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Abstract

The prediction of differential cross-sections in hadron-hadron scattering processes is
typically performed in a scheme where the heavy-flavour quarks (c, b, t ) are treated ei-
ther as massless or massive partons. In this work, a method to describe the production
of colour-singlet processes which combines these two approaches is presented. The core
idea is that the contribution from power corrections involving the heavy-quark mass
can be numerically isolated from the rest of the massive computation. These power
corrections can then be combined with a massless computation (where they are ab-
sent), enabling the construction of differential cross-section predictions in a massive
variable flavour number scheme. As an example, the procedure is applied to the low-
mass Drell-Yan process within the LHCb fiducial region, where predictions for the rapidity
and transverse-momentum distributions of the lepton pair are provided. To validate the
procedure, it is shown how the n f -dependent coefficient of a massless computation can
be recovered from the massless limit of the massive one. This feature is also used to
differentially extract the massless N3LO coefficient of the Drell-Yan process in the gluon-
fusion channel.
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1 Introduction

The prediction of high-energy scattering processes which involve initial-state hadrons is crucial
for understanding the physics of hadron collisions in both controlled environments (such as
the LHC) as well as a range of naturally occurring scattering processes (such as those involving
cosmic rays). In general, the starting point for the theoretical description that describes high-
energy interactions in these collisions is a factorisation theorem [1] of the form

dσ
dQ2 dX

∼
∑

a,b

∫

dξA dξB fa/A(ξA,µ) fb/B(ξB,µ)× dσ̂ab

�

xA

ξA
,

xB

ξB
,Q;αs(µ),

µ

Q

�

.

This theorem separates the full scattering process into a partonic scattering process involving
the scattering of the hadron constituents a, b (e.g. quarks and gluons), and a set of parton
distribution functions (PDFs) f (x ,Q)which describe the probability distribution of the internal
content of the hadron as a function of hadron momentum-fraction and virtuality carried by
the constituent particle. The energy-scale Q denotes a representative scale of the scattering
process, e.g. the dilepton invariant mass in the Drell-Yan (DY) process [2], and X is a hadronic
level observable such as the rapidity of the dilepton system.

A primary consideration when applying a factorisation theorem of this form is the treat-
ment of heavy-flavour quarks (e.g. charm and beauty). For example, if/when it is a good
approximation to consider these quarks as massless partons, or whether to retain the exact
mass dependence of the heavy quarks. When treated as a massless parton, the heavy-flavour
quark can be considered as an active parton in the perturbative evolution of PDFs as well as
the strong-coupling αs. This approach is often convenient as, through this evolution, it allows
to account for (to all orders) a class of logarithmic corrections to the scattering process of the
form αi

s ln[m/Q] j for i ≥ j, where m is the heavy-flavour quark mass. Instead, when consid-
ered as a massive parton, the impact of the heavy-quark mass can be incorporated exactly up
to the known perturbative (fixed order) accuracy of the partonic cross-section dσ̂. This allows
for the computation of the same logarithmic corrections as in the massless case outlined above
(limited to fixed-order accuracy only), and in addition power corrections of the form m/Q
which are absent in the massless calculation.

Alternatively one can develop a scheme which combines these approaches, providing a
uniform description of the scattering process across arbitrary energy scales—such a description
is provided by a massive variable flavour number scheme. This topic has been studied in
various contexts in the past [3–21], and with particular focus on the process of lepton-nucleon
scattering [22–31]. In the latter case, it is well understood how to apply such a formalism to the
description of nucleon structure functions. Due to the more rich structure of hadron-hadron
scattering processes, the development and application of such a formalism is relatively less
mature. It has been discussed for identified-hadron production [6, 8, 20, 32], processes with
flavoured-jets [33–35], inclusive quantities [15,36–39], exclusive quantities in the framework
of SCET [40], and also within the context of Parton Showers [34,41,42].

The goal of this work is to revisit this topic for the production of colour-singlet processes,
focussing on the neutral-current DY process. LHC measurements of this process have now
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reached per-mille level accuracy [43], massless N3LO predictions of such processes have now
been obtained [44–46], and precise computations of the transverse-momentum spectrum are
available at fixed-order [47,48] and beyond [49–55]. Given this progress, I believe it is impor-
tant to unambiguously assess the importance of heavy-quark mass effects for fully differential
collider physics predictions. To do so, I develop a method that allows to numerically extract
(at the differential level) the contribution of massive power-corrections to the hadronic cross-
section. The method is applicable to arbitrary processes, provided the considered observables
are inclusive in QCD radiation and/or infrared and collinear safe. In anticipation of a measure-
ment, and as an application and validation of the procedure, the low-mass Drell-Yan process is
considered within the fiducial volume of the LHCb experiment. As a by-product of this work, I
also show how the presented method can be used to obtain differential information on the DY
cross-section, which is used to extract the N3LO contribution to this process in the g g-channel.

2 (De)constructing the massive calculation

The general structure of the prediction of a differential hadronic-level cross-section involving
a single massive quark can be written as

dσM = dσm=0,nf + dσln[m] + dσpc . (1)

The three contributions on RHS of Eq. (1) are: the n f -dependent part of the calculation which
is present when m = 0; those terms which depend logarithmically on m which diverge in the
limit m→ 0; and all remaining contributions that take the form of power corrections (labelled
‘pc’), and which vanish in the limit m→ 0. The first two terms on the RHS of Eq. (1) are also
present in a massless calculation (as they define the m→ 0 limit of the massive calculation),
while the power corrections are uniquely described by the massive calculation. The core idea
of this work is that the contribution dσpc can be numerically isolated by directly calculating
all other terms appearing in Eq. (1). At fixed-order accuracy, this isolation procedure should
be applicable to arbitrarily differential observables, provided they are inclusive with respect
to QCD radiation and/or are infrared and collinear safe such that the zero-mass limit is well
defined. This includes the differential description of a colour-singlet system (which will be the
focus of this work), but also applies to processes involving hadronic jets (including those with
identified flavour [56]). The application to identified hadron production is slightly different
(due to the presence of final-state mass singularities), and has been discussed in the past [6,
8,20,32].

To illustrate how the procedure is performed, the neutral-current DY process (i.e.
pp → `¯̀ + X ) will be considered, and a description of how to evaluate each of the terms
appearing in Eq. (1) is given. The current availability and the perturbative accuracy of these
terms is also described.
Massive computation, dσM. The cross-section dσM appearing on the LHS of Eq. (1) denotes
the contribution from a single massive quark with mass m to the hadronic scattering process.
For the DY process, the presence of a massive quark alters the calculation starting at O(α2

s ).
The mass enters the calculation explicitly in subprocesses of the form ab→ `¯̀+QQ̄ (where a, b
denote massless partons and Q the massive quark), but also implicitly enters the lower multi-
plicity subprocesses ab→ `¯̀(+c) either in double-virtual corrections or through the definition
of UV renormalisation counter-terms—see the Appendix of [57] for a detailed discussion. It
should be clear that it is necessary to consider all contributions of the massive quark (whether
they appear explicitly or not).

A massive calculation of the DY process is not available atO(α3
s ). This requires perturbative

ingredients, such as various two and three-loop corrections involving a closed massive fermion
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loop, which are currently unknown.
Zero mass computation, dσm=0,nf . When considered massless, the quark Q still contributes
to the same subprocesses as in the massive computation described above (but with zero mass).
This contribution can be computed directly after extracting the n f -dependent part of the mass-
less partonic cross-section at this order. Due to the presence of single- and double-unresolved
emissions in the differential calculation, this extraction must also be applied to the (integrated)
subtraction/slicing terms which are required to regulate these emissions.

While first differential results for the massless DY cross-section at O(α3
s ) have been pre-

sented [46] (relying on the NNLO QCD calculation for Z j [47] reported in [52]), a careful (and
lengthy) computation is required to extract the O(α3

s n f ) component. A differential calculation
of the massless O(α3

s n f ) contribution to DY is therefore currently unavailable.
Logarithmic computation, dσln[m]. Provided that QCD inclusive and/or infrared- and
collinear-safe observables are considered, the logarithmic dependence of the massive cross-
section on the heavy-quark mass m is of collinear origin. This behaviour is universal, and it
can be described with knowledge of a set of decoupling relations which describe how parame-
ters (e.g. αs and PDFs) in a theory with a massive quark are mapped (at fixed-order accuracy)
into an effective theory where that quark is treated as massless. With this information, it be-
comes possible to construct the logarithmic behaviour of the differential cross-section using
only massless inputs.

This construction requires the decoupling relation for αs (and m) which is known analyt-
ically to high perturbative-order [58], and also available with public software (see for exam-
ple [59]). The corresponding relations for the PDFs are provided in the form of massive Oper-
ator Matrix Elements (OMEs, and denoted Âab) which describe the transition between the par-
tonic states a→ b. The perturbative structure of these objects has been studied at great length
in the past, and calculations of the massive OMEs are available at two-loop [10, 24, 60–65],
and three-loop [66–70] order. Notably, these OMEs also define the matching conditions/de-
coupling relations which allow to construct a VFNS for PDFs—see for example Eq. (12-15)
of [70] (and originally [24]).

To construct the logarithmic cross-section for the DY process, one has to consider convo-
lutions of the form

Â(i)ab ⊗ Â( j)cd ⊗ dσ̂(k),m=0
bd→`¯̀+X

, (2)

where the superscripts (i−k) denote the perturbative order of the OMEs and the massless par-
tonic scattering cross-section (dσ̂(k),m=0

bd→`¯̀+X
). All of the Â(i)ab inputs required to construct dσln[m]

up to O(α2
s ) (i.e. i + j ≤ 2) have been presented in [24]. The results presented in [66–70]

should also allow to extend this calculation to O(α3
s ). For (k)≥ 1, the decoupling relation for

the strong coupling ∆(i)n f
(αs) is also required, which can be applied as a multiplicative factor

to Eq. (2). The perturbative expansion for ∆(i)n f
(αs) is reported in Eq. (20) of [59]. Working

in the MS scheme for the strong coupling, and defining the heavy quark mass in the on-shell
scheme (which is consistent with that of the OME calculation in [24]), the expansion is

∆n f
(αs) = 1+

αs

2π

�

−
1
3

ln

�

µ2

m2

��

+
� αs

2π

�2
�

−
7
6
−

19
6

ln

�

µ2

m2

�

+
1
9

ln2

�

µ2

m2

��

+O(α3
s ) . (3)

Here, αs denotes the strong coupling defined in the massless scheme (where the heavy quark is
included in the running) at the scale µ. Up to O(α2

s ), the relevant expansion which is required
to build the (partonic) logarithmic cross-section is

dσ̂ln[m],(2)
qq̄ =

�

Â(2)qq,Q + Â(2)q̄q̄,Q

�

⊗ dσ̂(0)qq̄ +∆
(1)
n f
(αs) · dσ̂

(1)
qq̄ ,

dσ̂ln[m],(2)
g g = Â(1)gQ ⊗ Â(1)

gQ̄
⊗ dσ̂(0)

QQ̄
+ Â(1)gQ ⊗

�

dσ̂(1)Qg + dσ̂(1)gQ

�

+
�

Q↔ Q̄
�

. (4)
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Constructed in this way (i.e. using massless inputs) the logarithmic calculation will also
contain those terms which are independent of m. They are generated by the constant terms
contained in Âab and ∆n f

(αs)—i.e. those which define the de-coupling across heavy-flavour
thresholds in a variable flavour number scheme. It is necessary to account for these terms
as they are part of the massive calculation (i.e. they appear on the LHS of Eq. (2)), but are
not generated when dσm=0,nf is computed with inputs (PDFs and αs) defined in the massive
scheme (e.g. nmax

f = 4 for the b-quark).

3 Heavy-quark mass slicing to O(α3
s )

Following from the discussion in the previous Section, it is clear that all ingredients required
to extract the power corrections for the DY process are known up to O(α2

s ). This extraction is
achieved numerically by evaluating the first three terms appearing in Eq. (1) and solving for
dσpc. To validate this procedure, is it important to test that the extracted power corrections
vanish in the limit m → 0, which can be done by performing the extraction for decreasing
values of m. Extracted in this way, the power corrections will only vanish provided that dσln[m]

reproduces the logarithmic behaviour of the massive cross-section in the limit m→ 0, and that
the calculation of the constant term dσm=0,nf is correct.

Viewed in another way, one can also use the small-mass limit to numerically extract dσm=0,nf

when it is unknown. This can be achieved if both massive and logarithmic calculations are
known at the desired perturbative order, by performing a fit to the constant difference
�

dσM − dσln[m]
�

in the limit m → 0. Once this constant is known, the power corrections
can also be extracted at the physical value of the heavy-quark mass. In practice, this corre-
sponds to a global slicing method, where the heavy-quark mass parameter m acts as a collinear
regulator.

This technique is noteworthy, as it can be used to extract differential results for the DY
cross-section at O(α3

s ) in the gluon-fusion channel. This is possible because both the massive
and logarithmic calculations are available at this order. The massive calculation is simply the
NLO QCD correction to the subprocess g g → `¯̀QQ̄ which can be obtained with automated
codes such as aMC@NLO [71, 72], and the logarithmic cross-section can be constructed us-
ing the two-loop OMEs given in [24]. The (partonic) logarithmic cross-section at O(α3

s ) is
constructed following the same procedure which resulted in Eq. (4), but expanded to one or-
der higher. At this order new technical features are encountered, which are briefly discussed
below.

At O(α3
s ), it is necessary to consider convolutions of the form

Â(1)gQ ⊗ dσ̂(2),m=0
Qg→`¯̀+X

, (5)

where dσ̂(2),m=0
Qg→`¯̀+X

is the second-order massless partonic cross-section and Â(1)gQ the one-loop

OME in the Qg channel. The partonic cross-section appearing in this convolution contains con-
tributions from double-real, real-virtual, and double-virtual phase-space configurations—with
(integrated) subtraction terms appearing at each level. It is therefore necessary to convolute
Â(1)gQ with all terms at all levels, which at the real-virtual and virtual-virtual level includes iter-
ated convolutions with integrated subtraction terms. To better clarify this issue, it is sufficient
to consider the construction of the logarithmic cross-section at finite pT,`¯̀ values where the

partonic cross-section σ̂(2),m=0
Qg→`¯̀+X

effectively becomes NLO accurate (there can be maximally a

single unresolved QCD emission at this order). Practically, in this case, one has to consider

5

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024


SciPost Phys. 12, 024 (2022)

terms of the form

+Â(1)gQ ⊗
�

dσ̂R,m=0
Qg→`¯̀+X

− dσ̂Rs,m=0
Qg→`¯̀+X

�

+Â(1)gQ ⊗
�

dσ̂V,m=0
Qg→`¯̀+X

− dσ̂Vs,m=0
Qg→`¯̀+X

�

, (6)

where the superscripts R, Rs, V, Vs denote real, real-subtraction, virtual, and virtual-subtraction
terms which are present in a differential NLO calculation. The convolution with Â(1)gQ must
be applied to all terms. As the virtual-subtraction cross-section contains mass-factorisation
terms and integrated subtraction terms which are distributions in a collinear variable, the
convolution of these terms with Â(1)gQ leads to the aforementioned iterated convolutions. To
obtain a result which is valid at all pT,`¯̀ values, the above procedure is applied to the NNLO
accurate partonic cross-section.

At O(α3
s ), it is also important to consider the scheme dependence of the various inputs

which enter the construction in Eq. (2). For example, the OME calculation of [24] is valid
when the input PDFs are renormalised in the MS scheme with n f − 1 light flavours while
the strong coupling is renormalised with n f light flavours. Also the first-order partonic cross-

section dσ̂(1)gQ appearing in line 2 of Eq. (4) is defined with n f − 1 light flavours (i.e. for αs
and the gluon PDF which is not convoluted with the OME). Practically, a scheme conversion is
applied such that all inputs are defined with inputs (PDFs and αs) that are defined in the MS
scheme with n f light flavours. The relevant scheme conversions are

α
[n f −1]
s = α

[n f ]
s

�

1+∆(1)(α
[n f ]
s )

�

+O(α2
s ) ,

g[n f −1](x ,µ2
F ) = g[n f ](x ,µ2

F )−
α
[n f ]
s

2π
ÂS,(1)

g g,Q ⊗ g[n f ](x ,µ2
F ) +O(α2

s ) , (7)

with the definition

ÂS,(1)
g g,Q

�

z,µ2
F/m

2
�

= −δ(1− z)
1
3

ln

�

µ2
F

m2

�

. (8)

Notice that when this conversion is applied to equal powers of αs and the gluon PDF, the
dependence on m vanishes and a logarithm of the ratio µF/µR remains.

4 Intrinsic charm contributions

So far, the discussion has implicitly assumed that the contribution from massive initial-state
quarks is absent. This is consistent with the assumption that there are no intrinsic heavy-
flavour PDFs, which is the set-up of most modern global PDF fitting groups. In contrast, the
NNPDF collaboration have relaxed this assumption [73] (see also [74]), and now fits for an
intrinsic charm quark PDF as part of the nominal fit. In this case, the formalism outlined
above can also be applied to extract the massive power-corrections associated to initial-state
charm quarks. This is done in this work, extending the previous results for DIS [30, 75] and
inclusive observables [21], to the fully differential level. This requires the use of the OMEs
for massive initial states originally computed in [4] which have also been presented in the
Appendix of [21].

As an aside, I note that the general factorisation theorem for the computation of hadronic-
level cross-section predictions involving massive-initial state quarks is known to be violated
at O(α2

s ). This topic has been studied in the past [76–87], and has received recent atten-
tion in [88] in the context of the Drell-Yan process. A deeper theoretical understanding of
factorisation theorems for massive-initial states remains desirable today.

6

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024


SciPost Phys. 12, 024 (2022)

5 Constructing the M-VFNS

The massive variable flavour number scheme (M-VFNS) is constructed by combining a mass-
less calculation with that of the massive power-corrections outlined above, for differential
predictions, according to

dσM−VFNS = dσm=0 +

nmax
f
∑

i=c,b,...

dσpc
i . (9)

In this matching formula, the first term dσm=0 is the massless computation (i.e. that in a
zero mass variable flavour number scheme with nmax

f flavours, ZM-VFNS), and the second
term denotes the power corrections which are obtained by re-arranging Eq. (1). The power
corrections can be evaluated separately for each of the heavy-flavour quarks (at higher-orders,
one could also extend the formalism to deal with the presence of two-mass contributions).
The master formula Eq. (9) is similar to those which have been presented for DIS Structure
Functions (e.g. [29]), where dσpc is often written as the difference dσpc =

�

dσM − dσM→0
�

.
With respect to either a massive or a massless approach, the benefits of this construction

are that a resummation of a class of collinear logarithms involving the heavy-quark mass m
(through PDF and αs Renormalisation Group evolution) are included to all orders, and the
exact heavy-quark mass dependence is included to the fixed-order accuracy to which dσpc

i is
known.

Details of the computational set-up used for this work are provided in the following Sec-
tion, before providing a numerical validation of the procedure and phenomenological results
relevant for a measurement by the LHCb collaboration.

6 Computational set-up

Theoretical implementation. The predictions of the various differential cross-sections which
enter the construction of the M-VFNS for the DY process are provided with a specialised Monte
Carlo programme. It was originally purposed to enable the construction of a M-VFNS for
the pp → Z + b-jet process [35]. The programme has since been extended to contain all
ingredients which are required for the computation of the process pp→ `¯̀+ X up to O(α2

s ),
which may involve involve massless or massive heavy-flavour QCD partons. This includes
those axial contributions arising due the presence of heavy-quark triangle diagrams, see for
example [89–91]. Processes involving massive initial states are instead limited to O(αs).

These computations are performed using a combination of Dipole subtraction [92] to treat
the presence of single unresolved emissions (see [18, 93] for massive initial-states), and N-
jettiness slicing for double unresolved emissions [94]. This implementation relies on many
existing results, which include: amplitudes [57, 90, 91, 95–98]; N-jettiness inputs [99–106];
several OpenLoops libraries for tree-level amplitudes [107]; as well as a number of results
manually computed with the aid of FeynArts [108] and FormCalc [109]. Beyond fixed-
order, the programme also facilitates the computation of resummed predictions of the pT,`¯̀

spectrum at NNLL accuracy using a combination of results from [110–112]. The numerical
integration of all contributions in the Monte Carlo programme are performed with the VEGAS
algorithm as implemented in CUBA [113].
Numerical inputs. All predictions are provided with the NNPDF3.1 NNLO PDF set [73] with
αs(MZ) = 0.118 (with nmax

f = 5), where the PDF and αs values are accessed via LHAPDF [114].
These PDFs are used as an input to all calculations, which requires the application of a renor-
malisation scheme change to some of the inputs which enter the O(α3

s ) calculation in the

7

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024


SciPost Phys. 12, 024 (2022)

g g-channel. The use of these PDFs grids (and the corresponding αs values) practically defines
how the resummation is implemented within the first term appearing in Eq. (9). The values of
the on-shell heavy quark masses in this PDF set are mpdf

c,b,t = 1.51,4.92, 172.5 GeV. It should
be noted that the boundary condition for the PDF set is defined at Q0 = 1.65 GeV, which is
larger than mpdf

c . This information is relevant as it is used to derive the the static charm-quark
PDF fc(x), according to the de-coupling relations calculated in [4].

All calculations are performed in the Complex Mass Scheme [115], with Electroweak inputs
defined in the Gµ-scheme following [107]. The following values for the numerical inputs are
used Mos

Z = 91.1876 GeV, Γ os
Z = 2.4952 GeV, Mos

W = 80.379 GeV, Γ os
W = 2.085 GeV, and

Gµ = 1.16638 × 10−5 GeV−2. The massless DY computations at O(α2
s ) use the N-jettiness

slicing method with a technical parameter of τcut = 10−3 GeV. Such a small value was chosen
(at substantial CPU cost) to suppress the impact of missing power corrections beyond those
included via [106] (see also [116] for a recent discussion).

For the results shown in the following Sections, an uncertainty due to the impact of missing
higher-order corrections is assessed by varying the values of µR and µF by a factor of two
around the dynamical scale µ0 ≡ ET,`¯̀ (the transverse mass of the dilepton pair), with the
constraint that 1

2 ≤ µF/µR ≤ 2. When the M-VFNS is constructed according to Eq. (9), the scale
uncertainties are correlated between the power corrections and the massless computations.
Where shown, PDF uncertainties have been obtained from individual replica predictions (i)
calculated in the following way:

dσi = K dσi[O(αs)] , K =
dσ0[O(α2

s )]

dσ0[O(αs)]
. (10)

That is to say that a differential K-factor is calculated for the central PDF member at O(α2
s ),

and then applied to each of the individual replica cross-sections which are computed at O(αs).
LHCb fiducial definition. In anticipation of a measurement of the process pp → `¯̀+ X by
the LHCb collaboration at

p
S = 13 TeV, the procedure outlined in the previous Section is

both validated and applied in the fiducial region of the LHCb experiment. The predictions
will be performed double differentially with respect to the invariant mass of the dilepton pair
within the range m`¯̀ ∈ [4,200] GeV and either the transverse momentum (pT,`¯̀) or rapid-
ity (y`¯̀) of the dilepton pair. The following set of cuts are applied to the charged leptons:
pT,` > 1.5 GeV, |p`|> 20 GeV,2.0< η` < 4.5.

Predictions have been generated at fixed-order accuracy for both pT,`¯̀ and y`¯̀ distributions
in 20 invariant mass bins (a total of 400 bins). In this work, I have chosen to present the results
within the invariant mass region of m`¯̀ ∈ [12.5,13.5]GeV. This region is of phenomenological
interest as it provides sensitivity to the input PDFs at small-x , without being overwhelmed by
perturbative uncertainties which grow in the very low m`¯̀ regime. At the same time, this
invariant mass region is sufficiently small that the fixed-order predictions within the range
of pT,`¯̀ ∈ [2.5,11.0] GeV (which will be the focus of the pT,`¯̀ measurement) are expected
to be reliable. At higher values of m`¯̀, a resummation of Sudakov logarithms of the form
ln[pT,`¯̀/m`¯̀] is necessary.

The numerical validation of the theoretical procedure (to follow) will be performed in the
following kinematic regimes:

Fiducial : pT,`¯̀ inclusive ,

plow
T,`¯̀

: pT,`¯̀ ≤ 2.5 GeV ,

phigh
T,`¯̀

: pT,`¯̀ ≥ 2.5 GeV . (11)

The inclusion of this additional restriction in pT,`¯̀ is relevant as this defines the bin edge of the
on-going pT,`¯̀ measurement. Clearly, the Fiducial volume is the sum of the latter contributions.

8
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7 Numerical validation and O(α3
s ) results

Validation at O(α2
s ). To first validate the procedure, the small-mass limit of the massive

cross-section dσM appearing in Eq. (1) is considered within the LHCb Fiducial region. This
contribution is computed at O(α2

s ) and is compared to the logarithmic cross-section dσln[m]

at the same order. In both cases, the scales are set to µF = µR = ET,`¯̀ and the contribution
from b-quarks are considered. The results for c-quarks are qualitatively similar, and differ in
magnitude due to the coupling of the quarks with the exchanged gauge-boson.

The results are shown in Fig. 1 with a breakdown into qq̄- and g g-initiated channels (q indi-
cating a light-flavour quark). In the lower-panel, the cross-section difference

�

dσM − dσln[m]
�

is shown alongside the direct calculation of dσm=0,nf . The direct and indirect (obtained via
the m → 0 limit) methods of calculating dσm=0,nf coincide, confirming the structure of the
massive calculation presented in Eq. (1).

It is important to highlight that the massive calculation necessarily includes a sum over
all contributions of the massive quark. To understand why this is critical, one can consider
the double-real subprocess qq̄ → `¯̀ + QQ̄. When the heavy-quark pair is emitted in a soft
and double-collinear configuration, a triple-logarithmic contribution of the form α2

s ln[m]3 is
generated. This triple logarithm is cancelled (at the level of the differential cross-section)
by the exchange of a virtual soft and double-collinear massive quark-pair which is present
in the two-loop form factor for a massless quark pair. Which is to say, without including all
contributions involving the massive quark, the cross-section prediction will contain logarithmic
sensitivity to the heavy-quark mass which is not described by universal structure of the OMEs
and αs decoupling relations. This is effectively a statement of the KLN theorem [117,118].

1 10
 [GeV]Qm

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

 [
pb

]
σd

 + Xl l →pp 
LHCb fiducial region

 = [12.5,13.5] GeVllm

, ggMσd

, ggln[m]σd

q, qMσd

q, qln[m]σd

1 10
m [GeV]

0.6−

0.4−

0.2−

0

 [
pb

]
σd

, ggln[m]σ - dMσd

, ggfm=0, nσd

q, qln[m]σ - dMσd

q, qfm=0, nσd

Figure 1: Upper panel: absolute cross-section for the full massive and logarithmic cal-
culations at O(α2

s ). Lower panel: the cross-section difference (massive-logarithmic)
as compared to the direct computation of the massless n f -dependent cross-section.
A breakdown into partonic channels is provided.
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Extension to O(α3
s ). As discussed, the perturbative ingredients required to extend the pro-

cedure to O(α3
s ) are available only for the g g-channel. In this case, no direct calculation of

dσm=0,nf is available, but it can be extracted from a numerical fit to the difference
�

dσM − dσln[m]
�

in the m→ 0 limit.
This is done by generating data for the quantity

�

dσM − dσln[m]
�

for several values of m
in the range of m ∈ [0.5,12] GeV, and subsequently performing a numerical fit. By inspecting
Eq. (1), the resultant distribution should be equal to the sum of the contributions from power
corrections and the zero mass computation. An ansatz of the following form is therefore used
for the numerical fit

f (m) = a0,0 +
∑

i=1, j=0

ai, j

�

m2
�i

ln j[m] . (12)

The form of this ansatz is motivated by the behaviour of the squared matrix-element and phase
space which both contain corrections of the form m2/Q2. The integer j is limited to 2(3) when
the α2(3)

s coefficient is fitted, and a maximum value of i = 2 is considered in each case. The
choice for j is guided by the powers of collinear logarithms which may be present at each order,
whereas increasing i beyond 2 had little impact on the fit. The m-independent constant a0,0
is equivalent to dσm=0,nf , while the remaining terms describe the power corrections. Fitted
in this way, all m-independent information (such as dependence on µ, which is chosen as the
dynamic scale ET,`¯̀) is absorbed into the ai, j coefficients.

The results are shown in Fig. 2, where a total of four fitted curves are displayed corre-
sponding to the two kinematic regimes of plow

T,`¯̀
and phigh

T,`¯̀
at O(α2

s ) and O(α3
s ). In addition to

the fitted central value, the fitted value of a0,0 and its corresponding uncertainty (indicated

1 10
m [GeV]

0.4−

0.2−

0

0.2

0.4

0.6

0.8

 [
pb

]
σd

 + Xl l →pp 

LHCb fiducial region

 = [12.5,13.5] GeVllm

 > 2.5 GeV
lT,l

gg-channel, p

 coefficient, fit2
sα

 coefficient, fit3
sα

 coefficient, direct constant computation2
sα

 < 2.5 GeV
lT,l

gg-channel, p

 coefficient, fit2
sα

 coefficient, fit3
sα

 coefficient, direct constant computation2
sα

Figure 2: The same as the lower panel of Fig. 1, focussing on the g g-channel in two
pT,`¯̀ regions. The result of a numerical fit to the difference between the massive and
logarithmic cross-sections is shown, and compared to the direct calculation of the
zero mass constant at O(α2

s ).
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by a solid filled band) is displayed for each of the curves. As noted, a0,0 should correspond
to dσm=0,nf , and it is therefore compared to the direct computation of this quantity available
at O(α2

s ). The fit leads to a result which is consistent with the direct calculation, providing
confidence that the fitting procedure leads to reliable results.

From the fitted values of a0,0 (which were produced for b quarks), it is possible to construct
the full n f -dependent massless cross-section in the g g-channel. This is done by multiplying
these results by a factor of F = nd + nu(Qu/Qd)2, where nu and nd are the number of down-
and up-type quarks. This relation holds (at the per-mille level) for the g g-channel as there is
a direct coupling of the heavy-quark line to the gauge-boson (which is dominated by photon
exchange for m`¯̀ ∈ [12.5, 13.5] GeV). The fitted (and, where available, direct computation)
are summarised in Table 1.

Table 1: Predicted and fitted values of the coefficient of the zero-mass computation
up to O(α3

s ) in the g g-channel. The results are for the central scale, and include an
uncertainty due to the fitting procedure and the statistical error.

Order Fiducial [pb] plow
T,`¯̀
[pb] phigh

T,`¯̀
[pb]

dσm=0
g g α2

s +0.51(2) +3.96(2) -3.45(0)

dσm=0
g g,fit α2

s +0.49(4) +3.97(4) -3.49(4)

dσm=0
g g,fit α3

s +0.10(6) +4.11(5) -4.01(4)

Impact of massive power-corrections. To provide another validation of the procedure, it is
also useful to directly show the contribution from the massive power-corrections dσpc (includ-
ing scale variation).

A selection of such results are shown in Fig. 3, indicating that the power corrections vanish
in the limit m → 0 for arbitrary scale choices. These results include those from qq̄ and g g
channels (where the heavy-flavour quarks are produced in the final state) at O(α2

s ), as well as
O(αs) contributions from massive initial-state charm quark contributions in the cg channel.
In the g g and cg channels, the results are displayed for the plow

T,`¯̀
and phigh

T,`¯̀
regions to indicate

large cancellations which occur for the power corrections when integrated in pT,`¯̀. It is worth
noting that the power corrections in the g g-channel have a different sign at the on-shell value
of the c- and b-quark mass, which leads to an additional source of cancellation. The results
from massive cc̄-initiated states were negligibly small (due to the small value of the static
charm PDF), and are not shown here.

So far, the results presented as a function of m are used to validate the general procedure
introduced in this paper. The actual impact of the power-corrections should be studied at the
values of m = mpdf

c,b . As an additional note, the construction of the logarithmic cross-section
should be performed in the same way that it is done for the massless calculation. For example,
the logarithmic contribution generated by the PDFs and αs is only present when evaluated
above heavy-flavour threshold (typically mpdf). This approach ensures that in the limit of
m = mpdf →∞ (where the massive cross-section vanishes), the massive power corrections
obtained via Eq. (1) exactly cancel those contributions from the zero mass computation.

To place the results of Fig. 3 in context, the magnitude of the power corrections (evaluated
at mpdf

c,b ) should be compared to that of the (total) massless computation. The results of this
comparison are summarised in Table 2. The first column indicates results within the Fiducial
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1 10
m [GeV]

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3 [
pb

]
pc σd

 + Xl l →pp 

LHCb fiducial region

 = [12.5,13.5] GeVllm

cm bm

]2
sαMassive power corrections (b-quark) [

 qq

 < 2.5 GeV
lT,l

gg, p

 > 2.5 GeV
lT,l

gg, p

]1
sαIntrinsic massive power corrections [

 < 2.5 GeV
lT,l

cg, p

 > 2.5 GeV
lT,l

cg, p

Figure 3: Massive power-corrections to the DY cross-section within the LHCb fiducial
region with m`¯̀ ∈ [12.5,13.5] GeV. The partonic-channels, perturbative orders, and
considered pT,`¯̀ regions (unless inclusive) are highlighted. The scale uncertainty of
each of these predictions is shown.

region, while the second column shows results in the phigh
T,`¯̀

region which includes the constraint

pT,`¯̀ ≥ 2.5 GeV. The reference calculation dσm=0 (which includes scale uncertainties) is NNLO
QCD accurate within the Fiducial region, and NLO QCD accurate at finite pT,`¯̀. The α2

s and
α3

s coefficients of the massive power-corrections are shown in the same kinematic regions,
where a breakdown into those contributions from charm and beauty quarks is given. Note
that the charm-quark contributions in the second row are O(α2

s ), as they include the intrinsic
contributions from both the born and αs coefficients. The α3

s results are obtained from the
functional fits shown in Fig. 2, evaluated at the on-shell mass values for each quark (with an
appropriate normalisation correction for the up-type quark).

When compared to the massless prediction, the massive power-corrections introduce a
correction which is typically at the level of ≈ 0.5%. These corrections are small in general,
and there are a number of cancellations which occur between different partonic channels,
different quark flavours (charm vs. beauty), and also across the pT,`¯̀ spectrum (see Fig. 2
and 3). Overall, the sum of these corrections is negligible compared to the size the perturbative
uncertainty of the massless calculation. Similar behaviour was found to persist for the entire
m`¯̀ range up to 200 GeV.

8 Differential distributions

This work focusses on improving our understanding the role of massive quarks in hadron-
hadron scattering processes. However, in view of the on-going measurement of low-mass DY
at LHCb, I also take this opportunity to provide some phenomenological results and recom-
mendations.

As highlighted in Table 2, the overall normalisation of the massless cross-section has a
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Table 2: Predictions for the DY cross-section within the LHCb fiducial region with
m`¯̀ ∈ [12.5, 13.5] GeV. The contributions from the massless calculation and the
massive power-corrections are shown for the central scale. The scale uncertainties
of the massless O(α2

s ) prediction are indicated, and the uncertainties in parenthesis
correspond to the fit uncertainties of the α3

s coefficients.

Prediction Order Fiducial [pb] phigh
T,`¯̀
[pb]

dσm=0 O(α2
s ) 59.9+2.0

−5.6 46.2+5.1
−8.1

dσpc
c O(α2

s ) +0.07 −0.04

dσpc
b α2

s +0.23 +0.19

dσpc
c (g g) α3

s +0.09(2) −0.04(2)

dσpc
b (g g) α3

s +0.05(1) +0.10(0)

uncertainty due to scale variation as large as 9%. It is therefore useful to consider normalised
differential measurements where this theoretical uncertainty is reduced, but sensitivity to the
input PDFs is retained. Such an example is

1
σ

dσ
dy`¯̀

, (13)

where σ is the rapidity integrated cross-section for a given m`¯̀ region. This observable is
also experimentally well motivated as systematic uncertainties due to lepton reconstruction
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0.5

1

 [
/0

.2
5]

ll
/d

y
σ

 dσ
1/

]2
sαM-VFNS, scales [

]2
sαM-VFNS, PDFs [

]2
sαZM-VFNS, cen [

]sαZM-VFNS, scales [

 + Xl l →pp 

LHCb fiducial region

 [12.5,13.5] GeV∈ llm

2 3 4

lly

0.95

1

1.05

R
at

io
 to

 M
-V

FN
S 

(c
en

.)

Figure 4: Differential prediction for the normalised y`¯̀ distribution within the LHCb
fiducial region for m`¯̀ ∈ [12.5, 13.5] GeV.
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are strongly correlated in rapidity (at fixed m`¯̀). Theoretical predictions for this quantity are
shown in upper panel of Fig. 4 at O(α2

s ). In the lower panel, the various predictions and un-
certainties are shown normalised to that of the central M-VFNS prediction constructed using
Eq. (9). The power corrections are small, and further cancel when constructing the normalised
cross-section (as the corrections are approximately flat in rapidity) resulting in a negligible
contribution. The PDF uncertainties are dominant in the region of forward-rapidity, which
is driven by PDF sampling in the region of small-x . An improved description of PDFs in this
region has important consequences for neutrino astronomy [119–125], and may also provide
a cross-check of those results which have been obtained using forward D- and B-hadron pro-
duction data [119,124,126,127]. It is therefore recommended that the experiment publishes
a correlation matrix for the rapidity distributions which also includes the rapidity-integrated
distribution as an entry (for a given m`¯̀ region). As a final observation, the NNLO correction
for this quantity is ≈ 5% at large y`¯̀ which may indicate the contribution of large ln[x] cor-
rections. It could be interesting to investigate the impact of resumming these corrections, such
as in [128,129] for the DIS process, using the formalism presented in [130–133].

The theoretical study of the pT,`¯̀ distribution is a little more delicate (particularly at large
m`¯̀) as a reliable description of the kinematic region of small pT,`¯̀ relies on the resummation of
Sudakov logarithms of the form 1

p2
T,`¯̀

lnn[pT,`¯̀/m`¯̀]. The situation is tricky because the massive

power-corrections obtained from applying Eq. (1) contain contributions which have the same
form as this, and diverge in the limit pT,`¯̀ → 0. This feature prohibits a straightforward
matching of the fixed-order M-VFNS prediction with a (Sudakov) resummed calculation (and
potentially also joint small-x resummation [134]). This issue has been addressed and will be
detailed in future work, where a dedicated study of the impact of heavy-quark mass effects on
the transverse-momentum distributions of gauge-bosons will be presented.

In the region of small m`¯̀ the fixed-order results are likely sufficient, and certainly useful to
indicate the phenomenological (ir)relevance of the massive power-corrections. These results
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Figure 5: Differential prediction for the normalised pT,`¯̀ distribution within the LHCb
fiducial region for m`¯̀ ∈ [12.5, 13.5] GeV.
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are shown in Fig. 5 for m`¯̀ ∈ [12.5,13.5]GeV, where the pT,`¯̀ distribution is shown normalised
to the integrated cross-section. The impact of the massive power-corrections can be inferred
by comparing the central prediction of the M-VFNS (dash-dotted red) compared to that of the
massless calculation (dashed blue). The corrections amount to ≈ 1% at small pT,`¯̀, leading
to a slight change in the slope of the normalised pT,`¯̀ distribution. Overall, these effects are
small compared to the either PDF or scale uncertainties (which were, for visual clarity, not
shown in the lower panel).

9 Conclusions

The main goal of this work is to provide a deeper theoretical understanding of the treatment
and role of massive quarks in predicting hadron-hadron scattering processes.

This has been achieved by studying the general structure of calculations which involve a
single massive quark, and presenting a formalism to construct differential cross-section predic-
tions in a massive variable flavour number scheme. The formalism can be applied to colour-
singlet production processes as well as those involving (flavoured) hadronic jets, provided
the differential observables are inclusive with respect to QCD radiation and/or are infrared
and collinear safe. Hopefully, these developments will help to clarify several issues regarding
heavy-quark mass effects in hadron-hadron scattering processes.

As a practical application, results have been provided for the low-mass DY rapidity distribu-
tion within the LHCb fiducial region, and I have demonstrated how a normalised distribution
can give important information on the structure of the proton at low-x.

Finally, the formalism presented here represents an important step towards constructing
a scheme which can be applied to predict the transverse-momentum distribution of gauge
bosons, that includes the impact of heavy-flavour massive power-corrections and a resum-
mation of Sudakov logarithoms in a consistent way. This is a critical development towards
reducing the theory systematic related to the modelling of the pT,` distribution in the charged-
current DY process, which will in turn improve the sensitivity of LHC measurements to extract
the W boson mass [135].

Acknowledgements

I am grateful to Eric Laenen for comments at the initial stages of this project. The work pre-
sented here has benefited from previous/on-going collaboration with Adrian Rodrigues Garcia,
Aude Gehrmann De–Ridder, Thomas Gehrmann, Nigel Glover, and Alexander Huss as well as
Marco Bonvini, Tommaso Giani and Simone Marzani. I additionally thank Valerio Bertone, Da-
vide Napoletano, and Ben Pecjak for previous discussions about heavy-quark mass effects, and
Stephen Farry and Phil Ilten for comments/correspondence about the LHCb measurement. A
big thanks to Alex for providing constructive comments on this manuscript, and to the careful
eyes of Lucian Harland-Lang.

Funding information This research is supported by the Dutch Organisation for Scientific
Research (NWO) through the VENI grant 680-47-461.

15

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024


SciPost Phys. 12, 024 (2022)

References

[1] J. C. Collins, D. E. Soper and G. Sterman, Factorization of hard processes in QCD, Adv.
Ser. Direct. High Energy Phys. 5, (1989), doi:10.1142/9789814503266_0001.

[2] S. D. Drell and T.-M. Yan, Massive lepton-pair production in hadron-hadron collisions at
high energies, Phys. Rev. Lett. 25, 316 (1970), doi:10.1103/PhysRevLett.25.316.

[3] J. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: Applica-
tion to the neutral current, Phys. Rev. D 18, 242 (1978), doi:10.1103/PhysRevD.18.242.

[4] S. Kretzer and I. Schienbein, Heavy quark initiated contributions to deep inelastic struc-
ture functions, Phys. Rev. D 58, 094035 (1998), doi:10.1103/PhysRevD.58.094035.

[5] J. C. Collins, Hard-scattering factorization with heavy quarks: A general treatment, Phys.
Rev. D 58, 094002 (1998), doi:10.1103/PhysRevD.58.094002.

[6] M. Cacciari, M. Greco and P. Nason, The pT spectrum in heavy-flavour hadroproduction,
J. High Energy Phys. 05, 007 (1998), doi:10.1088/1126-6708/1998/05/007.

[7] W.-K. Tung, S. Kretzer and C. Schmidt, Open heavy flavour production: Conceptual
framework and implementation issues, J. Phys. G: Nucl. Part. Phys. 28, 983 (2002),
doi:10.1088/0954-3899/28/5/321.

[8] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Collinear subtrac-
tions in hadroproduction of heavy quarks, Eur. Phys. J. C 41, 199 (2005),
doi:10.1140/epjc/s2005-02200-7.

[9] A. Mitov and S.-O. Moch, The singular behavior of massive QCD amplitudes, J. High
Energy Phys. 05, 001 (2007), doi:10.1088/1126-6708/2007/05/001.

[10] I. Bierenbaum, J. Blümlein and S. Klein, The gluonic operator matrix elements
at O(α2

s ) for DIS heavy flavor production, Phys. Lett. B 672, 401 (2009),
doi:10.1016/j.physletb.2009.01.057.

[11] M. Guzzi, P. M. Nadolsky, H.-L. Lai and C.-P. Yuan, General-mass treatment for
deep inelastic scattering at two-loop accuracy, Phys. Rev. D 86, 053005 (2012),
doi:10.1103/PhysRevD.86.053005.

[12] R. Harlander, M. Krämer and M. Schumacher, Bottom-quark associated Higgs-boson pro-
duction: Reconciling the four- and five-flavour scheme approach, arXiv:1112.3478.

[13] F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: A reappraisal, J.
High Energy Phys. 07, 022 (2012), doi:10.1007/JHEP07(2012)022.

[14] A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein and F. Wißbrock, The
logarithmic contributions to the O(α3

s ) asymptotic massive Wilson coefficients and op-
erator matrix elements in deeply inelastic scattering, Eur. Phys. J. C 74, 3033 (2014),
doi:10.1140/epjc/s10052-014-3033-x.

[15] M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, Resummation and matching
of b-quark mass effects in bbH production, J. High Energy Phys. 11, 196 (2015),
doi:10.1007/JHEP11(2015)196.

[16] A. H. Hoang, P. Pietrulewicz and D. Samitz, Variable flavor number scheme for final state
jets in DIS, Phys. Rev. D 93, 034034 (2016), doi:10.1103/PhysRevD.93.034034.

16

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024
https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1103/PhysRevLett.25.316
https://doi.org/10.1103/PhysRevD.18.242
https://doi.org/10.1103/PhysRevD.58.094035
https://doi.org/10.1103/PhysRevD.58.094002
https://doi.org/10.1088/1126-6708/1998/05/007
https://doi.org/10.1088/0954-3899/28/5/321
https://doi.org/10.1140/epjc/s2005-02200-7
https://doi.org/10.1088/1126-6708/2007/05/001
https://doi.org/10.1016/j.physletb.2009.01.057
https://doi.org/10.1103/PhysRevD.86.053005
https://arxiv.org/abs/1112.3478
https://doi.org/10.1007/JHEP07(2012)022
https://doi.org/10.1140/epjc/s10052-014-3033-x
https://doi.org/10.1007/JHEP11(2015)196
https://doi.org/10.1103/PhysRevD.93.034034


SciPost Phys. 12, 024 (2022)

[17] J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, C. Schneider and F. Wißbrock,
Three loop massive operator matrix elements and asymptotic Wilson coefficients with two
different masses, Nucl. Phys. B 921, 585 (2017), doi:10.1016/j.nuclphysb.2017.05.017.

[18] F. Krauss and D. Napoletano, Towards a fully massive five-flavor scheme, Phys. Rev. D 98,
096002 (2018), doi:10.1103/PhysRevD.98.096002.

[19] V. Bertone, A. Glazov, A. Mitov, A. S. Papanastasiou and M. Ubiali, Heavy-flavor parton
distributions without heavy-flavor matching prescriptions, J. High Energy Phys. 04, 046
(2018), doi:10.1007/JHEP04(2018)046.

[20] I. Helenius and H. Paukkunen, Revisiting the D-meson hadroproduction in general-
mass variable flavour number scheme, J. High Energy Phys. 05, 196 (2018),
doi:10.1007/JHEP05(2018)196.

[21] S. Forte, T. Giani and D. Napoletano, Fitting the b-quark PDF as a massive-
b scheme: Higgs production in bottom fusion, Eur. Phys. J. C 79, 609 (2019),
doi:10.1140/epjc/s10052-019-7119-3.

[22] M. A. G. Aivazis, F. I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. I. General
formalism and kinematics of charged current and neutral current production processes,
Phys. Rev. D 50, 3085 (1994), doi:10.1103/PhysRevD.50.3085.

[23] M. A. G. Aivazis, J. C. Collins, F. I. Olness and W.-K. Tung, Leptoproduction
of heavy quarks. II. A unified QCD formulation of charged and neutral current
processes from fixed-target to collider energies, Phys. Rev. D 50, 3102 (1994),
doi:10.1103/PhysRevD.50.3102.

[24] M. Buza, Y. Matiounine, J. Smith and W. L. van Neerven, Charm electroproduction viewed
in the variable-flavour number scheme versus fixed-order perturbation theory, Eur. Phys.
J. C 1, 301 (1998), doi:10.1007/BF01245820.

[25] J. C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57, 3051
(1998), doi:10.1103/PhysRevD.61.019902.

[26] R. S. Thorne and R. G. Roberts, Ordered analysis of heavy flavor production in deep-
inelastic scattering, Phys. Rev. D 57, 6871 (1998), doi:10.1103/PhysRevD.57.6871.

[27] M. Krämer, F. I. Olness and D. E. Soper, Treatment of heavy quarks in deeply inelastic
scattering, Phys. Rev. D 62, 096007 (2000), doi:10.1103/PhysRevD.62.096007.

[28] R. S. Thorne, Variable-flavor number scheme for next-to-next-to-leading order, Phys. Rev.
D 73, 054019 (2006), doi:10.1103/PhysRevD.73.054019.

[29] S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl.
Phys. B 834, 116 (2010), doi:10.1016/j.nuclphysb.2010.03.014.

[30] R. D. Ball, M. Bonvini and L. Rottoli, Charm in deep-inelastic scattering, J. High Energy
Phys. 11, 122 (2015), doi:10.1007/JHEP11(2015)122.

[31] S. Alekhin, J. Blümlein and S. Moch, Heavy-flavor PDF evolution and variable-flavor-
number scheme uncertainties in deep-inelastic scattering, Phys. Rev. D 102, 054014
(2020), doi:10.1103/PhysRevD.102.054014.

[32] M. Cacciari, S. Frixione and P. Nason, The p(T ) spectrum in heavy-flavour photoproduc-
tion, J. High Energy Phys. 03, 006 (2001), doi:10.1088/1126-6708/2001/03/006.

17

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024
https://doi.org/10.1016/j.nuclphysb.2017.05.017
https://doi.org/10.1103/PhysRevD.98.096002
https://doi.org/10.1007/JHEP04(2018)046
https://doi.org/10.1007/JHEP05(2018)196
https://doi.org/10.1140/epjc/s10052-019-7119-3
https://doi.org/10.1103/PhysRevD.50.3085
https://doi.org/10.1103/PhysRevD.50.3102
https://doi.org/10.1007/BF01245820
https://doi.org/10.1103/PhysRevD.61.019902
https://doi.org/10.1103/PhysRevD.57.6871
https://doi.org/10.1103/PhysRevD.62.096007
https://doi.org/10.1103/PhysRevD.73.054019
https://doi.org/10.1016/j.nuclphysb.2010.03.014
https://doi.org/10.1007/JHEP11(2015)122
https://doi.org/10.1103/PhysRevD.102.054014
https://doi.org/10.1088/1126-6708/2001/03/006


SciPost Phys. 12, 024 (2022)

[33] A. Banfi, G. P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets
at the Tevatron and LHC, J. High Energy Phys. 07, 026 (2007), doi:10.1088/1126-
6708/2007/07/026.

[34] D. Figueroa, S. Honeywell, S. Quackenbush, L. Reina, C. Reuschle and D. Wackeroth,
Electroweak and QCD corrections to Z-boson production with one b jet in a massive five-
flavor scheme, Phys. Rev. D 98, 093002 (2018), doi:10.1103/PhysRevD.98.093002.

[35] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A. Huss and I. Majer, Predictions for
Z-boson production in association with a b-jet at O(α3

s ), Phys. Rev. Lett. 125, 222002
(2020), doi:10.1103/PhysRevLett.125.222002.

[36] S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion in a
matched scheme, Phys. Lett. B 751, 331 (2015), doi:10.1016/j.physletb.2015.10.051.

[37] S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark
fusion: Matching beyond leading order, Phys. Lett. B 763, 190 (2016),
doi:10.1016/j.physletb.2016.10.040.

[38] S. Forte, D. Napoletano and M. Ubiali, Z boson production in bottom-quark fusion:
A study of b-mass effects beyond leading order, Eur. Phys. J. C 78, 932 (2018),
doi:10.1140/epjc/s10052-018-6414-8.

[39] C. Duhr, F. Dulat, V. Hirschi and B. Mistlberger, Higgs production in bottom quark fusion:
Matching the 4- and 5-flavour schemes to third order in the strong coupling, J. High Energy
Phys. 08, 017 (2020), doi:10.1007/JHEP08(2020)017.

[40] P. Pietrulewicz, D. Samitz, A. Spiering and F. J. Tackmann, Factorization and resumma-
tion for massive quark effects in exclusive Drell-Yan, J. High Energy Phys. 08, 114 (2017),
doi:10.1007/JHEP08(2017)114.

[41] E. Bagnaschi, F. Maltoni, A. Vicini and M. Zaro, Lepton-pair production in association
with a bb pair and the determination of the W boson mass, J. High Energy Phys. 07, 101
(2018), doi:10.1007/JHEP07(2018)101.

[42] S. Höche, J. Krause and F. Siegert, Multijet merging in a variable flavor number scheme,
Phys. Rev. D 100, 014011 (2019), doi:10.1103/PhysRevD.100.014011.

[43] G. Aad et al., Measurement of the transverse momentum distribution of Drell-Yan lepton
pairs in proton-proton collisions at

p
s = 13 TeV with the ATLAS detector, Eur. Phys. J. C

80, 616 (2020), doi:10.1140/epjc/s10052-020-8001-z.

[44] C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan cross section to third or-
der in the strong coupling constant, Phys. Rev. Lett. 125, 172001 (2020),
doi:10.1103/PhysRevLett.125.172001.

[45] C. Duhr, F. Dulat and B. Mistlberger, Charged current Drell-Yan production at N3LO, J.
High Energy Phys. 11, 143 (2020), doi:10.1007/JHEP11(2020)143.

[46] S. Camarda, L. Cieri and G. Ferrera, Drell-Yan lepton-pair production: qT resummation
at N3LL accuracy and fiducial cross sections at N3LO, Phys. Rev. D 104, L111503 (2021),
doi:10.1103/PhysRevD.104.L111503.

[47] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, Precise
QCD Predictions for the production of a Z boson in association with a hadronic jet, Phys.
Rev. Lett. 117, 022001 (2016), doi:10.1103/PhysRevLett.117.022001.

18

https://scipost.org
https://scipost.org/SciPostPhys.12.1.024
https://doi.org/10.1088/1126-6708/2007/07/026
https://doi.org/10.1088/1126-6708/2007/07/026
https://doi.org/10.1103/PhysRevD.98.093002
https://doi.org/10.1103/PhysRevLett.125.222002
https://doi.org/10.1016/j.physletb.2015.10.051
https://doi.org/10.1016/j.physletb.2016.10.040
https://doi.org/10.1140/epjc/s10052-018-6414-8
https://doi.org/10.1007/JHEP08(2020)017
https://doi.org/10.1007/JHEP08(2017)114
https://doi.org/10.1007/JHEP07(2018)101
https://doi.org/10.1103/PhysRevD.100.014011
https://doi.org/10.1140/epjc/s10052-020-8001-z
https://doi.org/10.1103/PhysRevLett.125.172001
https://doi.org/10.1007/JHEP11(2020)143
https://doi.org/10.1103/PhysRevD.104.L111503
https://doi.org/10.1103/PhysRevLett.117.022001


SciPost Phys. 12, 024 (2022)

[48] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. T. Giele, X. Liu and F. Petriello, Z-
boson production in association with a jet at next-to-next-to-leading order in perturbative
QCD, Phys. Rev. Lett. 116, 152001 (2016), doi:10.1103/PhysRevLett.116.152001.

[49] L. Cieri, G. Ferrera and G. F. R. Sborlini, Combining QED and QCD transverse-momentum
resummation for Z boson production at hadron colliders, J. High Energy Phys. 08, 165
(2018), doi:10.1007/JHEP08(2018)165.
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