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Abstract

Quantum geometry has emerged as a central and ubiquitous concept in quantum sci-
ences, with direct consequences on quantum metrology and many-body quantum physics.
In this context, two fundamental geometric quantities are known to play complementary
roles: the Fubini-Study metric, which introduces a notion of distance between quantum
states defined over a parameter space, and the Berry curvature associated with Berry-
phase effects and topological band structures. In fact, recent studies have revealed direct
relations between these two important quantities, suggesting that topological properties
can, in special cases, be deduced from the quantum metric. In this work, we establish
general and exact relations between the quantum metric and the topological invariants
of generic Dirac Hamiltonians. In particular, we demonstrate that topological indices
(Chern numbers or winding numbers) are bounded by the quantum volume determined
by the quantum metric. Our theoretical framework, which builds on the Clifford alge-
bra of Dirac matrices, is applicable to topological insulators and semimetals of arbitrary
spatial dimensions, with or without chiral symmetry. This work clarifies the role of the
Fubini-Study metric in topological states of matter, suggesting unexplored topological re-
sponses and metrological applications in a broad class of quantum-engineered systems.
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1 Introduction

Recent advances have revealed the central role played by the Fubini-Study metric [1] in var-
ious fields of quantum sciences [2], with a direct impact on quantum technologies [3, 4] and
many-body quantum physics [2,5]. In condensed matter, the quantum metric generally defines
a notion of distance over momentum space, and it was shown to provide essential geometric
contributions to various phenomena, including exotic superconductivity [6–8] and superfluid-
ity [9], orbital magnetism [10, 11], the stability of fractional quantum Hall states [12–17],
semiclassical wavepacket dynamics [18, 19], topological phase transitions [20], and light-
matter coupling in flat-band systems [21]. Besides, the quantum metric plays a central role
in the construction of maximally-localized Wannier functions in crystals [22, 23], and it pro-
vides practical signatures for exotic momentum-space monopoles [24, 25] and entanglement
in topological superconductors [26,27].

Motivated by these developments, the quantum metric was experimentally measured in
several quantum-engineered systems, including cold atoms in optical lattices [28], NV centers
in diamond [29–31], exciton polaritons [32] and superconducting qubits [33, 34]. The gen-
eralization of the quantum metric to mixed states (also known as the Bures metric) was also
recently estimated through randomized measurements [35].

In this quantum-geometry context, surprising connections have been made between the
quantum metric and the Berry curvature of Bloch states. The latter captures Berry-phase effects
in Bloch bands [36] and constitutes the central ingredient for the construction of topological
invariants, such as the Chern number [37, 38]. For instance, in superconductors, the integral
of the quantum metric over momentum space captures the superfluid weight in flat bands,
which was found to be bounded from below by the Chern number [6]. In Weyl-type systems,
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relations between the determinant of the quantum metric and the Berry curvature were shown
to facilitate the observation of exotic topological defects based on quantum-metric measure-
ments [24,25,31,34]. In systems of chiral multifold fermions, the trace of the quantum metric
was shown to be quantized [39, 40], and related to the Chern number through an intriguing
sum rule involving the states’ angular momentum. In the context of Chern insulators, relations
between the Berry curvature, the Chern number, the quantum metric and the quantum volume
were recently established and understood based on the Kähler structure of the quantum-states
space [41, 42]. These relations are known to play an important role in the formation and
stabilization of fractional Chern insulators [12–17,43].

Scope, main results and outline

In this article, we establish general and exact relations between the quantum metric of generic
Dirac Hamiltonians and the topological invariants of the corresponding Bloch bands, in arbi-
trary spatial dimensions d. This general framework, which builds on the Clifford algebra of
Dirac matrices, expresses the topological indices of Chern insulators, but also chiral insulators
and topological semimetals, in terms of the determinant of the quantum metric. These results
highlight the central role played by the Fubini-Study metric in topological states of matter, but
it also suggests unexplored topological responses in quantum-engineered settings. Indeed,
synthetic lattice systems are currently developed in a broad range of experimental settings, in-
cluding ultracold gases, photonics devices and electric circuits, in view of realizing ideal Dirac
toy models of topological matter; emblematic examples of synthetic Dirac systems include the
one-dimensional Su-Schrieffer-Heeger model for cold atoms using optical superlattices [44],
the two-dimensional Haldane model in circularly-shaken honeycomb lattices [28,45,46], the
ideal three-dimensional Weyl model realized in spin-orbit coupled gases [47], and the elec-
tric circuit realization of a four-dimensional topological Dirac model [48]. Interestingly, these
synthetic lattice systems allow for momentum-resolved measurements of geometric properties,
including the Berry curvature and the quantum metric [28,32,49,50].

Specifically, we first obtain general relations between the determinant of the quantum met-
ric and two types of topological invariants: the n-th Chern character for systems without chiral
symmetry in 2n spatial dimensions, and the winding-number class for systems with chiral sym-
metry in 2n−1 spatial dimensions. These relations [Eqs. (15) and (34)], which are the central
results of this work, stem from a special mapping between the system’s Brillouin zone and a
sphere, as we illustrate in Fig. 1. Upon integration over the Brillouin zone, these relations pro-
vide useful inequalities between topological indices of Bloch bands and the quantum volume:
For gapped systems without chiral symmetry in d=2n dimensions, this inequality involves the
n-th Chern number and reads

|Chn| ≤
(2n)!

2n(n−1)+1n!πn
volg(T2n) , (1)

where the quantum volume volg(T2n) is defined as the integral of the quantum metric’s deter-
minant over the Brillouin zone, volg(T2n)=

∫

T2n

p

det(g) d2nk. A similar inequality is obtained
for the winding number of (2n− 1)-dimensional chiral insulators,

|ν| ≤
(n− 1)!

2
1
2 (n−1)(2n−5)πn

volg(T2n−1) . (2)

The relations presented in Eqs. (1) and (2) show that the volume of the Brillouin zone, as
measured by the quantum metric, provides an upper bound to the topological invariants of
generic Dirac Hamiltonians, in all dimensions.
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Figure 1: Schematics of the main results: (a) In the case of gapped systems without
chiral symmetry, in d = 2n dimensions, the first Brillouin zone (FBZ) is mapped to the
2n-sphere by ~n(k); see Eq. (5). The topological properties of Bloch states are then
deduced from the topology of quantum states over the 2n-sphere, which involves
fundamental relations with the determinant of the metric [Eqs. (9) and (15)]. (b)
A similar picture holds for chiral systems, where the map ~n(k) is now restricted to
the equator S2n−1 of S2n, whose topology is captured by a winding-number class
[Eqs. (13) and (34)]. The Dirac Hamiltonian involves D=2n+ 1 Dirac matrices in
the non-chiral case (a) and D=2n Dirac matrices in the chiral case (b); see Eq. (3)
and text below.

We describe below how these inequalities can be saturated, and we illustrate how they
can be used in practice so as to deduce the topological nature of exotic quantum matter from
quantum-metric measurements.

This article is organized as follows: Section 2 introduces the general framework of Dirac
Hamiltonians, setting the focus on their geometric and topological properties using the lan-
guage of differential forms. More explicit relations between the quantum metric, the compo-
nents of the Berry curvature and the Chern numbers are then specified in Section 3 for the case
of topological insulators without chiral symmetry. Chiral insulators, which are characterized
by winding numbers, are then treated in Section 4. Topological semimetals are eventually
discussed in Section 5. Each Section illustrates our general formula based on concrete and
emblematic models of topological matter. We finally illustrate the implications of our metric-
curvature relations for quantum metrology, where the quantum metric is known to quantify the
metrological potential of quantum states via the Cramér-Rao bound [51,52]. Our concluding
remarks are presented in Section 7.
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2 Dirac Hamiltonians, spheres and quantum geometry

We consider an important class of Bloch Hamiltonians, which are built from Dirac matrices
according to

HD(k) = −
D
∑

i=1

d i(k)γi = −~d(k) · ~γ , (3)

where the γi matrices form an irreducible representation (irrep) of the complex Clifford alge-
bra in D generators [53],

γiγ j + γ jγi = 2δi j I , 1≤ i, j ≤ D , (4)

and where the momentum k is defined over a d−dimensional Brillouin zone Td . The Dirac
matrices γi have size 2n × 2n, for n = bD/2c, hence leading to a multi-band spectrum E(k).
This broad class of Hamiltonians include emblematic models of topological insulators and
semimetals, such as Chern insulators in two and four spatial dimensions [38, 54, 55], the Su-
Shrieffer-Heeger (SSH) model in one dimension [36, 44, 56–58], chiral insulators in three
dimensions [59], and Weyl semimetals in three and five dimensions [60, 61]. As already em-
phasized in the introductory Section 1, these ideal Dirac toy models are experimentally real-
ized in a broad class of synthetic lattice systems, including ultracold gases in optical lattices
and photonics devices, where geometric and topological properties can be accessed through
various techniques [58,62].

Due to the Clifford algebra relations, the spectrum of the generic Hamiltonian in Eq. (3) is
directly obtained as E(k) = ±|~d(k)|; we note that the corresponding bands are degenerate in
general. In the following, we consider non-interacting fermions at half-filling, which amount
to setting the Fermi level at EF = 0. In this framework, the spectrum crosses the Fermi level
whenever the vector ~d vanishes. Because the vector has D components, this will generically
occur in a (d − D)−dimensional (closed) submanifold of the Brillouin zone, which we will
refer to as the generalized Fermi surface Σ [63]. For D > d, Σ will, generically, be the empty
set and the system will be gapped. In this work, we will consider cases where d = 2n and
D = 2n+ 1, for some integer n> 0, corresponding to gapped systems without chiral symmetry,
and cases where d = 2n−1 and D = 2n, corresponding to gapped systems with chiral symmetry.
In the latter case, the chiral symmetry is implemented by the additional matrix γD+1 = γ2n+1
which, up to a multiplicative constant, is the product of all the 2n gamma matrices in the irrep;
this matrix γ2n+1 anticommutes with the Hamiltonian, hence signaling chiral symmetry. For
D=d, Σ consists, generically, of a finite collection of isolated points, and the system falls into
the class of Weyl-type semimetals.

Away from Σ, one can define a unit length vector ~n= ~d/|~d| living on a (D−1)-dimensional
sphere SD−1, and which completely determines the eigenstates of the Bloch Hamiltonian: at
momentum k the eigenstates are determined by ~n(k) ∈ SD−1. From the point of view of the
eigenstates, it is sufficient to consider the Hamiltonian

H = −~n · ~γ, with ~n ∈ SD−1 . (5)

In the following, we consider the cases D = 2n + 1 and D = 2n separately, due to the
presence or absence of chiral symmetry.

Let us first consider D= 2n+ 1. The negative energy eigenstates (i.e. the Fermi sea) are
determined by the projector P = (1/2)(I + ~n · ~γ). The quantum geometry associated with this
projector, or equivalently, with the associated eigenvector spaces, is rich and it is encoded in
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the non-Abelian quantum geometric tensor (QGT) [64], whose imaginary part is related to the
non-Abelian Berry curvature [36],

Ω= PdP ∧ dPP =
1
4

P (d~n · ~γ)∧ (d~n · ~γ) P , (6)

where ∧ denotes the wedge product of forms (which guarantees that Ω is a completely skew-
symmetric tensor). The real part of the QGT is the non-Abelian quantum metric, the trace of
which reduces to the standard quantum metric [2],

g2n = Tr (PdPdPP) = 2n−3d~n · d~n . (7)

Remarkably, g2n is the round metric of a sphere S2n of radius R with R2 = 2n−3. The only non-
trivial topological invariant 1 that one can associate with the projector P (and in fact, with the
Hamiltonian H) is the n−th Chern character, which is expressed as

ω2n =
1
n!

�

i
2π

�n

Tr (Ωn) . (8)

Using the properties of the γi matrices [Appendix A], we obtain

ω2n = (−1)n
dvolg2n

volg2n
(S2n)

, (9)

where dvolg is the volume form associated with the metric g, and volg2n
(S2n) =

∫

S2n dvolg2n

is the so-called quantum volume. The result in Eq. (9), which connects the quantum metric
g2n to the topological Chern character ω2n, is central in our work, and it will be made more
explicit in the next Sections.

For D=2n, chiral symmetry imposes that the Hamiltonian can be recast in the form

H = −~n · ~γ=
�

0 q†

q 0

�

, (10)

where q is a unitary matrix. Because the irrep of the Clifford algebra in D = 2n generators
can be seen as the restriction of the irrep of the Clifford algebra in 2n+ 1 generators, one can
describe the geometry and topology of this Hamiltonian in terms of S2n−1 ⊂ S2n, where S2n−1

can be seen as the equator of the sphere S2n; see Fig. 1. As a consequence, the quantum metric
is exactly the restriction to the equator of Eq. (7),

g2n−1 = g2n

�

�

�

S2n−1
= 2n−3d~n · d~n , (11)

and it defines the round metric of a sphere S2n−1 of radius R with, as before, R2 = 2n−3. Here,
the relevant non-trivial topological invariant that we can associate to H is a winding-number
class, which can be determined by dimensional reduction arguments. Specifically, it is the
winding-number class of a gauge transformation on the equator S2n−1 of S2n, which relates
eigenvectors in different gauges defined in the upper and lower hemispheres, and which is
homotopic to the unitary transformation q. The differential form that represents the winding-
number class is expressed as

ω2n−1 = (−1)n−1
�

i
2π

�n (n− 1)!
(2n− 1)!

Tr
�

�

q−1dq
�2n−1�

. (12)

1This statement derives from the fact that spheres only have cohomology in zero and top degrees, and the fact
that the map induced by the Chern character from the complex K-cohomology (tensored with the rationals) to the
ordinary cohomology is an isomorphism; see Ref. [65].
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As in Eq. (9), the form ω2n−1 can be written in terms of the volume element of the quantum
metric over S2n−1,

ω2n−1 = (−1)n
dvolg2n−1

volg2n−1
(S2n−1)

. (13)

The similarity with the non-chiral case can be deduced from the dimensional-reduction
argument (see, for instance Ref. [66], where the variation of the Chern-Simons forms un-
der gauge transformations, whose derivatives determine the Chern characters locally, is ex-
pressed in terms of the winding-number class of the gauge transformation), which sets
∫

S2nω2n =
∫

S2n−1ω2n−1 = (−1)n.
The following Sections aim at clarifying and illustrating the results in Eqs. (9) and (13)

based on relevant examples of topological matter.

3 Gapped systems without chiral symmetry

Here we set d=D−1=2n for some integer n> 0. In this case, H(k) is generically gapped and
there is no chiral symmetry. The vector ~n(k) is hence well-defined everywhere and it can be
used to pullback the quantum geometry in S2n to the Brillouin zone T2n; see Fig. 1(a). We will
write the pullback of the metric in the usual periodic coordinates k = (k1, . . . , k2n) defined in
the Brillouin zone as

g =
2n
∑

i, j=1

gi j(k)dkidk j = 2n−3
2n
∑

i, j=1

∂ ~n
∂ ki
·
∂ ~n
∂ k j

dkidk j . (14)

The non-trivial topological invariant associated with H(k) is given by pulling back the topo-
logical invariant over S2n. Now because D − 1 = d, the pullback of the volume form dvolg2n

is, up to the sign of the Jacobian of the transformation at each point, the volume form of the
pullback metric dvolg =

p

det(g)dk1 ∧ · · · ∧ dk2n. Furthermore, because the Berry curvature
in momentum space is the pullback of the Berry curvature in S2n, it follows that the pullback
of ω2n is the n−th Chern character of the occupied Bloch bundle. In local coordinates, and
using Ω= 1

2

∑2n
i, j=1Ωi jdki ∧ dk j , the identity in Eq. (9) now takes the more explicit form

in

(2π)nn!
1
2n

2n
∑

i1, j1,...,in, jn=1

Tr
�

Ωi1 j1 . . .Ωin jn

�

εi1 j1...in jn = sgn(d~n)(−1)n
(2n)!

2n(n−1)+1n!πn

Æ

det(g) , (15)

where sgn(d~n) = ±1 depending on whether the map to the sphere induced by ~n is orienta-
tion preserving or reversing at the considered point of the Brillouin zone, and we have used
volg2n

(S2n) = (2n(n−1)+1πnn!)/(2n)!. We note that sgn(d~n) can be explicitly computed as

sgn(d~n) = sgn

 

2n+1
∑

i1...i2n+1=1

εi1...i2n+1
d i1 ∂ d i2

∂ k1
. . .
∂ d i2n+1

∂ k2n

!

. (16)

Eq. (15) is one of the main results of this work, relating the Chern character to the determinant
of the quantum metric. We note that similar relations between the Berry curvature and the
geometry of the sphere were recently reported in Refs. [67–69].

Importantly, the left-hand side of Eq. (15) integrates to an integer topological invariant of
the occupied Bloch band, which completely classifies the topological phase,

Chn =
1
n!

�

i
2π

�n∫

T2n

Tr (Ωn) ∈ Z , (17)
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and which is known as the n-th Chern number. The equality established in Eq. (15) implies
the inequality

|Chn| ≤
(2n)!

2n(n−1)+1n!πn
volg(T2n) , (18)

where we have identified the quantum volume volg(T2n)=
∫

T2n

p

det(g)d2nk; the latter quan-
tity is also known as the complexity of the band [22]. We point out that the equality is satisfied
provided sgn(d~n) is constant (everywhere where it is meaningful, i.e., where

p

det(g) 6= 0),
or, equivalently, if the function on the left-hand side of Eq. (15) does not change sign. Note
also that

p

det(g)d2nk is not a volume form in the strict mathematical sense because it neces-
sarily vanishes somewhere in the Brillouin zone. The reason is that ~n : T2n → S2n cannot be
an immersion since the fundamental group of the torus is non-trivial while that of the sphere
is trivial; see the proof of Theorem 3 of Ref. [41] for the case n=1 which is readily generalized
to this case. From Eq. (18), one immediately concludes that if the quantum volume is smaller
than 1, then the system is certainly adiabatically connected to the trivial insulator.

In the following, we illustrate the significance of this result by considering paradigmatic
examples of Chern insulators in d = 2 and d = 4 dimensions.

3.1 Chern insulators in d = 2 dimensions

A generic 2-band Chern insulator model in two dimensions reads

H(k) = ε(k)I + dx(k)σ
1 + dy(k)σ

2 + dz(k)σ
3, (19)

where the matrices σ1,2,3 are Pauli matrices; see Refs. [54, 55] and below for an explicit ex-
ample. The quantum metric identifies a 2-sphere of radius 1/2 [Eq. (7)], and its relation to
the Chern character (i.e. the Berry curvature in the lower band) simply reads [Eq. (15)]

i
2π
Ω12 = sgn(d~n)

p

det(g)
π

, (20)

where we used the fact that the antipodal map ~n 7→ −~n is orientation reversing. In this partic-
ular case, note that sgn(d~n) can be recast in the familiar triple product formula

sgn(d~n) = sgn

�

~d ·
�

∂ ~d
∂ k1
×
∂ ~d
∂ k2

��

. (21)

Here, Eq. (18) reduces to

|Ch1| ≤
volg(T2)

π
, (22)

as was previously studied in Refs. [41,42].

An explicit Chern insulator in d = 2 dimensions

Here we consider a massive Dirac model in two dimensions as a representative of a Chern
insulator. The Bloch Hamiltonian reads [38,55]

H(k) =
2
∑

i=1

sin(ki)σ
i +

�

M −
2
∑

i=1

cos(ki)

�

σ3 = ~d(k) · ~σ , (23)
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Figure 2: Chern number and quantum volume as a function of M .

where M is the mass parameter. The spectrum of the Hamiltonian is given by E(k) = ±|~d|,
where |~d| =

Æ

sin2(k1) + sin2(k2) + (M − cos(k1)− cos(k2))
2. We now explicitly verify the

relation in Eq. (20) using the quantum metric

g =
2
∑

i, j=1

gi j(k)dkidk j =
1
4

2
∑

i, j=1

∂ ~n
∂ ki
·
∂ ~n
∂ k j

dkidk j , (24)

where ~n= ~d/|~d|. The right-hand side of Eq. (20) involves
p

det(g)
π

=
1

4π
|(cos(k1) + cos(k2)−M cos(k1) cos(k2))|

�

sin2(k1) + sin2(k2) + (M − cos(k1)− cos(k2))
�3/2

, (25)

and

sgn(d~n) = sgn

�

~d ·
�

∂ ~d
∂ k1
×
∂ ~d
∂ k2

��

= sgn [−(cos(k1) + cos(k2)−M cos(k1) cos(k2))] . (26)

Altogether, we find

sgn(d~n)

p

det(g)
π

= −
1

4π
cos(k1) + cos(k2)−M cos(k1) cos(k2)

�

sin2(k1) + sin2(k2) + (M − cos(k1)− cos(k2))
�3/2

. (27)

Besides, the left-hand side of Eq. (20) reads

iΩ12

2π
=

1
4π

~d ·
�

∂ ~d
∂ k1
× ∂ ~d
∂ k2

�

|d|3
= −

1
4π

cos(k1) + cos(k2)−M cos(k1) cos(k2)
�

sin2(k1) + sin2(k2) + (M − cos(k1)− cos(k2))
�3/2

,

(28)

which coincides with Eq. (27), in agreement with the relation in Eq. (20).
The topological phase diagram of this model is captured by the first Chern number: Ch1 = 0

for |M | > 2, Ch1 = 1 for −2 < M < 0 and Ch1 = −1 for 0 < M < 2. The inequality involving
the Chern number and the quantum volume, Eq. (22), is illustrated in Fig. 2.

These results are consistent with the findings of Ref. [42], where more instances of d=2
insulators are presented.
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3.2 Chern insulators in d = 4 dimensions

Let us now apply our formula to a higher-dimensional Chern insulator, by considering the
following 4-band model in four dimensions [38]

H(k) = d0(k)Γ
0 + d1(k)Γ

1 + d2(k)Γ
2 + d3(k)Γ

3 + d4(k)Γ
4, (29)

where the five matrices Γ 0,1,2,3,4 are 4×4 Dirac matrices and where the momenta span a four-
dimensional Brillouin zone. In this case, the quantum metric identifies a 4-sphere of radius

1p
2
[Eq. (7)], and the relevant topological invariant is the second Chern number associated

with the doubly-degenerate low-energy band [38]. We recall that this invariant, which was
measured in cold atoms [70, 71], plays a central role in the 4D quantum Hall effect [72, 73].
According to our formula, the corresponding 2nd Chern character is directly related to the
quantum metric according to the relation [Eq. (15)]

−
1

32π2

4
∑

i, j,k,l=1

Tr
�

Ωi jΩkl

�

εi jkl = −sgn(d~n)
3
p

det(g)
2π2

. (30)

This result was independently obtained in Ref. [68]. Here, Eq. (18) yields an inequality be-
tween the second Chern number and the quantum volume

|Ch2| ≤
3volg(T4)

2π2
. (31)

A time-reversal-invariant insulator in d = 4 dimensions

We consider the following Bloch Hamiltonian representing a 4−dimensional Chern insulator
with time-reversal symmetry [38]

H(k) =
4
∑

i=1

sin(ki)Γ
i +

�

M −
∑

i

cos(ki)

�

Γ 5 = ~d(k) · ~Γ . (32)

The phase diagram of this model is captured by the second Chern number: Ch2 = 0 for |M |> 4,
Ch2 = +1 for −4 < M < −2, Ch2 = −3 for −2 < M < 0, Ch2 = +3 for 0 < M < 2,
and Ch2 = −1 for 2 < M < 4. The inequality involving the second Chern number and the
quantum volume, Eq. (31), is illustrated in Fig. 3.

4 Gapped systems with chiral symmetry

We now set d=D − 1=2n− 1 for some integer n > 0. In this case, H(k) is again generically
gapped but chiral symmetry is now present. As above, the vector ~n(k) is well-defined every-
where and it can be used to pullback the quantum geometry in S2n−1 to the Brillouin torus
T2n−1. The pullback of the metric in the periodic coordinates k = (k1, . . . , k2n−1) is written as
above,

g =
2n−1
∑

i, j=1

gi j(k)dkidk j = 2n−3
2n−1
∑

i, j=1

∂ ~n
∂ ki
·
∂ ~n
∂ k j

dkidk j . (33)

The non-trivial topological invariant associated with H(k) is given by pulling back the topo-
logical invariant represented by ω2n−1 over S2n−1. Again, since D− 1=d, the pullback of the
volume form dvolg2n

is, up to the sign of the Jacobian of the transformation at each point, the
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Figure 3: Second Chern number and quantum volume as a function of the model
parameter M .

volume form of the pullback metric dvolg =
p

det(g)dk1∧· · ·∧dk2n. This leads to our second
main result,

(−1)n−1
�

i
2π

�n (n− 1)!
(2n− 1)!

2n−1
∑

i1...i2n−1=1

Tr

�

q−1 ∂ q
∂ ki1

. . . q−1 ∂ q
∂ ki2n−1

�

εi1...i2n−1

= sgn(d~n)(−1)n
(n− 1)!

2
1
2 (n−1)(2n−5)πn

Æ

det(g) , (34)

which connects the winding-number class to the quantum metric. Here, sgn(d~n)=±1 depend-
ing on whether the map to the sphere induced by ~n is orientation preserving or reversing at the
considered point of the Brillouin zone, and we have used volg2n−1

(S2n−1)

= 2
1
2 (n−1)(2n−5)/(n− 1)!. The quantity sgn(d~n) can now be computed as

sgn(d~n) = sgn

 

2n
∑

i1...i2n=1

εi1...i2n
d i1 ∂ d i2

∂ k1
. . .

∂ d i2n

∂ k2n−1

!

. (35)

The left-hand side of Eq. (34) integrates to an integer topological invariant of the occupied
Bloch band, the winding number ν of the map q [Eq. (10)], which completely classifies the
topological phase,

ν= (−1)n−1
�

i
2π

�n (n− 1)!
(2n− 1)!

∫

T2n

Tr
�

�

q−1dq
�2n−1� ∈ Z . (36)

The equality established in Eq. (34) now implies an inequality for the winding number

|ν| ≤
(n− 1)!

2
1
2 (n−1)(2n−5)πn

volg(T2n−1) . (37)

Again, we note that the equality is satisfied whenever sgn(d~n) is constant (for
p

det(g) 6= 0),
or, equivalently, if the function on the left-hand side of Eq. (34) does not change sign. We will
now illustrate these results with prime examples of chiral insulators.

4.1 Chiral insulators in d = 1 dimension

The simplest instance of a chiral insulator is provided by the generic Hamiltonian

H(k) = dx(k)σ
1 + dy(k)σ

2, (38)
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which describes the emblematic Su-Shrieffer-Heeger (SSH) model in one dimension [36,56];
see below. The 1d chiral insulator is characterized by a quantized Zak phase [44,57,58], which
defines a topological winding number in the 1D Brillouin zone. Using the formula in Eq. (34)
and using the fact that in this case the antipodal map is orientation preserving, we find that
the corresponding winding-number class is related to the quantum metric in the lower band
according to

i
2π

q−1 ∂ q
∂ k
= −sgn(d~n)

p
g11

π
, (39)

where q = (dx + idy)/|dx + idy |, and

sgn(d~n) = sgn

�

dx
∂ dy

∂ k
− dy

∂ dx

∂ k

�

. (40)

In this case, the inequality involving the winding number in Eq. (37) takes the simple form

|ν| ≤
volg(T1)

π
. (41)

The Su-Schrieffer-Heeger (SSH) model

We now address the SSH model in detail to illustrate this d=1 case. The Bloch Hamiltonian
in Eq. (38) is specified by the vector

~d(k) = (v +w cos(k), w sin(k)) , (42)

where v, w are the two alternating hopping amplitudes in the SSH lattice [58]. The relative
strength of the hoppings |v/w| determines the topological character of the model. The spec-
trum of the model is given by E(k) = ±|~d(k)| = ±

p

v2 +w2 + 2vw cos(k), the latter being
gapless when |v/w|= 1. The quantum metric is readily evaluated and reads

g =
1
4

w2 (w+ v cos(k))2

(v2 +w2 + 2vw cos(k))2
dk2 . (43)

We now illustrate the relation in Eq. (39), connecting the winding-number class to the quantum
metric. For the SSH model, the right-hand side of Eq. (39) reads

−sgn(d~n)
p

g11

π
= −sgn(d~n)

1
2π

|w (w+ v cos(k))|
v2 +w2 + 2vw cos(k)

, (44)

where

sgn(d~n) = sgn

�

dx
∂ dy

∂ k
− dy

∂ dx

∂ k

�

= sgn [w (w+ v cos(k))] . (45)

Altogether, this yields

−sgn(d~n)
p

g11

π
= −

1
2π

w (w+ v cos(k))
v2 +w2 + 2vw cos(k)

. (46)

Besides, the left-hand side of Eq. (39) can be obtained from q =
dx+idy

|dx+idy |
, yielding

i
2π

q−1 ∂ q
∂ k
= −

1
2π

dx
∂ dy

∂ k − dy
∂ dx
∂ k

d2
x + d2

y
= −

1
2π

w (w+ v cos(k))
v2 +w2 + 2vw cos(k)

, (47)
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Figure 4: Winding number and quantum volume as a function of v, with w= 1.

in agreement with Eq. (46) and the relation in Eq. (39).
Without loss of generality, we may take w=1, in which case the phase diagram is dictated

by the winding number as follows: ν= 0 for |v|> 1 and ν= −1 for |v|< 1. For v = 0, which
is located in the non-trivial regime, the quantum metric assumes the simple form

g11 =
1
4

dk2 , (48)

and the winding-number class is simply represented by

i
2π

q−1dq = −
p

g11dk

π
= −

dk
2π

. (49)

We illustrate the inequality involving the winding number and the quantum volume [Eq. (41)]
in Fig. 4. We note that the right-hand side of this inequality is smaller than 1 for |v|> 1, hence
implying ν = 0, and it is exactly equal to 1 for |v| < 1; this is consistent with the fact that
sgn(d~n) is constant as a function of k in that region.

4.2 Chiral insulators in d = 3 dimensions

Moving on to higher-dimensions, a model describing a chiral insulator in d = 3 dimensions
can be written in the form

H(k) = d0(k)Γ
0 + d1(k)Γ

1 + d2(k)Γ
2 + d3(k)Γ

3, (50)

where the Γ ’s represent the 4 × 4 Dirac matrices; see Ref. [59] for an explicit model and
implementation. Here, the quantum metric identifies a 3-sphere, and the relevant topological
invariant characterizing the insulator is provided by the 3D winding number [74]. Using the
formula in Eq. (34), the relation between this higher-dimensional winding-number class and
the quantum metric reads

1
24π2

3
∑

i, j,k=1

Tr

�

q−1 ∂ q
∂ ki

q−1 ∂ q
∂ k j

q−1 ∂ q
∂ kk

�

εi jk = sgn(d~n)

p
2
p

det(g)
π2

, (51)

where we used the fact that the antipodal map is orientation preserving between spheres of
odd dimensions. The inequality in Eq. (37) reduces to

|ν| ≤

p
2volg(T3)

π2
, (52)

where ν is the winding number in d=3 dimensions.
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Figure 5: 3d winding number and quantum volume as a function of M .

An explicit chiral insulator in d = 3 dimensions

We consider the following Bloch Hamiltonian, describing the chiral insulator of Ref. [59],

H(k) =
3
∑

i=1

tSO sin(ki)Γ
i + (mz − t0 (cos(k1) + cos(k2) + cos(k3))) Γ

0 , (53)

where the physical meaning of the parameters tSO, mz and t0 is not relevant for this discussion.
For the sake of presentation, we hereby set tSO = t0 = 1, and M ≡ mz , so that the above
equation reduces to

H(k) =
3
∑

i=1

sin(ki)γi + (M − (cos(k1) + cos(k2) + cos(k3)))γ0 = ~d(k) · ~γ, (54)

which is a higher dimensional analogue of the massive Dirac model considered in Section 3.1.
The phase diagram of this model is established by the 3D winding number: ν= 0 for |M |> 3,
ν = +1 for −3 < M < −1, ν = −2 for −1 < M < 1, and ν = +1 for 1 < M < 3. We illustrate
the inequality involving the 3D winding number and the quantum volume [Eq. (52)] in Fig. 5.

5 Gapless Weyl-type systems

A prime example of a gapless Weyl-type system is provided by the 3D Weyl Hamiltonian [60]

H(k) = kxσ
1 + kyσ

2 + kzσ
3. (55)

The Berry curvature field in the lower band emanates radially from the origin k = 0, and its
flux through a 2-sphere S2 that contains the origin is quantized according to the first Chern
number

Ch1 =

∫

S2

i
2π
Ω= 1 . (56)

As pointed out in Ref. [24], the quantum metric in the lower band identifies a 2-sphere and is
related to the Berry curvature (using positively oriented coordinates on the sphere) as

iΩi j = 2
Æ

det(g)εi j , 1≤ i, j ≤ 2 . (57)
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This is the simplest form of Eqs. (9) and (15), where the Brillouin zone is now replaced by
a sphere surrounding the monopole. Accordingly, the topological “monopole" charge can be
expressed in terms of the quantum metric as

Ch1 =
volg2

(S2)

π
= 1 . (58)

Weyl-type systems can also be generalized to higher dimensions [61, 75]. For instance, a
generic 5D Weyl Hamiltonian can be written in terms of the 4× 4 Dirac matrices as [61]

H(k) = k0Γ
0 + k1Γ

1 + k2Γ
2 + k3Γ

3 + k4Γ
4. (59)

In this case, the origin hosts a Yang (non-Abelian) monopole whose topological charge is pro-
vided by the second Chern number. Using the formula in Eq. (15), we find that this monopole
charge can be obtained from the quantum metric as

Ch2 =
1
2

�

i
2π

�2
∫

S4

Tr
�

Ω2
�

= −
3

2π2
volg4

(S4) = −1 , (60)

where the Brillouin zone T4 was replaced by a sphere S4. The quantum metric identifies a
4-sphere of radius 1p

2
that surrounds the Yang monopole, whose topological charge density is

a multiple of the quantum volume form.

6 Relation to the Cramér-Rao bound and measurement uncertainty

In quantum metrology, the quantum Fisher information of a pure state, defined over a parame-
ter space, is equivalent to the quantum metric [2–5]. In that metrological context, the quantum
metric thus plays a key role by constraining the precision of quantum-parameter-estimation
measurements through the celebrated Cramér-Rao bound [51, 52]. For a one-dimensional
space spanned by the parameter β , this relation reads

δβ ≥ 1/
q

NFβ , (61)

where δβ denotes the uncertainty associated with the parameter-estimation measurement,
Fβ = 4gββ is the quantum Fisher information (gββ denotes the quantum metric), and N is
the number of independent measurements.

The present work introduced relations between the quantum metric and topological classes,
and it is thus intriguing to explore how the latter can influence metrological properties. In this
Dirac-Hamiltonian framework, the relevant parameter space is provided by the momentum
space [Section 2], over which one defines the quantum metric and the quantum-parameter-
estimation measurement.

In this Section, we address this question by considering the case of gapped systems without
chiral symmetry of dimension d = 2n; see Section 3. The relevant states for the parameter-
estimation measurements are defined at momentum k ∈ Td in the lowest energy band of the
Dirac Hamiltonian, as described by the vector ~d(k). The Cramér-Rao bound, see Theorem 3.1
of Ref. [52], then states that the uncertainty, as measured by the covariance matrix of an
unbiased estimator Σ(k) = [〈δkiδk j〉]1≤i, j≤d , is related to the quantum Fisher information
matrix or, equivalently, to the quantum metric g(k) = [gi j(k)]1≤i, j≤d , through the inequality

Σ(k)≥
1

4N
g−1(k) , (62)
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where g−1(k) denotes the inverse matrix of g(k), N is the number of independent measure-
ments, and the inequality is understood as an inequality between positive definite matrices.
The inequality holds away from the set of points in the Brillouin zone where the metric is not
invertible [i.e., where the differential of the map ~n : Td → Sd is not invertible].

We proceed to prove a relation between Σ and the Chern character class representa-
tive. Using the fact that for non-negative real d × d symmetric matrices A, B we have the
Minkowski determinant theorem (Theorem 4.1.8 of Ref. [76]), det(A + B)1/d ≥ det(A)1/d

+ det(B)1/d it follows that det(A + B) ≥ det(A) + det(B). Now take A =
Σ(k)− 1

4N g−1(k)≥ 0 and B = 1
4N g−1(k). It follows that

det(A+ B) = det(Σ(k))≥ det
�

Σ(k)−
1

4N
g−1(k)

�

+ det
�

1
4N

g−1(k)
�

≥ det
�

1
4N

g−1(k)
�

=
1

22d N d

1
det(g(k))

.

Taking square roots, we find the inequality

Æ

det(Σ(k))≥
1

2d
p

N d

1
p

det(g(k))
. (63)

We remark that the Cramér-Rao inequality in Eq. (62), and hence in Eq. (63), is saturated if
and only if the Berry curvature is trivial, Ω(k) = [Ωi j(k)]1≤i, j≤d = 0; see Theorem 3.2 and
Corollary 3.2.1. in Ref. [52]. It follows that, for the case at hand, due to the strict relation
between the quantum metric and Berry curvature provided in Eq. (15), it is not possible to
saturate the Cramér-Rao bound—hence the inequalities are strict in this case and we will drop
the equality sign from hereon.

Taking absolute values on both sides of Eq. (15), we get

1
(2π)nn!

1
2n

�

�

�

�

�

2n
∑

i1, j1,...,in, jn=1

Tr
�

Ωi1 j1 . . .Ωin jn

�

εi1 j1...in jn

�

�

�

�

�

=
(2n)!

2n(n−1)+1n!πn

Æ

det(g) ,

or equivalently

Æ

det(g) =
2n2−3n+1

(2n)!

�

�

�

�

�

2n
∑

i1, j1,...,in, jn=1

Tr
�

Ωi1 j1 . . .Ωin jn

�

εi1 j1...in jn

�

�

�

�

�

. (64)

Plugging this into the inequality of Eq. (63), we find

Æ

det(Σ(k))>
(2n)!

N n2n2−n+1

1
�

�

�

∑2n
i1, j1,...,in, jn=1 Tr

�

Ωi1 j1 . . .Ωin jn

�

εi1 j1...in jn

�

�

�

. (65)

Consequently, we find that the Chern character class imposes a lower bound to the uncertainty
volume at k, as described by

p

det(Σ(k)). To show the significance of this result, we consider
the two-dimensional case (n= 1), for which the above inequality reduces to

Æ

det(Σ(k))>
1

2N
1

|Ω12(k)|
. (66)

If we recall that the Berry curvature acts like an effective magnetic field in k-space, the above
relation (66) can be viewed as the constraint imposed by the corresponding effective (and
local) magnetic length onto the momentum-estimation measurement. This relation is to be
compared with the characteristic width (and hence, the uncertainty area) of Landau levels in
real space, which is established by the magnetic length, δr ∼ lB ∼ 1/

p
B.
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7 Concluding remarks

The general relations derived in this work indicate that the topological indices characterizing
topological insulators and semimetals are directly connected to the underlying quantum met-
ric, within the framework of Dirac Hamiltonians. While this class of systems was originally
introduced as toy models in condensed matter physics, they are today realized in a broad class
of synthetic systems, including ultracold gases in optical lattices, solid state qubits and pho-
tonics devices. Importantly, the quantum metric can be extracted in these synthetic systems,
for instance, by monitoring excitation rates upon periodic modulations [23, 77]; this is for-
mally equivalent to measuring dynamical susceptibilities [77,78]. These measurements were
recently performed in various quantum-engineered settings [28, 29, 31, 33, 34]; see Ref. [79]
for a generalization of this probing method to the case of degenerate (non-Abelian) systems,
which is indeed relevant for extracting the quantum metric of higher-dimensional Dirac sys-
tems discussed in this work. Altogether, this indicates that a wide range of topological in-
dices (including winding numbers) could be accessed in quantum-engineered systems through
quantum-metric (dynamical susceptibility) measurements, including higher-dimensional set-
tings [48, 62, 73, 80]. In this context, an interesting perspective concerns the extension of
our framework to other classes of Hamiltonians, such as those based on Gell-Mann matri-
ces [24, 74, 81–83], where similar relations between topology and quantum geometry have
been identified [24]. Another interesting route concerns the implications of metric-curvature
relations for quantum metrology, as we briefly illustrated in the previous Section 6.
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A Computation of the n−th Chern character

We consider

H(k) = −
2n+1
∑

i=1

d i(k)γi = −~d(k) · ~γ , (67)

where the γ matrices form an irreducible representation of the Clifford algebra in 2n + 1
generators. The Berry curvature of the negative energy bundle, described by the orthorgonal
projector P = (1/2)(I + ~n · ~γ), is given by the explicit formula

Ω= PdP ∧ dPP =
1
4

P (d~n · ~γ)∧ (d~n · ~γ) P =
1
4

2n+1
∑

i, j=1

Pγiγ j Pdni ∧ dn j . (68)

17

https://scipost.org
https://scipost.org/SciPostPhys.12.1.018


SciPost Phys. 12, 018 (2022)

The group SO(2n+1) acts on S2n transitively. Let R= [Ri
j]1≤i, j≤2n+1 ∈ SO(2n+1) and consider

the associated map R : S2n→ S2n. Then the pullback of the Berry curvature under R is

R∗Ω=
1
4

P ◦ R (dR~n · ~γ)∧ (dR~n · ~γ) P ◦ R

= U−1
�

Pγiγ j P
�

Udni ∧ dn j

= U−1ΩU , (69)

where P ◦ R = 1
2 (I + (R~n) · ~γ) and UγiU

−1 = R · γi =
∑2n+1

j=1 R j
iγ j , i = 1, . . . , 2n+ 1, for any of

the two choices of U lifting R to Spin(2n+ 1). As a consequence, we realize that Ω is rotation
covariant in the sense that the pullback by rotations can be realized by acting by conjugation
by an appropriate element of Spin(2n+ 1).

We are left with the computation of

in

(2π)nn!
Tr (Ωn) , (70)

which, because we are taking a trace, is rotation invariant. It is then enough to compute it at
the north pole of the sphere ~n = (0, . . . , 0, 1) and then rotate it back to general position. In
that case, since d~n · ~n= 0, we have dn2n+1 = 0. The computation greatly simplifies since

Ω|~n=(0,...,0,1) =
1
16

2n
∑

i, j=1

(1+ γ2n+1)γiγ j (1+ γ2n+1) dni ∧ dn j

=
1
8

2n
∑

i, j=1

(1+ γ2n+1)γiγ jdni ∧ dn j , (71)

because γ2n+1 anti-commutes with all the remaining γ matrices. We see that all we need to
compute is

in

(2π)nn!22n

2n
∑

i1, j1,...,in, jn=1

1
2

Tr
�

(1+ γ2n+1)γi1γ j1 . . .γinγ jn

�

dni1 ∧ dn j1 ∧ · · · ∧ dnin ∧ dn jn

=
in

2(2π)nn!22n

2n
∑

i1, j1,...,in, jn=1

εi1 j1...in jnTr
�

(1+ γ2n+1)γi1γ j1 . . .γinγ jn

�

dn1 ∧ · · · ∧ dn2n

= (−1)n
(2n)!

2(2π)nn!22n
Tr [(1+ γ2n+1)γ2n+1] dn1 ∧ · · · ∧ dn2n

= (−1)n
(2n)!

n!(2π)n!2n+1
dn1 ∧ · · · ∧ dn2n . (72)

Observe that, by rotation invariance, the expression dn1 ∧ · · · ∧ dn2n is equivalent to, at a
general point ~n ∈ S2n,

1
(2n)!

2n+1
∑

i1,i2,...,i2n+1=1

εi1...i2n+1
ni1 dni2 ∧ · · · ∧ dni2n+1 , (73)

which is just the volume form of S2n with respect to the round metric d~n · d~n, that has vol-
ume (22n+1πnn!)/(2n)!. We can then use as a representative for the generator of top degree
cohomology of S2n

η=
1

22n+1n!πn

2n+1
∑

i1,i2,...,i2n+1=1

εi1...i2n+1
ni1 dni2 ∧ · · · ∧ dni2n+1 , (74)
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which satisfies
∫

S2n η= 1. In terms of η, we have

in

(2π)nn!
Tr (Ωn) = (−1)n

1
(2π)n2n+1

22n+1πnη

= (−1)nη . (75)

In particular, the above equation implies that, since the quantum metric g2n is the round metric

up to a scale factor, we can write η=
dvolg2n

volg2n (S
2n) , and so we have

in

(2π)nn!
Tr (Ωn) = (−1)n

dvolg2n

volg2n
(S2n)

. (76)
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