Scil SciPost Phys. 12, 022 (2022)

Rank one HCIZ at high temperature:
Interpolating between classical and free convolutions

Pierre Mergny?* and Marc Potters3

1 Chair of Econophysics & Complex Systems,
Ecole Polytechnique, 91128 Palaiseau Cedex, France
2 LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
3 Capital Fund Management, 23 rue de I'Université, 75007 Paris, France

* mergny.pierre@gmail.com

Abstract

We study the rank one Harish-Chandra-Itzykson-Zuber integral in the limit where

g — ¢, called the high-temperature regime and show that it can be used to construct
a promising one-parameter interpolation family, with parameter ¢ between the classical
and the free convolution. This c-convolution has a simple interpretation in terms of an-
other associated family of distribution indexed by c, called the Markov-Krein transform:
the c-convolution of two distributions corresponds to the classical convolution of their
Markov-Krein transforms. We derive first cumulant-moment relations, a central limit
theorem, a Poisson limit theorem and show several numerical examples of c-convoluted
distributions.
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1 Introduction

For a self-adjoint random matrix A, of size N with real, complex, or quaternionic entries, under
mild assumptions and up to a rescaling of the entries, we know from Random Matrix Theory
(RMT) that the (random) spectral measure of A tends to a deterministic limiting measure i, in
the limit N — oo (see for example [1]). Free Probability, introduced by Voiculescu [2], allows
one to compute the limiting spectral distribution denoted by u, B ug and known as the free
convolution, for the sum of two such random matrices A and B, in this limit N — oo, where
one replaces the notion of independence of classical probability by the notion of freeness of
non-commutative algebraic probability theory. The correspondence between classical and free
probability is given in Table 1.

For a measure u, with (compact) support I, the transform R, (.) that linearizes the free
convolution is the R-transform defined by:

1
Ry, ()= Gr 0 (0=, (1)

Table 1: Correspondence between the classical and the free world

Classical Probability Free Probability
X real random variable || A self-adjoint operator
Independance Freeness
Mx * Uy ua B up
logEx [ ] Ry, (1)
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where .1 denotes the composition inverse and

1
G, ()= J dox ——py(x), @
I z—X

is the Stieltjes transform. We point out that the correspondence in Table 1 is by no mean
exhaustive: to cite a few missing items, there is also a clear correspondence for the multi-
plicative convolution with the so-called S-transform [1], the combinatorial moment-cumulant
relations [ 3], the entropy [4] between the classical and the free world. Ever since the discovery
of free probability, it has remain unclear whether one could find other generalized notions of
independence, until Speicher [5] proved that, under specific assumptions, there are only three
possible notions for a non-commutative algebraic probability space: classical independence,
freeness and Boolean independence [6]. By relaxing the assumptions, it has been however
possible to construct other types of convolutions see for example [7]. Despite Speicher’s work,
there have been several attempts to construct generalized convolutions, with or without an
underlying notion of independence, that would, in particular, interpolate between the classi-
cal convolution and the free convolution. To cite a few important results, let us mention: the
g-convolution of Nica [8] (see also [9] for a similar but different g-convolution) which inter-
polates between the classical convolution at ¢ = 1 and the free convolution at g = 0 but which
does not seem to preserve the positivity of the measures [10]; the t-convolution of Benaych-
Georges and Lévy in [11], which interpolates between the classical convolution (t = 0) and
the free convolution (t — o0) but for which it is not possible to construct a transform that
linearizes the convolution and from which one can define cumulants at any order. In this note,
we construct another one-parameter convolution, called the c-convolution as a continuous in-
terpolation between the classical convolution at ¢ = 0 and the free convolution as ¢ — 0o0. Our
construction is similar to the one developed in [8] in the sense that we construct an operator
that interpolates naturally between the moment generating function and the exponential of
(the integral of) the R-transform. Our c-convolution is technically defined on a set larger than
the set of probability distributions and it is still an open question to know whether it preserves
positivity. Nevertheless we show that several objects (see [12,13] and [14-17]) that have
appeared before in the RMT literature at a specific limit, called the high temperature regime
where the inverse temperature  decays linearly with the size N of the matrix  ~ 25, admit
a simple interpretation in terms of our c-convolution. Schematically our construction is as
follows (concepts and notations will be made more precise in the main text). We start with
the rank one HCIZ integral at finite N and fixed 8 involving a matrix with eigenvalues a and
another matrix with a single non-zero eigenvalue t:

IP() =E, [V | =By [eX], (3)

where v is the generalization to all f > 0 of a unit vector with real, complex, or quaternionic
entries averaged over the corresponding sphere. We have introduced the random variable
X = v*av that we will call the discrete Markov-Krein transform of a. The rank one HCIZ
integral is then the moment generating function of this variable. As N — oo with fixed f3
the variable X concentrates on its average value and the Markov-Krein transformation is not
very useful, but, as we will see, the variable X converges to a non-trivial measure as N — oo
with fixed ¢ := Nf/2. Our c-convolution will then be the (classical) convolution of Markov-
Krein transforms, it naturally interpolates between the classical convolution (¢ — 0) and the
free convolution (¢ — o0). In Section 2, we review several results concerning this HCIZ in-
tegral in the classical regime (8 > 0), that will be useful to have a better understanding of
our c-convolution; we focus on the rank one HCIZ as it is our main object of study. Section
3 is technically independent of our construction of the c-convolution and can be read inde-
pendently. There, we show that we can make sense of the HCIZ for negative values of the
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parameter f3, in particular, we show that 3 = —2 is linked to the finite free convolution of Mar-
cus [18,19]. Many of the properties of the finite free convolution will have a clear analog in
the high-temperature regime. In Section 4, we define HCIZ in the high-temperature regime
and derive its properties, with a particular focus on the Markov-Krein transform. Eventually,
in Section 5, we introduce and discuss the properties of the c-convolution and derive several
examples of c-convoluted objects.

2 Review of some results concerning the rank one Harish-Chandra-
Itzykson-Zuber Integral

2.1 A few words on the full rank case

In the 80, Itzykson and Zuber re-discovered Harish-Chandra’s work on integrals over Lie
groups [20], in the context of random matrix theory (RMT). Such integrals are now referred
to as Harish-Chandra -Itzykson-Zuber (HCIZ in short) integrals, also known in the literature
as angular/spherical integrals and as multivariate Bessel function. If we denote by f =1,2,4
and A and B two N x N self-adjoint matrices with real, complex, or quaternionic entries re-
spectively, the HCIZ reads':

I(ﬁ)(A, B) := J DG ¢ TTAGBG* ) 4)
GeGW®)

where G®) = 0, U,Sp are respectively the orthogonal/unitary/symplectic N-dimensional
groups.

From the spectral decomposition of A and B, it is clear that the HCIZ integral only depends
on their eigenvalues a and b, so that we will denote it by Z(#)(a, b) in the following. One may
also note that since the vector of eigenvalues is unique up to permutation, the HCIZ integral
is necessary a symmetric function in each argument a and b.

In particular, in the unitary case ( = 2), Itzykson and Zuber [21] have established the
famous formula bearing their names:

N—1 a;b;
7@(a,b) = (]_[u) %, (5)

i=1

where A(a) :=[];o j(al- —a;), is the Vandermonde determinant. The HCIZ integral has ap-
plications in problems directly linked to random matrix theory (RMT) such as the study of
the sum of invariant ensembles [22-24], the development of large deviation principles [25],
the study of the so-called orbital beta processes [26]. It is also linked to the enumeration of
Hurwitz numbers in algebraic geometry [27,28] and to quantum ergodic transport ( [29]), to
cite a few recent results.

It is then tempting to try to generalize this formula for arbitrary positive f3, just like one
can study the eigenvalue distribution of 5 ensembles in RMT for general  [1]. There are
several possible natural choices to define the HCIZ "integral"? for a generic 3 > 0 which all
lead to the same result: a natural candidate is to see it as the symmetric eigenfunction of the

1Some authors define the HCIZ integral with a constant ¢y, in the exponential function that can be absorbed
in one of the matrices A or B.

2For values for f3 outside 1, 2 and 4, we lack a Haar integral representation, but we will still call our object of
interest the HCIZ "integral".
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so-called Calogero-Moser operator normalized to unity whenever a or b = (0, ...,0). One can
then show [30] that the HCIZ integral admits the following representation for general > 0:

oo

1®(a,)=> > d, §; @y (b), ©)

k=0|A|=k

where the second sum is made over all partitions of size k: thatis A = (A1, A,,...) is a sequence
. o B v (Bw-ien)
of non-increasing integers such that 4, =k, d; :=[]_, .
the so-called "P" Jack polynomials indexed by the partition A. The set Jack polynomials is a
one-parameter generalization of the set of Schur Polynomials, which corresponds to the case
P =2. At f =1 (resp. § = 4), the Jack polynomials are the real (resp. quaternionic) zonal

polynomials. We refer to [31] and [32] for properties concerning these polynomials.

2
and the j;ﬁ)(a) are

2.2 The rank-one case

In this section and in the rest of the article, we fix one matrix to be of rank one, that is we have
b=(t,0,...,0), and we denote by:

IP)(¢) :=1P) (a,(t,0,...,0)), 7)

the corresponding HCIZ integral that we see as a function of t given the vector a. The main rea-
son to study this regime is that the large N behavior of the rank one HCIZ integral is very differ-
ent from the full rank case, which is known to satisfy a complex variational principle [33,34],
where analytical results are hard to obtain, except in some specific cases [35]. Specializing
to the rank one case will greatly simplify the results obtained for the full rank case. We will
first review known and lesser-known formulas in the literature for the rank one HCIZ; namely
the power sum representation (9), the differential operator representation (22), the inverse
Laplace representation (26), the spherical Dirichlet average representation (31), and the mo-
ment generating function representation (36).

2.2.1 Power sum representation

We have from [32] the following simplification for the Jack polynomials:

(5) B B\K ¢k

-]l (t:O)"'JO)_gl,k(E) E, (8)
where 6, , = 1if A = (k,0,...) and 0 otherwise. This greatly simplifies the expansion (6) and
we have:

= r*h @
1P () =) ——2—g 7 (a)tk, ©)
;)r(#m) ‘

2 k (2
where g;ﬂ )(a) = % (g) j(kﬁ )(a). These normalized Jack polynomials admit a simple formula
for their generating function, which can be taken as their definition:

N [ee] 5
l_[(l—ait)_lzi =Zg(kﬁ)(a)tk. (10)
i=1 k=0
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In particular, we see that if for m € N, we denote by a®™ = (a,...,a;,...,ay,...,ay) the
vector of size mN obtained by making m copies of the entries of the vector a, we have:

2) (2
g (@)=g' (a®),

from which we derive the following 8 «— N symmetry satisfied by the rank one HCIZ:

7®() = (1), e8))

a

In particular, if 8 is an integer we can always reduce to the 8 =1 case since we have:

I‘Sﬁ)(t) = IS@% (t) (for B integer) . (12)

2
The normalized Jack polynomial g(kﬁ )(.) can be decomposed into the power sum symmetric
polynomials which are defined for an integer k by:

N

pr(a) := af‘ R (13)
i=1

that is, they are the unnormalized moments of the discrete measure u,(x) = ]% Zi 6(x —aq;),
where 6(.) is the Dirac mass distribution. They admit the following simple formula for their
generating function which follows from the power sum expansion of the logarithm:

(o]

N k
log (]_[ (1- ait)‘l) => %Pk (a). (14)

k=1

2
Combining (10) and (14), we can decompose the g;ﬁ )(.) in terms of the power sum poly-

nomials which gives:

, e kN
a'@= > (5) TIES- as)

1ji+-+kjr=k i=1

The first few terms are given by:
1. gé%)(a) =1
2. 57 (@)= bpi(@)
3. gy (@ =3 (Lpa@) + (2ps@))
4. 87 (@ = 12py(@) + 3 (8pa@) (Epr(@) + L (Spa(@)’

and we have the recurrence relation:

2

2) B ()
kg (@=75 2 g (@pla). (16)
=1
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Remark: Note that in the unitary case, this simplifies to:

o0

IA(t) = ;(%hkm) tk, (17)

where the hy(a) are the complete homogeneous symmetric polynomials:

hy(a) := Z aj ...aj, . (18)

1<j;<<jk<N

This power sum expression in the unitary case can actually be derived from the Itzykson-Zuber
formula (5) using the Brézin-Hikami trick [36] and the identity:

k+N—-1

N a.
hi(a) = (Z]_[ P ) (19)

i=1 j#

whenever all the q; are distinct.

2.2.2 Differential operator representation

We can find a differential operator representation of (9) by first realizing that the coefficient
()

—7— is precisely the inverse of the coefficient of
r(%2+k)

(—1)k

k . NG .
e R (20)

dek

If we denote by Uflﬁ )(z) the characteristic polynomial raised to the power —g of the matrix
with eigenvalues a:

N
B B
UP(z) := l—[(z —a)"F =7 [ duloglep (W) 21)
i=1

with ug(x) = ]% Zf;l 6(x —a;). By using the formula for the generating function of the Jack
polynomials (10), we get the following differential operator form for the HCIZ rank one inte-
gral,

_NB
UP ) =P (D)2, (22)

where DF := d*/dz*. The term z‘¥ can be viewed as U(()ﬁ )(z) for the null matrix.
Equation (22) could have been taken as an alternative definition for the rank one HCIZ
integral for general 3 > 0.
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2.2.3 Inverse Laplace representation

From the power sum relation (9), we can express the HCIZ integral in terms of the inverse
Laplace transform E;l[.], using (10), we have for t > 0:

I&m(t):( m 1)2 T @9

= r(Nﬁ +k)
[e%e) (2)
zgm(t):( 1)Zgﬁ( [ Wi ](t) (24)
e k=0 g2 "
TPB) () = ( 2 ) -1 S
D)= £ =7 Z = |®. (25)
t2 2 272 (=
By applying the generating function formula (10) for t = -, we get the following Inverse
Laplace representation:
B¢ (ﬁ ) (8)
IP(t) = T £ UP(](0) (t>0), (26)
tz

with Ut(lﬁ )(.) defined in (21), which gives in explicit form:

B y+ioo
Igﬂ)(t)=(w)i_f dze'® l_[(z—a) z (t>0and v > ay,y). (27)
=

[
taN-1 ) 2mi )

Remark: For the orthogonal and unitary cases, this formula could have been deduced from
the definition of the HCIZ integral, by use of the Gaussian integration, see for example [1],
and for the case 8 > 0 this can be deduce from the spiked 3-Wishart ensemble of [37].

Remark: Note that from this expression, we clearly see the § «— N symmetry (12).

2.2.4 Spherical Dirichlet integral representation

Another way to generalize the rank one HCIZ integral to arbitrary 8 is to express it as the
average of a simple function over some 8 dependent measure. In the classical case f =1, 2, 4,
from the definition (4), when the matrix B is a projector of rank one, we can re-express the
HCIZ integral as:

I(Elﬁ)(t) zf da' et21 14 (Zb 1 lb) (ﬂ = 15234)5 (28)
SN—l

B

with Slg—l = {0‘ eRVA|SY Zgzl o}, = 1}, in particular SY™' = SV~ is the usual N-
dimensional real sphere. We can then make N times the 3 polar change of coordinates
x?= Z§:1 o} » from which we find:

TP oc | dxfxy...xy [Pt et D! (B=1,2,4). (29)

SN-1
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Following [38], we can generalize the above equation to arbitrary > O by introducing the
following a-spherical Dirichlet distribution with a > 0 defined on the real sphere SN~ as

r(%2)
T(ZN

p@(x) = lxq ... xn]* L. (30)

Using this measure, we could define the rank one HCIZ integral for arbitrary > 0 by

I((lﬁ)(t) =E,u® [e(v*gv)t] . 3D

As explained nicely in [38], the parameter a determines how the mass is concentrated on the
sphere and we have in particular:

1. () is the uniform measure on the sphere

2. uO(x) = % leivl 5(x e;), where e; is the i vector of the canonical basis.

N
3. p) = 4 32 5 (x - L (£1,...,£1)).

This intuitive generalization only works for the rank one case and is therefore less general
than our definition (6) using Jack polynomials. It is important to verify that (31) can be
derived from our original definition. As noted by the above authors [38], if we denote by
a = Diag(a) = Diag(ay, ..., ay), we have:

U () = f dx (z—v'av) " F uP(x), (32)
N

N—1

so with the inverse Laplace representation (26), we get:

r(in .
Ia(t) = ( (2 )) ﬁz_l [(Z)_Ng]]va‘u(ﬁ) [e(v EV)t] 5 (33)

toN-1

from which we recover (31).

2.2.5 Moment generating function representation

We finish this section with an important formula for the rest of this article. If we now make
the following change of variable d = (d;,...,dy) with d; = vi2 in (31), then we have:

TP = Eguy, [e4]. 69

where d follows the (planar) Dirichlet distribution with parameter (g, e, g): its probability
density function is defined over the simplex A = {x; € (0,1)| >, x; = 1} and is given by:

1 B_
MDir(x)z—C xy...xnlZ70, (35)
BN

then doing the change of variable X = a*d allows us to represent the HCIZ integral as a
moment generating function:
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a

TP(t) =Bxpay, []. (36)
2

The distribution M g a is known as a mean Dirichlet process or as the (discrete) Markov-Krein
2

transform (MKT) of the vector a, with parameter NTﬁ One should think of the transformed

variable X as a random convex combination of the a;’s, its support is naturally given by the
extreme values of a namely [y, Amax ], With @, := mina and a,,, := maxa. By the sym-
metry of the Dirichlet process the first moment is preserved: E[X ] = % Zivzl a;. and for t > 0,
we see that the bounds:

etamin S I‘gﬁ)(t) S etamax (t > 0), (37)

are preserved. Those are immediate for 8 = 1,2,4 from the definition of the HCIZ integral,
Next we give a formula that we will prove later in a more general context, relating the vector
a to the distribution Ms _:

2 2

J dx(z—x)"F My ()= UP(). (38)

2.3 Large N behavior of the rank one HCIZ

2.3.1 f > 0 and relation with free probability

As explained in the introduction of this section, the main reason to study the rank one HCIZ
integral is its large N behavior. In particular, it is known for the three classical value f = 1,2,4
that if we denote by y = Eigen(a+G'bG’*) , with a = Diag(a) = Diag(ay, .. .,ay) and similarly
for b, we have, from the property of the Haar measure, the following formula for the rank one
HCIZ:

Egeon [ZP(0)] =T 1P (0) (6=1,24). (39)

In the large N limit, we assume that the spectral measure y,(x) := % Zi\[zl 5(x—a;) converges®
to a compactly supported deterministic measure u, such that mina — a,,;; and maxa — d,,,
where a;, and a,,,, are the left and right extremities of the support of the measure p,.

We expect to have some self-averaging in the LHS of (39), so that we can remove the
expectation, making the logarithm of the HCIZ additive for the free convolution and therefore
directly connected to the famous R-transform of RMT. To establish such relation, we perform
a standard saddle point analysis in (27) for > 0:

B y+ioo
Igﬁ)(Nt) = (1“(2—[5]\1)) LJ dz (,’Ntz—gj SN log(z—a;) , (40)
(Nt)EN—]. 271:1 }’—100
1 y+ioco
TN = — J dz NHOGD 1)
2mi f—ioo

with:

3For simplicity we write a instead of ay) even though the vector a is N-dependent.

10
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HPB (2, )=tz — g f dx log(z —x) pg(x) — g log(t)

+ % (log (r (gN)) — (gN — 1) log(N)) + 1% log(t), (42)

Now we have by Stirling formula that:

1 B p Loz B P_B
Nli)n;oﬁ(log(F(EN))—(EN—l)logN)+Nlogz— 2 log 5 3 (43)

and since we have u, — u, we have:

1
e (B — 27(B) (o
ngn N logZP (N t) = HW(2*(t), t), 44)
with
H(/j)(z t) ~gt— E fdx log(z — x) g (x)— élog(t) + = b logg — g s

and z*(t) solution of :
a, (8) -
{ HP)(z,t) =0 ’ 45)
t— _gIvLA(Z) - 0

where G,,(.) is defined in (2). That is z*(¢) = G, , - 1)( t) for t close enough to the origin.
One may notice then:

e 00=00(5e )+ prgei (5) - Goaai (1) -5 @

4 ) _ (—1)(3 )_El
dtH (z (t),t)—gMA ﬂt 57 “47)

so that at the end we have the following simple formula:

hrn Ndi logI(ﬂ)(Nt) = (%t) (t close to 0) , (48)

where R, (.) is defined in (1). This result was first derived for 3 = 1,2 by Parisi [39] and
made rigorous by Guionnet and Maida [40] for § = 1,2 using Gaussian concentration and
under a more general setting. In particular, the asymptotic for all t and not just close to origin
is derived and one can see that there is a phase transition at a certain t* above which the
asymptotic (48) is no more true, we refer to [40] for more details.

Remark: Note that for integer 3, this formula is consistent with the 3 «» N symmetry (12)
since Ugep — Ug-

11
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2.3.2 Infinite temperature regime (3 — 0) and classical convolution

In the previous subsection, the parameter 3 was restricted to real positive values. The aim
of this section is to describe the extreme value zero. To get the behavior for this value, we
will use equivalently the limiting behavior of the Jack polynomials and the Dirichlet average
representation (31).

By the recurrence relation (16) satisfied by the g;(.) and using properties of the gamma
function, we have for k > 0:

2 k
* limg_, (%) g(kﬁ)(a) = Trkg , where we recall a := Diag(a).

remg) 1
r(An+k) — NG

o llmﬁ_>0

so that in the end we get for the HCIZ integral:

o0
NI L GO
Em I =, =t “)

k=0

. N . e
with my(a) := leZk=1 al’F, is the k" moment of the (random) distribution .

This is also consistent will the Dirichlet average representation, since in this case the mea-
sure degenerates at the poles *e; with e; the i*" canonical vector.

=D ke Bt = %Zlet (50)
=
LS s (v D = G 51)
2N ' per S S R
that is we have:
lim () = Ex.., [e*]. (52)

In other words, in the 8 goes to zero limit, the rank one HCIZ is nothing else than the
classical generating function of the moments and under the same assumptions as in Section
2.3.1, this property is preserved by the limit N — oo. In the Markov-Krein language, the
variable X can only take values a; each with probability 1/N hence its measure is equal to
the discrete measure u,. In particular, the logarithm of the rank-one HCIZ is the generating
function of the classical cumulants. This is expected since, in the theory of -ensembles, the
parameter 3 measures the strength of the interactions between the eigenvalues, at 8 = O there
is no interaction and one recovers classical objects. It is worth noting that if we denote by P a
N x N permutation matrix, we can express the rank one HCIZ at # = 0 as a Haar integral:

TO(t) = J Dpet(PaP); (53)
PeSym(N)

where DP is the normalized (discrete) counting measure of the permutation group. This is
actually a special case of the formula of the full-rank case, since we have:

7O0)(a, b) = f Dp o(PaP'b) (54)
PeSym(N)
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Remark: Similarly in the freezing regime ( — o0) we get:

Jim TO(6) = e(F ) (55)

In this limit and with this scaling, the HCIZ integral only captures the mean of the limiting
distribution. As a consequence, it does not provide much information on the complex structure
of this regime where one expects the eigenvalues to "freeze" on a lattice, see for example [41].

3 Negative 3 and finite free convolution

3.1 Definition

It is tempting to generalize the HCIZ formula to negative value 3 = —y, v > 0. To do so, let’s
introduce the following generalization of the Jack polynomials:

= r s (3)
[Ta-an?=>g @ (56)
i=1 k=0

_2
Remark: If y is even (y € 2N), then we have g( Y)(a) =0 for k > %, since the LHS is a
polynomial in t. In particular, we have for y = 2:

(1)~ _ (—=1ker(a) fork <N
g ()= { 0 otherwise (57)
where the e, (.) are the elementary symmetric polynomials:
er(a) = Z aj, ...aj, . (58)
1<j;<-<jr <N
By Euler’s formula:
rl—t)=——— for t € C\ N (59)
" T(t)sin e ’

we can then formally define the rank one HCIZ integral for negative 3 = —y by simply taking
(59) with the definition of the negative Jack polynomials (56) in (9). By singularity of the
gamma function at negative integers, this extension of the definition of the HCIZ integral to
negative values is, at N fixed, only true for specific values of the parameter y due to the term:
M —k+1) (2
TNy Sk "(a), (60)
r(%+1)
in the sum. For y even, thanks to the previous remark, we see that there is no problem since
we can fix it to be equal to zero for k > % and hence there is no singularity. So if we define

by:

N
Ry = {)f € R, such that 7)/ ¢Norye ZN} , (61)
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the set of admissible values of y, then we can define the HCIZ at negative values by:

o0 F(%—k+ 1) (_z)
I((l_”(—t) =y ———Zg (a)tk foryeR . (62)
kzz(:) F(% 4 1) k ( Y (N))

Similarly to the positive case, we have:

Dkt — F(%Y—Jrl)t%—k (63)
r(%—x+1) ’

which leads us to the following differential operator representation:
= r(-3) Ny
l_[(z—ai)2 =7, "'(-D)z2 (foryER(N)) . (64)
i=1

Again for % € N, the RHS of (64) is a sum of derivatives of a polynomial, hence a polynomial,
whereas the LHS (for y ¢ 2N) is a formal power sum and, therefore, strict equality is not
possible. When y € 2N, we have an equality between two polynomials.

Remark: By the limits:

(_J%)(a) — Tr_gk

. 2
. hm),_>0 78 p

o 1 YN\y _ 1
lim, T (7) 3 = N=1)

oo my(a) k

0~ _ 7(0* —
we see that we haveI((l )(—t)—I((l )(6) = Ko R LT

3.2 The special case y even

In the rest of this section, we look at the special case y € 2N = {2,4,6,...}. It is immediate
from the definition of the negative Jack polynomials that we have again a y «» N symmetry,
in particular, for m € N, k < 1%, using (57) we have:

g;((_m%) (@) =(=1)*e; (a®"), (65)

so we can specialize to the case y = 2 without any loss of generality. In this setting we have:

N
1Tt = ;) w(—nkek(aﬁk : (66)
N
¢ (1) = (tsztl)Z(N—k)!(—l)kek(a) N, 67)
: k=0

but since we have:
(N—I) e N1 =2 [2N*](0), (68)

where L, [.] is the Laplace transform with respect to the variable z, we get:

14
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N+1 N
I((I—Z)(—t) = (t ' )EZ {Z(—l)kek(a) zN_k] , (69)
N! =0
N+1 N
()l loe]
Nt i=1
N+1 ©°
I((I—Z)(_t) — ( = ) f dz e—zH—fdu log(z—u)pq(u) ) (71)
: 0

This expression is the negative counterpart of (26). From (70), it is clear that the large N
asymptotics of the integral is dominated by the same saddle point as the one in Section 2.3.1, so
under the same assumptions as in Section 2.3.1, we directly obtain the following asymptotics:

. 1d _
lim NG logIc(l D(—Nt) = R, (1) (72)

N—-oo N dt

The case for general y € 2N follow easily using the y «= N symmetry (65).

3.3 Link with finite free convolution

In [19] and [18] the authors have introduced the following convolution, known as the finite
free convolution: Let ug(x) = % levzl & (x —a;) and py(x) = & Z?’:l 5(x — b;) be two finite
distributions of the same size N. Then, since we are at y = 2, (64) simply becomes:

N

[ [¢t—a)=2{PD) e, (73)

i=1
and similarly for b. Their finite free convolution denoted by:

We = Ua By Up (74)

is then defined as the unique, well behaved, finite N probability measure on the (real) points
¢; which are solutions of:

N
[ Tt—c)=252(D)Z (D) eV (75)
i=1
We refer to [19] and [18] for several other formulations and properties of this convolution. In
particular (75) can be restated as:

I8 = 10O 752 (1) mod ("7, (76)

where mod tN*! means equality of the power series up to the Nt" term, which is obviously

needed since we known that Ig_z)(.) is a polynomial of order N while the product in the right
hand side (RHS) of (76) is a polynomial of order 2N. Note that the terms of order higher than
N do not contribute in (75). Now, under the same assumptions as in Section 2.3.1, taking the
limit N goes to infinity in (76), we can formally remove the mod tV™!, so that together with
the limit (72), we have:

lim (uq By Up) = s B up, (77)
N—>oo

hence the name finite free convolution.
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Remark: One can define finite free cumulants for this finite free convolution similarly to
the way classical and free cumulants are defined in classical and free probability. We refer
to [42] for more details. We conclude this section with another interesting point of view,
detailed in [18], concerning the finite free convolution that will have a clear analogous in our
construction of the c-convolution of Section 5. To each finite N measure y, we can associate
a finite N complex valued measure u,(z) = %Zivzl 6(z —s;) that we call the negative Markov-
Krein transform® of u, such that we have:

N
fdu(z—u)N,us(u) = l_[(z—ai), (78)

C i=1

then plugging (78) in (70), one arrives at (see [18]):

I8I(0) = f duetug(w) mod tV*1. (79)
C

We note the clear correspondence between the 3 > 0 case and the = —2, in particular we see
that (78) is the negative counterpart of (38) at 3 = —2 while (79) is the negative counterpart
of (36), we see that due to the lack of a Dirichlet representation, the negative Markov-Krein
transform is complex valued. Nevertheless, (79) together with (76) indicates that the finite
free convolution can be understood — up to a truncation operation — as a convolution of the
negative Markov-Krein transforms.

4 HCIZ at the high temperature limit % —C

4.1 Definition and notations

From Section 2.3, we have seen that the HCIZ integral exhibits a drastic change of behavior
as 3 gets close to zero. As is standard statistical physics (see for example [43] for a model
linked to RMT), to introduce a continuous phase transition between the two regimes, we take
B going slowly to 0 by which we mean NTﬁ — ¢, where ¢ > 0 is a tunable parameter”. Since this
limit only makes sense as N goes to infinity, the goal of this subsection is to make precise what
we mean by HCIZ at high temperature and show that most of the representations of Section
2.2 admit a high-temperature counterpart. Let’s fix a measure u, with compact support I. The

corresponding ¢-HCIZ is defined by:

() = i T glel (80)
u ' = I'(c+k)°k ’
where the gl[{c](u) are defined by taking the % — ¢ limit in the power sum expansion of the

normalized Jack polynomials (15) which gives:

k

) . ()i
g]EC](M) = Z chttik l_[ M , (81)

Ji j.\
L+ tkj=k i=1 Ui

“In [18], the distribution u, is called the U-transform of the set a.
°Note that even though other scalings could have been chosen, this particular one has already been studied in
the RMT literature in a completely different context [12,14], and was shown to exhibit non-trivial limiting objects.
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where m;(u) is the i" moment of the measure . They satisfy the recurrence:

k
kgl (w) =c D g wym(w). (82)
=1
We define the high temperature analog of U((Iﬁ )(z) :=det(z—a)P 2

U![f](z) = exp {—c fdx log(z — x)u(x)} s (83)
I

which, by the properties of the logarithm, is analytic for all C \ (—00, a,,,) °. It can be equiv-
alently represented as:

UL(z) = PN 84
(2) = E & (W) (84)
and is linked to the Stieltjes transform by:

1d
- [c]
Gu(z) = e logUu (). (85)
Using (102) in Section 4.2, one may recover the original distribution thanks to the inversion
formula:

1 d
ux)=——— 11m Jmlog{ U[C](x —in)}, (86)
cmdxn
where the derivative has to be understood in the sense of distributions. Next, by doing the

same derivation as in Section 2.2.3, we get the following high temperature counterpart of
(26):

100 = 19 2 [0 (t>0), 57)
which can be inverted into:
Ull(z) = ﬁﬁ [T () (Rez > Qo) (88)

and then extended analytically to all z € C\ (—00,a,,,) - We emphasize that we have as-
sumed the measure u to be compactly supported so the complex integral contour in the in-
verse Laplace transform of (87) can always be deformed to have the branch cut on the left side
of the integral contour and hence (87) is well-defined. If we consider a measure u with un-
bounded support (from bellow), the inverse Laplace transform is not necessarily well-defined
and equation (87) only makes sense as an equality between formal series. In some cases, we
can use a trick similar to a Wick rotation, namely, multiply the argument z by a constant using
scaling properties implied by (81) and (83):

{c] [c] [c] —pylel( 2
(1) - TEK ) = Ul)(z) —» K~ UL (K) (89)

®0One may notice that crossing the branch cut at a point x, < a,,, introduces a phase ¢*™, so that when c is an
integer one can extend analytically the function to C \ I.
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If by such a scaling the formal power series now converge, the rescaled functions are then equal
on their domain of convergence. In particular, if we look at a measure whose support is of the
type (a, 00), then taking K = —1 is the same as considering the measure u(—.) whose support
is (—oo, —a) which makes the inverse Laplace transform converges. This is reminiscent of the
fact that for measures on R, the Laplace transform is more appropriate analytically than the
moment generating function. Following the derivation of Section 2.2.2 together with (84), we
have again:

[c] — lcl —c
UM (z)—IM (=D)z°. (90)

To establish the high temperature counterpart of (36), one can first fix By = % and a cor-
responding sequence of finite measures gy, such that Uay, = U and apin vy and Apax(n)
converge towards the edges of the support I, and then we take the limit N — oo in (36)
accordingly, so that we have:

79(0) = By, [e%], oD

where the measure M. , is known as the Markov-Krein Transform (MKT) of u. The MKT is
discussed in great details in [44], where the link with RMT is made. The link between the
MKT and the HCIZ integral can be derived from results of [45], although the authors do not
make this link explicitly and they do not study the high temperature regime.

4.2 Generalized Stieltjes transform and fractional calculus

The purpose of this section is to introduce the generalized Stieltjes transform which will improve
our understanding of the properties of the MKT. For a measure v with compact support J with
left and right extremities b,;, and b,,,, and s > 0, the generalized Stieltjes transform of order
s is defined for all z € C \ (—00, b,.x) ” by:

Q(S)(z):z dx V() . (92)
v ; (E—x)

For s = 1, we drop the superscript and simply write G,(.) as one recovers the usual defini-
tion of the Stieltjes transform. Taking the Taylor expansion of the power function, one arrives
at the following formal expansion for the generalized Stieltjes transform:

(o]

(s) . 1 F(S+k) —k—s
Gy(z)= F(S)kzz(; T mi(v)z™"7, (93)

where my () is the k" moment of the measure v, with the usual convention my(v) = 1. It is
worth noting that using:

1 1 (7
- dt ts—l —t(z—x) 4
G—x) r(s)fo e ©9

we can rewrite:

’For s integer, one can extend the function to C\J .
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g(s)(z) F( ) [ S_I]EXNV[CtX]](Z) ] (95)

For a measure defined on R, and s = 1, we recover the fact that up to a sign, the Stieltjes
transform is an iterated Laplace transform:

—Gy(=2) = L, [L, [v(x)]()](2). (96)

To connect the generalized and standard Stieltjes transforms, observe that for s > 1, one has:

1
—S — Ds—l —1
X o) ® X, 97)

where for 0 < s < 1, D1 = D=(1=) {5 the fractional anti-derivative® of order a = 1—s, defined
by:

_ 1 (° ~
D™f(x):= —f dy (y —x)* 7 f(y), (98)
I'(a) J,
and for s > 1, it is the fractional derivative of order a =s—1:

lal+1

D(Z — Da —
) = DD () o= - e J — S0 09
for o € N, the fractional derivative is the usual derivative (by analytical continuation in a)
and we have in the general case the identity:

D*D™* =D’ =1d. (100)

Then we have:

1
(s) _ s—1
Gy(z)= G )D G,(2). (101)

It will useful later on to develop an inverse formula similar to the famous Plemelj inversion
formula in the s = 1 case:

v(x) = ljm lim G, (x —in) . (102)
T n\0
If we denote by:
(5)(x) = Jm hm g(s) (x—in), (103)

then taking the corresponding limit in (101) together with (102) and using the identity (100)
yields:

v(x) =T(s)D'* g (x), (104)

which gives explicitly:

8Note that we are interested in functions that are regular at infinity but not necessarily near zero, hence we
integrate to infinity and not from zero as it is more customary.
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e ForO<s<1:

* d
(x) = —J dy(y— X)s‘ld—g(‘)(y), (105)
x Y
e fors>1:

v(x)= (s—1)f dy (y —x)2g9(y). (106)

4.3 Properties of the Markov Krein transform

Taking (88) together with (91) and (95) we have that the MKT is linked to the original measure
by:

G, @ =UlG). (107)

This relation and its application to different fields are explained in Kerov [44]. More explicitly

we can write:
M, (x)
d : =expy—c | dx log(z —x)ul(x) ¢, (108)
J I

Y —xy

which can also be seen as a non linear differential equation:

d C C
00, @+c0y ()G,()=0. (109)

Since the functions on the LHS and RHS of (108) are equal and analytic on the complex
plane except for the real line going from —oo to the right extremity of the support of their
respective distribution and since for both functions crossing the branch cut on the left of the
supports simply introduces a phase ¢%™, we have necessarily equality between the support
of the two distributions. Next using the formal series expansions (84) and (93) together with
the definition of the normalized Jack polynomials in the high temperature regime (81), we
can express the moments of the MKT m; (MC’H) = f dx Xko,u(X) in terms of the moments
my(u) = f dx x*u(x) of the original measure:

k

. ) ()i
m (M) = [(c) k! S Ch+~~+1kl_[—ml(“) . (110)

Fleth) ) Tk i1 it

For completeness we give the inverse mapping, together with (85) and (93) ats = 1, we have:

T ji
mw=t 3 come (S II(R) e

) ) - ) Jj;!
1j+-+kjr=k i i t

In particular, we have that the means m; of the two distributions are equal and the vari-
ances are linked by:

1
my (M) =my (Me,,)” = — (ma(u) = my (). (112)
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As in the discrete case, the high temperature MKT has a smaller variance than the original
distribution. It is still non zero in this formally N — oo regime. In the limit c — 00 we recover
the zero variance found for fixed 8 and infinite N. From (108), one can show that a shift and
a scaling applied to a density introduces the same shift and scaling to its MKT. Similarly, for
an original symmetric distribution u , up to a shift we can fix the axis of symmetry to be the
x = 0 axis without loss of generality, then we have that the RHS of (108) is invariant under
the symmetry z — —z and therefore so does the LHS, which implies that the MKT is also
symmetric along the same axis. It turns out that if we assume furthermore the distribution
u to be unimodal (in addition to being symmetric), then its MKT is also unimodal with the
same vertex [46] but unlike the previous properties, the converse is not true. Using the Taylor
expansion in ¢ of the exponential function in (108), we have:

1—c J dxlog(z —x)M, ,(x)+ 0 (cz) =1-—c J dxlog(z —x)u(x)+0 (cz) s (113)

R R

from which we derive the limit:
li_r)%Mc,u_)“' (114)

Similarly taking the limit ¢ — oo in (112) we immediately find the other extreme case:

Clirglo M., — 6(x—my). (115)

We now aim at finding an explicit expression for the distribution of the MKT. Taking the imag-
inary part of the RHS of (108) in the limit n \, O together with z = x —in , x € I and the
behavior of the logarithm near the real axis, one can derive the following limit [45]:

g = le_cfdy log be=ylua(y) sin (rtcuy[x, 00]) (xel). (116)
T

From which we get the density of the MKT with the proper inversion formula (105) for ¢ < 1
and (106) for ¢ > 1, while for ¢ = 1, we have directly M, ,(.) = gM(). In particular we have
that the MKT density is absolutely continuous with respect to the Lebesgue measure. Next
we give a few examples of the MKT of distributions that have already appeared before in the
literature and that will be useful later on.

4.4 Known Markov Krein transforms

MKT of the Bernoulli distribution: Let us denote by

upp)(x) :=(1—p)6(x —0)+pé(x —1), (117)

the Bernoulli distribution with probability of success p, then one can show [46,47] that its MKT
follows the law of a beta distribution (cp,c(1—p)) so that we have:

I'(c)
I'(cp)T(c(1—p))

where I is the indicator function. It is worth mentioning that the result can be derived by first
looking at the finite N case and then take the high temperature limit. The vector
a = (0,...,0,1,...,1) of size N with pN non-zero values equal to 1 has a spectral distri-
bution given by (117). By the symmetry (12), we can re-scale  and N by pN accordingly so

Mc,MB(p)(x) = xcp—l (1 - X)C(l_p)_l ]1[0,1] > (118)
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that the computation of the corresponding HCIZ integral boils down to the computation of a
rank one normalized Jack polynomial which is given by [32]:

2 [T (& +i
g,(f)(Lo,...,o):#. (119)

Taking the high temperature regime in (9), we get that the ¢-HCIZ is given by:

[c] _
IHB(p)(t) - 1F1 (Cp7 C: t) 5 (120)
which is the moment generating function of (118).

MKT of the arcsine distribution: Another known example in closed form (see for example
[46] and reference therein) is given when the original distribution is the arcsine distribution:

1
Ups(x) i = ———Trg 17, (121)
» mYxd—x) 7
then one may show that its MKT follows the law of a beta distribution f(c + %, c+ %):
r'(2c+1) _1
My, ()= == (x (1=x)F I ), (122)
r (C + z)

this can be checked by computing the LHS and RHS of (108) with the corresponding measures.

MKT of the uniform distribution: If we now take the original distribution to be the uniform
distribution on [0, 1]:

vy =TIp17, (123)

then by (116) we have:
Cc
g(")(x) = % (1 —x) 079 x =X gin (c(1 — x))NTo17s (124)

which gives in particular the density for ¢ = 1 of the corresponding MKT transform. For ¢ < 1
and ¢ > 1, one needs to use the formula (105) and (106) but no analytical expression is
known.

MKT of the Cauchy distribution: For every ¢ > 0, the Markov-Krein transform of a Cauchy
distribution with parameters x, and b:

b
Tr(b2 +(x —xo)z) ’

‘U'Cx,b(x) = (125)

is again a Cauchy distribution with the same parameters (which can be seen by computing
LHS and RHS of (108), see for example [45,48]).
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4.5 Inverting the Markov-Krein transform

For a given measure u and a positive real c, we have seen that there is always a unique well-
defined probability measure which is its MKT. It is natural to ask the reverse question: for a
probability measure v and a positive real ¢, can we find and express a measure y such that v
is the MKT of u? The measure u will therefore be the inverse Markov-Krein Transform (IMKT)
of v and denoted by /Vlc_}v Kerov proved that the IMKT of a probability measure always exists
and is unique but not necessarily positive. The image of the set of probability measure by the
IMKT is discussed in details in [44]. We aim now at expressing the measure of the IMKT given
the density »(.). From (86) and (108), one has:

1 d
M () = ——— %i\n% Jmlog {G)(x —in)}, (126)

cmdx
lim,\ o nggf)(x —in) )

lim, o ReG(x —in)

Mc_i(x) = —ii arctan ( 127)
’ cmdx

where we have used that the imaginary part of the logarithm is (up to an irrelevant constant)
the arctan function of the ratio of the imaginary and real part of its argument. If we know
the generalized Stieltjes transform of v, (127) can be used directly. We can also use the link
between the generalized and the standard Stieltjes transform via the fractional derivative to
express the IMKT measure more directly as a function of v. From Section 4.2, we already
know that:

lim Jm GO (x —in) = ——D v(x). 128
lim Im G —in) = D 9() (128)
Similarly for the real part, since for c = 1 we have:
1. .
;}’1{‘% fﬁegv(x—lﬂ) =Hv(x)> (129)

where

H(x) = %PVde ") (130)

;XY
is the Hilbert transform of the measure v and PV indicates that the integral has to be understood
as a Cauchy principal value integral, we find:

; ©(x —in) = —_pc-1
}’{r%)megv (x—in) F(c)D H,(x). (131)

Equation (127) can therefore be written as:

c—1
Mc_i(x) = 14 arctan (D—v(x)) s (132)
’ cmdx

,HDC*1 v(x)

where we have used the fact the the fractional derivative and the Hilbert transform are both
linear kernel operators and therefore commute. If the density Mc_i is continuous, this reads:

1 Hpe ,(x) D w(x) = Hpe, () D ¥(x)
cm (Hpe-1,(x))* + (D=1 v(x))? '

M () = (133)
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One has to be careful when applying (132) or (133): while the density of the IMKT is defined
on the same support as that of the measure v, the fractional derivative is a non-local operator
and should be compute for all x < a,,,, before computing its Hilbert transform. Note as well
that our definition of fractional derivative uses a boundary condition at infinity rather than the
more usual boundary at zero. For these reasons these formulas are difficult to use in practice,
except for integer ¢ where the fractional derivative reduces to the usual derivative. We finish
this section with several examples of IMKT:

IMKT of the standard Gaussian distribution: For

_<
2

e
\/277:’

a standard Gaussian distribution, then one has that the IMKT is given by the so-called Askey-
Wimp-Kerov distribution:

ve(x) = (134)

1 1

M, ()= : (135)
&Y V2rT(c+1) |D_, (ix)?
where D__(.) is a parabolic cylinder function defined by:
22 o0
e 4 x2
D_(z):=—= | dxe ™ zTx!. 136
)= iy | dxe T (136)

It has zero mean and variance ¢ + 1. This distribution was first obtained by Kerov [44], while
the distribution had first appeared in [49] as the distribution whose orthogonal polynomials
are the associated Hermite polynomials, since then it has appeared also in RMT ensemble at
high temperature [12,14]. This distribution is a continuous interpolation between the Gaus-
sian distribution at ¢ = 0 and the unnormalized (infinite variance) semi-circle distribution at
c — 00.

IMKT of the gamma distribution: The gamma distribution with parameter (k, 0) is defined
by the probability density:

X
e~ 7 k1

V),(k’g)(X) = W . (137)

Since the parameter 0 is a scale parameter, we can fix it to 8 = 1 without loss of generality
thanks to the scaling property of Section 4.3 and we simply denote by v, () the gamma distri-
bution in this case. Since the support of the measure is (0, ©0), it will be more convenient to
characterize it by its Laplace transform:

Ex o[e”® =1 +t)7F. (138)

We can use the following identity for the Tricomi function ¥(.):
1 o
\Il(c,c+1—k;z) = mJ‘ dte_Zttc_l(l'i‘t)_k (%€Z>O), (139)
c
0

taking care of the branch cut on the negative real axis of the Tricomi function and using prop-
erty (89), we have for z € C \ R, that up to an irrelevant multiplicative constant:
U/[\C/l]c_lv(z) o< (c,c+1—k;—z2). (140)
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Since we have:

d
E\IJ(C,C—Fl—k;—z)=c\1/(c+1,c+2—k;—z). (141

Using (85) we find that the corresponding Stieltjes transform is given by:

Y(c+1,c+2—k;—32)
_ =— . 142
gMC’lv(Z) ¥(c,c+1—k;—=) (142)

It turns out that a similar Stieltjes transform had already appear in the RMT literature in a
different context [13,17] from which we can immediately get the limiting density:

1 xk—c—le—x
I'(c+ 1Tk | W (c,c+ 1 —k;ei™ x)|

M, () = 5Les0 + H6>k¥6(x —0). (143)
Crossing the branch cut of the Tricomi function introduces a change in the sign of the imaginary
part of the function so that the function |¥ (a4, as;.)| can be continued analytically to all C.
The density in (143) does not depend on the choice of the branch cut, in particular one could
have taken instead €™ in the argument of the Tricomi function. The case 6 # 1 is then
obtained by dilatation and we have:

Qc—k xk—c—le—g c—k
I,~o +]Ic>k—6(x —0). (144)

(e +1)r(k) {\If(c,c+1—k;—§)|2 ¢

Mc_j}(x) =

This distribution has mean k6 and variance k8?(c + 1), it interpolates between the gamma
distribution (at ¢ = 0) and the (rescaled) Marcenko-Pastur distribution. To recover the stan-
dard Marcenko-Pastur with aspect ratio g, one has to take the limit ¢ — oo with k — gc and
0 — (qc)~ .

IMKT of the beta distribution: It is natural to ask if one can find a positive measure for
the IMKT of a beta distribution since it is the third classical ensemble after the Gaussian and
the gamma distribution. In Section 4.4, we saw that certain beta distributions are the MKT
of the Bernouilli and arcsine distributions, but for a general beta distribution its IMKT is not
always a positive measure. We will show this by finding a triplet (c, a, b) where (a, b) are the
parameters of the beta distribution, such that the IMKT is not positive.

The moment generating function of the beta distribution (a, b) is given by:

Ex~piap e ]=1F1(a,a+b;t) . (145)

We have from (88) and (91) that the corresponding IMKT satisfies:
1 o
U[C],l(z) = —f dte 't F,(a,a+ b;t), (146)
r'(c) J,

by the classical identity between the hypergeometric functions:

1 oo
5F (a,c,a+b;2)= — dte 't Y F, (a,a+ b;zt), (147)
r'(c) Jo
we find:
UE\C/t];lv(Z) =2 “yF(a,c,a+b;1/2). (148)
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From (85) together with the identity for the derivative of the hypergeometric function ,F;(.):

d
HzFl(a:ﬂ:YJX):%2F1(a+1>ﬁ+1:7/+1;x)> (149)

we get, after simplifications,

a,Fi(a+1,c+1,a+b+1;1/2)
(a+ b)z2,F; (a,c,a+ b;1/z)

Grioy() = + (150)
This expression is the Stieltjes transform of the IMKT of a beta distribution with arbitrary
parameters a and b, in particular we recover the Stieltjes transform of the Bernoulli (117) for
a =cp and b = c(1—p) and the arcsine law (121) fora=b=c+1/2.

As an explicit example of a non positive IMKT we fix c =2, a = b = %, in this case the
expression simplifies considerably and we have:

3—8z+ 822
_ = - - 151
gMC,l”(Z) 4z — 1222 4+ 823~ (151)
3 1 31 1
— =t ——— . 152
v )= g T T e T (152)
From which we find that the IMKT is the discrete distribution:
3 1 1 3
_1 _

MC’V(X)—Z5(X—0)—§5(X—5)+25(X‘—1), (153)

and hence it is not a positive measure.

5 c-convolution

5.1 c-convolution as convolution of Markov-Krein transforms

The HCIZ integral is multiplicative for the free convolution for > 0, in the limit N — oo,
and multiplicative for the classical convolution at 8 = 0. It is natural to construct a new
convolution, which we call the c-convolution and denote it by &, for which the HCIZ in the
high temperature regime NTﬁ — ¢ of the previous section is multiplicative. Using (91) this
is equivalent to saying that our c-convolution corresponds to a classical convolution in the

Markov-Krein space. This statement can be summarized by the following scheme:

Ha Up
l MKT l MKT
Va Vg
\vA * vB/
l IMKT
Ha ©c Up

The c-convolution

* is commutative: uy, @, Ug = Ug D Ua »
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* is associative: Ua & (.uB &, .U’C) = (.UA &, .uB) & uc »

* is well behaved with respect to shift: u, ®; 6y, = ua(- —x¢) ,

* preserves symmetric measures: if two distributions are symmetric with respect to their
means then their c-convolution is also symmetric with respect to its mean,

* is additive for the means and the variances:
my (Up ® tg) — (M (g & tp))* = my (g) — my(Ua)? + my (ug) —my (up)?,  (154)

* admits the limits lim,_,o us ®, g = Us * up and lim,_, o Uy O, g = Uy B Up.

All these properties are derived immediately from the properties of the Markov-Krein transform
of Section 4.3. In the general setting, the c-convolution is defined on the set of the images of
the IMKT described by Kerov [44] (see also [45]), it is an open and important question to know
whether the c-convolution is stable for probability measures, that is, the c-convolution of two
probability measures is again a probability measure. We emphasize that this convolution is
well suited for numerical simulations since the operations to compute the MKT on the one
hand, namely (116) together with (105) or (106) and the ones to compute the IMKT with
(133) or with (126) and the definition (92) can all be approximated numerically. We have
illustrated the results of the c-convolution of several well-known examples of distributions in
the classical and free worlds in Fig. 1.

5.2 c-cumulants

The c-convolution being defined, the next step is to define the corresponding c-cumulants
which we denote by Kg(c) . Following Lehner [50], the c-cumulants must satisfy

-+ additivity: x}° (ua @ pg) = K (ua) + 157 (uip) ,
+ homogeneity: Kgf) (Fua(3)) = )kagf) (ua) ,
. K(kc) is a polynomial in the first k moments with leading term my.

By construction of the c-convolution we have that the (classical) cumulants of the MKT are
additive (and of course homogeneous) for the c-convolution. Their leading term is given by
the k" moment of the MKT and not the k" moment of the original distribution, so that we
need to compute the term Cy . in the development:

my (MC’H) =Cremy(u)+.... (155)
Using (110) this is given by:

o - e+ )k—1)
k™ T(e+k)

(156)

hence dividing by Cj . the classical cumulant of the MKT we get the c-cumulant, from which
we derive that they satisfy the following equation:

o0 MC o0
log(l +Zw:tk) =ZMK(%’<. (157)

k
o= — T(c+k)k
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AN
1.0 4 1.0 1 P S
4 N\
/ ............. N
0.8 A 0.8 A \
= = classical convolution
— c=0.001 == classical convolution
= 0.6 —— c=0.100 0.6 —— c=0.001
©=0250 - —— ¢ =0.100
©=0.500 . €=0250
0.4 4 c=0.750 . 0.4 4 N ¢ =0.500
¢ =1.000 " N c=0750
c=1.500 . N ¢ =1.000
©=2.000 \ 4 c=1500
0.2 1 ¢ =3.000 B 0.2 f ¢ =2.000
—— ¢ =5.000 H 4 ) c=3.000
++ free convolution ; £ : ++ free convolution
0.0 ¥ T T T T 0.0 T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0
X X
(a) (b)
® classical convolution
1.4+ — c=0.01
— =010
1.2 4 c=025
c=050
c=075
1.0 c=1.00
c=150
0.8 1 c=2.00
3 c=3.00
—— =5.00
0.6 1 ++ free convolution
0.4 fhoSee.. R e
o
0.2 4
0.0

(©

Figure 1: Plots of numerical approximations of the c-convolution of the uniform dis-
tribution (a) the semi-circle (b) and the symmetric Bernoulli distribution (c) with
itself for different values of c¢. The dashed line corresponds to the classical convolu-
tion and the dotted line to the free convolution limiting cases.

For completeness we give the cumulant-moment expression:

. Ji
(© _ F(C + k)k . Zi ji—1 (Zz Ji— 1)' S, miln
o= DL (T) e ]_[ > e ik

1ji+-+kji Uy +--+il;=i n
(158)

from which we can derive the first cumulant-moment relations:

Kl =mq,

K(ZC) = mz—m%,
K(sc) =m3—3mym; + Zm? )
K(C):m4—4m3m1—(2+—1 )m2+(10+—2 )mzmz—(5+ ! )m4
4 c+1) 2 c+1 1 c+1/) 1
k) = me —5m,m —5(1+L)m m +(15+i)m m2+15(1+L)m2m
5 > 4 c+1 32 c+1 3T c+1 2™
25 10
—(35+—)m2m§+(14+ —)mf{.
c+1 c+1
In particular when the first moment m; = 0, we have that the 4" cumulant is given by:

©) 2 2C+3)
K, =my—m )
4 4 2(c+1

(159)
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from which we see that the value ¢ = 1 corresponds to the midpoint between the classical and
free case. Similarly we can obtain the moments in terms of terms of the c-cumulants, we only
give here the first five moment-c-cumulant relations:

3
m3=K.(;)+3Kg:)K(1C) ((2))
_ . © (©) (c) () © ()2 @)*
ma=x+ 4k (24 = ) () + 6 () + ()
5 2 5 2
ms =k 5O+ (54— P4 1060 () (104 ) ()

41069 () 1 (x©).

_

Remark: If one writes back ¢ = NTﬁ and set 5 = —2, one recovers the combinatorial formula
for the finite free cumulants of the finite free convolution of Section 3, see [42].

5.3 c-central limit theorem and related distributions

Let u be a measure with zero mean and unit variance, then we look at the following c-Central
Limit Theorem (c-CLT):

uld) = lim_ VTu(VT )%, (160)

where .®T indicates that we do the c-convolution of the measure u T times. The ,uG]( ) is the
c-Gaussian distribution, which is the unit variance Askey Wimp Kerov distribution of equation
(135), given by:
[c] Ve+1 1
pg (x) = 5 - (161)
V2rr(c+1) |p_, (ive T 1x)|
Indeed, the Markov-Krein transform of u; is a distribution with mean zero and variance
c%p since c-convolution corresponds to classical convolution in the Markov-Krein space, we
have by the classical central limit theorem that the limiting distribution is the IMKT transform
of the Gaussian distribution with variance —5. But we know from the previous example that
the IMKT of the standard Gaussian d1str1but1on is given by (135), so by the scaling property
derived in Section 4.3 we have the desired result. By construction, the orthogonal polynomials
of the c-Gaussian distribution continuously interpolate between the Hermite polynomials of the
(classical) Gaussian and the Chebyshev polynomials of the second kind of the semi-circle distri-
bution and are known as the (rescaled) associated Hermite polynomials, see [49]. As illustrated
in Fig 2, this distribution is a continuous interpolation between the standard Gaussian distri-
bution and the semi-circle distribution, in accordance with the properties of the c-convolution.

c-cumulants: Since the MKT of the c-Gaussian is a Gaussian, we find immediately from
results of the previous section, that the cumulants of the c-Gaussian are defined by:

K9 =16,, (162)
where 6, o = 1 if k = 2 and zero otherwise, which is expected from the limiting distribution

of a CLT.
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0.4 - —_ = = gaussian
— C = 0.10
e C = 0.25
c=0.50
""""""""" c=1.00
0.3 c=2.00
c=3.00
e ¢ = 5.00
— ¢ = 8.00
3 0.2 A = semi-circle
0.1 -
0.0 A
T T T T T T T
-3 -2 -1 0 1 2 3
X

Figure 2: Plots of the c-Gaussian distribution defined in (161) for different values of
¢, the dashed lined corresponds to the classical limiting case and the doted line the
free limiting case.

Infinite divisibility and the gamma Marcenko-Pastur crossover: In this section, we would
like to interpolate between the gamma and Marcenko-Pastur (MP) distribution using their
properties under convolution.

We consider the ensemble of gamma distributions (137) parameterized by their mean k6
and variance k6?2 and the (scaled) MP distributions of mean 6 and variance q62 defined by:

V(e —x)(x —x_)
2mq0x ’

Unp(q,0)(x) := (l—é)é(x—O)]IqN + (163)
where x; = 0(1+,/q)?. The distributions in both ensemble are infinitely divisible (under clas-
sical or free convolution respectively) and are closed under scaling and convolution. Multiple
families of law satisfy these two conditions; in order to uniquely determine the gamma and
MP distribution we need to specify at least one member of the family: the square-Gaussian
(or square semi-circle for MP). Indeed any gamma (MP) distribution can be obtained by scal-
ing, convolution and convolution roots of the square-Gaussian (square-semi-circle), i.e. the
random variable y = x? where x is a unit centered Gaussian (semi-circle) random variable, it
corresponds to a gamma distribution with 8 =2,k = % (MP with 6 =1,q =1).

For any c, the c-gamma distributions given by (144) are infinitely divisible and closed under
the c-convolution. Indeed, the c-convolution is defined as the convolution of MKTs and the
MKT of a c-gamma is a gamma distribution (by construction) which is infinitely divisible and
closed under convolution. For a given mean and variance the c-gamma tends to the gamma
and Marcenko-Pastur distribution in the limit ¢ — 0 and ¢ — oo respectively. Let’s see whether
the c-gamma family also contains the squared c-Gaussian whose distribution is given by

1 ve+1 X2
p(x) == —=pg) (vx) = > (164)
Vx V2rl(c+1) ID_ (iv/lc+ Dx)|
by property of the parabolic cylinder function, we have:
g2 2 s 1 22
D—s (2)22 5/264\11(5,5;3) . (165)
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-—=- gamma
084 -+ —— ¢c=0.01
1 —— ¢=0.10
0.6 - c =025
c=0.50
3 c=1.00
0.41 ¢ =2.00
c = 3.00
0.2 A Marcenko-Pastur
0.04 *: P PR
0 1 2 3 4
X

Figure 3: Plots of the c-gamma with mean 1 and variance % for different values of
c, the dashed lined corresponds to the classical limiting case and the doted line the
free limiting case

Since we are taking the absolute value, we can again extend this formula near the branch cut,
from which we have:

1 c+1
2°4/c+1 X 2¢e 2%

©(y) =
px) «/%r(c+1)|\p(§,%;emf%x)\

Teso, (166)

where again we could have taken ™" in the argument of the Tricomi function without chang-
ing the result. We recognize a ¢-gamma distribution (144) with parameters
¢ =¢/2,0 =2/(c+1)and k = (c + 1)/2. The normalizing constants look superficially
different but they are indeed equal as they should be. Note that k > ¢ so this law doesn’t have
a mass at zero. The first two moments of both laws obviously match and are given by y =1
and 02 =(E+1)/(+1/2)=(c+2)/(c+1).

So the c-gamma family contains a squared c-Gaussian but for a ¢ twice as large. This is
still consistent with the c-gamma distribution interpolating between the standard gamma and
MP distributions as when ¢ goes to either zero or infinity the 2c-Gaussian and the c-Gaussian
become identical.

We have plotted in Fig 3, the distribution M[YC](-) for different values of c.

It would be interesting to know whether one can construct explicitly a positive measure
by replacing the 2c-Gaussian by the c-Gaussian. If such a construction exists it would yield a
different interpolation between the gamma and the MP than the c-gamma considered here.

c-stability of the Cauchy distribution: By the c-CLT, we have that the c-Gaussian is c-stable.
Another example of a c-stable distribution is given by the Cauchy distribution, since we know
that it is a fixed point for both the MKT and the classical convolution, this writes simply:

Be,, 4, OB, ,, =Mc,,,, (167)

where the Cauchy distribution is defined in (125) and x5 = x; + x5 and by = b; + b,.
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5.4 c-Poisson limit theorem

Another classical limit theorem is the Poisson central limit theorem which concerns limit of
sum of independent Bernoulli random variables with a probability of success that goes to zero
at a speed I%:

) A A SO | x
lim ((1— ¥)5(x—0)+ ?5(x—a)) = E,upoim( ) (for a > 0), (168)

T—o00 Z
oo _j Ak . . .. . C 1. .
where Upoi(y)(x) = Zk:o e~ 47 6(x —k) is the Poisson distribution. This limit theorem admits
a free counterpart:

_ A A SO | X
Tll)ngo ((1—?)6(x—0)+?5(x—a)) ZJ‘MMP(%)(J) (for a > 0), (169)
where Uyp(q) is the unit mean Marcenko-Pastur distribution, defined in (163) with 6 = 1. In
this subsection we aim at developing the c-counterpart of these theorems, whose limiting ob-
jects will interpolate between the Poisson and the re-scaled Marcenko-Pastur distribution. We
know from (118), that the Markov-Krein transform of the Bernoulli distribution of probability
of success p is the beta distribution (cp,c(1—p)). Since again c-convolution corresponds to
classical convolution in the MK space, we first need to determine the limiting distribution of:

1 )T
0= i (281g.0)(5)) 7o

and then take the IMKT. This kind of distribution does not seem to have appeared before in
the literature and we will characterize it with its moment generating function (as no closed
form is known). The moment generating function of the beta distribution is given by (145),
so that we have:

) cA T
EX~v|:etX]:Tll)ngolF1(?,c;at) s (171)
T
X et
tX1 . = (C+k)k
Ex~,|e ]_TIEEO (1+ T +o(ﬁ) : (172)
Next we use:
oo oo
I'(c+1) e 1 I(c+1) 4
Fy({1,1},{2,c+1};t) = tt=— —_—t", 173
22 ({111 {2, +150) kzz(:)r(c+k+1)(k+1) t;F(c+k)k 173)

where ,F, is the hypergeometric function. Together with the classical limit identity for the
exponential:

x T
e* = lim (1+—) , (174)
T—00 T
we get:
Ex~,[e® ] =exp{aAt,F,({1,1},{2,c +1};at)}. (175)

32


https://scipost.org
https://scipost.org/SciPostPhys.12.1.022

SciPost Phys. 12, 022 (2022)

2.00 — c=010 2.00 — c=010

1.75 - — c=025 1.75 - — c=025

. c=0.50 . c=0.50

=075 =075

1504 cZ1o0 1.50 cZ1o0

c=2.00 c=2.00

| € = 3.00 w— C = 3.00

1.254 il 1.254 il
3 1.00 1 3 1.00 4
075 | 0.75

0.50 0.50 A A

0.25 - 0.25 :

0.00 — 0.00 : —

4 3 4

(@

Figure 4: Plots of the Markov-Krein transforms of the limiting distributions of the
Poisson limit theorem with parametersa =1, A = 1in (a), A = 2 in (b), for different

values of c.
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Figure 5: Plots of the numerical approximation of the limiting distribution of the
Poisson limit theorem with parametersa =1, A = 11in (a), A = 2 in (b), for different
values of c. compared to the classical (Poisson) and free (Marcenko-Pastur) limiting
distributions.

Since the distribution v has support R, we can take the inverse Laplace transform of the
moment generating function evaluated at —t:

y(x) = Et_l lexp{—aAt,F5({1,1},{2,c+1};—t) }](x). (176)

We can compute numerically v using this last formula. We have plotted the distribution for
different values in Fig 4.

The c-Poisson is then approximated numerically and we have plotted the different results
in Fig 5.

c-cumulants: Using (175) and (156), we have that the c-cumulants of the c-Poisson are
given by:

K9 =dka, 177)

which is again expected for the limiting distribution of a Poisson limit theorem.

33


https://scipost.org
https://scipost.org/SciPostPhys.12.1.022

Scil SciPost Phys. 12, 022 (2022)

6 Conclusion

In this note we have constructed the c-convolution, a one-parameter interpolation between
the classical (¢ = 0) and the free (¢ — ©0) convolutions. Our main object of study is the HCIZ
integral in the high temperature regime % — ¢, which is multiplicative for this convolution.
It turns out that in this regime the HCIZ integral is the moment generating function of the
so-called Markov-Krein transform of the distribution of interest so that the c-convolution of
two distributions corresponds to a classical convolution of their Markov-Krein transforms. We

finish this note with remarks and open questions that we believe are worth mentioning:

* We have not proved that the c-convolution preserves positivity and it is therefore possible
that the c-convolution of two probability distributions is not a probability distribution.
This is, however, unlikely since as pointed out in [51], if the positivity conjecture for
Bessel functions is verified, then the c-convolution is well-defined. More generally, it will
be interesting to know if one can (for a given c or better independently of c) restrict the
set of probability distributions so that the c-convolution is stable for this restricted set. In
fact (133) at ¢ = 1 is satisfied for log-concave distributions and since this set is stable by
classical convolution, we have that the set of continuous probability distributions whose
Markov-Krein transforms are log-concave is ¢ = 1-stable.

 If one can find such a restricted set it will be interesting to know if it is possible to
construct a random object (such as an infinite random matrix) associated to a measure
belonging to this restricted set, together with a certain notion of c-independence, such
that the c-convolution of measures would correspond to a sum of those c-independent
random objects.

* Another interesting and open direction of research is to know whether one can sim-
plify the combinatorial formula of the moment-c-cumulant relations so that it can be
expressed as a sum of c-weighted combinatorial objects, such as diagrams.

* In a previous note [52], we have introduced the multiplicative counterpart of the rank
one HCIZ whose asymptotics is governed by the logarithm of the so-called S-transform
of free probability (see also [41] for a similar rigorous derivation at 3 = 2). The formula
in [52] suggests that we can operate a similar construction yielding a multiplicative c-
convolution that interpolates between the classical multiplicative convolution and the
free multiplicative convolution. We leave this problem for future work.
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