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Abstract

We consider the XY spin chain with arbitrary time-dependent magnetic field and aniso-
tropy. We argue that a certain subclass of Gaussian states, called Coherent Ensemble (CE)
following [1], provides a natural and unified framework for out-of-equilibrium physics
in this model. We show that all correlation functions in the CE can be computed using
form factor expansion and expressed in terms of Fredholm determinants. In particu-
lar, we present exact out-of-equilibrium expressions in the thermodynamic limit for the
previously unknown order parameter 1-point function, dynamical 2-point function and
equal-time 3-point function.
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1 Introduction

Quantum integrable models are special models of many-body quantum physics with both a
rich phenomenology and an exact Bethe-ansatz solution. But despite their “exact solvability",
obtaining closed-form expressions in the thermodynamic limit for correlations of local observ-
ables in and out-of-equilibrium remains a formidable challenge. The standard approach to
these problems [2] consists in expressing such correlation functions as form factor sums over
the full Hilbert space. In interacting models, this task has been achieved only in certain pa-
rameter regimes, such as ground state correlations at late times and large distances [3-6],
equal-time finite temperature correlations at short or large distances [7-16], full correlations
in systematic strong coupling expansions [17, 18] or expansions in low densities of excita-
tions [19-21], and also in some particularly simple interacting models or settings [22-25].
A number of numerical, approximate, field theory and other approaches aimed at facilitating
form factor summations have been developed over the last decade and a half [26-42].

A subclass of quantum integrable models has arguably been of particular importance,
namely theories that can be formulated in terms of free fermions. Examples include the Lieb-
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Liniger model at infinite coupling [43,44] and the XY model in a field [45-50]. They constitute
the point of departure and testbed of any field theory or exact method applying to the inter-
acting case. But despite their free fermion formulation, the problem of obtaining analytic
expressions for general in- and out-of-equilibrium correlations in the thermodynamic limit is
still unsolved for some of these models. In fact, the computation of in- and out-of-equilibrium
correlations can be said to be “fully” solved only for the models with a U(1) symmetry such as
the Lieb-Liniger model at infinite coupling and the XX chain. In this case, there exist integral,
Pfaffian or Fredholm determinant representations for all static and dynamical correlations in
arbitrary eigenstates [51-60], as well as for the full out-of-equilibrium time evolution of cor-
relations after quantum quenches [56,61]. The exact tractability of the form factor expansion
in these cases originates from the Cauchy determinant structure of the form factors [51].

However, there are still unknown correlation functions in the thermodynamic limit of free
fermionic models without U(1) symmetry such as the Transverse Field Ising Model and more
generally the XY model in a field, despite a vast literature on the subject, see e.g. [45,47,49,
62-96]. While the quantities that are local in the underlying fermions (such as any correlation
of the transverse magnetization, and the static 2n-point functions of the order parameter) can
be computed efficiently with Pfaffian representations arising from Wick’s theorem [47, 49],
there are no known exact representations for expectation values in general Gaussian states
in the thermodynamic limit for the quantities that are non-local in the underlying fermions
(such as static (2n + 1)-point functions of the order parameter, or any dynamical correlation
of the order parameter). What makes the form factor expansion difficult to compute in these
cases despite the model being free is that the form factors of the order parameter are not of
Cauchy form. As a consequence, in terms of difficulty of the calculation these free models
without U(1) symmetry can be considered as in certain ways intermediate cases between free
U(1)-symmetric and interacting models.

In contrast to the situation in the thermodynamic limit Pfaffian representations are readily
available in finite systems with open boundary conditions, see e.g. [97]. Similarly, for finite
systems with periodic boundary conditions one can invoke clustering properties [49, 50, 77,
79,83] to obtain approximate representations. However, these representations typically scale
with system size and as a far as we are aware their thermodynamic limits are generally not
known.

In this work we show how to perform the form factor expansion for expectation values
of arbitrary operators out of equilibrium. In particular, we derive the full time evolution of
the order parameter one-point function, dynamical two-point function and static three-point
function under arbitrary time-dependent ramps of the magnetic field and the anisotropy. We
also derive alternative Fredholm determinant expressions for the full counting statistics of the
transverse magnetization and order parameter two-point function using form factor expan-
sions rather than Wick’s theorem, hence with a method that is more generalizable to interact-
ing models. This puts the XY model in a field on the same footing as the models with U(1)
symmetry with regards to out-of-equilibrium physics.

The technique we use to obtain these results is as follows. We define the Coherent Ensemble
(CE) as the expectation value of operators within coherent states, which are superpositions of
all zero-momentum pair states, weighted by amplitudes which are parameters of the CE. The
crucial property of these coherent states is that they retain their structure when expressed
in terms of eigenstates of the XY Hamiltonian with different values of magnetic field h and
anisotropy ¥, as observed in [1] for the Ising model. This has two consequences: (i) The time
evolution of the initial state with any variation of magnetic field h(t) and anisotropy y(t) can
be written as a coherent state with a certain amplitude; (ii) Any correlation function in the
CE can be recast as a correlation function in an elementary (classical) Hamiltonian such as

—Zj 0707, forh =0,y =1 or —Zj 0% for h = oo. At these values of parameters, the
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form factors of the order parameter are exactly Cauchy determinants, which enables one to
use the techniques developed for U(1) symmetric models and obtain Fredholm determinant
expressions in the thermodynamic limit.

We note that these coherent states appeared more or less explicitly in different papers in
the literature [67, 68,74, 77,98]. Most notably in [67, 68] they were used to obtain a Fred-
holm determinant expression for the two-point function of the order parameter at equilibrium
at finite temperature. But to the best of our knowledge their utility in deriving Fredholm deter-
minant representations for generic out-of-equilibrium correlators has not been realized prior
to [1] and the present work.

The paper is organized as follows. We start by introducing coherent states in Section 10,
and explain why out-of-equilibrium physics can be written as a CE. Then in Section 3 we
show that arbitrary expectation values and correlation functions can be computed within the
CE. Their derivation relies on a number of Lemmas for form factors and summation formulas
that are gathered and proven in Appendix B. Finally, in Section 4 we apply our results to a
number of examples including the Kibble-Zurek mechanism, Floquet physics and quantum
quench physics.

2 Coherent Ensemble in the XY model

2.1 The XY model in a field

The Hamiltonian of the XY model on a system of size L even, in a magnetic field h and with
anisotropy y is [45]

L
1+7y 1—v y
H(h,Y):—ZlTO';.CO';.C+1+TO'jO'j+l+hO'§. (1)
J:
We impose periodic boundary conditions L+ 1 = 1. The diagonalisation of H(h, y) is reviewed
in Appendix A. The Hamiltonian splits into two sectors H(h,y) = HNS(h, y) ® HR(h, y) called

Neveu-Schwarz (NS) and Ramond (R) sector respectively

+ 1
HNS’R(h; Y) = Z Shy(k) (a},ly;kahy;k - _) ) (2)

keNS,R 2

where the fermions ay,. satisfy canonical anti-commutation relations {apy.; a;;y;p} = Orp-
Here, NS and R denote the sets

NS — {Zn(n +1/2)

n=—L/2,...,L/]2—1},
) /2,.01/2-1)

21n )
R= {T,n =—L/2,...,L/2—1} ,
and &y, (k) denotes the energy of mode k
24/(h—cosk)? +y2sin’k ifk#0
ey ) = {2V ey k7o, )
—2(1—h) ifk=0

In these conventions, o* (resp. o) is local (resp. non-local) in the underlying Jordan-Wigner
fermions', see Appendix A.

!We note that compared to the previous paper in Ising [1] the notations for o, o have been switched, to match
usual conventions in the quantum quench literature.
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)NSR

Denoting by |0 the respective vacuum states annihilated by the ay,,;’s in the NS and
R sectors, the elgenstates of the model are then

k)n,y = a;‘;y;k h}, ky |0)h), ) k c NS, N even,

p (5)

k), = ai(xy;kl ooy 10)y . kcCR,  Nodd.
In these definitions we choose an ordering such that k; < k; if i < j and k; # 0,k; #0. f 0 €k
then we choose ky = 0.

For h > 1, the ground state is |O)§YS. For 0 < h < 1 the two lowest energy states are IO)}I:IYS
and ahy 0|0)}jy. Their energy levels are exponentially close in L, and in finite size the true
ground state is |O)}If)§ The model has two critical lines |h| = 1,y # 0, and for y = 0, |h| < 1[47].

The energies of |0)NS hy and ahY O|O>hy are given by

Q‘EEYS =— Z \/(h—cosk)2+y25in2k,

keNS

(6)
——Z \/(h—cosk)z+yzsin2k+2|1—h|1h>1.
keR
Here we have defined
B 1 ifh>1, )
h>17 0 else.

2.2 Coherent states

We define NS, ,R, as the subsets of NS and R defined in (3) with strictly positive elements.
Given k ¢ NS, , we define pair states in the NS sector as the Fock states

S = e U (RS, ®)
and given k C R, pair states in the R sector as
|I-<)}Ify =lku(—=k)U {O})}Ify . C))

Following [1], for a complex number A called “phase" and a function f called “amplitude", we
introduce coherent states by

(A, f)=A ) []_[f(k)] NS =a [ [1+f00a), _ai ]IS,

kcNS, Lkek keNS,

WRAf)=A] []_[f(k)]i‘c —Al_[[1+f(k)ahY L ;;Yk] af IO .

kcR, Lkek keR,

(10)

In these definitions the amplitude f needs to be defined only on [0,7t]. However we will
consider it as an odd function defined on [—m, w]. We used the term "coherent" to denote
these states in analogy with the better known coherent states for bosons b defined by et |0).
The rlght hand sides of (10) can indeed be written as the exponential of the bosonic terms
hy —k hyk
The key observation made in [1] for the transverse field Ising chain is the following relation
between coherent states at different parameter values (h,y) and (h, 7):
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Theorem 1. Let h, h and Y, Y be arbitrary magnetic fields and anisotropies respectively. Then we
have

v N4 ) =9 A ), (11)
where
iea 1+ iK,;y;hY(k)f(k)
keNS, R, 1+ K]%?,hy(k)
K () + £
Fll) = Tt : (12)
1+ lKﬁ);;hY(k)f(k)
Here we have defined
971? _ eh)’ ) _ . .
Kﬂfx-hy(k) — tan 2k k , e“’ziw _ h—cosk —iysink . (13)
' 2 v/ (h—cosk)? + y2sin® k

Proof. The proof is similar to that in [1] for the Ising model. Expanding the coherent state in
a basis of energy eigenstates gives

A=A, D] [l_[f(r)} 05 Nl (14)

qCNSrcNS, Lrer

The overlaps (qlr) between eigenstates of H(h,y) at different magnetic fields and aniso-

tropies are g1ven 1n Lemma 1 in Appendix B. Introducing the short-hand notation
K(k) = Kjy.5,, (k) we have

WA, ) = f \/iTz(k)qZ [Tix@n 3 [Tro | @5,

cNS, | q<q rcNs, rer
keNs,
f(r) if re
F(r,q) = § X0 o (15)
iK(r)f(r) ifrégq.

The sum over r is

>, l_[J-"(r,Q)=l_[( J;((q))) [T a+ixwr®)

rcNs, rer q<q keNS,
k¢q (16)
1+ 52 ¥
=== [ ] a+ixtos ).
aeq L HIK(@f (@) 2ys,
Then
UNS(A, f)=A []_[f(q)] )5S 17)
qCNS, Lqeq
with 4, f defined in the theorem. O

2.3 Coherent Ensemble

The purpose of this section is to introduce the Coherent Ensemble which is convenient for
formulating general time-dependent Hamiltonian dynamics.

6


https://scipost.org
https://scipost.org/SciPostPhys.12.1.019

Scil SciPost Phys. 12, 019 (2022)

2.3.1 Generalized Gibbs and Gaussian ensembles

We recall that the Generalized Gibbs Ensemble (GGE) parametrized by generalized tempera-
tures f31, Bs, ... is defined by the following expectation values of an operator O

((,))GGE[hy] _ tr[oe_z"ﬁ”H”]

= , 18
ﬁ tr[e_zn ﬁan] ( )

where H,, are the conserved quantities of the model, and where tr denotes a trace over the
full Hilbert space. These ensembles describe equilibrium physics (in the sense that local ob-
servables become time independent [99,100]) in the XY model, be it finite-temperature equi-
librium or steady states reached after a quantum quench. In the thermodynamic limit, they
are equivalently parametrized by a particle density p(A) [101].

The Gaussian Ensemble (GE) parametrized by the 2 x 2 block L x L correlation matrix
T is defined by the fact that the expectation values satisfy Wick’s theorem when expressed
in terms of the Jordan-Wigner fermions c;, see Appendix A, the elementary 2-point functions
being given by

]}
GE[h GE[hy]
- (( ) [hy] ( T v> [ Y) 19
ij GEh GEh .

ij (clc ) [hy] (Clcjr G [hy]

GGE’s are particular cases of GE’s for the XY Hamiltonian (1).

2.3.2 Definition of the Coherent Ensemble

An operator O is called even (resp. odd) if its matrix elements between eigenstates with differ-
ent (resp. same) fermion parity vanish. We define the Coherent Ensemble (CE) parametrized
by an amplitude f (k) by the following expectation values for even local operators O

(O)FHTT = wNS(ANS, FYTOUNS(AYS, f), (20)
and for odd operators
(O)S = 2 [l (A%, £Y OURSEA™S, £) + NSNS, YT 0wl (4 )] on
=2 [WR (A%, F)TOUNSAN, £)],
where
ast= [T a+1fwRs. (22)

keNS, R,

Replacing NS by R in (20) incurs only negligible corrections in system size.
We note that the expression (21) naturally arises when the expectation value of an odd
operator O is computed in a state that is a superposition of NS and R sector states

[wNS) + | TR)

¥) = 72

(23)

2.3.3 CE as a particular case of a GE

Let us show that each CE corresponds to a particular GE. To that end, we consider the following
expectation value of Jordan-Wigner fermions in momentum space

(c(k)".. clkn) e(qr) .- C(qm))CE il (24)
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with for example kq,...,k,,q1,-..,q, € NS, and would like to show that it can be computed
using Wick contractions. Using Theorem 1, we can write it in the (00, y) basis with another
amplitude f’. In this basis we have
. ~ CE[h i CE
(clk)' el e(@) - clan)) ™ = (af, ...af ag,...ag )77, (25)

1 n

where the a’s are implicitly written in the (o0, y) basis for notational lightness. Next, we

observe that for the expectation value (a, a ...a;i aq, ...aqm)?F[ooY] to be non-zero, for each
k; there has to be either another k; with k = —k;, or a q; with g; = k;. The same holds true

interchanging the k’s and the g’s. Hence we are led to evaluating expectation values of the

form
<l_[ Zi Ak, l_[ LL' thi | | Ar, A—r, | | a_, Ct (G O >?F[ g s (26)
i 1 i i

where the k’s, ¢’s, r’s and s’s are all distinct. Using the definition of the CE, we obtain

a a af .o al a"a a )CE[OOY]
k; —q; q —T; —s; sy s =Sl fr

_ l_[ P l_[ @ l_[ AN g WO @7
R A EE S RGeS SV EE RS E L
We now observe that the non-zero elementary two-point functions satisfy
+  \CE[ocoy] _ |f/(k)|2 CE[ooy] _ f'(k)
(akak>f/ = 1+ |f/(k)|2 P (aka—k>f/ - 1+ |f’(k)|2 . (28)

Because of the relation
|f/($)|2 _ 7 F _\CE[oco CE[coy] CE[ooy], + CE[ooy]
m - ( —s s>f’ ( QA —s) ( a_; —s) ( )f’ (29)

we obtain that the right-hand side of (27) and so (24) can indeed be computed using Wick’s
theorem, which establishes that the CE is a particular case of a GE.

2.3.4 Inequivalence of CE with GE or GGE

CE ensembles are not equivalent to either GEs or GGEs. To show this, let us consider an
operator O that is local in terms of the fermions ¢; and compute its expectation value within the
CE. Using Wick’s theorem in the thermodynamic limit it can be recast into sums and products
of expectation values of quadratic terms in the Jordan Wigner fermions c;’s in real space. These
take the values

. 1 (" o FOR 1
(cncm)?E[hY] —J i )k[cosz(QhY/2) +sm2(9£7’/2)w]dk

27 +1f (k)2
L7 ek gy g SF GO
- e sinf, ' —————dk,
21 )_ . K1+ [f (k)2
. Y 2
CElhy] _ T ik(n—m) g gl 1—-|f (k)
(CnCm) f pp f e sin 6, T F O
1 (7 nm <052 (6 17 /2)f (k) +sin®(6," /2)f * k)
—o— | e > (30)
21 ) _r 1+f (k)|
By computing the Fourier series, one sees that the values of (c,c )?E[hﬂ for all n,m impose

a system of two polynomial equations of degree 2 on Rf and §f. This prevents (c cm)CE br]

8
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from taking arbitrary values, whereas in the GE they are independent quantities. Hence the
CE’s are a strict subset of GE’s.

Expectation values of local operators in the thermodynamic limit of a GGE can be expressed
in terms of mode occupation numbers or equivalently a root density p [101] and the associated
hole density pj, = % —p as

Y T

el=mk cos2(017 /2)p (K)dk + f ek in2(91 12) 0, (—k)dk
(T - (31)
(eucmbportl =2 J e = sin "7 (py(—k) — p(K))dk.

—T

(Czcm)gGE[hY] = f

—T

To have (cncm)gGE[hY] = (cncm)?E[hH for all n, m requires a purely imaginary f (k) = if (k) and

the relation

1 fw? o, 1 f(k)

p(k)= > —. (32)
21+ f(k)? 2rtan GZY 1+ f(k)?
The requirement that (cicm)gGE[hﬂ = (cj;cm)jccE[hY] for all n, m further imposes that
1 fa? @8’
plk)=— — (33)

T2If(? 27 14f(kR

One sees that the two relations are compatible only if f (k) takes the values 0 or co. In
this case, the coherent state \I/}I:IYS(A, f) is nothing but an eigenstate of the Hamiltonian. In
fact, it is a “representative state” [101] of a root density that is either zero or maximal, which
exactly corresponds to so-called “zero-entropy states", in the sense that their Yang-Yang entropy
vanishes. Hence no GGE can be written as a CE, apart from zero-entropy state expectation
values.

2.3.5 GGE at the boundary of CE

However, starting from a coherent state \IJII:IYS( f) one can obtain a GGE by taking the late time
limit of the evolution of the CE induced by the Hamiltonian H(h, y). Indeed, one has

e THONGISR(E,A) = BN, AL), (34)
with ) . +NSR
fo(k) = fl)e 27 em® A = e (35)

Hence the CE after time 7 is obtained from (30) by replacing f by f.. In the limit T — o0, the
fast oscillations in f(k) cause the second terms of the expectation values in (30) to vanish,
while leaving the other terms invariant. This establishes that if the root density p is even, and
if one chooses f such that

1 If(R)P
k)= —_— 36
p(k) 21 1+ |f(k)|2 (36)
then
lim (c'c )CE[hH = (cfc,, ) GGEhY] lim (c,c )CE[hY] = (CyCp) CCELHT] (37)
Too0 ' M fy n-mip ? Too0 ¢ M fL n=mip ’

This shows that any GGE with even root density can be obtained as a limit of CE. Figure 1
summarizes the inclusion of the different ensembles GE, CE and GGE.
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GE

Figure 1: Sketch of the position of the GGE (red line) and CE (yellow surface) within
the GE (gray volume), for symmetric root densities.

2.4 Out-of-equilibrium physics as a Coherent Ensemble

It is known that equilibrium physics can be formulated as a GGE [101]. The purpose of this
section is to show how homogeneous non-equilibrium dynamics in the XY model can be for-
mulated as a CE, see also Refs [71,88,98,102,103].

2.4.1 Differential equation for the amplitude

We assume that at time t = 0 the system is prepared in the ground state of H(hg, y), and that
it is time-evolved at time t > 0 with the Hamiltonian H(h(t), y(t)), namely

[¥(0)) =0)>, »
10, 1y (1)) = H(h(1), y () (0)) . (38)

We note that by virtue of the linearity of the Schrédinger equation one can equally well consider
initial states that are superpositions, for example of the ground states in the NS and R sectors.

We would like to determine the time evolution of observables during this process. To that
end, we replace the time evolution of the magnetic field and anisotropy by a series of quenches
in which they are suddenly changed to h,, = h(t,),y, = y(t,) at times t, = (n—1)dt, for a
given small time interval 6t > 0, and kept constant between these quenches. The original
dynamics is obtained in the limit 6t — 0. We now observe that the initial state can be written
as a coherent state

() =T (1,0), (39)

and that the time-evolution with H(h, y) of a coherent state written in the (h, y) basis is simply
given by _
e HODGIS(A, £) = BRS(A, £, (40)
. -+ NS
with f/(k) = f(k)e 2tew(®) and A’ = Ae "*“»'. As a consequence, using repeatedly Theorem 1
to write the state as a coherent state in the (h,, y,,) basis for t, < t < t,,;, and then expressing
it in the (0, 1) basis, one has at time t

h’b(t;)) = ‘Il(l)\Ils(Al(\InS_U’f(n—l)), (41)

10
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where the sequence of functions f; and phases A; satisfy

foy(k) = —=iKp yo:01(k),

o = i B “hﬂf“‘)‘“—1)+(K,%m(k)+e‘”ghm“‘)“)f(j_n(k)
fulk —2iey . (k)6 2y, (k)6 ’
e VK o () Ko ()L =Ty ()
ANS = ANS lét@NJSYJ
e,

KR o (R iy 0 () fg oy (k)L =07
<[] . (42)

2
keNs, 1 +K J)/J Ol(k)

We now take the limit 6t — 0. To that end it is useful to introduce a function f,(k) of both ¢t
and k by

filk) = (Sltiglof([t/&J)(k)- (43)

From (42), we conclude that the state of the system at time t following an arbitrary variation
h(t), y(t) of the magnetic field and anisotropy can be written as a coherent state

lp(6)) = TgP (AT, fo) (44)

whose amplitude f,(k) satisfies a non-linear differential equation

2
2Kp(yy();01 (k) 1=Ky 09:01(K)
o U0+ FAU) 2
roy(o:01 ) h(o)y (001K

O fe(k) =

Eh(t)y(t)(k)ft(k)- (45)

The initial condition is fy(k) = —iKp(0)y(0);01(k). This shows that any expectation value out-
of-equilibrium can be written as a CE. An example of the function f,(k) is plotted in Figure 2
for a sudden quench from hy = 0.1 to h = 0.9.

An equivalent system of linear differential equations was obtained previously in [98]. In-
deed, we have

(@)= [ ] [nt+m el _ab, J10)5, (46)

keNS,

where n,(p) an m,(p) fulfil the following system of linear ordinary differential equations
d (n(p) icosAi(p) —sinA(p) \( n(p)
— = . : , eNS,, 47
t (mt(p) 00 sina(p) —icosn,(p))\m(p))7 PN @7

where we have defined

A (k) h(t))’(t) 9]5)1 , (48)
and with the initial conditions
1 iKy, . .01(k)
no(k) = = ;o) = ———2 (49)
1+Khy 01(K) 1+Khy 01(k)

This formulation is equivalent to (44) once we identify

elB) s = 7 neo). (50)

2
( ) pENS,

ft( )_
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1.0 1.0
0.0 0.0
=
—-1.0 -1.0
(a) —20 (b) —2.0
1.0 1.0
0.0 0.0
=
=
-1.0 ~1.0
20005 1 15 2 25 3 20005 1 15 2 25 3
(c) k (d) k

Figure 2: Amplitude f,(k) for a quantum quench from h(0) = 0.1 to h(t) = 0.9 for
t>0attimes (a) t =0; (b) t =0.5; (¢c) t =1; (d) t = 2. The real and imaginary
parts are shown in blue and red respectively.

2.4.2 The phase factor

In the limit 6t — 0, the phase becomes

. rt
Al;IS :AI(\)ISe_l fo eE(SS)Y(S)CIS exp( Z (pt(k)) P
keNS, (51)
Kh(syy(sy;01(K)

2
1+ K o001 (K

¢ (k)= —ZJ Ens)y(s) (KD (iKn(s)y(s);01 (k) + fs(k))ds .
0

For a coherent state in the R sector the same formula holds where the sum is over momenta in
R, and with @gé)y(s) replaced by Gllz‘(s)y(s). For expectation values in the CE of even operators,
the phase is irrelevant since it always cancels out. However, for odd operators the expectation

value is proportional to the phase factor

ANS(AR)*
$1() = —E (52)
AT A
where we made explicit the system size dependence of ¢; (t) that is only implicit in AI;IS’R.

Let us assume first that the solution f,(k) to the non-linear differential equation (45) is

12
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regular for all t and k. Then, using the Euler-MacLaurin formula, we find

IACEE J g (K)dk +O(L),
0

keNs, 27

L (" (m) + ¢.(0) _
2 sot(k)=2—f o0k — LB o,
keRr, TJo

(53)
L (7 -

L (© _
QESY = _4_7'[ f_n Shy(k)dk + 2|1 —hl 1h>1 + O(L 1) .

Assuming that the trajectory h(t),y(t) is such that the time spent on a critical point is of
measure 0, we find ¢,(7) =0 and

t
¢.(0) =—4i f |1 —h(s)[ 1p(s)>1ds. (54)
0

Hence in this case we obtain in the thermodynamic limit

Poo(t)=1. (55)

However, if the function f,(k) is singular for some values t*, k*, then ¢;(t) for t > t* is
not guaranteed to become 1 in the thermodynamic limit, which can result in a non-trivial
multiplicative phase in (21). This phase has to be computed with (52) and (51).
Singularities of f,(k) are best understood with the system of linear differential equations
(47). n,(p) and m,(p) are regular functions and the nature of the singularities of f,(p) becomes
transparent: they simply correspond to situations when at least one probability amplitude
n.«(k*) vanishes. This implies that the overlap of the time evolved state with |O)I(;IlS vanishes

t*
g’ls(OIT exp (—if H(h(s), y(s))ds) IO)EOSY0 =0 = f..(k*) singular. (56)
0

This situation is somewhat reminiscent of non-analyticities in the Loschmidt amplitude [104].
This phase will be discussed again in a concrete example in Section 4.1.

To summarize this section, the CE provides the natural framework to evaluate the expecta-
tion value of any operator O during the out-of-equilibrium evolution (38). If O is even, then
its expectation value is given by (20) with f satisfying the nonlinear differential equation (45).
If O is odd, then its expectation value is given by (21) multiplied (inside the real part) by the
phase ¢;(t) (52). In the thermodynamic limit, ¢, (t) is constant in time as long as f,(k) is a
regular function of k. If f,.(k) has a singularity at k*, then ¢ -, (t) can be discontinuous at t*,
and has to be evaluated according to (51).

3 Expectation values in the Coherent Ensemble

The purpose of this section is to show that essentially all correlation functions and expectation
values in the CE can be expressed as Fredholm determinants and Pfaffians in the thermody-
namic limit. We fix h,y and to ease notations write

(0)f = (0) M. (57)

13
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3.1 Definitions

The formulas obtained for the various expectation values considered involve Fredholm deter-
minants and Fredholm Pfaffians. In this section we present the definition of these objects and
some of their properties.

3.1.1 Fredholm determinant

Given a function F(A,u) on [a, b] % [a, b], the Fredholm determinant Det[Id + F] is defined
by

Det[Id+F]—1+Z f f det[F(z;, 7)) ]1<i j<nd2y - - A2, (58)

Here, Id should be merely considered as a notation. The Fredholm determinant satisfies the
following relation

Det[Id + F] =Nlim det[(‘ii’j + %F(Ci,@)} s (59)

1<i,j<N

with {; < --- < {y regularly spaced numbers covering [a, b].

3.1.2 Block Fredholm Pfaffian

Given a 2 x 2 matrix-valued function K(x, y) = (K;;(x, y))1<i j<2 on [a, b] x [a, b] satisfying
K;ij(x,y) = —K;;(y, x), the block Fredholm Pfaffian Pf[Jd + K] is defined by [105]

Pf[Jd+K]—1+Z f J PIIK (2, 2,) 1< j<nd21 - . - d2, . (60)

The matrices inside the Pfaffian on the right-hand side are thus n x n matrices of 2 x 2 blocks.
Here, Jd should be merely considered as a notation. The block Fredholm Pfaffian satisfies the
relation

b—
PfJd +K]= lim pf[6i jJ+—aK(gi,gj)] , 61)
N—oo ’ N 1<i,j<N
with J the 2 x 2 matrix
0 1
=(5 1) 2
3.1.3 Fredholm Pfaffian
Given an antisymmetric function F(A,u) on [—a,a] x [—a,a], i.e. that satisfies

F(u,A) = —F(A,u), one can define the 2 x 2 matrix-valued function Ky on [0,a] x [0,a]
by

F(_X:J’) F(_x:_.y)

We thus define the Fredholm Pfaffian Pf[Jd + F] of an antisymmetric function F on
[_ana] X [_aza] by

KF(X,_}/):(

Pf[Jd+ F] = Pf{Jd + K]

1 ra e — 64
1.5t f Pf[ Fzoz) - Flz, ZJ)} doy..dy. O
0 0 1<i,j<n

") n! F( Zlaz}) F(_Zi)_zj)
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It satisfies the relation

PILId+ F1= Jim (~1)"/2pf| 6, i1y s8n (i — i)+ 2 F(Zi,C)) . (65)
N—=c0 N 1<i,j<N

Neven
Here, {; < --- < {y are regularly spaced numbers covering [—a, a] and assumed to be symmet-
rically distributed to ensure the antisymmetry of the matrix. The factor (—1)"/? compared to
(61) arises from the re-ordering of rows and columns after changing the 2 x 2 block N/2xN /2
matrix into an N x N matrix, and re-ordering the negative {’s in ascending order.

3.2 Full counting statistics of the transverse magnetization

As the operator o” is local in the Jordan-Wigner fermions c;, any static correlation of o* is
simple to calculate and can be expressed as a multiple integral in the thermodynamic limit.
The purpose of this section is to derive a Fredholm determinant expression for the following
generating function

, ¢ .
(2= (66)

for arbitrary 6 and £. Exact Pfaffian representations of size 2{ for the full counting statistics of
the transverse magnetization in a generic GE have been derived before using Wick’s theorem
[71,72,85-87,90,106].

To compute (66), we express the coherent states involved in the CE in the (oo, y) basis
and expand them to obtain

. { z - . 4 z
(@ Zm ) =1 >N AT s TTer ] Tsw, (67)
ALCNS, rer usy
where
S T T Koy (ROF ()

. ¢ .
We now use Lemma 2 to write the form factor of elezizl 9 as a determinant

. { z . -
(02 =R S deEALW [ e W] s, (69)
A,uCNS,. rer uspy
[Al=lpl

where E(A,u) is defined in (179). Because of the pair structure of fi each u; appears in two
columns of the matrix E(A, ). Hence we can use Lemma 6 to carry out the sum over u, with
NS, being the set K, and (179) being the function f when u; > 0 and the function g when
Ui < 0. This gives

> detEA, @) [ Je(w) = (12 pflEA) - EQ)T]. (70)
MCNS., uEW
A=l
In notations where A = {A1,..., Ay} the matrix elements of E for A j # —Ay are given by

—2i60 __ 1\2 _ilb(A =) 7 L il(Ag+)
~ = _ e 1 i(Ai+Ax) 1 e 7 1—e k
EA)ji = ( I ) Z e 1— ol 1) 1 —eilhti) g(w)

UENS,
WAL~ (71)
/ oip e—2i9 -1 ) 1— eil(kj"'lk)
+(13,08(4)) + 1xk<og(—kk))(1+z(e -1) — ¢ k PECNE
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while for A; = —A; we have
—2i60 __ 1\2 _it(A—u) |2 2
. = [e 1 1—etW L. _sip
Ejk(A)—(—L ) 2 T g(M)+1xj>o(1+Z(e ~1)) 8.
UENS,
N#Aj

(72)
The factor (—1)V/? arises from the re-ordering of the columns of the matrix in order to use
Lemma 6. Factorizing g(A) for A > 0, in the thermodynamic limit one obtains a Fredholm
Pfaffian

(—1V2pf E(A) — E(A)T 1= PLId+ E[p]1] [ +0(2%)). (73)
rer

Here the kernel acts on [—7, ] X [—7, 7]
10 u) = (729 —1)? V/p(W)p(u)
’ 2 gt(A)gt(u)
J” [ 1 — pllO—K) 1 _ pil(u+k)  q _ pilu—k) 1 _ pil(A+k)
X
0

1 —eilA—K) 1 —pilutk) 1 — pilu—k) 1 — i(A+k)

VoW)p(u) 1— et

Mg+ () 1= el (&(A)—g(w),

the function p(A) is the root density associated with A and g*(Q) is defined by

] g(k)dk (74)

+ (70— 1)

N F{¢9 ifA>0,
gm_{1 ifA<0. (75)

The factor 4/ p(A)p(u) ensures that in the definition (64), each integral over [0, ] comes
with a root density factor p(A). Substituting (73) and (70) into (69) we obtain

(9T, = e0t|A2 > Pilad+Elp1l] Ig(IP+0(1%). (76)
ACNS, A€A

Finally we employ Lemma 7 to arrive at our final result in terms of a Fredholm Pfaffian

(ei92§=1 ajz‘>f = el Pf[Jd+5[Ps]], 77
where lg(k)|?
N G
P = T gt 7

3.3 Order-parameter one-point function

In contrast to o7 the longitudinal spin operator o is non-local in the Jordan-Wigner fermions

and as a consequence the computation of its expectation value is a non-trivial problem. In
this section we present a formula for the expectation value of the magnetization in the CE as
defined in (21), i.e.

(oF)r = R[ LR (@R F) oF SN, )] (79)
Since o is an odd operator under fermion parity it maps NS (R) states onto R (NS) states and
only averages like (79) are non-vanishing. We note that they arise naturally in the context

of spontaneous symmetry breaking of the spin-flip Z, symmetry. The average (79) has been
derived in the Supplemental Material of [1] in the particular case of the Ising model, and the
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generalization to the XY model is straightforward. The result takes the form of a Fredhom
determinant

(07); = R Detl1d + M(p,]], (80)

where we defined the following kernel acting on [0, 7] x [0, 7]

__2p(A)sinA 1 * h(k)sink . (" h(k)sink
MipJhw) = h(A) cosA—cosu [L cosl—coskdk fo cosu—coskdk] » (81)
Koy (k) + f (k) 1 k(&)
M = ke ®r 0 PO 2 TR (©2)

In (80) we have assumed that the function h in (82) is regular. We stress that in (79)
the amplitudes A® and AN® are given by (22). In applications to time-dependent ramps the
additional phase factor discussed in section 2.4.2 needs to be taken into account, cf. section
4.1.

3.4 Equal-time order-parameter two-point function

The purpose of this section is to derive the static two-point correlation function
pe X
(071075 (83)

We note that exact Pfaffian/determinant representations of size 2¢ for the order parameter two
point function in an arbitrary GE have been derived before using Wick’s theorem and various
explicit results on large-distance asymptotics have been derived, see e.g. Refs [45,47,49,71,
76,77].

To compute (83), we express the coherent states in the (0, 1) basis and insert a complete
set of eigenstates between the two o* operators to obtain

(ora0)r =12 > D NG R o mhs | [ ] [aw ][4, 64

A,uCNS, YCR AEA UEW veY

with h(k) defined as in (82). Using Lemma 3 to express the form factor of o* as a determinant,
and Lemma 5 to sum over ¥, we obtain

(o 05)r =1 Y. dercAm| [RMW] [nw), (85)
A,uCNS, AEA UEW
where R
1 v
C(p, @)y = Z (86)

= (elPJ — ew)(elv — elqk)

To perform this sum, we now use Lemma 11. If p; # q;, we decompose the summand into
partial fractions with respect to e'” and use (222) to carry out the sum over v € R. If p i =k
we use the derivative with respect to z of (222). We obtain

2 olPj _pilax .
—F fp; ,
C.@ =1 Lot 7 (87)
(1_T)ep1 if pj =qx.
We next use Lemma 6 to sum over u, which gives
(o5,0%) =142 > (—DV2pleA) - A ] [r (). (88)
ACNS, A€A
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Here N is the number of momenta in A and

é(‘l)jk =(1- 5qj+qk,0)é1(Qj,Qk) + 5qj+qk,0 éz(qj',Qk),
eiéqj _ eifp e—ilp _ eiqu

- 4
Ci(q; =— ‘ . —h
1095, 91 L2 P;Jr e'9 —eip  e7P — el ()
P#4¢;,—dk
2 20 1 —elatay)
—(1g>0h(q;) + lqk<0h(_qk))z (1 - T) T @)’

N 4 ei(qj _eiép 2 2 2

Co(gj,q1) = Iz Z S0 g h(p) + 14,50 (1 - f) h(g;). (89)
PENS,
P#q;

Taking the thermodynamic limit we obtain a Fredholm Pfaffian
(—DV2plEA) - C(A)] = PLId + Colp]]] [R(A), (90)
A€A

where p is the root density corresponding to A and where C,[p] is the following kernel acting
on [—m, ] x [—m, 7]

Colpl(A,u)=—2

A _ Li(A+u)
Vp( )p(u)[l elAtu (h)—hG)

ht(A)h*(u) | 1—ei(A+w)
G _ Lil(A—K) 7 _ ,il(u+k) _ Sil(p—k) 7 _ ,il(A+k)
_JO dFk(ll_ii(A—k) 11_Zi(u+k) - 11_eei(u—k) 11_eei(l+k) )h(k)]’
with R o
ifA>0

R = {1 if <0 ' 1
We then employ Lemma 7 to arrive at our final result

(074107 = PHIA+Colps]] |, (92)
where LR

Py L P o

3.5 Equal-time order-parameter three-point function

The purpose of this section is to show that the strategy employed for one and two-point func-
tions can be generalized straightforwardly to higher-point functions. We consider the particu-
lar example of the order-parameter three-point function

<O-2C2+€1+1O-Z+1O')1(>f' (94)

This operator is odd and non-local in terms of the Jordan-Wigner fermions and as far as we
are aware of there is no known Pfaffian or determinant representation of (94) in the thermo-
dynamic limit.

We then follow the same steps as for the two-point function by expressing the two coherent
states in the (0, 1) basis and inserting complete sets of eigenstates between each operator to
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obtain
x X X _ Rk ANS R /7| +X NSNS X R R x|A\NS
<0€2+el+1‘7£1+101)f =RATA Z Z 01 (A7 1¥)o1 01 (V10T IK) 101 (KIOT 1) oy
ACR, vCNS
UCNS, kKCR (95)
[Tro[Jrl ] Tl
AEA UEU vey KEK

Next we perform the sum over k by employing Lemmas 3 and 5 and obtain an analogous
expression as in the two-point function case

X X x _ Rx NS
<O£2+£1+10£1+101>f = RATA

x > > RAlotmiSdeccr,m | [ )| Jaw ] [e12.

ACR, vYCNS AEA UEWU vey
UCNS,

(96)
Here C(v, ja) is given by (87) with £ replaced by £,. Then we use Lemmas 3 and 5 to perform
the sum over v and obtain

(OF 10,4107 1105) = RA¥ANS S detc’ A [ ] hw),

ACR, rer UEU (97)
UCNS,
where ey
i(l,+1)v _g et*1V_elt14k .
Coa=2 Y, S e T e (98)
L &hePi—eiv | (1—)e™b7D if y=g,.
Writing
: ; 01
elélv_elélqk . 1 )
— it;—1)v im(q—v)
eV —eid 1 Z(:)e e (99)
m=

we can use Eq (223) in Lemma 11 to compute C’(p,q). We find

2 ei([1+[2)P1 — ei([1Qk+‘52Pj) + ei(el"‘ez)Qk

C'(P,Qi=~ - . 100
(P q)]k L e'Pi — eldk ( )

We then use Lemma 6 to sum over y to obtain

(OF 1,105 410%) 5 = RAVANS S (—1)V2pf E(A) — ¢/ 1] [ (), (101)
ACR, A€A

where N is the number of momenta in A and

~ = 4
CI(A)jk - L2 Z elPi — eiq
NS4 (102)
elli+0)p _ pi(=l1q+lop) 4 o—ilf1+L2)q

% eiPk — e—iq h(q)

elb1+b2)p; _ oill19+E3p;) | oi(61+L2)q

In the thermodynamic limit the remaining sum can be converted into an integral, except when
p;j = —pq Where an additional contribution & p; h(p;) arises from the double pole in q. This
results in a Fredholm Pfaffian

"Dk

(V2 C'(A) - C((A)' ] = PLId+ Cy[p 1] RV + 0™, (103)
A€A
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where p is the root density corresponding to A and where C;[ p] is the following kernel acting
on[—m, ] x[—m, ]

2 Vo) (*

m ht*(Mh*(w) J, [a(A, k) a(u,—k) —a(A,—k) a(u, k)]h(k)dk,

1 — pit2(A=K) 4 it +E,)(A—k)

Cslp)(A, ) =

a(A k)=

(104)

This expression for C3[p](A, u) is to be understood as a principal value integral with simple
poles at k = £A,+u for A # —u, and is defined by continuity for A = —u. Finally we apply
Lemma 7 to (101), which results in the Fredholm Pfaffian

(07, 10,1107,1101) 5 = RPILIA+ C3[p,]], (105)
where ,
1 |h(k)l

k)= 106

R T PN NGATE (106)

In (105) we have once again assumed that the function h in (82) is regular.

3.6 Dynamical order-parameter two-point function

We now turn to the non-equal-time two-point function of ¢* in the CE, i.e.
C¥(L,t) = (o7, (t/2)07(—t/2)); = (eHEN 2y omitHhgxitHRN/2) . (107)

A particular case of the correlator (107) is the dynamical two-point function in the XY model
in a field after a quantum quench. This has been considered previously for y = 1 and analytic
results were obtained at low densities of excitations and large space/time separations [81].

3.6.1 Summation of the o* form factors

Without loss of generality we choose the coherent state in (107) to belong to the R sector and
then expand it as (10) in the (0, 1) basis. We then insert a complete set of eigenstates between
each of the operators to obtain

CH(L, ) =ARAR ST []‘[h*_t(q)]_[ht(k)]
q,kCR, A,ucNS Lg&q kek
< B @lo IS BE I Mot RS, (108)

where we have from Theorem 1 and Eq (34)

iKo;ny (k) + €m0 f (k)

h k = N >
0 1+iK01;hy(k)€”€hY(k)f(k)

(109)

AR — pit€"/2 l_[ 1+ Koy, (k) 1 . 110
t keR, 1+ |f(k)|2 1- iKOl;hy(k)ht(k)

For later convenience we introduce

ANS:eitGNS/Z | |
t
keNs,

1+ KOl;hy(k)2 1
L+1f () 1—iKoypy, (), (k)

(111)
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In the remainder of the section we will use the shorthand notations K(k) = Ky;,5,(k) and

e(k) = epy (k).
To evaluate (108), we first express the af form factors as determinants using Lemma

3. Because of the pair structure of the states k and g, each k; and q; appear twice in these
determinants. Hence the sums over q,k C R, are of the form of Lemma 6. It yields

C (L, ) = ARAR > NS(Ae AN )NS p[ D, (1) — D ()" ]

A,uCNS
x pfD_ (A)— D_ (M) [ [l V2] Tetn/2, (112)
AL U
where h ()
4 t\P
D b= = - - - —. (113)
t(“)]k LZ pezR:*— (elp _ el,uj)(e—lp _ elHk)
The thermodynamic limit of this expression is
Dt(u)jk = ht(“j)5uj,—uk luj>0
2 " h " on (114)
+ . A O () B I )
nL(1—eltrdy | ), 1—elsP) o 1—eilmrp)
where the second term is understood as a derivative when u; = —u.

3.6.2 Thermodynamic limit of the Pfaffians

The thermodynamic limit of the Pfaffians appearing in (112) is more involved than for the
equal-time correlations treated in the previous sections. Indeed, A and u are not necessarily
pair states and so the “anti-diagonal” term 6 — 1M}_>0 in (114) is not always present. To
treat this complication we introduce two sets of momenta 7w(u),o(u) as in Lemma 1. One
sees that the behaviour of D,(u)— D,(u)” significantly depends on whether the u’s are paired
u € 1t(u), in which case there is a non-zero anti-diagonal term & P of order L°, or whether
they are not paired u € o(u), in which case this “anti-diagonal” term is absent. In order to
use Lemma 10 we employ Cayley’s relation

pf[D.(u) — D, ()" 1* = det[ D, (u) — D, (W)" 1, (115)

and write

1
[D¢(u) _Dt(l")T]jk =hr(uj)5uj,—uk + Zdt(,uj, v,
2 " () " ()
dt(l’ .U’) - 7'[,'(1 _ ei(l‘i'ﬂ)) |:J;) 1 _ ei(l_p) dp + . 1 — e—i(A+P) dp

T T
h.(p) h.(p)
_L 1 — eilu—p) dp— 0 1_e—i(u+p)dp ’ (116)

In the determinant (115) we then rearrange the lines and columns in such a way that the
paired momenta u; € m(u) appear on the “anti-diagonal” of the matrix D,(4)—D, ()" and are
ordered among themselves (but the unpaired momenta in o(u) are not necessarily ordered).
We then factorize D,(u) — D,(u)" = LR, where

Rij=06;nt1-jsgn(j—1) l_[ h2(uw), i,j=1,...,N. 117
ueR (W)
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This way, the determinant det[D,(u)—D,(u)? ] is of the form of Lemma 10, with n the number

of unpaired momenta o(u) = {vy,..., v,} and with functions
d (7(’: —,U,) dt(l’ V') dt(vi: —‘U,)
fAw= =7, §N)=—7-, hW=—"—F——", a;=d(v,7),
hEREW) ™ hi(A) l hi (W) 0%
(118)
where we introduced
h,(A) ifA>0
(A =1{"" ’ 119
¢ (M) {1 if 2 <0. (119)
We thus obtain as we approach the thermodynamic limit
1
det[D,(u) —D,()"] = Tiow) et wulld+D, (A, —u)]
2
xdet[ 7 (v v)],, o [ ] B0, (120)

peT(1)
where p the root density corresponding to 4, and where we defined the following kernel acting
on[—m, ] x[—m, ]
vP(A)p )
hy (MDhy (1)

and F, (A, u) satisfies the linear integral equation

’Dp,t(la aU‘) = dt(A! AL(’)) (121)

d (7L
pt()L u)+ J h+(l)h+() p,t(V:.u)P(V)dedt(A;.u). (122)

Eqn. (122) is obtained from (208) by using the equation for the resolvent (209) as well as its
equivalent definition (219). It is useful to define two further functions by

/ ve(M)p(u)
D (A A,
o= Gy iy Gy M
7 )+Jn d; (A, ) (v, Wp(¥)dv = d*(A, ). (123)
pBF | Gy Gy e PO = 4 ok
Now, wusing that d,(A,u) = —d.(u,A), we find from (122) and (219) that

Fp (A, u) = —=F, (u, A). Hence [ 0,t(Vis J)]v vieo(u) is an antisymmetric matrix, and we
can write its determinant as the square of its Pfafﬁan

det[ ps (v, v J)]v vi€o(w) pf[ P, t(vl’ J)]v ,vi€o(u) * (124)

This results in a Fredholm Pfaffian as we approach the thermodynamic limit

(12 piTD, ()~ D, ()" = 20 D pipya 4D, (125)
pr[ Pf(vl) J)]vi,vjea(u) l_[ ht(.u') (]—26)

ueR(p)

Here, s(o(u), t) is a function that takes the values +1. Let us argue that it is always equal to
1. By definition of the Fredholm Pfaffian, we know from (65) that s({},t) = 1 indeed. Be-
sides, expanding the Pfaffian on the left-hand side of (125) on the lines and columns where
the elements of o(u) are present, we see that it is an integral over a finite product of terms
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d,(u, v) for v € o(u), which is regular in v assuming h, is regular. Hence s(o(w), t) cannot
depend on the elements of o(u). However it can still depend a priori on the number of un-
paired momenta |o(u)| as well as on t. To go further, let us consider the antisymmetric matrix
B(x)ji = ht(Kj)(SKj,_Kk + ﬂidt(Kj, K;) for a paired state ¥ and a small €. By expanding the
Pfaffian, we have

pfB(k)= > eVI/2pfB,(x), (127)

JCck
|J| even

with B (k) = ht(Kj)5;<j,—;<k Lgs + %dt(Kj, K). In this sum, there are O(L2") elements for
|J| = 2n, whereas the Pfaffian pfB;(k) is of order O(L™™) pfB(x) where m is the number of
momenta either that are in J or whose opposite is in J (or both). Indeed, in these cases the
O(L°) anti-diagonal term & — is is not present. It follows that in the thermodynamic limit,
contribute only the cases where J is a set of paired momenta. Hence

pr(x):[ Z e'Jl/prBJ(K)](l+O(L_1)). (128)

JCk
J paired
We now observe that B,(x) is exactly D,(u) — D, ()" with |o(u)| = |J|, in the limit u — k
and o(u) becoming a set of paired momenta, equal to J. Hence in the thermodynamic limit
(—=1)N/2 pfB(x) is the left-hand side of (125) multiplied by €!®®I/2 summed over |o(u)| and
o(u), in the limit of a set of paired momenta equal to K.
Now, using (122) we observe that in the thermodynamic limit

(—)V/2pfB(x) = PIA+ (1 +€)D, ] [ | he(x)

kemn(k)

- (129)
= PflJd+D, JPflid+eF, ] [ | h(x),
ken(k)
with ]:'p’t(k, u) = % Using (64) to expand Pf[Jd+e]i'p’t], we obtain that in the thermo-

dynamic limit, (—1)N/2 pfB(k) is the right-hand side of (125) multiplied by e!“™I/2 summed
over |o(u)| and o(u), in the limit of a set of paired momenta equal to k, with s(a(u),t) = 1.
Thus by comparing the order eloWl/2 of the two expansions in € (128) and (129) we deduce
s(o(u),t) =1 for all |o(u)|. Hence we have in the thermodynamic limit

1
_1\N/2 _ T _
x P[P 7)), o | ] R 3D
uen(p)

3.6.3 Summation over the e '*(:7) form factors

Returning to (112) we now see that the form factor of e *H(®") given in Lemma 4 imposes
that o(A) = o(u). This permits us to write

l_[ eilv _ B )
C¥X (L, ) = AR > = >0 NAU e O gy v
YCNS Auc

yn(—v)=0 NS, —{v,—v}

[ [ne. W] [he(w) PLId+D, ] PLIA+D), ]
Aer pew

x [ Fp (v v)],, o PEL T )], s (132)

Vi, Vi€V
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where p and p’ are the root densities corresponding to u and A respectively. At fixed v, given
the form factor of e *#(h1) in Lemma 4, the summand is of the form of Lemma 8 with

1 _e—Zit(z‘ 1 _e—ZiL’E B (1 + e—2it€K2)(1 + e—2it£/K2)

. * — 3 -
J =K ez 8 = KN i (1—e2ite)2

, (133)

and with NS, replaced by NS, — {v U —v}. To apply Lemma 8, let us first investigate the

denominator of Eq (194). We note that the form factor of e ") in Lemma 4 generates a
factor ) pite()
; 1+ K=(k)e =!¢
e I (k)e > (134)
keNs, 1+K ( )
Moreover, from (111) we have
NS NS it l_[ 1+ KZ(k)e—Zits(k)
£t LeNS 1+ K2(k)
l_[ 1 +K2(k)e—2ite(k) (135)

v, L1+ RS K2 & (R + K2)e 2 — ik (R, — e )(1— e 29)](k)”

which is precisely the inverse of the denominator in (194). Hence, defining the following
(complex) root density

1 —iK(1—e 2")h, + (K2 + e 2 )h,h*,
P R T k™ K2 + (™, + K2)e2ite — iK(h, — h* )(1—e~2i2) " (136)
Py =[p—T",

appearing in Lemma 8, we obtain

. [Toeyse, ()
C(0, ) = oo (t)Poo(—t) ZN:S ezl—vlf PJd+D,, JPId+D), ]
yC
y(—v)=0

/
X pf[Fpt,t(vi: Vj)]vi’vjev Pf[}—p;’_t(”i, Vj ]vi’vjev ,  (A37)

where
1 1 K2 i(lz—te(z))
see(2)=— 1+ (Z).]e , ‘ ,  (138)
’ 2n [1+hh* K2+ (hh*, + K2)e72t¢ —iK(h, —h*,)(1 —e~2it¢)](2)
and
Poo(t)=1li Ay (139)
o) = lim —=.
L—oo ATS

The factor s, ,(z) arises from the terms in (182) corresponding to the unpaired momenta v,
and the fact that Lemma 8 is applied with NS, replaced by NS, —{vU—#»}. The phase ¢, (t) is
identical to the phase discussed in Section 2.4.2. However, since here the operators involved in
the dynamical correlation are time-evolved with a Hamiltonian with a constant magnetic field
and anisotropy, the phase can be expressed only in terms of quantities at t. It can be straight-
forwardly computed with Eqgs (111) and (110), and so is much easier to evaluate numerically
than the generic phase discussed in Section 2.4.2.
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3.6.4 Representation as a product of Pfaffians

In the thermodynamic limit the sums over the unpaired momenta v € v in (137) can be
converted into |v| = 2n-fold integrals over [—m, 7], because the cases where »; = —v; that
are excluded in (137) are negligible by at least a factor of L. This provides us with a multiple-
integral representation of the form

C (U, t) = Poo(t)Poo(—t) PI[JA+ D, ]Pf[Jd+D’ ]

—t>

T 2n
f f l_lszt(z)Pf Fpp (i ])]pf[ _(2,2))]dz, ...z,

2 Ry

(140)

with the convention that the term for n = 0 in the series is equal to 1. We now observe that

EPRCEN) L ANC ])Jl_lsu(z)

i,j

_ f (Se,t(zi)sf,t(zj) t(ZlJ ]))1<l j<2n 0 (141)
B p O ( (ZU ]))1<l j<2n
. [Sf,t(zi)sé,t(zj)]: (21,2 ]) 0 ]
- /
1<i,j<2n 0 fp*_“_t(zpzi)
The swap of the arguments of .7-"p . in the last line compensates the sign factor (—1)" that

results from changing the 2n x 2n block 2 x 2 matrix into a 2 x 2 block 2n x 2n matrix. Eqn.
(141) allows us to recast the series over n of (140) in the form of the block Fredholm Pfaffian
(130) with n restricted to be even, namely

T 2n
J J l_lsf t(z )Pf[ t(zlﬁ J)] Pf[f _t(Zl, J)]dzl ce d22n
T=l b (142)

= (Pf[Jd+F,3,t] + PJd—F,,]),

= (2n)'

where F, .(x, y) is a 2 x 2 matrix-valued function on [—n, ] X [—, 7]

(Se,t(X)Sz,f(y)fpt,f(x,y) 0 )
0

Foolx,y)=
Ix: ]-';)ip_t(y,x)

(143)

From the fact that the 2 x 2 kernel F , is diagonal, using that the Pfaffian is multiplied by —1
whenever a row and the corresponding columns are multiplied simultaneously by —1, we find

Pf[Jd _Fl,t] = Pf[Jd + Ff,t] . (144)

Hence putting everything together we arrive at our final result

C(,t) = oo (t)Poo(—t)" PfJAd+D, ]PflJd+ D;)ip_t] PflJd+F, ]. (145)

Eq (145) again assumes that the functions h, and h_, are regular.

A remark on how generalizable this calculation is.
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4 Applications

In this section we apply the results reported above in a number of settings. For simplicity we
focus on the case of the transverse-field Ising chain y = 1.

4.1 Order parameter and the Kibble-Zurek mechanism

As afirst application we consider the time-dependence of the order parameter in the transverse-
field Ising model for a ramp of the magnetic field through the critical point. While this
and closely related non-equilibrium protocols have been previously studied in great detail
[71,88,94,98,103,107,108] in connection to the Kibble-Zurek mechanism [102,109-112],
we are not aware of any results on the dynamics of the order parameter in the thermodynamic
limit. We will consider time-dependent magnetic fields

(i)  h(t)=hg+at, y=1,
(at —1+hg)3 (146)

(i) h(t)=1+ A—h)? y=1,

that cross the critical point linearly (case (i)) or cubically (case (ii)) with a speed parameter a,
and assume that the system is initialized in the ground state for 0 < hy < 1 at time t = 0. The
presence of spontaneous symmetry breaking in the thermodynamic limit can be accounted for
by working with the following initial state, cf. Refs [76,77]

|0>501 + agl;ol())gi

V2

The time evolution of the order parameter in the thermodynamic limit is then obtained from
(80), (52)

19, (0)) = (147)

(Y1, (Oloy |1hpy (0)) = R (oo (t) Det[Id + M[ps]]) . (148)
Here M is given in (81) with
iKOl;h(t)l(k) +ft(k)
h(k) =
= T iKaen (0, (149)

and f,(k) is the solution of the nonlinear differential equation (45). Importantly the phase
factor ¢ o (t) is not always equal to one in this case. We find that there is a sequence of times
t» and associated magnetic fields h; = h(t) such that

Poo(t)=(1)", t,<t<tpy,n=0,1,.... (150)
As an example we consider hy = 0.6 and a = 0.3 for the linear ramp of case (i). Then

ti ~2.883547, hi A 1.465064,
t; ~4.591509, i~ 1.977452. (151)

We observe, in agreement with the discussion of Section 2.4.2, that this behaviour arises from
the vanishing of the overlaps (1 (t)|((0)) at particular times ¢ in the thermodynamic limit,
which is equivalent to the function f,(k) becoming singular at times t; for particular wave
numbers k;“l. We note however that the Fredholm determinant appearing in (148) also ex-
hibits discontinuities at times ¢ in such a way that the resulting magnetization (o*(t)) is a
continuous function of time, as expected on physical grounds.
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The results of a numerical evaluation of the Fredholm determinant expression for the order
parameter during the quench are shown in Fig. 3. We use (59) and [113] to compute the
determinant and use a quadrature rule with up to 4000 points. We stress that by construction
we are considering the magnetization per site in the thermodynamic limit.

1.0 , 1.0
0.5 0.5
b
~ 0.0 0.0
—0.5 —0.5
1 1.5 2 2.5 1 15 2 2.5
h(t) h(t)

Figure 3: Order parameter expectation value (c*(t)) as a function of h(t), with
a ramp crossing the critical point linearly h(t) = 0.6 + at (left) and cubically
h(t)=1+6.25x (ta—0.4)3 (right).

We first consider linear ramps across the quantum criticial point starting in the ordered
phase, i.e. case (i) in (146) with hy=0.6. We see that ramping up the magnetic field initially
leads to a reduction of (U;.‘ (1)), the size of which depends on the ramp rate a. For very fast
a, (a;‘ (t)) is expected to remain essentially pinned to its value at t = 0: this corresponds
to a sudden approximation and is closely related to the situation encountered in a quantum
quench. A slower ramp rate is expected to result in a faster reduction of (o}‘ (t)) at early
times. Both of these expectations are borne out by the numerical results shown in Fig. 3. At
later times the magnetization per site displays an oscillatory behaviour. In the scaling regime
around the critical field h = 1 this behaviour has been analyzed in some detail in Ref. [94].
For a very slow ramp rate the magnetization closely follows the magnetic field dependence in
the ground state, as expected by the adiabatic approximation, until h ~ 1, where adiabadicity
breaks down and Kibble-Zurek physics ensues. We next consider a nonlinear ramp starting at
the same initial field h(0) = 0.6 and whose derivative vanishes at the critical point, given by
case (ii) in (146). On a very qualitative level the time dependence of the order parameter is
similar to the linear ramp case in that oscillations ensue after an initial decay.

4.2 Order parameter in periodically driven systems

The results derived in the previous sections allow for a systematic study of the thermodynamic
limit of Floquet physics where the driving magnetic field and anisotropy are periodic functions
of time, see e.g. Refs [114-122]. In Fig. 4 we show the order parameter (o (t)) of a system
initialized in the ground state at h = 0 and then driven periodically with frequency w

—cos(mwt)

h(t) = 1 5 ,  r=1. (152)
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1.0
—w=20.5
0.8 w1
w=2
0.6 w=10
0.4 --- quench
P I e T e e /—/\
S N  —
:'b;
—0.2
—0.4
—0.6
—0.8
—1.0
0 5) 10 15 20 25 30 35

Figure 4: Order parameter expectation value (o*(t)) as a function of t, with the
variation of magnetic field h(t) = %(1 —cos twt). In dashed is indicated the time-
evolution after a sudden quench h(t) = % for t > 0.

At large frequencies w we expect to recover the results for evolution with the time-averaged
Hamiltonian [118], which corresponds to a quantum quench where the system in initialized in
the ground state of H(0, 1) and then time-evolved with H (%, 1). We see that the time evolution
for «w = 10 is indeed very close to this limit. At late times the system synchronizes and can
be described by a “periodic generalized Gibbs ensemble” [117]. In particular this implies that
the order parameter should vanish, which is indeed what we observe in Fig. 4. In the limit
of low frequencies w ~ 0 the behaviour is initially adiabatic and the order parameter follows
the ground state value at the corresponding magnetic field h(t). As t — ™! the magnetic
field h(t) approaches its critical value and adiabaticity breaks down and Kibble-Zurek physics
ensues. For frequencies w > 2 the magnetization is seen to decay towards zero with only
weak oscillations on top of the decay. For frequencies «w ~ 1 there are strong oscillations
that decay in time. Interestingly, for lower frequencies the oscillatory behaviour becomes less
pronounced.

4.3 Dynamical correlations after a sudden quench

In this section we illustrate formula (145) for dynamical correlations in a CE for a particular
case of the general scenario discussed in section 2.4. We initialize the state of the system |(0))
in the ground state of the transverse field Ising model with magnetic field hy, i.e. H(hg, 1), and
suddenly change the magnetic field to h, triggering a non-trivial time evolution of the state
[y (t)). We are then interested in the connected non-equal time order parameter correlation
function

(071 (t)oi(ta))e = W’(fz)|0'2(+1€i(t1_t2)H(h’Y)0')f|Tl’(t1)) — (o1 (t)) {07 (t2)) (153)

Numerical results for (o}, ; (t;)07(¢3)), for a quench from hy = 0.1 to h = 0.9, obtained by nu-
merically evaluating (145), are shown in Fig. 5. One sees that there are several regions where
the 2-point function is negligibly small. These light-cone structures can be understood with
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t t t

Figure 5:  Density plots of the connected non-equal time correlation
(07,1 (t2)o{(t1)) after a quantum quench as a function of t; and t,, for £ =0,3,6
from left to right. The three plots use different color scales.

the quasi-particle picture initially proposed to describe the growth of entanglement entropy
after a quench [83,123]. According to this picture, the effect of the quench is to create pairs
of quasi-particles at each position in the chain that evolve with velocities +v(k) = £3;.ep,(k),
and a non-zero connected correlation can occur between two points in space-time only if a
quasi-particle can propagate from one to the other. Let us fix t; < t, and set 6 = ty — t;.
According to this quasi-particle picture, the operator o, (t;) can be considered as a local op-
erator with support in [£ + 1 — v t1, € + 14 vty ], with v, = maxy [v(k)|. The condition
for the connected correlator to be non-negligible is for the supports of o, (t;) and o7 (t2) (or

equivalently their backward light-cones) to overlap. This explains why for t; + t;, < —— the
connected 2-point function is negligibly small. This corresponds to the triangular blue rlgglons
in the bottom left corners of Figs 5, which grow with £. On the other hand, we expect on phys-
ical grounds that the effects of making a local perturbation at time t; will become increasingly
difficult to detect if we wait long enough and connected correlations should therefore decay
with respect to the time difference |t, — t;| when the latter gets large. This explains the small-
ness of the connected two-point functions observed in the upper left and bottom right corners
of 5.

5 Discussion and outlook

In this work we have addressed the problem of computing out-of-equilibrium observables in
the XY spin chain subject to arbitrary time variations of the magnetic field h(t) and anisotropy
y(t). We obtained closed-form expressions for the thermodynamic limit of the order param-
eter expectation value, dynamical two-point function and static three-point function, as well
as of the full counting statistics of the transverse magnetization. These expressions are valid
for all times and for arbitrary distances. They hold not only for out-of-equilibrium situations,
but also in the wider context of the Coherent Ensemble as introduced in the text. We em-
phasize that to the best of our knowledge no exact explicit expressions in the thermodynamic
limit were known for the expectation value of operators that are non-local in the underlying
fermions, namely for the order parameter one-point function, two-point dynamical correlation
and three-point static correlation. While the expectation values of operators that are local in
the underlying fermions can be straightforwardly computed using Wick’s theorem and do not
require the Fredholm determinant expressions derived in this paper, our method provides a
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unified approach based on form factor summation, hence better suited for generalization to
the interacting case where no Wick’s theorem holds. Despite the free nature of the XY model,
the problem of performing the spectral sum over form factors was previously solved only for
free models with U(1) symmetry such as the impenetrable Bose gas or the XX chain.

In our derivation of these results we have followed a different route than the ones tradi-
tionally used in the computation of out-of-equilibrium dynamics in integrable models. Our
approach relies on remarkable properties of coherent states, that are weighted superpositions
(in a precise manner) of exponentially many eigenstates of the Hamiltonian, that in a sense
behave more smoothly than pure eigenstates and are easier to manipulate. Crucially they stay
coherent when expressed in terms of the eigenstates of the Hamiltonian at other values of h
and y, which allows one to carry out the calculations in a preferred simple basis, suchash =0
and y = 1, where the form factors are exactly Cauchy determinants. Efficient summation for-
mulas exploiting both the coherent state structure and the form factor determinant structure
eventually lead to our results.

Our work opens up a number of future directions. The first direction is to determine the
asymptotic behaviour of the various correlation functions considered here. A second direction
is to investigate whether some ideas of this fruitful approach can be generalized to an inter-
acting case. Although the coherent state structure used in this paper is rather fragile, there
could be analogous macroscopic superpositions of eigenstates in an interacting model that
enjoy similar interesting properties.

Acknowledgements. H.D. acknowledges support from the European Research Council un-
der the European Union Horizon 2020 Research and Innovation Programme via Grant Agree-
ment No. 804213-TMCS. E.G. acknowledges support from the EPSRC under grant
EP/S020527/1.

A Diagonalization of the XY model in a field

A.1 Mapping to free fermions

In this appendix we review how to diagonalize the XY Hamiltonian with magnetic field h and

anisotropy y
L
H(h )——Zﬂa"a’c +1;Y Vo), +ho? (154)
1= 5 79w T 5% %m i’
j=1

where O';.x are the Pauli matrices at site j and

a
L+1

o of, a=x,y,z. (155)

The quantum XY chain is mapped to a model of spinless fermions by means of a Jordan-
Wigner transformation. Defining O';.t = (a;.( + io?’ ) /2 we construct spinless fermion creation
and annihilation operators by

-1
¢ = 1_10?01_’ {c]-,cl"} =06;. (156)
j=1

The inverse transformation is

j—1 j—1
oi=1 —2c].rcj , 05 = l_[(l —2¢/¢))(c; + cjr), O';/ =i| |1 —ZC[CZ)(CJT —c;). (157)
=1 =1
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The Hamiltonian can be expressed in terms of the fermions as

L—1 L—1
]. + Y - T ]. — '}’ T -
H(h,y)=— 5 [ej ¢ )lejm+ ] 5 [ +cillein—cjii]
j=1 j=1
L
—hZ[l—Zc]Tc]]
=1
R, N R
—el™N 5 Y(cL —c)(cy+¢))—e™ Y(cL +c¢;)(c; —¢1), (158)
where
L 1
N=>"clc;. (159)

j=1

As [H, el ] = 0 we may diagonalize the two operators simultaneously. The Hamiltonian is
thus block diagonal H = HS @ HR, where HNS® act on the subspaces of the Fock space with
an even/odd number of fermions respectively.

A.2 Even fermion number

In the sector with an even number of fermions we have ¢!™ = 1 and the Hamiltonian can be
written in the form

e~

1-— y .
5 C e |:]+1_C]!+1:|

Mh

HYS(h,y) =

- cj][ch + C,+1
- =

]—1
—th —2cf¢;], (160)
j=1

where we have imposed antiperiodic boundary conditions on the fermions
Cr+1 = —C1. (161)

The Hamiltonian HN® is diagonalized by going to Fourier space

c(k,)=— etkni | (162)

= =
.
[1-

where k,, are quantized according to (161)

2 +1/2 L L
g =2t Lo Loy (163)
L 2 2
The antiperiodic sector is commonly referred to as Neveu-Schwarz (NS) sector. Introducing
Bogoliubov fermions by

c(ky) = cos(O, /2)apy.k, +isin(6, /Z)a

hy;—k, >
c(=k,) = isin(6, [2)apy i+ cos(6y /2)ahy ko (164)
where the Bogoliubov angle fulfils
y sin(k) ]
tan Oy = | ——— 165
ARk [cos(k)—h (165)
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the Hamiltonian becomes diagonal

1
HNS(, y)= Z eh},(k) [a}'mkahy;k — —] . (166)

keNS 2

Here the dispersion relation is

ey (k) = 24/ (h—cos k)2 + y2 sin’k . (167)

A basis for the Fock space in the sector with even fermion number is then given by
[T S l_[ahyk 0}, k; €N, (168)
where the fermion vacuum IO)QE’ is the state annihilated by all Ak, (= —%, cees % - 1.

A.3 0dd fermion number

In the sector with an odd number of fermions we have e!™ =

be written in the form

—1. The Hamiltonian can again

I~

HR(h’ Y) =

L
+v 1- Y

[C;_C]:”: ]+1+C]+1 Z 5 C +¢j [J+1_C;+1:|
j=1 j=1

L
—hZ[1—2cjcj , (169)
j=1

but now we have to impose periodic boundary conditions on the fermions

Cr41=0Cq. (170)
In Fourier space we therefore now have
1 g,
c(py) = ﬁ;cj e'Pnt | (171)
where p,, are quantized according to (170)
pHZZLE, nz—é,...%—l. (172)

The periodic sector is known as Ramond sector. Defining Bogoliubov fermions a,, for p, # 0
by

c(pn) = cos(6, /2)ay,., +isin(6, /2)a;}, p

o
(=pn) =1sin(0, /2)ay,., +cos(6, /2)ahy o (173)
we can express the Hamiltonian as
. 1 ~ 1
H¥h,y) = Z eny(P) [a;y;pahy;p — §:| —2(1—h) [a;y;oahy;o — 5] . (174)
€R
b0
A basis of the subspace of the Fock space with odd fermion numbers is then given by
2m+1 '
Ip1, - --)p2m+1>5)/ = l_! ally;pJ,IO)EY, pPj €R, (175)
]:
where the fermion vacuum |0)}P1‘Y is the state annihilated by all Qpy;p; (= —%, e % —1).
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B Useful lemmas

B.1 Overlap and form factors

Lemma 1. Let Ik)fyS and Iq)EN;‘ two eigenstates of the XY Hamiltonian at different magnetic fields

h,h and anisotropies v, . We define m(k) as the subset of strictly positive elements k,, € k such
that —k, € k as well, and o (k) the subset of unpaired momenta, i.e. k; € k but —k; ¢ k. n(q)
and o(q) are defined analogously. Then the following formula for the overlap between the two
states holds

1 .
l_[pea(k) COS(QZIY—QQY)/Z l_[pEﬂ:(q)J_n(k) lKﬁf/;hy(p)

;IN;@UC)%S = 15(g)=0(k) > ,
l_IpGNS+ V I+ Khy;h},(p)
where we defined n(q) L (k) = n(q) U n(k) — (n(q) N m(k)).

Proof. As shown in Appendix A, we have the following relation between Bogoliubov fermion
operators at different values of magnetic fields and anisotropies

(176)

o) — 6/ CeT—e
Gy = COS ———— Lz +isin 5 % Q77

From this, we deduce the relation between the vacuum states

1+iKj.,. (p)al
¥;hy -

10}y =
pENS, 1+ K;Y;hy(p)

hy

Indeed, the right-hand side is annihilated by all the aj, ;. From these relations one deduces
the overlap given in the Lemma. O

. Y] .
Lemma 2 (Form factor of ¢’ 2j=1 9] ). If A and p have the same number of elements the following
determinant representation holds

. 4 z .
NS (Al Zim T NS = % det E(A, ),

S G
Epy=1{ T, C. i TAT (179)
1+I(e —-1) lfkj—,uk.

If they have different numbers of elements the form factor vanishes.

Proof. Since the operator conserves the number of particles, A and pu must have the same
number of particles for the form factor not to vanish. Let us denote this number by N. Using
that at h = oo the Bogoliubov fermions reduce to the Jordan-Wigner fermions we have

P
(Alelgzj 1 J|p, = Z Z A0lc;, .cjlelezleafclll. |0)1§§Y

J1e--Jn k..
x e ki ——iky Uy plj1 At +ijy Ay

. B e
Z (-1)° Z elh(Al—ug(l))+...+UN(AN—MU(N))e—zleZq:1 1,

UGGN Ji- J}v

LN Z( 1)01_12 1j(Aq—Ho(q)) g =210 1j<

oEGy qg=1 j=1
=% detE(A, ). (180)

LN
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Lemma 3 (Form factors of ™). The form factors of o between energy eigenstates at h = 0,
v = 1 have the following determinant representation

N .
61 (AU {0} oy |u)g =(—1NN+D/2 (%) e2 e M Ty M =itZner A= Teu )
(181)
xdet| —— | .
© [ellf — elbik ]jk

Here N is the number of elements in A and . If they have different numbers of elements the form
factor vanishes.

Proof. See Refs [124-127]. O

Lemma 4 (Form factors of e ‘"1 The form factors of e 7' between energy eigenstates at
h =0, y =1 have the following representation

1 +K2(k)e—2it€(k)
1+ K2(k)

. _ . xNS
ST = 1™ [ ]
keNs,

—ite(v) 1 +K2(V)
1+ e—2it£(v)K2( V)

<7

veo(A)
1— e—Zita(A) 1— e—2it£(u)
[ o —— [ ] k@) _
2(A)e—2ite(A 201 )0—2
leﬂ:(l) 1 +K (A)e ite(A) ,uerr:(p,) 1+K (“)e lte(u)

y l_[ (1 + e—Zits(v)KZ(v))(l + e—2it£(v)/K2(v)) '

— p—2i 2
ver(Ann(w) (1 —e2ite()

(182)
Here the notations are as in Lemma 1 and we have used shorthand notations K (k) = Koy, (k),

e(k) = ep, (k).

Proof. Inserting two resolutions of the identity in terms of energy eigenstates on either side of
e HR we obtain

Iglsule—itH(h,y)lmlgls — Z&S(M”)NS NS<v|“>NS —iteNs o—ite(v)

hy hy 01°¢
v vey
i i : . 1
=lo=owe iteNs l—[ e7te(1 + K2(k)) l_[ (—iK(w)) l_[ iK(A) l_[ T+ K200
kea(d) pen(w) Aer(A) peNs, p
| Iﬁ if ve n(A)nn(u),
x Z ]_[ e 2L 1 ifven(d) L nu), (183)

YCNS VeV 2 .
Ao (U0 (A))]=0 K=(v) ifvégn(A)umn(u).

The last line can be rewritten in the form

—2ite(k) o Y
[l O+%m] [ D—e?e®@ [  [+e2e0rw]. asa
ken(nn() ken() Lu(w) k(A m()
HoAU(-o(A))]

Substituting this back in (183) results in the representation given in the Lemma. O
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B.2 Summation formulas

Lemma 5 (Andréief identity [128]). Given two functions f (A, u) and g(A, u), a set K and two

sets of numbers {A;}L,, {u; ?]:1 we have the relation

Z det [f(xi;kj)]d.e.t[g(ki:.uj)] = det[Zf(Ai,k)g(k, Mj)] . (185)
ky<-<ky€K b b Y | kek
Proof. See Ref. [1]. O

Lemma 6 (de Bruijn identity [129]). Let f (A, u) and g(A, u) be two functions of two variables,
a set K and a set of numbers {Ai}izivl. Define a matrix

All)) =1~ T (186)
( )U {g(kq:)']) lfl=2q
Then the following indentity holds
> detA(k)=pf[Zf(k,Ai)g(k,A-)—f(k,mg(k,xi) . (187)
ki <--<kyekK ij Lkex

Proof. Using the definition of the determinant we have

detA(k) = Z (=1)7f k1, 251))8(k1s Ag(2)) - - - f (ks Aoan—-1))8 (ks Agany) - (188)

0€G,yy

Then

1 1
Z detA(k)=m Z detA(k)=m Z (—1)7bo1)o(2) - - - boan—1)o(2n),  (189)
S —

ky<-<ky P 0EG,y
where
bij = Zf(k, A)g(k, ;). (190)
k
Changing variables to o = ¢’ - (1, 2) we have
—1)°
Z (—1)7 ba(l)a(Z) s bU(ZN—l)o(ZN) = Z %(bg(ug(z) — bg(z)g(l)) . bO‘(ZN—l)o‘(ZN)
TEGyy TEGyy
1
T oN Z (—1)°Bs1)0(2) - - - Boan—1)o(2n) » (191)
TEGyy
where B;; is the matrix on the right-hand side in the Lemma. This completes the proof. O

B.3 Coherent averages

Lemma 7. Let F[q] be a function of q, and f (k) a function. We define

= 1 )
= [ Trens, [1+1£(F)I2] q;m+F[q]g[lf(q)l 1. (192)

If in the thermodynamic limit F[q] depends on the momenta only through the root density p, i.e.
limy, F[q] = F[p], then

(F) = Flps]+0(L%),
1 f)P
ps(k) = ﬁw . (193)
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Proof. See Ref. [1]. O

Lemma 8. Given two functionals F[q] and G[q], as well as three functions f (k), g(k), h(k), we

define
_ 2auens, FIAIGIRI] Thea fF W [ 1ep W [ Toern ()
O e N f 0+ s+ fRgR0] 9

If F[q] and G[q] depend only on the root density of q in the thermodynamic limit, then

(F,G) =F[p1]G[ps]+o(L7?), (195)

with
_ 1  f+rgh _ 1 g+fgh
C2ml+f+g+fgh’ 2T onl+f+g+fgh

In these equations the root density can be complex.

01 (196)

Proof. It is a generalisation of the proof of Lemma 7 in [1]. Let us first treat the particular
case where in the thermodynamic limit F and G depend only on r the number of elements of
q divided by L. We introduce the generating function

Sapens, I Leall+ 21 M Teul1 + 218() TTyerny h()

T(a; ) = [ Trens, [1+£ (k) + g(k) + £ (k)g(k)h(k)]

(197)

We note that the denominator is such that I'(0;0) = 1. By differentiating with respect to a
and f3, we see that o o
(r:rf)::a;aér(0;0)+<9(L—1). (198)

Besides, performing the summation on A, u we obtain

= a  f+fgh B g+fgh af fgh
lxw_ﬁgl[1+L1+f+g+fgh+L1+f+g+fgh+Lz1+f+g+nghm.
(199)

From this we find for any i, j

T i T j
<ri,rf>=(J pl(k)dk) (J Pz(k)dk) +0(L™), (200)
0 0

with pq, p, given in the Lemma. As any regular function can be approximated by a polynomial
with arbitrary precision provided its degree is high enough, this establishes the result of the
Lemma when F and G are functions of r only.

Let us now divide [0, ] into m windows Wy = [-(k—1), ~k]fork = 1,...,m, and consider
F[ry,...,ry], G[rq,..., 1, ] functions of g that in the thermodynamic limit depend only on r’s,
the number of elements of q in W, divided by L. By introducing I'(ay,...,%n; B1,---,Bm) as
in (197) with a replaced by a; where k is such that A, u € W, we get similarly

m ia ja
(rl! ...r,ig', rit r{;l") = l_[ (J pl) (J pz) +0O(L™Y. (201)
a=1 Wa Wa

Hence the Lemma holds whenever F, G are functions of ry,...,r, only. Since any regular
functional of p can be approximated with arbitrary precision by such a function provided m
is large enough, the Lemma holds for general F[p] and G[p]. O
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B.4 Fredholm determinants

Lemma 9 (Generalized Cramer’s rule). Let Abe an N x N matrix and x', ..., x' vectors of size
N. We define B to be the matrix obtained from A by replacing the columns il, L igbyxt, . xk,
Then

detB = detY detA, (202)

with Y the k x k matrix with entries Y; ; = yl.l;‘, where the vector y'a is a solution to
Ay'a = xla (203)

Proof. Denoting the columns of Aby C;,...,Cy Eq (203) reads
N .
xlo="yC;. (204)
=1
Using the multilinearity of the determinant, one has

detB = Z iy detAdle, (205)
k=1

where A/lJk denotes the matrix obtained from A by replacing the columns iy,...,i; by
Cj,,---,Cj,. Since its determinant is non-zero only if {j;, ..., ji} = {i1,..., i}, we obtain

detB = Z yio. ik det Alo>lotio
o)’ la(k)

oEG, (206)
=detY detA.

O

Lemma 10. Let f (A, u) be a function of two variables, J C {1,..., L} a set of n indices, (a;;); jes
n? numbers and (g;(4));<s, (hj(A))jes 2n functions of a single variable. Define an L x L matrix
Aby

+ 1Ly ifi,jed,

1 (i Iy .
+g:(F fjed,ié¢J,
I Hyesie (207)
h(2) ifict,j¢s,
%aij lf l,] eJ.
Then in the limit L — oo the following Fredholm determinant representation holds
1 1 p1
detA= n det [aij — f f hi(A)g;(u)e (A, ,u)d?tdu] - Det[Id+ f]+o(L™), (208)
0o Jo 1<i,j<n
where ¢ is the resolvent of the Fredholm equation
1
¢(/1,u)+f f, (v, w)dy=56(A—p). (209)
0
Proof. Using Lemma 9, one has
detA = detA'detX . (210)
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Here A’ is the L x L matrix

5ij+%f(£;,% ifi¢J,
Al = Thi(1) ified,j¢J, (211)
§i+1f(£,1) ifi,jeld,
and X the n x n matrix whose entry X;; for i, j € J is the i-th element of the solution x/ to the

linear system . ‘
Ax) =1, (212)

with the vector

1o 0Ly ifq
‘ {LgJ(L) ifigJ, 213)

bl =
t %ai]’ ified.
As A’ differs from the matrix with elements §; it % f (%, %) by only off-diagonal terms on a
finite number of rows in the thermodynamic limit, one has the Fredholm determinant

detA’ = Det[Id + f ]+ o(L°). (214)

For i ¢ J the system (212) reads
. , 1 .
X+ 2> F(E B = 28i(1)- (215)

This equation allows one to describe the entries xg for i ¢ J by a function x/(A) in the thermo-
dynamic limit, since xi for k € J appears a finite number of times with a factor % However,

the entry x{ for i € J can be discontinuous in the i direction in the thermodynamic limit. We
thus obtain an integral equation for x/(A)

xj(/l)+f1f(7t, Y)xi(v)dy = %gj(x), (216)

whose solution is expressed as O
PA)=7 JO g (s, (217)

with the resolvent ¢ (2, u) defined by
¢(7t,u)+J1f(7t, v)p(v,u)dv=56(A—u), (218)

or equivalently 01
¢(7t,u)+f0 oA, v)f (v,u)dv=56(A—pu). (219)

Now, for i, j € J the system (212) reads
L1 1
x)+ 2 (g = Tay. (220)
k=1
In the thermodynamic limit, this yields for i,j € J

1,1

i1

x{=z(au—f f hi(A)g;(u)¢ (A, u)dAdu (221)
o Jo

N——

This concludes the proof of the Lemma.
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B.5 Miscellaneous

Lemma 11. For z complex and 0 < { < L an integer, we have in finite size L

i(t+1)v ¢
S =2, (222)
e —z 1—2L
and .
el(€+1)v Z[
> ——=1 . (223)
S el —z 142t

Proof. Let us start with (222). The left-hand side is a meromorphic function of z with simple
poles in e'R i.e. for z* = 1. The full result can thus be obtained with analytic continuation
from |z| < 1. In this region, one has

ei(€+1)v . .
— (£—m)vy
PNl JCAD ICEE (224)
veR m=>0 veR
If { —m is a multiple of L, then the sum over v is L, and otherwise the sum vanishes. Hence
i(¢
D el St
el —z
vER k>0 (225)
1—zl’
Now, to show (223) we write NS =R+ % to obtain
i(€+1)v i({+1)v
Sy (226)
— T
vENS er—z veR e’ —ze i/
Using (222), we then obtain (223). O
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