustration, we review the computation of the reflected entropy in [69], in terms of the
global coordinates. Recall that the Rindler coordinates of the points P and Q′ are (b, t) and
(−a, t) respectively. The cross section term in eq.(135) is simply given by (4GN = 1)

A(Q′ = ∂ ĨR ∩ ∂ B̃R) =



φ0 +
2π
β

φr

tanh
�

2πa
β

�



 . (136)

The effective semiclassical part of the reflected entropy is nothing but the von Neumann en-
tropy of B̃L ∪ B̃R. Now using the map in (108), one can easily obtain

SR eff(RR ∪ ĨR : B̃R) = Seff(B̃L ∪ B̃R)

=
c
6

log
�

(w+(P)−w+(Q′))(w−(P)−w−(Q′))
Ω(P)Ω(Q′)

�

=
c
6
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



�

e−2πa/β − e2πb/β
�2

1
2

�

1− e−4πa/β
� 2πε
β e2πb/β


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=
c
3

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 .

(137)

This concludes the computation of the reflected entropy for the configuration of the two ad-
jacent intervals. However, in order to compute the entanglement negativity between the sub-
systems in the radiation and the bulk, we are required to obtain the Renyi reflected entropy
of order half. Following [67,68], we may write down the effective Renyi reflected entropy in
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the purified state |ρm/2
RR∪BR

〉 as

S(m,n)
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 ,

(138)

where the arguments of the twist operators are in the global coordinates, hi =
∆i
2 and hi (n= 1)

denotes hi evaluated at n= 1. The above four-point function in the numerator factorizes into
two 2-point functions in the large central charge limit as follows

〈σgA
(0)σgB g−1

A
(Q′)σgA g−1

B
(P)σg−1

A
(∞)〉mn ≈ 〈σgA

(0)σg−1
A
(∞)〉mn〈σgB g−1

A
(Q′)σgA g−1

B
(P)〉mn .

(139)
The above expression is independent of the purifier index m and hence setting m= 1 leads to
the effective Renyi reflected entropy as follows

S(n)R eff(RR ∪ ĨR : B̃R)≈
1

1− n
log
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=
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1+
1
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log
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PQ′

Ω(P)Ω(Q′)
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.
(140)

Now, we use the following expressions for the conformal factors,

Ω(P) = Ω(w±)
�

�

�

y=b
=

2πε
β

, Ω(Q′) = Ω(w±)
�

�

�

y=−a
=

1
2

�

1− e−4πa/β
�

(141)

and wPQ = e−2πa/β − e2πb/β , to obtain the fairly simple expression

S(n)R eff(RR ∪ ĨR : B̃R) =
c
6

�

1+
1
n

�

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 . (142)

One consistency check for this expression is that setting n = 1, we get back the expression
in eq.(137), and therefore the twist operator analysis is consistent with the definition of the
reflected entropy as the von Neumann entropy of one of the subsystems and its purifier. Note
that the authors of [69] took the matter fields to be fermionic and therefore used a different
formula from [100] to compute the effective contribution to the reflected entropy. Therefore
the eq.(142) for the reflected entropy derived here and the corresponding expression in [69]
look quite distinct.

Substituting the above determined effective Renyi reflected entropy for the adjacent in-
tervals in eq.(38) we obtain the generalized Renyi reflected entropy of order half to be as
follows

S(1/2)R gen(RR : B̃R) = 2φ0 +
6π
β

φr

tanh
�

2πa
β

� +
c
2

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 , (143)

47

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

where we have used eq.(113) for A(1/2) in eq.(38). Finally, we may compute the generalized
entanglement negativity using the proposal in eq.(39) as

Egen(RR : B̃R) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4

log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



 . (144)

This expression is identical to the one computed through proposal-I and therefore the extrem-
ization with respect to the position of the intersection of the islands for the entanglement
negativity yields the same result as before.

5.5 Single Interval in the Bath

In this subsection we will deal with the holographic entanglement negativity of a single interval
in the bath outside the eternal black hole. For simplicity we take the subsystem A inside the
right bath to be sufficiently large so that the rest of the right bath, B1, does not admit an island.
The configuration is shown in fig.[24], where we choose a Cauchy slice at a given time and
the corresponding subsystem on the left bath, denoted B2, has an entanglement island. We
will be interested in the early time phase where the entanglement islands corresponding to A
and B1 are connected. The islands for the entanglement negativity IsE(A) and IsE(B2) for the
respective subsystems meet at the red blob which we interpret as the island cross-section for
this configuration.

Proposal-I

Let us begin with the computation of the entanglement negativity for the above single interval
in a bath coupled to an eternal black hole at a temperature T = 1/β . We take the interval
A = [0, b] and the corresponding entanglement island has the Rindler coordinates [−a, 0].
Once again we employ the global coordinates, in which w±i (i = 1, ..4) are the coordinates of
respectively the left endpoint of B2, the island cross section, right end of A and right end of
B1, as shown in fig.[24]. Later we will take the bipartite limit B → Ac , which corresponds to
w1,4→∞.

Using the proposal for single interval in eq.(31), we obtain for the generalized entangle-

Figure 24: Schematic of a single interval in bath coupled to an eternal black hole.
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ment negativity as

Egen(A) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4
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log




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sinh2
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sinh
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

− log
�
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e2πb/β
�



 ,

(145)
where we have used equations (112),(113) and (114). Extremization with respect to the
position a leads to the same constraint equation as given earlier in (128), and hence, in this
case also it lies outside the horizon.

The double holography picture for this configuration is shown below. The 3d bulk geodesics
corresponding to the different subsystem entropies are depicted and are numbered in order of
the respective terms in the proposal eq.(31). Once again we see a cancellation of the terms
except the one depending on the position of the intersection of the islands for the entangle-
ment negativity. The effective part of the entanglement negativity may be obtained from the
linear combination of the 3d bulk geodesic lengths as

Eeff ==
3
4

�

2L1 +L2 +L3 −L4 −L5

�

. (146)

A straightforward computation of the bulk geodesic lengths in terms of the CFT2 twist corre-
lators leads to the effective part of the generalized entanglement negativity in eq.(145) vali-
dating the consistency of our construction. As in the case of two disjoint or adjacent intervals,
we can re-express the total holographic entanglement negativity by replacing the ordinary
geodesics in eq.(146) by the modified geodesics in the locally AdS3 bulk.

Proposal-II

Having computed the entanglement negativity for a single interval by taking into account
the corresponding island contributions using proposal-I, we now determine the same using
proposal-II and demonstrate that the results from both the proposals match exactly.

Eeff through the emergent twist operators

The configuration for a single interval is described by A≡ [0, b] in the right bath and the rest of
the system by B ≡ B1∪B2 similar to that of subsection 4.5. The size of the interval B1 is taken

Figure 25: Schematic of the entanglement island proposal-I for the entanglement
negativity of a single interval in a bath coupled to an eternal black hole.
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to be small such that it does not admit an island and B2 to be the whole of the left bath i.e
B2 ≡ [−∞, 0]. The corresponding entanglement island of A is IA ≡ [−a, 0]. This configuration
is illustrated in fig.[24]. Now the effective entanglement negativity Eeff(A∪ IsE(A) : B∪ IsE(B))
may be written in terms of the emergent twist operators as

Eeff = lim
ne→1

log
D

Ω
2∆

τ2
ne (w2)τne

(w1)τ
2
ne
(w2)τ

2
ne
(w3)τ(w4)

E

. (147)

The above four point function can be written in the large c limit as follows (w1,4→∞)
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¶
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. (148)

Substituting eq.(108) and (148) in eq. (147), the effective entanglement negativity for the
configuration of single interval is determined to be as follows
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 . (149)

Note that in the above expression for the effective entanglement negativity, the second term
is proportional to the thermal entropy which is subtracted from the first term proportional to
the effective entanglement entropy, a feature also observed for the holographic entanglement
negativity for this configuration in [76].

We now substitute eq.(113) for A(1/2) and the effective entanglement negativity we deter-
mined above, in eq.(34) to obtain the generalized entanglement negativity as follows

Egen(A) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4



log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



− log
�

2πε
β

e2πb/β
�



 ,

(150)
which matches exactly with the generalized entanglement negativity in eq.(145) obtained
through proposal-I.

E(A) through the generalized Renyi reflected entropy

In order to utilize our proposal-II in eq.(34), we compute the effective semiclassical contri-
bution to the entanglement negativity of the single interval configuration. In most generality,
an analysis of the reflected entropy for the above configuration needs the tools of multipartite
reflected entropy and its holography [101,102]. In this article, we avoid these complications
by considering B1 and B2 to be parts of a single subsystem, B1 ∪ B2 = B and compute the
reflected entropy between the subsystems A and B. Finally we send B→ Ac , and interpret the
result as the reflected entropy of A with the rest of the Cauchy slice in the bath region.

Following [67, 68] we may write down the effective Renyi reflected entropy in the state
ρ

m/2
A∪B for the above configuration as:

S(n)R eff(A∪ IsR(A) : B ∪ IsR(B))

=
1

1− n
log





Ω(w2)4∆n〈σgB2
(w1)σgA g−1

B2
(w2)σgB1

g−1
A
(w3)σg−1

B1
(w4)〉mn

�

〈σgm
(w1)σg−1

m
(w4)〉m

�n



 .
(151)

Eventually we are going to take the limit w1,4 →∞, so that the above expression computes
the Renyi reflected entropy of A with the complementary subsystem in the bath. Now using
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standard OPE arguments the four point function in the numerator can be written as the product
of the following two-point functions in the large central charge limit (also w1,4→∞):

〈σgB2
(w1)σgA g−1

B2
(w2)σgB1

g−1
A
(w3)σg−1

B1
(w4)〉mn

≈ 〈σgB2
(w1)σg−1

B1
(w4)〉mn〈σgA g−1

B2
(w2)σgB1

g−1
A
(w3)〉mn . (152)

Therefore, again the Renyi reflected entropy for the mixed state ρAB may be obtained by
trivially setting the purifier index to m→ 1, and we obtain

S(n)R eff(A∪ IsR(A) : B ∪ IsR(B))

=
1

1− n
log

�

Ω(w2)
4∆n

�

w+23w−23

�−4∆n
�

=
c
6

�

1+
1
n

�

�

log

�

w+23w−23

Ω(w2)Ω(w3)

�

− logΩ(w3)

�

,

(153)

where in the last equality we can make an identification of the first term on the right as the von
Neumann entropy of the interval A. Now setting n = 1

2 and substituting the expressions for
the warp factors from eq.(141), we obtain for the effective part of the Renyi reflected entropy
of order half

S(1/2)R eff (A∪ IsR(A) : B ∪ IsR(B)) =
c
2



log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



− log
�

2πε
β

e2πb/β
�



 . (154)

Substituting the above determined effective Renyi reflected entropy for the adjacent intervals
in eq.(38) we obtain the generalized Renyi reflected entropy of order half to be as follows

S(1/2)R gen(A : B) = 2φ0 +
6π
β

φr

tanh
�

2πa
β

� +
c
2



log





2β
πε

sinh2
�

π(a+b)
β

�

sinh
�

2πa
β

�



− log
�

2πε
β

e2πb/β
�



 .

(155)

Finally, using the above expression for the generalized Renyi reflected entropy of order half
in eq.(39) we readily see that the expression for the generalized entanglement negativity of a
single interval A in the bath, is given by

Egen(A) = φ0 +
3π
β

φr

tanh
�

2πa
β

� +
c
4



log




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�
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sinh
�

2πa
β

�



− log
�

2πε
β

e2πb/β
�



 .

(156)
Note that as earlier in eq.(150), the term in the above expression within the brackets, for
the effective entanglement negativity involves the subtraction of the thermal entropy from
the effective entanglement entropy. Furthermore, we emphasize that the above expression
is exactly identical to eq.(145) for the generalized entanglement negativity obtained using
proposal-I.

6 Entanglement Negativity in the Double Holography Picture

In this section, we comment on the double holographic picture of our proposals for the island
contributions to the entanglement negativity in quantum field theories coupled to semiclassical
gravity. We begin by a very concise review of the double holography picture for the entangle-
ment entropy [6, 9, 19] and the reflected entropy [68, 69] before proceeding to describe the
same for the entanglement negativity.
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6.1 Review of the Double Holographic Picture for the Entanglement entropy
and the Reflected entropy

In the doubly holographic picture, the matter is described by a holographic CFTd ( for the case
of JT gravity this is a CFT2 ) which is coupled to a d dimensional semiclassical gravity. The
bulk dual of this configuration corresponds to a (d + 1) dimensional locally AdS spacetime
with a dynamical “Planck" brane at a finite boundary, similar to the Randall-Sundrum model
as described in [6, 9, 19]. In this construction, the island contribution to the entanglement
entropy for a subsystem-A in the d dimensional bath CFT, to the leading order is determined
by the RT/HRT surface in the higher dimensional bulk AdSd+1 as follows

S(A) =min
Is(A)

§

extIs(A)

�

Area (d)(∂ Is(A))

4G(d)N

+
Area(d+1)

�

XA∪Is(A)
�

4G(d+1)
N

�ª

, (157)

where G(d)N and G(d+1)
N correspond to Newton’s gravitational constants in d and (d + 1) di-

mensions respectively, and the superscript for the area term indicates the dimension of the
ambient spacetime. In the above equation the area term has to be thought of as arising due
to the “Planck" brane and the total sum should be considered as the area of a single RT/HRT
surface XA∪Is(A) in the dual bulk AdS spacetime. Furthermore, this was applied to the case of
JT gravity with holographic matter in [9] to obtain the Page curve for the Hawking radiation in
semiclassical gravity. Apparently, from the lower dimensional point of view the black hole inte-
rior seems completely disconnected from the bath, however, the double holographic scenario
indicates that the two are connected via the entanglement wedge in the bulk AdSd+1. Hence,
the double holography picture also provides a manifestation of the ER=EPR proposal [103].
Following this, an application of the above construction to a higher dimensional example was
considered in [19].

Similarly, a double holographic construction for the reflected entropy of a system involving
a holographic matter CFTd coupled to d-dimensional semiclassical gravity was proposed in
[68]. According to their proposal, the island contribution to the reflected entropy of a bipartite
system-AB described in eq.(7) is obtained by the minimal EWCS in the higher dimensional bulk
AdSd+1 as follows

SR(R1 : R2) =min
§

ext
�Area(d)(∂ IsR1

∩ ∂ IsR2
)

4G(d)N

+
Area(d+1) [EWCS(Rad∪ I)]

4G(d+1)
N

�ª

, (158)

where the first area term has to be thought of as arising because the EWCS in the AdSd+1 bulk
spacetime, ends on the Planck brane. Therefore, the total sum in the above equation should
be considered as a single EWCS in the dual bulk spacetime.

6.2 Double Holography for the Entanglement negativity

In this subsection, we develop a possible doubly holographic picture of our island proposals for
the entanglement negativity in a bath coupled to a d-dimensional semiclassical gravitational
theory with matter described by a holographic CFTd .

Proposal-I

We now propose that the island contribution to the entanglement negativity of a bipartite
system-AB is obtained by a the sum of the area of a combination of backreacted cosmic branes
anchored on the subsystems/islands in a d-dimensional bath CFT coupled to semiclassical
gravity, which extend into the higher dimensional bulk AdSd+1 spacetime. For the case of
entangling surfaces with spherical symmetry, the area of such a backreacted cosmic brane is
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Figure 26: Schematic for double holography picture of our proposal-I. Note that the
superscript in the first bracket in the area terms denotes the Renyi index, and the one
in the second bracket indicates the dimension of the spacetime in which the surface
is embedded.

proportional to the area of the corresponding RT/HRT surface with a dimension dependent
constant that contains the information about the backreaction as described by eq.(15) [75,
90, 97]. Hence our conjecture for the disjoint, adjacent and single-connected subsystems are
same as those described by eq.(29),(30) and (31) with the understanding that the generalized
Renyi entropy of order half S(1/2)gen (A) in these equations is given by

S(1/2)gen (A) = X hol
d

�

Area(d)[∂ Is(A)]

4G(d)N

+
Area(d+1)

�

XA∪Is(A)
�

4G(d+1)
N

�

. (159)

Proposal-II

Having described the doubly holographic construction for the entanglement negativity based
on the proposal-I, we now proceed to describe an alternative construction based on proposal-II.
We propose that the island contribution to the entanglement negativity for a bipartite system-
AB in a theory consisting of a holographic matter CFTd coupled to d-dimensional semiclassical
gravity, is obtained by the area of a backreacted cosmic brane in the higher dimensional bulk
AdSd+1 anchored on the boundary of EWCS. For spherical entangling surfaces the area of such
a backreacted cosmic brane is proportional to the area of the corresponding EWCS with a
dimension dependent constant as described in eq.(15) [53,90,97]. Hence the island formula
described by eq.(34) in the double holographic context may be expressed as follows

E(A : B) = X hol
d

�

Area(d)[EWCS]

4G(d)N

+
Area(d+1) [EWCS]

4G(d+1)
N

�

, (160)

where the first term simply corresponds the area of the backreacted brane at the boundary of
the EWCS ending on the Planck brane which is proportional to the area of ∂ IsE(A)∩ ∂ IsE(B).
Note that the entire sum inside the brackets in the above equation, is to be considered as the
backreacted EWCS in the double holography set up.
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Figure 27: Schematic for double holography picture of our proposal-II. Note that the
superscript in the first bracket in the area terms denotes the Renyi index, and the one
in the second bracket indicates the dimension of the spacetime in which the surface
is embedded.

7 Replica Wormholes and Islands for Entanglement Negativity

In this section, we will provide a derivation of the island formulae for the entanglement neg-
ativity in section 3. To this end, we recall the fact that the k-th Renyi generalization of the
entanglement negativity for a bipartite mixed state ρAB may be defined as [72,73]

N (k)(A : B) = Tr
h
�

ρ
TB
AB

�ki

, (161)

where the partial transpose ρTB
AB of the bipartite density matrix has been defined in eq. (9). The

logarithmic entanglement negativity is then obtained through a replica trick which employs
an even analytic continuation in the Renyi index k:

E(A : B) = lim
n→1/2

log N (2n)(A : B) . (162)

In order to formulate the replica wormhole calculations for the entanglement negativity
in a setup of gravitational path integrals, we first consider a quantum field theory coupled to
gravity on a hybrid manifold M≡Mfixed∪Mbulk, where Mfixed is non-gravitating with a fixed
background metric, while Mbulk contains dynamical gravity. In the following we will assume
that the quantum matter fields also extend into the fluctuating geometry Mbulk and the two
parts of the geometry are joined smoothly across their boundary utilizing transparent boundary
conditions. We wish to compute the generalized Renyi negativity between two generic regions
A and B in the quantum field theory5. To proceed, we need to construct the replica manifold
which computes the trace norm of the even powers of the partially transposed density matrix
ρ

TB
AB. Following [93], we will denote the above mentioned replica manifold as

MA,B
k =MA,B (fixed)

k ∪MA,B (bulk)
k ,

where k is the Renyi index and the superscripts A, B carry the idea that the replica geometry
has to be constructed using a different cutting and gluing procedure than that for the Renyi

5Note that in the most general case A and B both may extend non-trivially inside the fluctuating geometry Mbulk

as well.

54

https://scipost.org
https://scipost.org/SciPostPhys.12.1.003


SciPost Phys. 12, 003 (2022)

entropy [72, 93]. The replica geometry MA,B
k may be obtained form the original spacetime

M1 ≡M as follows:

On the fixed geometry: Following [72], we cut the k copies of the original fixed manifold
Mfixed along A and B, and then glue them cyclically along A and anti-cyclically along B. This
fixes the topology of the replica manifold on the fixed background to be MA,B (fixed)

k .

On the fluctuating geometry: In case of the fluctuating geometry, the task is a bit involved.
Since the theory on this manifold contains gravity, we need to evaluate the full gravitational
path integral Z[Mbulk

k ] in order to find the emergent geometry. Assuming that the bulk ge-
ometry can be treated semi-classically, we can perform a saddle-point approximation to the
gravitational path integral:

Z[Mbulk
k ]≈ e−Igrav[Mbulk

k ] . (163)

To determine the saddle-point solution, first we fix the topology utilizing the replica symmetry
as well as the cutting and gluing procedure relevant to the computation of the Renyi negativity
[72, 93]. Once we have fixed the topology, we impose the gravitational equations of motion
to find the saddle-point solution MA,B (bulk)

k . Note that while one fixes the the bulk topology of
the fluctuating geometry, one must take care of the fact that in order to have a smooth replica
manifold MA,B

k , the topology of the fixed geometry must coincide with that of the fluctuating
geometry at the joining of the two portions of the manifold.

There are various possible ways to fix the topology of the saddle point solution MA,B
k of

the gravitational path integral as the fluctuating geometry need not obey the full Zk replica
symmetry. On the other hand, the fixed portion of the replica manifold MA,B (fixed)

k respects
the complete replica symmetry [72].

We will now focus on the so called replica non-symmetric saddle 6 [93] for even k = 2n,
denoted as MA,B (bulk, nsym)

2n . As discussed before, the replica manifold for the fluctuating ge-

ometry has, as its asymptotic boundary, the fixed geometry MA,B (fixed, nsym)
2n which respects the

full Z2n replica symmetry. We will fix the topology of the bulk replica non-symmetric saddle
utilizing the cutting and gluing procedure described in [93]. We will consider 2n copies of the
original bulk manifold Mbulk

1 and cut along three non-overlapping codimension-one homology
hypersurfaces ΣA , ΣB and ΣAB satisfying the following homology conditions:

∂ΣX = X ∪ γX , (164)

where X = A, B, AB and γX denotes a codimension-two hypersurface homologous to X . Along
ΣA, we glue odd numbered copies of Mbulk

1 cyclically and even copies to themselves, along ΣB,
we glue even numbered copies anti-cyclically and odd copies to themselves and finally along
ΣAB we glue the copies pairwise,starting with the first two and finishing with the last two. This
type of cutting and gluing manifestly breaks the replica symmetry group Z2n to the subgroup
Zn [93]. Finally upon imposing the gravitational equations of motion onto this manifold, we
obtain the full hybrid replica manifold:

MA,B
2n =MA,B (fixed)

2n ∪MA,B (bulk, nsym)
2n , (165)

6As described in [93] if we consider the replica symmetric saddle in the bulk fluctuating geometry, the cor-
responding entanglement negativity turns out to be zero, and therefore this saddle does not give the dominant
contribution to the gravitational path integral.
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where as described earlier, the replica geometry on the fixed background MA,B (fixed)
2n respects

the full Z2n replica symmetry while the replication of the fluctuating geometry MA,B (bulk, nsym)
2n

has only a residual Zn replica symmetry. The partition function on this replica manifold is
therefore factorized into a gravitational part and that computing the contributions from the
quantum matter fields

Z[MA,B
2n ] = Zgrav[M

A,B (bulk, nsym)
2n ] Zmat[M

A,B
2n ]

= e−Igrav[M
A,B (bulk, nsym)
2n ] Zmat[M

A,B
2n ] , (166)

where in the second equality we have made use of the saddle point approximation (163) for
the gravitational partition function. In writing the contribution of the quantum matter fields
to the partition function, we have utilized the fact that the quantum field theory extends over
the full hybrid manifold MA,B

2n .
The generalized Renyi negativity between A and B may therefore be computed as the prop-

erly normalized replica partition function

N (2n)
gen (A : B) =

Z[MA,B
2n ]

(Z[M1])
2n

= e−Igrav[M
A,B (bulk, nsym)
2n ]+2n Igrav[Mbulk

1 ] Zmat[M
A,B
2n ]

(Zmat[M1])
2n . (167)

To proceed we first focus on the Hawking-type saddle [15, 35, 54, 55]. Since the bulk replica
non-symmetric saddle retains the remnant replica symmetry Zn, it is natural to take a quotient
of MA,B (bulk, nsym)

2n by the group Zn to obtain the quotient manifold

M̂A,B (bulk, nsym)
2n =MA,B (bulk, nsym)

2n /Zn . (168)

Note that the quotient manifold has the asymptotic boundary MA,B (fixed)
2

7: a two-fold cover of
the original fixed geometry Mfixed

1 branched over A and B. The quotient manifold has conical

defects at γ(n)A1
and γ(n)B2

, the loci of the fixed points of the residual replica symmetry. As usual,
these conical defects are sourced by backreacting cosmic branes homologous to the subsystems
A and B, and come with deficit angles

∆φn = 2π
�

1−
1
n

�

.

The on-shell action of the fluctuating replica geometry may now be written in terms of the
on-shell action of the quotient spacetime Igrav

�

MAB (fixed)
2 ,γ(n)A1

,γ(n)B2

�

as

Igrav[M
A,B (bulk, nsym)
2n ]≡ n Igrav

�

MAB (fixed)
2 ,γ(n)A1

,γ(n)B2

�

.

Therefore, the generalized logarithmic Renyi negativity is given by

E (2n)
gen (A : B) = log N (2n)

gen (A : B)

= −n
�

Igrav

�

MAB (fixed)
2 ,γ(n)A1

,γ(n)B2

�

− 2 Igrav[Mbulk
1 ]

�

+ E (2n)
eff (A : B) , (169)

7Note that the two fold cover MA,B (fixed)
2 computing the second Renyi negativity is the same as MAB (fixed)

2 , that
computing the second Renyi entropy [93].
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where the effective logarithmic Renyi negativity E (2n)
eff (A : B) of quantum matter fields on the

hybrid replica manifold MA,B
2n is defined as

E (2n)
eff (A : B) = log

Zmat[M
A,B
2n ]

(Zmat[M1])
2n . (170)

In order to evaluate the above expression we need to compute the on-shell action of the quo-
tiented bulk geometry M̂A,B (bulk, nsym)

2n which gets contributions from the cosmic branes sitting

on γ(n)A1
and γ(n)B2

homologous to A on the first copy of MAB
2 and to B on the second copy. The

authors in [15, 35, 54] had computed the contributions coming from such conical defects for
n ∼ 1 by expanding the on-shell action near n = 1, thereby assuming that the gravitational
backreaction is small enough to keep the replica manifold a solution to the gravitational equa-
tions of motion. Here, instead, we follow the procedure in [104,105] to find the solution away
form n = 1 and obtain the effects of the gravitational backreaction comprehensively in terms
of the areas of the backreacting cosmic branes sitting along γ(n)A1

and γ(n)B2
. Therefore, the on

shell action of the quotiented bulk geometry M̂A,B (bulk, nsym)
2n can be written as

Igrav

�

MAB (fixed)
2 ,γ(n)A1

,γ(n)B2

�

= 2 Igrav[Mbulk
1 ] +

A(1/2)(γAB)
4G

+
�

1−
1
n

� A(n)(γA) +A(n)(γB)
4G

, (171)

where A(n)(γX ) is related to the area of the cosmic brane homologous to subsystem X as in
eq. (13):

n2 ∂

∂ n

�

n− 1
n

A(n)
�

= Area ( cosmic brane n) .

Therefore, utilizing eq. (171) we obtain the generalized logarithmic Renyi negativity between
the subsystems A and B from eq. (170) as

E (2n)
gen (A : B) = −n

A(1/2)(γAB)
4G

− (n− 1)
A(n)(γA) +A(n)(γB)

4G
+ E (2n)

eff (A : B) , (172)

taking the n→ 1/2 limit, the generalized logarithmic negativity is given by

Egen(A : B) =
A(1/2)(γA) +A(1/2)(γB)−A(1/2)(γAB)

8G
+ Eeff(A : B) . (173)

In the following, we will assume that the quantum field theory on the hybrid manifold M
itself has a holographic description as well. Therefore, following [93] the effective logarithmic
entanglement negativity Eeff(A : B) in eq. (173) may be written as the order half effective
mutual information between A and B as 8

Eeff(A : B) =
1
2

I1/2
eff (A : B) , (174)

where we have used arguments similar to subsection 3.1 to restructure the expression on the
right hand side in terms of the Renyi entropies of order half. Therefore, eq. (173) may be put
in the comprehensive form in eq. (30), namely

Egen(A : B) =
1
2

�

S(1/2)gen (A) + S(1/2)gen (B)− S(1/2)gen (A∪ B)
�

≡
1
2

I(1/2)gen (A : B) . (175)

8Note that in [93] the on-shell action on the quotient manifolds were evaluated for the restrictive class of fixed
area states corresponding to a flat entanglement spectrum. As a result, all the Renyi entropies were taken to
be equal and correspondingly the Renyi version of the areas (cf. eq. (173)) reduced to ordinary areas. In this
manuscript, however, we lift such restrictions and consider Renyi areas as in eq. (13).
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Finally, following a similar procedure as in [55], the entanglement negativity between subsys-
tems A and B in a quantum field theory coupled to gravity is obtained through the extremiza-
tion of the generalized negativity as

E(A : B) =min
�

ext
γA,γB

Egen(A : B)
�

. (176)

Note that in the above expression, the correct entanglement negativity is obtained by extrem-
izing with respect to the positions of the individual homology surfaces γA and γB.

7.1 Replica Wormhole Saddle

As described in [15, 35] for the case of entanglement entropy, when the effective entropy of
the quantum matter fields becomes comparable to the gravitational area term, the spacetime
replica wormhole starts to dominate the gravitational path integral. In the case of the general-
ized Renyi negativity, we propose that when the contribution from the effective matter negativ-
ity becomes comparable to the area contributions in eq. (169), the generalized Renyi negativ-
ity gets a non-perturbative instanton-like contribution from a Zn-symmetric replica wormhole
saddle. Figure 28 shows a schematic picture of the replica wormhole saddles computing the
Renyi entropy (left) and the Renyi negativity (right) for an even replica index n= 4. While for
the case of the Renyi entropy, the asymptotic boundary on each copy is the original manifold
M1, it is the two-fold cover MA,B (fixed)

2 that serves as the asymptotic boundaries on each copy
in the case of the replica wormhole saddle computing the Renyi negativity.

As in the case of generalized Renyi entropy, the quotient manifold M̂A,B (bulk, nsym)
2n has no

conical singularities of the homology surfaces of A and B [15, 35]. Instead, the bulk replica
wormhole contains additional Zn fixed points. These are the boundaries of the corresponding
islands of A, B and A∪B. Therefore, the on-shell action for the quotient manifold of the replica
wormhole saddle can be written analogously to eq. (171) as

Igrav

�

MAB (fixed)
2 ,γ(n)A1

,γ(n)B2

�

= 2 Igrav[Mbulk
1 ] +

A(1/2)(∂ Is(AB))
4G

+
�

1−
1
n

� A(n)(∂ Is(A)) +A(n)(∂ Is(B))
4G

. (177)

Figure 28: A cartoon picture of the replica wormhole saddle for the gravitational path
integral for Z[MAB (bulk)

2n ] on the left and Z[MA,B (bulk, nsym)
2n ] on the right, is shown

for n= 2.
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Similar to the case of generalized Renyi entropy, the boundaries of these new island regions will
have smooth twist operator insertions. As a result the effective Renyi negativity in eq. (170)
will also get contributions from the quantum matter fields living on these island regions.

The genralized Renyi negativity between the subsystems A and B in eq. (169) may there-
fore be obtained utilizing eq. (177) as

Egen(A : B) =
A(1/2)(∂ Is(A)) +A(1/2)(∂ Is(B))−A(1/2)(∂ Is(AB))

8G
+ Eeff(A∪ Is(A) : B ∪ Is(B)). (178)

We will again assume that the quantum field theory on the hybrid manifold M itself has a holo-
graphic dual description and therefore the effective entanglement negativity of the quantum
matter fields residing on the subsystems A and B as well as their corresponding entanglement
islands may be written in terms of the order half effective mutual information between A∪Is(A)
and B∪ Is(B). Therefore the island formula (178) for the generalized entanglement negativity
may equivalently be written as

Egen(A : B) =
1
2

�

S(1/2)gen (A) + S(1/2)gen (B)− S(1/2)gen (A∪ B)
�

=
1
2

I(1/2)gen (A : B) . (179)

Once again, employing the Engelhardt-Wall prescription [55] 9, we obtain the following for-
mula for the entanglement negativity between two subsystems A and B in a quantum field
theory coupled to gravity,

E(A : B) =min
�

ext
∂ Is(A),∂ Is(B)

Egen(A : B)
�

. (180)

However, as we have shown in the main body from pure geometric considerations, there is
only one free parameter to extremize over in eq. (180), namely the island cross section for
the entanglement negativity Q′′ ≡ ∂ IsE(A) ∩ ∂ IsE(B). Therefore, the correct formula for the
entanglement negativity between A and B is given by

E(A : B) =min
�

ext
Q′′

Egen(A : B)
�

. (181)

This completes the derivation of the island formula for the entanglement negativity by con-
sidering the corresponding replica wormhole contributions based on techniques developed
in [15, 35, 93]. Below we demonstrate the equivalence of the above obtained result from the
replica wormhole saddle with our island proposal-I.

Two adjacent intervals:

Observe that eq.(179) and eq.(181) match exactly with our island proposal-I for the entan-
glement negativity of mixed state configuration involving two adjacent intervals in a quantum
field theory coupled to gravity described by eq.(30).

Two disjoint intervals:

We will now demonstrate the equivalence between our conjecture in eq.(29) and the result in
eq.(179) and eq.(181) which we derived from replica wormhole construction. To begin with

9Note that eq.(178) and eq.(179) clearly suggest that the Engelhardt-Wall like prescription for entanglement
negativity would involve the extremization of the entire sum and not the individual generalized Renyi entropy
terms.
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Figure 29: Schematic for the configuration of the disjoint intervals A and B separated
by C such that the full tripartite system ABC is compact and is in a pure state .

let us consider the case of the disjoint intervals A and B separated by union of two disjoint
intervals denoted as C such that the full system ABC is compact and is in a pure state10 as
depicted in fig.29. For a tripartite system A∪B∪C which is in a pure quantum state, it is easy
to show from quantum information that the following equality holds

I(A : BC) = I(A : B) + I(A : C) . (182)

Note that as discussed earlier, for generic subregions X and Y in two dimensional holographic
CFTs and for subsystems involving spherical entangling surfaces in higher dimensions, we have

I(1/2)(X : Y ) = χd I(X : Y ) (183)

S(1/2)(X ) = χdSX . (184)

Utilizing the above expressions, we can re-express eq.(182) by multiplying it on both sides by
χd to obtain

I(1/2)(A : BC) = I(1/2)(A : B) + I(1/2)(A : C) . (185)

As explained earlier, the generalized Renyi entropies obey a relation similar to eq.(183) and
hence, it is possible to generalize the above formula to subregions in a two dimensional QFTs
coupled to gravity or for subsystems involving spherical entangling surfaces in higher dimen-
sions, by considering the corresponding island contributions. Therefore, we have

I(1/2)gen (A : BC) = I(1/2)gen (A : B) + I(1/2)gen (A : C) . (186)

Note that above formula could be re-expressed as follows

1
2

I(1/2)gen (A : B) =
1
2

�

I(1/2)gen (A : BC)− I(1/2)gen (A : C)
�

=
1
2

�

S(1/2)gen (A∪ C) + S(1/2)gen (B ∪ C)− S(1/2)gen (A∪ B ∪ C)− S(1/2)gen (C)
�

. (187)

10When the full system is non-compact and involves a mixed tripartite quantum stateρABC , the gravitational path
integral for the entanglement negativity and the corresponding replica wormhole contribution is more involved
and possibly dominated by a different non-trivial replica symmetry breaking saddle. We leave this interesting
problem for future investigation.
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Alternatively one may obtain the above equation by utilizing the equalities of the entropies
SA∪C = SB, SB∪C = SA, SABC = 0 and SC = SAB for the tripartite pure state ρABC .

Comparing the above result to eq.(179) which we derived utilizing the replica wormhole
contribution leads to

Egen(A : B) =
1
2

�

S(1/2)gen (A∪ C) + S(1/2)gen (B ∪ C)− S(1/2)gen (A∪ B ∪ C)− S(1/2)gen (C)
�

, (188)

E(A : B) =min
�

extr
Q′′

Egen(A : B)
�

. (189)

The above expression matches exactly with our island proposal-I in eq.(29) for the entangle-
ment negativity of the disjoint intervals in a QFT coupled to gravity. Hence, the computation
above serves as a proof of our island proposal-I constructed by considering the corresponding
replica wormhole contributions.

Single interval in an infinite system: In order to demonstrate the equivalence of our island
proposal-I for the case of a single interval in an infinite system, to the replica wormhole result
in eq.(179), we consider a tripartite pure state A∪ B1 ∪ B2 with ≡ Ac , for which it is easy to
show that

I(A : B1B2) = I(A : B1) + I(A : B2) .

This property was utilized in [92] to demonstrate the equivalence of the two alternative holo-
graphic proposals in [76] and [90] described earlier. As explained above, for subregions in
two dimensional QFTs coupled to gravity and for systems involving the spherical entangling
surfaces in higher dimensions, we can generalize the above expression to

I(1/2)gen (A : B1B2) = I(1/2)gen (A : B1) + I(1/2)gen (A : B2) .

Finally utilizing eq. (175), we obtain the generalized entanglement negativity for a single
interval in an infinite system as

Egen(A)≡
1
2

I(1/2)gen (A : B1B2)

= lim
B1∪B2→Ac

1
2

�

2S(1/2)gen (A) + S(1/2)gen (B1) + S(1/2)gen (B2)− S(1/2)gen (A∪ B1)− S(1/2)gen (A∪ B2)
�

.

Upon extremization the above result obtained from the replica wormhole construction exactly
matches with our island proposal-I for a single interval in an infinite system which was de-
scribed in eq.(31). This concludes the proof of our island proposal-I for the entanglement
negativity of all the configurations considered in the present article.

8 Summary and discussions

In this article we develop two alternative constructions for the island contributions to the
entanglement negativity of various pure and mixed state configurations in quantum field the-
ories coupled to semiclassical gravity. The first proposal involves a specific algebraic sum of
the generalized Renyi entropies of order half. This is inspired by the holographic construc-
tions described in [76, 79, 81]. The second proposal is motivated by the quantum corrected
holographic formula for the entanglement negativity proposed in [90]. This involves an island
construction for the entanglement negativity obtained through the sum of the area of a back-
reacted cosmic brane spanning the EWCS, and the effective entanglement negativity of bulk
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quantum matter fields. Following this, motivated by [91], we propose that the entanglement
negativity of a bipartite system in a quantum field theory coupled to semiclassical gravity, is
determined by extremizing the generalized Renyi reflected entropy of order half.

We applied our proposals to the case of JT gravity coupled to matter fields which are
described by a CFT2 with a large central charge. We computed the island contribution to
the entanglement negativity for the pure and mixed state configurations involving disjoint,
adjacent and single intervals in bath systems coupled to extremal black holes in JT gravity. The
results from both the proposals match exactly for all the phases ( characterized by the size of
the intervals ) of the configurations considered in this article. Furthermore, as discussed above
in each case we determined the entanglement negativity from proposal-II using two different
methods. Firstly, the entanglement negativity was computed through the extremization of the
sum of the area of a back reacted cosmic brane and the effective entanglement negativity of
bulk quantum matter fields, determined through the twist correlators in [72, 73]. Following
this, we obtained the entanglement negativity through the extremization of the generalized
Renyi reflected entropy of order half. We demonstrated that the results from two methods
match exactly, characterizing a consistency check of our proposal-II. We also showed that these
results precisely match with the entanglement negativity determined from our proposal-I.

Note that the dynamical part of the entanglement negativity for the cases involving the
disjoint and the adjacent interval configurations mentioned above, is proportional to that of
the reflected entropy considered in [68]. We would like to emphasize that this is because of
the spherical symmetry of the entangling surfaces involved, as they render the area of resulting
backreacted extremal surfaces to be proportional to the non-backreacted area of correspond-
ing extremal surfaces in the original geometry. However, for generic subsystems in higher
dimensions, we expect that the reflected entropy and the entanglement negativity will have
different behaviors.

Subsequently, we applied our island proposals to obtain the entanglement negativity of
various pure and mixed state configurations involving disjoint, adjacent and single intervals in
quantum system described by a bath coupled to an eternal black hole in JT gravity. In contrast
to the extremal black hole case, where all the intervals were in the bath, the adjacent interval
configuration considered in the non-extremal black hole scenario had one interval in the bath
and the other on the JT brane. For the above described configurations we computed the island
contribution to the entanglement negativity utilizing both of our proposals. We demonstrated
that the entanglement negativity obtained using the generalized Renyi reflected entropy of
order half, and that from the sum of the area of back reacted cosmic brane and the effective
entanglement negativity matched exactly. Furthermore, these results matched precisely with
the entanglement negativity obtained from our island proposal-I based on a combination of
the generalized Renyi entropies of order half. Note that the reflected entropy was explored for
some of the above configurations in [68, 69]. For the case of disjoint intervals, we observed
that once again the dynamical part of the entanglement negativity turns out to be proportional
to that of the reflected entropy in [68] due to the spherical symmetry of the entangling surfaces
involved. Furthermore, the reflected entropy for the case of the adjacent interval with one of
the intervals in the bath and the other on the JT brane was explored in [69] for fermionic
quantum matter fields utilizing the methods of [100]. Therefore, the results for reflected
entropy derived in [69] for this case are different from our results.

Following this, we commented on a possible understanding of the above constructions in
the double holography picture where one considers the quantum matter described by a holo-
graphic CFTd coupled to d-dimensional semiclassical gravity. Motivated by our island propos-
als we alluded to two alternative doubly holographic pictures for the entanglement negativity.
As discussed above, our island proposal-I involved a specific algebraic sum of the generalized
Renyi entropies of order half. In the context of double holography, the generalized Renyi en-
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tropy of order half is given by the area of a backreacted extremal surface ( geodesic in AdS3 )
anchored on the subsystem and extending in the dual bulk AdSd+1 spacetime. Consequently,
the double holographic picture of our proposal-I consisted of a specific combination of the ar-
eas of back reacted cosmic branes anchored on the subsystems/islands. On the other hand, the
doubly holographic picture for our island proposal-II involved the minimal area of the backre-
acted EWCS in the dual bulk AdSd+1 spacetime. The area of the backreacted cosmic brane is
proportional to the area of its tensionless counterpart for a spherical entangling surface such
that the backreaction effect is encoded in the proportionality constant. Finally, we provided a
derivation of our island proposal-I for the pure and mixed state configurations considered by
the computing the replica wormhole contribution to the partially transposed density matrix, in
the gravitational path integral formulation through the techniques developed in [15,35,93].

Although the two proposals we have developed seem quite distinct, remarkably they lead
to exactly the same results for all the cases examined here. It would be quite interesting to
explore the reason for the equivalence of the two proposals in more details. The two alternative
island proposals formulated in the present article are based on holographic constructions in
[76, 79, 81] and [90, 91]. A possible mechanism to test the equivalence of the two proposals
may involve a recently introduced measure termed the Markov gap examined in [106]. This
measure is defined as the difference between the reflected entropy and the mutual information.
The authors in [106] demonstrated that for a bipartite system in a holographic C F T2, it is
bounded from below by aO( 1

GN
) constant times the number of boundaries of the corresponding

EWCS. Note that in the second proposal the entanglement negativity is related to the Renyi
reflected entropy of order half whereas in the first proposal negativity is related to the Renyi
mutual information of order half for compact systems. Furthermore, in a holographic C F T2
and for subsystems involving spherical entangling surface in higher dimensions, the Renyi
mutual information of order half and the Renyi reflected entropy of a given subsystem are
proportional to the corresponding mutual information and the reflected entropy respectively.
Hence, the two proposals give exactly the same answer when the Markov gap vanishes. In the
cases we considered the results from the two proposals for entanglement negativity matched
precisely. This is because the Markov gap in the configurations we examined can at most be
a constant and hence the two proposals resulted in exactly the same functional form for the
entanglement negativity. Therefore, it might be of crucial significance to further understand
the Markov gap in various configurations to explore regimes where the two proposals might
give different results. Furthermore, the two proposals have been examined in the language of
tensor network in [90] and [93] utilizing which it might be possible to test their equivalence
in various regimes. We hope to address these interesting issues in the near future.

We would like to emphasize that the entanglement negativity being a mixed state en-
tanglement measure provides an insight into the structure of entanglement in the Hawking
radiation. A more detailed study of our proposals into various other evaporating black hole
scenarios may reveal deeper aspects of the Hawking radiation. It would be exciting to de-
velop a possible proof of our island proposal-II for the entanglement negativity by considering
an alternative replica symmetry braking saddle and the corresponding replica wormhole con-
struction. It will be extremely fascinating to apply our proposals to spacetimes that are not
asymptotically AdS as done for entanglement entropy in [23,24,26]. Furthermore it has been
recently shown in [35–38] that the island construction has significant implications to cosmol-
ogy. It would be quite interesting to explore the implications of our proposals for the islands
contributions to the entanglement negativity to the above scenarios.
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A Renyi entropy of order half of the JT gravity

In this appendix we compute the Renyi entropy of order half of a thermal C F T1 dual to a non-
extremal JT black hole through two different techniques. In section A.1 we determine the Renyi
entropy of order half by considering the purification of the thermal C F T1 which is described
by a thermofield double (TFD) dual to an eternal black hole in JT gravity. In section A.2 we
obtain the same through the replica wormhole contribution to the corresponding gravitational
path integral of the non-extremal JT black hole using the results of a recent article [105].

A.1 Entanglement negativity of the TFD state dual to an eternal black hole in
JT gravity

In this subsection we compute the entanglement negativity of the thermofield double (TFD)
state dual to an eternal black hole in JT gravity. Note that since the TFD state is pure, the
entanglement negativity is equal to Renyi entropy of order half of the thermal C F T1 living on
either the left or the right asymptotic boundary.

The TFD state is defined as

|TFD〉 :=
1

p

Z(β)

∑

k

e−
βEk

2 |k〉|k〉 . (190)

The interesting property of the thermofield double is that the reduced density matrix of the
left or the right subsystem is described by the thermal Gibbs state

ρL =
e−βH

Z(β)
. (191)

This in turn implies that the entanglement entropy of the left or the right subsystem is same
as the thermal entropy of a Gibbs state i.e

SEE = Sth =
�

1− β∂β
�

log Z(β) . (192)

It is clear from the above equation that we could obtain the entanglement entropy for the left
or the right subsystem of a TFD state directly from the thermal partition function.

Similarly it was shown in [75] that the entanglement negativity of the bipartite system LR
is given by

E(L : R) = log
Z
�

β
2

�2

Z(β)
= β(F(β)− F(β/2)) , (193)

where F denotes the free energy corresponding to the thermal partition function Z(β) given
by

F(β) = −
1
β

log Z(β) . (194)

Note that, for a pure state the entanglement negativity should be same as the Renyi entropy
of order half [72,73]. Since LR together are in pure state described by the TFD,

E(L : R) = S1/2
EE (L) = S1/2

EE (R)

= β(F(β)− F(β/2)) . (195)

The free energy F(β) depends on the partition function as described by eq.(194) and hence,
analogous to the entanglement entropy, the entanglement negativity of the left or the right
subsystem in the TFD state may also be obtained through the thermal partition function.
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Now for the case of J T gravity, the thermal partition function of the C F T1 could be obtained
by the dual bulk Euclidean classical action described by the Schwartzian as follows

Z [β] = exp

�

S0 +
φr

8πG

∫

du Sch(t, u)

�

, (196)

where, S0 is the topological part and Sch(t, u) is the Schwarzian derivative given by

Sch(t, u) =
2t ′ t ′′′ − 3t ′′2

2t ′2
. (197)

For the JT gravity

t(u) =
β

π
tanh

�

πu
β

�

. (198)

Substituting eq.(196) in eq.(192) leads to the following expression for the entanglement en-
tropy

S(L) = φ0 +
2πφr

β
, (199)

where we are working in the units of 4G(2)N = 1. On the other hand substituting eq.(196) in
eq.(195) we obtain the following expression for the entanglement negativity of the TFD state

E(L : R) = φ0 +
3πφr

β
= S1/2(L) . (200)

Now, note that the gravity dual of the Renyi entropy is related to the area of a backreacted
cosmic brane spanning the RT surface in the bulk spacetime [96] as was described in eq.(14).
For the present case the bulk spacetime corresponds to a two dimensional eternal black hole
in JT gravity and hence the co-dimension two RT/HRT surface is a point. Therefore, from the
above expression and eq.(14) we have

S1/2(L) =A(1/2)(γL) = φ0 +
3πφr

β
, (201)

where, γL is the point in the bulk where the backreacted RT surface is located. Observe by
comparing eq.(199) and eq.(201) that the ratio of the dynamical part of the entanglement
entropy of order one and that of order half is 3/2. This number is precisely arising due to the
backreaction X2 =

3
2 defined in eq.(15). However, the topological term remains unaffected by

the backreaction as expected.

A.2 Renyi entropy of order 1
2 through the replica wormhole construction

Recently in [105], the gravitation path integral for the replica wormhole saddle in JT gravity
was performed to higher order in the replica parameter n away from n= 1. The authors there
obtained the following expression for the refined Renyi entropy

S̃(n) =
∑

i

�

S0 +φ
(n)(σi)

�

+ S̃(n)eff ,

φ(n)(σi) = −
2π
nβ

φr

tanh
�

2πσi
nβ

� , (202)
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whereσi denote the positions of the corresponding quantum extremal surfaces, β is the inverse
temperature of the dilaton black hole andφr is the boundary value of the dilaton. In eq. (202)
the effective refined Renyi entropy of the quantum matter is denoted by S̃(n)eff .

Following this, the Renyi entropy of order half for a subsystem A≡ [0, b] in a thermal CFT2
bath coupled to a JT black hole of inverse temperature β , can be obtained as

S(n) =
n

n− 1

∫ n

1

dn̂
1
n̂2

S̃(n̂)

=
n

n− 1

�

S0

∫ n

1

dn̂
1
n̂2
+

2πφr

β

∫ n

1

dn̂
1
n̂3

coth
�

2πa
n̂β

�

�

+ S(n)eff

= S0 +
n

n− 1
2πφr

β

�

1
2α2

�

Li2
�

1− e
2α
n

�

− Li2
�

1− e2α
�

�

+
1− n2

2n2

�

+ S(n)eff , (203)

where a describes the endpoint of the island region IA ≡ [−a, 0] corresponding to A, and we
have defined α= 2πa/β . In eq. (203), Li2(z) is the Spence’s function, defined as

Li2(z) = −
∫ z

0

du
ln(1− u)

u
.

The effective Renyi entropy of the quantum matter fields S(n)eff is obtained as

S(n)eff =
n

n− 1

∫ n

1

dn̂
1
n̂2

S̃(n̂)eff . (204)

Therefore, the Renyi entropy of order half for the subsystem A ≡ [0, b] may be obtained
through the analytic continuation n→ 1

2 as

S(1/2) = S0 −
φr

a

�

1
2α

�

Li2
�

1− e4α
�

− Li2
�

1− e2α
��

+
3α
2

�

+ S(1/2)eff . (205)

In the high temperature limit β → 0, the area term in the above equation has the following
expression

A(1/2) = S0 +
3πφr

β
. (206)

Remarkably, this is the same expression obtained through an analysis of the entanglement
negativity of the TFD state in appendix A.1.
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