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Abstract

In two-dimensional loop models, the scaling properties of critical random curves are
encoded in the correlators of connectivity operators. In the dense O(n) loop model, any
such operator is naturally associated to a standard module of the periodic Temperley-
Lieb algebra. We introduce a new family of representations of this algebra, with
connectivity states that have two marked points, and argue that they define the fusion of
two standard modules. We obtain their decomposition on the standard modules for
generic values of the parameters, which in turn yields the structure of the operator
product expansion of connectivity operators.
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1 Introduction

In the study of critical two-dimensional statistical models, the conceptual framework and
computational tools of Conformal Field Theory (CFT) have proven very efficient [1]. Most
notably, the conformal minimal models provide a classification of scale invariant phase
transitions and the conformal bootstrap fixes the multi-point correlation functions. A related
area of interest is concerned with random curves within these critical models, to describe for
instance interfaces of spin clusters, dense or dilute polymers, and the contours of percolation
clusters. In the continuum scaling limit, these objects scale to random fractal curves, whose
full description involves the study of their connectivity correlation functions [2]. For this, one
needs to consider a model which comprises not only the operators describing the local degrees
of freedom, but also those encoding the connectivity properties of the curves of interest. On
the lattice, models of random polygons like the O(n) loop model [3] are exactly adapted to this
situation. The corresponding CFTs are typically non-rational [4] and logarithmic [5], namely
they involve an infinite number of primary operators, but also logarithmic fields [6,7] that are
governed by a non-diagonalisable evolution operator in Euclidean space.

Critical random curves have been studied since the early times of CFT [8], and more
recently they have motivated new advances in mathematical physics. In particular, some
of the latter works deal with (i) logarithmic CFTs associated to loop models [9–11], (ii)
structure constants of the algebra of connectivity operators [12–15], their relations with the
imaginary Liouville CFT [16–18], and their numerical conformal bootstrap [19–23], and (iii)
the representation theory of the underlying diagram algebra on the lattice [24–30] – namely,
the Temperley-Lieb algebra. In particular, a good deal of consistent results were obtained
in the case of connectivity operators sitting at the boundary of the system. From the CFT
point of view, these boundary operators are degenerate under the Virasoro algebra [31].
Their fusion rules are known and their correlation functions are accessible analytically (see
for example [32, 33]), either using the conformal bootstrap or from the exact knowledge of
the singular vectors.

The fusion of the boundary operators has a counterpart in the O(n) loop model at finite
size, in terms of the fusion of representations of the diagrammatic algebras. For the ordinary
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Temperley-Lieb algebra TLN (β), where N is the system size and β is the loop weight, the fusion
procedure defines a representation of TLNa+Nb(β), out of a pair of representations of TLNa(β)
and TLNb(β). This can be done in various ways. A first lattice construction of fusion [9, 34]
is based on the representations of the Temperley-Lieb algebra that arise in the study of the
loop model on a strip with certain integrable boundary conditions attached at each end of the
strip. A second construction [35, 36] defines the new representations inductively using the
inclusion TLNa(β)⊗TLNb(β) ⊂ TLNa+Nb(β). This amounts to studying the lattice model on a
domain shaped like a pair of pants: the degrees of freedom of two subsystems of sizes Na and
Nb evolve separately until they are joined into a larger system of size N = Na+Nb where they
then interact. The two constructions turn out to be equivalent and produce fusion rules that
are consistent with those of the chiral boundary fields.

In the present work, we are interested in the operator algebra of bulk connectivity operators
for critical loop models – a problem for which the above lattice approach needs to be
adapted substantially. A fundamental step in this program is the construction of the lattice
analogs of the operator product expansion of the non-chiral connectivity operators. In radial
quantisation, the evolution operators, namely the Hamiltonians and transfer matrices, are
seen as dilation operators acting radially. They are therefore endowed with periodic boundary
conditions. As a result, the proper algebraic structure is the enlarged periodic Temperley-
Lieb algebra EPTLN (β). A connectivity operator Ok,x(r) in the loop model is described by its
number of defects 2k ∈ N and its twist parameter x ∈ C×. It is naturally associated, through
the state-operator correspondence, with a standard module Wk,x(N) over EPTLN (β), spanned
by link states with 2k defects attached to a marked point. In the scaling limit, these operators
have conformal dimensions that depend continuously on x . They are in general not degenerate
under the Virasoro algebra, and hence the usual method, based on the translation of null-
vector equations into differential equations for the correlation functions, does not apply. For
the same reasons, their fusion rules under the operator product expansion cannot be obtained
by standard methods.

To define fusion at the lattice level, one should find a way to glue two periodic systems of
sizes Na and Nb into a larger periodic system of size N = Na+Nb, a construction which is clearly
not as straightforward as in the non-periodic case. There are in fact multiple ways to perform
this gluing and thus to construct representations of EPTLN (β) from pairs of representations on
smaller lattice sizes. Two such proposals were recently put forward [37–39] – see also [40]. In
each case, the authors build representations from pairs of representations on smaller lattices,
argue that these can be interpreted as the fusion of these representations, and obtain the
module decomposition as direct sums of indecomposable representations. From the resulting
module decompositions, it is readily observed that the two proposals [37, 38] and [39] are
inequivalent. Moreover, it is presently unclear whether these two prescriptions for fusion are
physically useful to compute the operator product expansion of the bulk connectivity operators.

In this paper, we present a new candidate for the fusion of representations of EPTLN (β),
which we believe is a good lattice analog of the operator product expansion of the bulk
connectivity operators. Consider two operators Ok,x(ra) and Oℓ,y(rb) in a correlation function
of the loop model, that may potentially involve more such operators. To fully define the
correlation function, one needs to keep track not only of the windings of the loop segments
around the point ra, or around the point rb, but also of the loop segments that wind around
both ra and rb. For this reason, we introduce modules Xk,ℓ,x ,y,z(N) that depend not only
on x and y , but also on a third parameter z. These modules will be spanned by link states
drawn on a disc with two marked points a and b. In the absence of defects, the three free
variables x , y, z parameterise the weights of the different kinds of loops: αa = x + x−1,
αb = y + y−1 and αab = z + z−1. For non-zero defect numbers, the parameters x , y, z
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instead couple to the winding of the defects around the two marked points. We will study
the decomposition of Xk,ℓ,x ,y,z(N) over the standard modules and argue that it produces the
fusion rule Ok,x(ra)×Oℓ,y(rb).

Summary of the results. We focus on values β = −q−q−1 of the loop weight where q is not
a root of unity. A first main result is the construction of a family of modules Xk,ℓ,x ,y,z(N) over
EPTLN (β), for half-integers k,ℓ, and x , y, z ∈ C×. These modules correspond in the above
sense to the fusion Wk,x(Na)×Wℓ,y(Nb) of standard modules, in a twist channel characterised
by the parameter z. A second main result is the decomposition of Xk,ℓ,x ,y,z(N) over the
irreducible standard modules, for generic values of the parameters q and z:

Xk,ℓ,x ,y,z(N)'Wk−ℓ,z(N)⊕
N/2⊕

m=k−ℓ+1

2m−1⊕
n=0

Wm,z(k−ℓ)/m exp(iπn/m)(N) , k ¾ ℓ. (1.1)

The decomposition for k < ℓ is obtained from Xk,ℓ,x ,y,z(N)' Xℓ,k,y,x ,z−1(N). A third main result
regards the decomposition for q generic but z set to z = ±qr , with r a positive integer. We show
examples where it includes a reducible yet indecomposable module with three composition
factors.

Outline of the paper. In Section 2, we review the main properties of the algebra EPTLN (β),
in particular the important results of Graham and Lehrer [41] on the standard modules
Wk,x(N). We also propose an alternative construction of the Graham-Lehrer homomorphisms
between standard modules for generic values of q. In Section 3, we recall the definition of
fusion of standard modules for the ordinary Temperley-Lieb algebra, and we then present
the definition of the new representations Xk,ℓ,x ,y,z(N) of EPTLN (β). In Section 4, we study
the structure of Xk,ℓ,x ,y,z(N), and obtain the decomposition (1.1) for generic values of q and
z. We also discuss in an example the partially non-generic case z = ±qr with r an integer,
namely in the module X0,0,x ,y,z(N), and find that it exhibits a reducible yet indecomposable
module. In Section 5, we discuss the relation between the representations Xk,ℓ,x ,y,z(N) and
the bulk connectivity operators, and in particular the consequences of the decomposition (1.1)
for the computation of the correlation functions, in the scaling limit. Final remarks are given
in Section 6. The properties of the Jones-Wenzl projectors are reviewed in Appendix A, and
certain more technical computations of Section 4 are relegated to Appendix B.

2 The periodic Temperley-Lieb algebra and its standard modules

2.1 Definition of the algebra

The periodic Temperley-Lieb algebra, also called the affine Temperley-Lieb algebra, was first
introduced by D. Levy in the context of the spin-1

2 XXZ chain and the Potts model [42]. Its
representation theory was subsequently investigated by multiple groups [41, 43–45]. Here
we work with the enlarged incarnation [46] of this algebra, EPTLN (β), which includes the
rotation generators Ω and Ω−1. For the loop weight β , we use the convention

β = −q− q−1 , q ∈ C× . (2.1)

We study the generic case, namely values of q that are not roots of unity.
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Let N be an integer larger than 2. One set of generators for EPTLN (β) is the set
{e1, e2, . . . , eN ,Ω,Ω−1}. These are subject to the relations

e2
j = β e j , e j e j±1 e j = e j , ei e j = e j ei for |i − j|> 1 , (2.2a)

Ω e j Ω
−1 = e j−1 , ΩΩ−1 = Ω−1Ω= 1 , eN−1eN−2 · · · e2e1 = Ω

2e1 , (2.2b)

where 1 is the identity operator, and the indices i, j are taken modulo N .

The elements of EPTLN (β) are represented by connectivity diagrams on a periodic system
of N sites. Two equivalent presentations are possible. In the first, the diagrams live inside a
horizontal rectangle with periodic boundary conditions in the horizontal direction. There are
N nodes on the top segment and likewise N nodes on the bottom segment, with the labels
1, . . . , N . The 2N nodes are connected pairwise by non-intersecting loop segments. Two
diagrams are identified if they can be mapped to one another by a continuous deformation
of the loop segments preserving their endpoints, namely they are homotopic. In the second
presentation, the loop segments live in an annulus and connect the nodes, which are drawn
on the inner and outer circular edges of the annulus. For the generators and the identity, the
diagrams are

Ω=
1 2 ... N

≡

1
2

3

...

N−1
N

, Ω−1 =
1 2 ... N

≡

1
2

3

...

N−1
N

, (2.3a)

e j = ... ...

1 j j+1 N

≡

1
2

3

...

j
j+1

N−1
N

for 1¶ j ¶ N − 1, (2.3b)

eN =
1 2 ... N

... ≡

1
2

3

...

N−1
N

, 1= ...

1 2 ... N

≡

1
2

3

...

N−1
N

. (2.3c)

We draw a dashed segment between the nodes 1 and N that indicates where the cut is
performed to produce the rectangular diagram from the one on the annulus. Connectivity
diagrams like those for eN , Ω and Ω−1 have loop segments that cross this segment.

In the annulus presentation, the product a1a2 of two elements of EPTLN (β) is obtained
by drawing a2 inside a1. The new connectivity diagram is obtained by reading the connection
of the nodes from the inner and outer perimeters. The diagram may also contain contractible
loops, namely loops which do not wrap around the annulus. Each such loop is removed and
replaced by a multiplicative factor β . Using this product, with words in the generators one can
obtain any pairing of the 2N nodes by non-intersecting loop segments. Loop segments that
tie the inner and outer perimeter can wind arbitrarily many times around the annulus. The
algebra is thus infinite dimensional. Moreover, for N even there can be an arbitrary number of
non-contractible loops, namely closed loops that encircle the inner perimeter. Of course, the
same definition of the action of the algebra applies to the rectangular diagrams, namely a1a2

5

https://scipost.org
https://scipost.org/SciPostPhys.12.1.030


SciPost Phys. 12, 030 (2022)

is obtained by drawing a2 above a1 and reading the new connectivity diagram from the lower
and upper segments.

The (ordinary) Temperley-Lieb algebra TLN (β) is the subalgebra of EPTLN (β) generated
by e1, . . . , eN−1. In the annular presentation, the restricted set of connectivity diagrams
of TLN (β) are those without loop segments crossing the dashed segment. Below, we use
the diagrams on the annulus when discussing EPTLN (β) and resort to the rectangular
presentation for results involving TLN (β).

2.2 Useful elements of the algebra

In this subsection, we recall the definition of some elements of EPTLN (β) that play an
important role in the next sections: the Jones-Wenzl projectors and the braid transfer matrices.

Jones-Wenzl projectors. The Jones-Wenzl projectors P1, . . . , PN [25,27,47] are elements of
the ordinary Temperley-Lieb algebra TLN (β) ⊂ EPTLN (β). They are defined recursively as

P1 = 1 , Pn+1 = Pn +
[n]q
[n+ 1]q

PnenPn , (2.4)

where we use the notation

[k]q =
qk − q−k

q− q−1
, k ∈ C , (2.5)

whereby β = −[2]q. We depict the Jones-Wenzl projectors as

Pn = n . (2.6)

Some of the known properties of these projectors are given in Appendix A.

Braid transfer matrices. The braid tile is defined as

= q1/2 + q−1/2 . (2.7)

A useful identity satisfied by the tiles is the push-through property

= . (2.8)

The two braid transfer matrices F and F̄ in EPTLN (β) are defined in terms of the braid tile as

F =

1
2

3

...

N−1
N

, F̄ =

1
2

3

...

N−1
N

, (2.9)

and are therefore to be understood in what follows as a sum of 2N connectivity diagrams of
EPTLN (β). These operators have been studied previously in various contexts [48–51]. They
are in the center of EPTLN (β), namely

FΩ= ΩF , F̄Ω= ΩF̄ , F e j = e j F , F̄ e j = e j F̄ , j = 1, 2, . . . , N . (2.10)
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2.3 Standard and vacuum modules

We denote by Wk,z(N) the standard modules of EPTLN (β), with 0 ¶ k ¶ N
2 , 2k ∈ Z¾0,

2k ≡ N mod 2 and z ∈ C×. The link states of Wk,z(N) are diagrams drawn inside a
disc wherein N nodes from the perimeter are connected by non-intersecting loop segments.
Moreover a marked point is drawn inside this disc. For k = 0, all the nodes are connected
pairwise by arcs that do not pass through the marked point. For k > 0, 2k nodes from the
perimeter are attached to the marked point by defects, and the rest of the nodes are connected
pairwise by arcs. Two link states are considered identical if they are homotopic. For example,
here are the link states for W0,z(4), W1,z(4) and W2,z(4):

W0,z(4) :

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

, (2.11a)

W1,z(4) :

1

23

4 1

23

4 1

23

4 1

23

4

, W2,z(4) :

1

23

4

. (2.11b)

For convenience, we choose a presentation where the position of the marked point changes
from diagram to diagram, instead of one where the arcs are deformed around the marked
point. The two are of course equivalent. One can also draw these link states along a horizontal
line. For instance, in this setup the last states of W0,z(4) and W1,z(4) drawn in (2.11) are
depicted as and . However, it will turn out to be more natural for the construction
in Section 3.2 to draw the link states on discs.

The standard action is defined as follows. To compute c · w, with c ∈ EPTLN (β) and
w ∈ Wk,z(N), we draw w inside c, join their loop segments, and read the new link state on
the outer perimeter. The action of c is interpreted as an evolution down a long cylinder of the
state w, which is seen as the top cap of the cylinder. For k = 0, if a closed loop is created,
it is removed and replaced by a weight α = z + z−1 if it is non-contractible (namely it wraps
around the marked point), and β if it is contractible. For k > 0, if two defects are connected,
the result is set to zero. Otherwise each closed loop is replaced by a factor of β . (Loops cannot
encircle the marked point in this case.) Moreover, if a defect crosses the dashed line, it is
unwinded at the cost of a twist factor. This factor is z if the defect crosses the dashed line with
the marked point to its right as it evolves down the cylinder, and z−1 if it crosses this line with
the marked point to its left. (The role of z is thus quite different for k = 0 and for k > 0.) Here
are examples of the standard action for N = 4:

e1 ·
1

23

4

= β

1

23

4

, e3 ·
1

23

4

= α

1

23

4

, e4 ·
1

23

4

=

1

23

4

,

(2.12a)

Ω ·
1

23

4

= z

1

23

4

, e4 ·
1

23

4

= z−1

1

23

4

, e2 ·
1

23

4

= 0 . (2.12b)

The dimension of Wk,z(N) is given by the binomial coefficient

dimWk,z(N) =

�
N

N−2k
2

�
. (2.13)

The standard modules define finite-dimensional representations over an infinite-
dimensional algebra, so they admit extra relations. First, for the special case k = 0 with N
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even, the assignment of weights α to the non-contractible loops is achieved from the relations

∀w ∈W0,z(N) , EΩ±1E ·w= ( z + z−1︸ ︷︷ ︸
=α

) E ·w , (2.14)

where E = e2e4 · · · eN . Second, the element ΩN , which is central in EPTLN (β), acts as a
multiple of the identity on the standard modules:

∀w ∈Wk,z(N) , ΩN ·w= z2k w . (2.15)

Hence, the possible eigenvalues ωn(z) of Ω in Wk,z(N) are N -th roots of z2k:

ωn(z) = z2k/N e2πin/N , n= 0, . . . , N − 1 . (2.16)

The projector on the eigenspace of Ω of eigenvalue ωn(z) is

Πn =
1
N

N−1∑
j=0

[ωn(z)]
− j Ω j . (2.17)

We also note that, on the standard module Wk,z(N), the central elements F and F̄ (see
Section 2.2) act as multiples of the identity, namely

∀w ∈Wk,z(N) , F ·w=
�

zqk +
1

zqk

�
w , F̄ ·w=

�
z
qk
+

qk

z

�
w . (2.18)

We also define the vacuum module V(N) over EPTLN (β). This module is constructed on
the vector space of link states drawn on a disc with N nodes and no marked point. To illustrate,
the bases of V(4) and V(6) are

V(4) :

1

23

4 1

23

4

, (2.19a)

V(6) :

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

. (2.19b)

The module V(N) has the same dimension as the standard module V0(N) over TLN (β) with
no defects, namely

dimV(N) =
�

N
N
2

�
−
�

N
N−2

2

�
. (2.20)

The action of EPTLN (β) on V(N) is similar to the action on standard modules, with the
difference that there are no non-contractible loops, and therefore all closed loops are assigned
the weight β .

2.4 The Graham-Lehrer theorem

In this subsection, we recall the main result of Graham and Lehrer [41] and its implications
for the module decomposition of the standard modules.1 In their Theorem 3.4, they construct

1We adopt a different notation compared to Graham and Lehrer, with the equivalence given by
(Wk,z)GL ≡Wk/2,z .
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non-zero homomorphisms between two standard modules Wℓ,y(N) and Wk,z(N) for special
values of the twist parameters y and z:

Wℓ,ϵqk(N)→Wk,ϵqℓ(N) , ℓ > k, ϵ ∈ {−1,+1} , q ∈ C×. (2.21)

Since the algebra EPTLN (β) and its standard modules are invariant under the transformation
q↔ q−1, there are also non-zero homomorphisms

Wℓ,ϵq−k(N)→Wk,ϵq−ℓ(N) , ℓ > k, ϵ ∈ {−1,+1}, q ∈ C×. (2.22)

These are the only non-trivial homomorphisms that exist between standard modules. In
Section 2.5, we give a construction of such homomorphisms for q generic, that is explicit
in terms of link states.

We note that the condition on z and y for a non-zero homomorphism Wℓ,y(N)→Wk,z(N)
to exist can be reformulated in terms of the braid transfer matrices, namely, it will exist if and
only if ℓ > k, and F and F̄ have identical eigenvalues on the two modules [51]. We say that
the parameter z of Wk,z(N) is generic if it is not of the form z = ϵq±ℓ with ϵ ∈ {−1,+1} and
ℓ ∈ {k+ 1, k+ 2, . . . , N/2}. Moreover, we say that q is generic if it is not a solution of q2m = 1
with m ∈ Z. In the following, we mainly focus on the generic values of q.

The results of Graham and Lehrer yield the structure of the standard modules. For
generic values of q and z, the standard module Wk,z(N) is irreducible. For q generic
but z non-generic, the non-zero homomorphism discussed above implies that Wk,z=ϵq±ℓ(N)
has a submodule isomorphic to Wℓ,ϵq±k(N). This module is itself irreducible, so we write
Wℓ,ϵq±k(N)' Iℓ,ϵq±k(N). The quotient Wk,ϵq±ℓ(N)/Iℓ,ϵq±k(N) is also irreducible, and we denote
it by Ik,ϵq±ℓ(N). Furthermore, since Wk,z=ϵq±ℓ(N) admits only one proper submodule Iℓ,ϵq±k(N),
it does not decompose as a direct sum Ik,ϵq±ℓ(N)⊕ Iℓ,ϵq±k(N).

The above results on the structure of standard modules are expressed in terms of Loewy
diagrams as

Wk,z(N)' Ik,z(N) for q, z generic, (2.23)

Wk,ϵq±ℓ(N)'
Ik,ϵq±ℓ(N)

Iℓ,ϵq±k(N)
ℓ > k, ϵ ∈ {−1,+1} , q generic. (2.24)

For a gentle introduction to Loewy diagrams, we direct the reader to the appendix of [7]. In
short, we recall that the Loewy diagram associated to a module M describes a filtration by
submodules

0= M0 ⊂ M1 ⊂ · · · ⊂ Mn = M , (2.25)

where each subquotient Q j = M j/M j−1 is the socle (namely, the maximal completely reducible
submodule) of M/M j−1. The irreducible components of a subquotient Q j are called the
composition factors of M . Each node of the Loewy diagram is associated to a composition factor.
An arrow I → I ′ in the Loewy diagram, where I and I ′ are composition factors belonging to
the subquotients Q j and Q j−1 respectively, indicates that the algebra acting on I can produce
a non-zero element of I ′, but not vice-versa.

In contrast to standard modules, the vacuum module V(N) is always irreducible. We note
that a module isomorphic to V(N) appears as a composition factor in the standard module
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W0,−q(N). Indeed, the latter is a reducible module, with a submodule isomorphic to W1,−1(N).
The irreducible quotient module is isomorphic to the vacuum module:

I0,−q(N) =W0,−q(N)/W1,−1(N)' V(N) . (2.26)

The modules discussed above have one or two composition factors. In general, Loewy
diagrams can have more than two layers, with composition factors that belong neither to the
socle nor the head. This can occur for instance for standard modules if both z and q are non-
generic. In this case, all non-zero homomorphisms are still of the form (2.21) and (2.22).
However, there can be more than one such homomorphisms into a given module Wk,z(N),
characterised by different values of ℓ. The resulting module decomposition is more complex
and involves more than two composition factors. It is however beyond the scope of this paper.

2.5 An alternative construction of the homomorphisms for q generic

In this subsection, we give an alternative construction of the homomorphisms
Wℓ,y(N) → Wk,z(N) for generic values of q (but non-generic values of y and z), that
avoids the sum over forest polynomials used by Graham and Lehrer. We shall use the
following strategy, in which the defect numbers k and ℓ are fixed, and the system size N
varies. We first treat the “fundamental case” of a system size N = 2ℓ, namely the smallest
system size where both Wk,z(N) and Wℓ,y(N) are defined (recall that ℓ > k): the module
Wℓ,y(2ℓ) is actually one-dimensional, and hence the construction of the homomorphism
amounts to defining a vector wk,z(ℓ) ∈ Wk,z(2ℓ) and proving that the action of the algebra
on wk,z(ℓ) is identical to its action on the single basis state of Wℓ,y(2ℓ). Then, as a second
step, we consider larger values of the system size N , for which we define the homomorphism
using what we call an insertion map, based on the properties of the vector wk,z(ℓ) constructed
previously.

The case N = 2ℓ. Let us define the unique link state vk(ℓ) ∈Wk,z(2ℓ) that has all of its ℓ− k
arcs crossing the dashed segment between the marked point and the perimeter of the circle.
We also define wk,z(ℓ) = P2ℓ · vk(ℓ). These two states are depicted as

vk(ℓ) =

1

...

ℓ−k

ℓ−k+1

...

ℓ+k

ℓ+k+1

...

2ℓ

, wk,z(ℓ) =

1

...

ℓ−k

ℓ−k+1

......

ℓ+k

ℓ+k+1

...

2ℓ

. (2.27)

In the second diagram, the projector P2ℓ is drawn as a pink ribbon encircling vk(ℓ). Clearly,
these two states are well-defined for both generic and non-generic values of z. However, for
non-generic values of z, the state wk,z(ℓ) ∈Wk,z(2ℓ) has certain special properties, namely it
satisfies the three relations

wk,z(ℓ) 6= 0 , Ω±1 ·wk,z(ℓ) = y±1wk,z(ℓ) , e j ·wk,z(ℓ) = 0, j = 1, . . . , 2ℓ, (2.28)

for (y, z) = (ϵq±k,ϵq±ℓ). The proofs of these relations are given in Appendix B, and rely on
the properties of the Jones-Wenzl projectors discussed in Appendix A.

The module Wℓ,y(2ℓ) is one-dimensional – it is spanned by the single link state vℓ(ℓ).
Altogether, the properties (2.28) ensure that the linear map Wℓ,y(2ℓ)→Wk,z(2ℓ) defined by
vℓ(ℓ) 7→ wk,z(ℓ) is a homomorphism of modules for (y, z) = (ϵq±k,ϵq±ℓ), with ϵ ∈ {−1,+1}.
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The case N > 2ℓ. In this case, we define a linear map Φ : Wℓ,y(N)→ Wk,z(N) on the link
states of Wℓ,y(N) using what we call the insertion algorithm. Given a link state v ∈Wℓ,y(N), we
construct Φ(v) ∈Wk,z(N) by selecting the 2ℓ nodes of v tied to defects, erasing these defects,
and inserting instead the linear combination corresponding to the state wk,z(ℓ) constructed in
(2.27). We illustrate this with an example for the case W2,q(12)→W1,q2(12):

v = 7→ Φ(v) = . (2.29)

As a second example, for the homomorphism W1,1(4) → W0,q(4), the map Φ applied to the
states of W1,1(4) in the basis (2.11b) yields the four states

1

23

4

,

1

23

4

,

1

23

4

,

1

23

4

. (2.30)

From the properties (2.28), it is clear that the action of EPTL4(β) on these four states is
invariant. In other words, these four states span a submodule of W0,q(4). Indeed, this
action yields a vanishing result if two nodes attached to the projector are connected together.
Otherwise, it modifies the connection between the nodes and the projector, in precisely the
same way as it does for the defects in W1,1(4). In the general case, for (y, z) = (ϵq±k,ϵq±ℓ),
the map Φ is non-zero, and satisfies the homomorphism relation

∀a ∈ EPTLN (β) , ∀v ∈Wℓ,y(N) , a ·Φ(v) = Φ(a · v) , (2.31)

and hence the states Φ(v) with v ∈Wℓ,y(N) form a non-zero submodule of Wk,z(N).

We note that this insertion algorithm was used previously to compute the determinant of
the Gram matrix of the standard modules [52]. This idea will also turn out to be useful in
Section 4, although in a slightly different form, to obtain the module decompositions of the
representations Xk,ℓ,x ,y,z(N).

3 Fusion of standard modules

3.1 Fusion for the ordinary Temperley-Lieb algebra

In this section, we review the construction of fusion for standard modules over the ordinary
Temperley-Lieb algebra TLN (β). This construction can be defined either algebraically or
diagrammatically [9, 34–36]. We denote by Vk(N) the standard module over TLN (β) with
2k defects, and draw the link states as planar diagrams above a horizontal line. For instance,
the two link states that span V1/2(3) are and .

The algebraic construction of fusion is based on the fact that TLNa(β) ⊗ TLNb(β) is a
subalgebra of TLNa+Nb(β), and uses the idea of induction. The fusion Vk(Na) × Vℓ(Nb) of
two standard modules is defined as the representation of TLNa+Nb(β)

Vk,ℓ(Na + Nb) = TLNa+Nb(β)⊗TLNa (β)⊗TLNb (β)
�
Vk(Na)⊗Vℓ(Nb)

�
. (3.1)
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This can be understood as follows. First, a basis for the vector space will include all the states of
the form v⊗w with v ∈ Vk(Na) and w ∈ Vℓ(Nb). Acting on v⊗w with a ∈ TLNa+Nb(β), we obtain
(a1 · v)⊗ (a2 ·w) if a = a1⊗ a2 ∈ TLNa(β)⊗TLNb(β). If a /∈ TLNa(β)⊗TLNb(β), then a(v⊗w)
cannot be simplified in terms of the standard action on Vk(Na) and Vℓ(Nb). It instead produces
a new state of the vector space. One thus acts successively with elements of the algebra until
a complete basis is obtained. This is the meaning of ⊗TLNa⊗TLNb

in (3.1): it acts as a filter and
only lets through elements of TLNa+Nb(β) that lie in the subalgebra TLNa(β)⊗TLNb(β).

To illustrate, we consider the example V1/2(3)⊗V1(2). A basis of V1/2,1(5) is made of the
elements

⊗ , ⊗ , e3

� ⊗ � , e4e3

� ⊗ � , e3

� ⊗ � ,
e2e3

� ⊗ � , e4e3

� ⊗ � , e2e4e3

� ⊗ � , e3e2e4e3

� ⊗ � . (3.2)

In this algebraic setup, it is a priori not obvious that this constitutes a full basis, nor that the
resulting representation depends only on the sum Na + Nb. For instance, one could think that
the state e2e3

� ⊗ � is missing from the basis. However the simple calculation

e2e3

� ⊗ �= 1
β

e2e3

�
e2 · ⊗ �= 1

β
e2e3e2

� ⊗ �
=

1
β

e2

� ⊗ �= ⊗ (3.3)

shows that this state already appears in (3.2).

A second equivalent construction of the fusion Vk(Na) × Vℓ(Nb) is diagrammatic. The
module Vk,ℓ(Na +Nb) is defined on the vector space spanned by link states on Na +Nb nodes,
with defect numbers that vary between 2|k−ℓ| and 2(k+ℓ). These defects are partitioned into
two subsets: the first contains the leftmost (r + k − ℓ) defects and the second the rightmost
(r − k + ℓ) defects, with r taking the values |k − ℓ|, |k − ℓ|+ 1, . . . , k + ℓ for the different link
states. In the diagrams, we use different colors to distinguish defects from the two subsets.
For instance, the link states that span V1/2,1(5) are

, , , , , , , , .
(3.4)

The action of TLN (β) on Vk,ℓ(Na + Nb) is defined similarly to the action on standard
modules. The only difference regards the weights assigned to the connection of defects. If
a ∈ TLN (β) acting on a link state in Vk,ℓ(N) connects two defects from the same subset, then
the result is set to zero. If a connects two defects from different subsets, the result is not set
to zero. These defects are instead removed with a weight 1.

The identification between the states in (3.2) and (3.4) is clear, as we drew them in the
same order in the two bases. In general, one can show that the action of TLNa+Nb(β) on
Vk,ℓ(Na + Nb) is identical in the algebraic and diagrammatic constructions, so that the two
definitions are indeed equivalent. Furthermore, in the diagrammatic setup, the definition of
the full basis is clear, and by definition the representations depend only on Na and Nb through
their sum Na+Nb. In the above example, a convenient change of basis shows that, for generic
values of q, the module V1/2,1(5) is isomorphic to the direct sum V1/2(5)⊕V3/2(5). These two
summands account for the two possible values of the total number of defects of the states in
(3.4). More generally, the fusion of Vk(Na) and Vℓ(Nb) decomposes as

Vk(Na)×Vℓ(Nb) = Vk,ℓ(N)'
k+ℓ⊕

m=|k−ℓ|
Vm(N) , for q generic , (3.5)

where N = Na + Nb. This has the same structure as the tensor product of sℓ(2) irreducible
representations.
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3.2 Representations over EPTLN(β) with two marked points

In this section, we introduce new families of representations Xk,ℓ,x ,y,z(N) of EPTLN (β), for
x , y, z ∈ C×, which we interpret as the fusion Wk,x(N)×z Wℓ,y(N) of standard modules. Our
construction is inspired from the diagrammatic definition of fusion for TLN (β) described in
Section 3.1. As detailed below, the parameter z is a free variable in the construction that
describes the interaction of the two standard modules in their fusion. In the absence of defects,
it parameterises the weight of certain classes of loops, whereas in the presence of defects, it
couples to the winding of the defects.

The module Xk,ℓ,x ,y,z(N) is spanned by link states living on a disc with two marked points
a and b. We color these points respectively in green and purple in the diagrams. The circular
perimeter has N nodes attached to loop segments. They can either be connected pairwise by
arcs, be connected by a defect to point a, or be connected by a defect to point b. We also define
a point c on the perimeter between the nodes N and 1, and draw two dashed segments ac and
bc. Certain arcs may separate the points a and b: we call these through-arcs. To illustrate,
here are three such link states for N = 12:

v1 =

1
2

3

4

5
67

8

9

10

11
12

a b

c

, v2 =

1
2

3

4

5
67

8

9

10

11
12

a b

c

, v3 =

1
2

3

4

5
67

8

9

10

11
12

a b

c

. (3.6)

We split our description of the modules Xk,ℓ,x ,y,z(N) in three cases: (i) k = ℓ = 0, (ii)
k > 0,ℓ= 0 and k = 0,ℓ > 0, and (iii) k,ℓ > 0.

The case k = ℓ = 0. For X0,0,x ,y,z(N), the link states that span the vector space have no
defects attached to either a or b. For instance, the full set of link states of X0,0,x ,y,z(4) is

1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

. (3.7)

Likewise, the state v1 in (3.6) is a link state of X0,0,x ,y,z(12). Here, we choose the convention
where the loop segments are fixed whereas the position of the two marked points vary
according to the link state. The other convention is also possible, but makes the diagrams
more tangled up.

The action a · v of a ∈ EPTLN (β) on a link state v ∈ X0,0,x ,y,z(N) is obtained by drawing v
inside a and reading the new link state from the outer perimeter. In this construction, the point
c between the nodes N and 1 is moved to the outer perimeter, so that the dashed segments
once again connect the marked points to the link state’s perimeter. A closed loop formed in the
process is erased and is assigned (i) a weight αa = x + x−1 if it wraps around the point a only,
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(ii) a weight αb = y + y−1 if it wraps around the point b only, (iii) a weight αab = z+ z−1 if it
wraps around both a and b, and (iv) a weight β it encircles neither a nor b. Here are examples
to illustrate:

e3 ·
1

23

4

= αa

1

23

4

, e2 ·
1

23

4

= αab

1

23

4

, (3.8a)

e2e4 ·
1

23

4

= αb

1

23

4

, e1 ·
1

23

4

= β

1

23

4

. (3.8b)

The cases k > 0,ℓ = 0 and k = 0,ℓ > 0. We describe the first case only, as the second is
obtained from the first by interchanging the marked points a and b, and changing k → ℓ,
x↔ y and z→ z−1. The link states that span the vector space of Xk,0,x ,y,z(N) have 2k defects
attached to the point a, no defects attached to the point b, and N

2 − k arcs. Some of these
arcs can be through-arcs. Two link states v1 and v2 with no through-arcs are identified up to
a twist factor if one can transform v1 into v2 by only pushing the marked point b across some
defects. This is clarified below when we define the action of the algebra. Therefore, the only
states with no through-arcs that we select for the basis of Xk,0,x ,y,z(N) are those wherein the
defects do not cross either of the two dashed segments. This is achieved by correctly choosing
the location of the marked point b for each link state without through-arcs. For instance, the
full set of states of W1,0,x ,y,z(4) is

1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4

.

(3.9)

Likewise, the state v2 in (3.6) is a link state of X1,0,x ,y,z(12).

The action of a ∈ EPTLN (β) on a link state v is obtained as before by drawing v inside a
and reading the new link state from the outer perimeter. In this construction, the point c is
again moved outwards, to the new link state’s perimeter. A closed loop is assigned a weight
αb = y + y−1 if it encircles point b and β if it does not. If two defects are connected together,
the result is set to zero. As a result, if the action of a ∈ EPTLN (β) creates a closed loop
that encircles the point a, the overall weight will vanish because a also connects defects of
a together. Moreover, if a defect that evolves down the cylinder crosses the segment ac, the
segment bc, or both, it produces a twist factor as follows. If it crosses the edge ac, it is assigned
a weight x if the point a lies to its right and x−1 if a lies to its left. Likewise, if a defect crosses
the dashed segment bc, it is assigned a weight x−1z if b lies to its right and xz−1 if b lies to its
left. If a defect crosses more than one dashed segment, then the resulting twist factor is the
product of the corresponding weights. If it crosses none of the two segments, it is given the
weight 1. Here are examples to illustrate:

e3 ·
1

23

4

= αb

1

23

4

, e1 ·
1

23

4

= β

1

23

4

, (3.10a)
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e1 ·
1

23

4

= x

1

23

4

, e2 ·
1

23

4

= xz−1

1

23

4

, (3.10b)

e1 ·
1

23

4

= z

1

23

4

, e1 ·
1

23

4

=

1

23

4

. (3.10c)

We note that the second example in (3.10b) can be computed in two steps as

e2 ·
1

23

4

=

1

23

4

= xz−1

1

23

4

. (3.11)

The two rightmost link states appearing in this example are identical up to the position of the
point b with respect to the defects attached to point a. As explained above in describing the
link state basis, these two link states are identified up to a twist factor, here equal to xz−1. In
our convention, only the rightmost link state is selected to be a part of the basis (3.9). Finally,
we summarize the rules for the unwinding of defects with the following examples:

1

23

4

= x

1

23

4

,

1

23

4

= x−1

1

23

4

,

1

23

4

= x−1z

1

23

4

,

1

23

4

= xz−1

1

23

4

,

1

23

4

= z

1

23

4

,

1

23

4

= z−1

1

23

4

.

(3.12)

The case k,ℓ > 0. The link states that span the vector space of Xk,ℓ,x ,y,z(N) have a total
number 2r of defects that varies, with r taking the values |k−ℓ|, |k−ℓ|+1, . . . , k+ℓ. Of these,
(r + k − ℓ) are attached to point a and (r + ℓ − k) are attached to point b. The remaining
(N −2r) nodes are connected pairwise by arcs. These can be through-arcs if r = k+ℓ, but not
if r < k + ℓ.2 As in the previous case, the only states with no through-arcs that we select for
the basis of Xk,ℓ,x ,y,z(N) are those wherein no defects cross the two dashed segments. This is
done by choosing appropriately the location of the two marked points. For instance, the full

2This choice of vector space ensures that the resulting module is cyclic, namely that all the states in Xk,ℓ,x ,y,z(N)
can be produced by the action of the algebra on any link state with 2(k + ℓ) defects and N

2 − k − ℓ through-arcs,
see Proposition 4.1.
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set of states of X 1
2 , 1

2 ,x ,y,z(4) is

1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

1

23

4 1

23

4 1

23

4 1

23

4 1

23

4 1

23

4

. (3.13)

Likewise, the state v3 in (3.6) is a link state in X 3
2 , 1

2 ,x ,y,z(12).

The action a · v of the algebra is defined as usual with v drawn inside a, and the point c
moved to the outer perimeter. A closed loop is assigned a weight β if it encircles neither of
the marked points. If k 6= ℓ, loops may not encircle any of the two marked points. If k = ℓ
however, loops may encircle both a and b and are then assigned weight αab = z + z−1.

If a defect crosses a dashed segment, it produces a twist factor as follows.3 A defect
attached to point a crossing the segment ac is assigned a weight x if a is to its right and x−1 if
a lies to its left. A defect attached to point a crossing the segment bc is assigned a weight x−1z
if b lies to its right and xz−1 if b lies to its left. A defect attached to point b crossing segment bc
is assigned a weight y if b lies to its right and y−1 if b lies to its left. A defect attached to point
b crossing the dashed segment ac is assigned a weight (yz)−1 if a lies to its right and a weight
yz if a lies to its left. Finally, if a defect crosses more than one segment, then the resulting
twist factor is the product of the corresponding weights. In other words, the allocation of twist
factors for the defects attached to point a are identical to those illustrated in (3.12). The same
rules for defects attached to the point b are obtained from (3.12) by interchanging the color
of two marked points, and changing x → y and z→ z−1.

If the action of the algebra connects together two defects attached to the same marked
point, the result is set to zero. The action of the algebra may however reduce the number of
defects if it connects defects tied to a with defects tied to b. The resulting weight depends on
two factors: (i) the number of times the defect crosses each of the two dashed segments, and
(ii) the relative positions of the marked points a and b. In general, the weight of a defect is
given by µδxna ynb . The numbers na and nb count the number of times the defect winds around
the points a and b, respectively. Following an observer traveling on the defect from a to b, na
is positive if the observer crosses the dashed line ac with a to its right, and negative if a lies
to its left. Likewise, following the observer traveling from b to a, nb is positive if the observer
crosses the dashed line bc with b to its right. Moreover, we have δ = 0 if the segment ac is to
the left of bc and δ = 1 if it lies to its right. In other words, there is an extra multiplicative
weight µ if ac lies to the left of bc. The value of µ is set to

µ=
yz
x

. (3.14)

This choice ensures that the definition of this action of EPTLN (β) on Xk,ℓ,x ,y,z(N) yields a
well-defined representation. For instance, it ensures that the following two computations yield

3For k = ℓ, one can define more generally a module Xk,k,x ,y,z,w(N) with an extra parameter w, where the loops
encircling a and b are allocated the weight αab = z + z−1, whereas the twist of defects are assigned twist factors
x±1, (w/x)±1, y±1 and (yw)∓1. The resulting representation can be shown to be isomorphic to Xk,k,x ,y,w(N) for
generic values of w. For simplicity, we choose not to discuss this generalisation further here.
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identical results:

e1e3 ·
1

23

4

= y−1e1 ·
1

23

4

= µy−1

1

23

4

, (3.15a)

e3e1 ·
1

23

4

= x−1z e3 ·
1

23

4

= x−1z

1

23

4

. (3.15b)

Let us give more examples that illustrate the allocation of weights to the connection of two
defects:

: 1

: 1
x

: y

: x

: 1
y

: y
x

: 1
x2 y

: µ= yz
x

: µy =
z
x

: µx = yz

: µy = y2z
x

: µx =
yz
x2

: µx
y = z

: µ
x y2 =

z
x2 y

(3.16)

We illustrate the action of EPTLN (β) on Xk,ℓ,x ,y,z(N) with two more examples for N = 4:

e4 ·
1

23

4

=
µx
y︸︷︷︸
=z

1

23

4

, e3 ·
1

23

4

= z−1

1

23

4

. (3.17)

Status as representations. For each of these three families of modules, the action of
EPTLN (β) defined above on the link states is extended linearly to all linear combinations
of link states. Moreover, we claim that the diagrammatic rules described above define well-
defined representations. This is in fact not obvious. We do not give here a complete proof of
this claim, and only describe a sketch of a proof. The goal is to verify that a1 ·(a2 ·v) = (a1a2)·v
for all a1, a2 ∈ EPTLN (β) and v ∈ Xk,ℓ,x ,y,z(N). Equivalently, one could check that the
action of EPTLN (β) on Xk,ℓ,x ,y,z(N) is consistent with the defining relations (2.2), but the first
formulation turns out to be easier. Indeed, the diagrammatic definition for the product a1a2
of two connectivities of EPTLN (β) consist in two rules: (i) each contractible loop is removed
and replaced by a weight β , and (ii) two connectivities are identified if they only differ by
deformations of the loop segments that do not change the connectivity of the 2N nodes. The
diagrammatic action of EPTLN (β) on Xk,ℓ,x ,y,z(N) respects these two rules. In particular, the
second rule is satisfied because a · v is uniquely fixed in terms of the connectivity of the nodes,
and does not depend on the precise paths taken by the loop segments. This is obvious if either
k or ℓ is zero.

For k,ℓ > 0, the complex rule for the connection of defects makes this less obvious. It is in
fact the specific choice (3.14) of µ that ensures that a · v is uniquely fixed and that the action
of EPTLN (β) on the link states as defined above really produces a representation. Indeed,
in many cases, computing the weight of a defect can be done in two ways. This is apparent
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for instance in the example (3.15), wherein the two ways of computing this weight can be
summarised as

= y−1 = y−1·µ and = zx−1 = zx−1·1 . (3.18)

These indeed give identical results for µ= yz
x . In contrast, for some diagrams, there is a unique

way to compute the weight. This is the case for instance for

e1e3e2 ·
1

23

4

= µy

1

23

4

, (3.19)

corresponding to the diagram . The generator e2 cannot be commuted to the left in any
way, so its action on the link state is always resolved first. In other words, the weight of this
diagram can only be computed by unwinding the defect around point b first, producing the
twist factor y . Similarly, each example in (3.16) can be resolved in either one or two ways,
and the result is always unique.

Properties of the representations. Furthermore, we note that on the modules Xk,ℓ,x ,y,z(N),
we have the identity

∀v ∈ Xk,ℓ,x ,y,z(N), ΩN · v = z2(k−ℓ) v , (3.20)

and for the special case k = ℓ= 0,

∀v ∈ X0,0,x ,y,z(N), EΩ±1E · v = (z + z−1) E · v , (3.21)

where E = e2e4 · · · eN .

3.3 Gluing, induction and fusion

We consider two algebras EPTLNa(β) and EPTLNb(β) and two standard modules Wk,x(Na)
and Wℓ,y(Nb) over these algebras, with Na, Nb ∈ N. The gluing of ua ∈ Wk,x(Na) and
ub ∈Wℓ,y(Nb), denoted gz(ua, ub), is a linear map from Wk,x(Na)⊗Wℓ,y(Nb), seen as a module
over TLNa(β)⊗TLNb(β), to Xk,ℓ,x ,y,z(N), with N = Na + Nb. The output is a diagram where
both ua and ub are drawn inside a disc with Na+Nb nodes on its perimeter. The states ua and
ub are associated to the marked point a and b in Xk,ℓ,x ,y,z(N), respectively, and their nodes
are attached to the nodes with labels 1, . . . , Na, and Na + 1, . . . , N . We illustrate this with two
examples with (Na, Nb) = (4, 4) and (5, 6):

gz

�
1

23

4

,

1

23

4

�
=

1

2

3

45

6

7

8

, (3.22a)

gz

�
1

2

3

4

5

,

1

2

34

5

6

�
=

1

2

3

4

5
6

7

8

9

10

11

. (3.22b)
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By definition, the image of the map gz has the structure of Xk,ℓ,x ,y,z(N). In other words,
acting with elements of EPTLN (β) on gz(ua, ub) assigns weights αab = z + z−1 to non-
contractible loops, or produces twist factors that depend on z for defects that wind around
the two marked points. Moreover, the gluing map preserves the action of TLNa(β)⊗TLNb(β)
on Wk,x(Na)⊗Wℓ,y(Nb). Indeed, for any ua ∈Wk,x(Na) and ub ∈Wℓ,y(Nb), the generators e j
satisfy the relations

e j · gz(ua, ub) = gz(e j · ua, ub) for 1¶ j ¶ Na − 1 , (3.23a)

eNa+ j · gz(ua, ub) = gz(ua, e j · ub) for 1¶ j ¶ Nb − 1 . (3.23b)

In constrast, the generators Ω±1, eNa and eN do not commute with gz , namely their action
can in general not be simplified in terms of the standard action of TLNa(β) ⊗ TLNb(β) in
Wk,x(Na)⊗Wℓ,y(Nb).

Recalling from Section 2.5 the definition of the states vk(ℓ), we note that the gluing
gz

�
vk(Na/2), vℓ(Nb/2)

�
produces a link state with a total number of 2k+ 2ℓ defects and with

the maximal number N/2− k − ℓ of through-arcs. Proposition 4.1 below will show that the
module Xk,ℓ,x ,y,z(N) is generated from the repeated action of EPTLN (β) on such states, for
q, z generic. As a result, we can write

Xk,ℓ,x ,y,z(N) = EPTLN (β) · gz

�
Wk,x(Na),Wℓ,y(Nb)

�
. (3.24)

Crucially, although this relation is similar to (3.1), it should not be mistaken for a definition
of Xk,ℓ,x ,y,z(N), as the gluing map gz appearing on the right-hand side is by definition a map
onto Xk,ℓ,x ,y,z(N), and therefore assumes that the definition of this module is known. The
statement of (3.24) is instead that the image of Wk,x(Na)⊗Wℓ,y(Nb) under the action of gz
produces the entire module Xk,ℓ,x ,y,z(Na + Nb) when acted on by EPTLN (β).

This construction is somewhat analogous to that for TLN (β) described in Section 3.1, with
the gluing map playing a similar role to the selective tensor product in (3.1). This justifies our
claim that Xk,ℓ,x ,y,z(N) should be interpreted as the fusion of two standard modules:

Wk,x(Na)×z Wℓ,y(Nb) = Xk,ℓ,x ,y,z(N) . (3.25)

In this equation, we use the notation ×z to indicate that the parameter z does not solely belong
to Wk,x(Na) or Wℓ,y(Nb), but instead describes the interaction between the two modules in
their fusion, either through the weights given to loops encircling both marked points a and b
or by its coupling to the winding of defects around these points.

We note however that an entirely algebraic definition of this fusion Wk,x(Na)×z Wℓ,y(Nb),
similar to (3.1), is currently lacking. Such a definition should include in particular extra
quotient relations (3.20) and (3.21), as well as other relations accounting for the complex
diagrammatic rule for the connection of defects described in Section 3.2.

4 The structure of the modules Xk,ℓ,x ,y,z(N)

In this section, we investigate the decomposition of the modules Xk,ℓ,x ,y,z(N). The main result
is the following theorem.

THEOREM 1 For generic values of q and z, we have the module decomposition

Xk,ℓ,x ,y,z(N)'Wk−ℓ,z(N)⊕
N/2⊕

m=k−ℓ+1

2m−1⊕
n=0

Wm,z(k−ℓ)/meiπn/m(N) , for k ¾ ℓ . (4.1)
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Moreover, we have Xk,ℓ,x ,y,z(N) ' Xℓ,k,y,x ,z−1(N), which fixes the module decomposition of
Xk,ℓ,x ,y,z(N) for k < ℓ.

This theorem holds for all x , y ∈ C×. We also note that the explicit decompositions for q, z
generic in fact do not depend on the values of x and y . We discuss this further in Section 6.

4.1 Quotients and dimensions

In this subsection, we describe the tower structure of the module Xk,ℓ,x ,y,z(N) and use it to
compute its dimension.

Depth and quotient modules. For a given link state in Xk,ℓ,x ,y,z(N), we define its depth p as
the number of its through-arcs. The possible values of p are 0, 1, . . . , N

2 − k−ℓ. In the example
(3.6), v1 and v2 have depth p = 2 whereas v3 has depth p = 1. Moreover, in (3.7), (3.9) and
(3.13), the states are drawn with the depth constant on each line.

The action of the algebra EPTLN (β) on a basis state of Xk,ℓ,x ,y,z(N) of depth p only
produces states whose depth is smaller or equal to p. We denote by X(p)k,ℓ,x ,y,z(N) the submodule
of Xk,ℓ,x ,y,z(N) spanned by link states of depth at most p. These submodules define a filtration
of Xk,ℓ,x ,y,z(N):

X(0)k,ℓ,x ,y,z(N) ⊂ X(1)k,ℓ,x ,y,z(N) ⊂ · · · ⊂ X(N/2−k−ℓ)
k,ℓ,x ,y,z (N) = Xk,ℓ,x ,y,z(N) . (4.2)

For p ¾ 1, we introduce an equivalence relation for two elements v1, v2 of X(p)k,ℓ,x ,y,z(N):

v1 ≡ v2 [[p− 1]] iff v1 − v2 ∈ X(p−1)

k,ℓ,x ,y,z(N). (4.3)

The corresponding quotient modules, made of the equivalence classes under this relation, are
denoted

M(p)

k,ℓ,x ,y,z(N) = X(p)k,ℓ,x ,y,z(N)
À
X(p−1)

k,ℓ,x ,y,z(N), p = 0, 1, . . . , N
2 − k− ℓ, (4.4)

where we use the conventions X(−1)

k,ℓ,x ,y,z(N) = 0 and M(0)

k,ℓ,x ,y,z(N) = X(0)k,ℓ,x ,y,z(N).

For k,ℓ > 0, the submodule X(0)k,ℓ,x ,y,z(N) decomposes further. In this case, certain link

states of X(0)k,ℓ,x ,y,z(N) have defects attached to both points a and b. The action of EPTLN (β)
on these states cannot increase the total number of defects, but can decrease it. We define
the submodule X(0, r)

k,ℓ,x ,y,z(N) spanned by link states that have at most 2r total defects, with

r = |k− ℓ|, |k− ℓ|+ 1, . . . , k+ ℓ. These define a filtration for X(0)k,ℓ,x ,y,z(N):

X(0, |k−ℓ|)
k,ℓ,x ,y,z(N) ⊂ X(0, |k−ℓ|+1)

k,ℓ,x ,y,z (N) ⊂ · · · ⊂ X(0, k+ℓ)

k,ℓ,x ,y,z(N) = X(0)k,ℓ,x ,y,z(N) . (4.5)

The corresponding quotient modules are defined as

N(r)

k,ℓ,x ,y,z(N) = X(0, r)

k,ℓ,x ,y,z(N)
À
X(0, r−1)

k,ℓ,x ,y,z(N), r = |k− ℓ|, |k− ℓ|+ 1, . . . , k+ ℓ, (4.6)

with the conventions X(0, |k−ℓ|−1)

k,ℓ,x ,y,z (N) = 0 and N(|k−ℓ|)
k,ℓ,x ,y,z(N) = X(0, |k−ℓ|)

k,ℓ,x ,y,z(N).
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Dimension counting. The dimension of Xk,ℓ,x ,y,z(N) can be computed by studying the
dimensions of the quotient modules M(p)

k,ℓ,x ,y,z(N) and N(r)

k,ℓ,x ,y,z(N). We first discuss the case

M(p)

k,ℓ,x ,y,z(N) for p > 0. Given a link state in v ∈ M(p)

k,ℓ,x ,y,z(N), namely a link state of depth
p, we draw a thick bridge between the points a and b. There are 2(k + ℓ + p) nodes from
the perimeter that are attached to this bridge. We map the resulting diagram to a link state
in Wk+ℓ+p,z(N), with the bridge playing the role of the unique marked point of the standard
module and all loop segments attached to it becoming defects. For instance, for the three
states in (3.6), this construction yields

v1 7→

1
2

3

4

5
67

8

9

10

11
12

, v2 7→

1
2

3

4

5
67

8

9

10

11
12

, v3 7→

1
2

3

4

5
67

8

9

10

11
12

. (4.7)

This map is not one-to-one. Instead, for each state in Wk+ℓ+p,z(N), there are precisely
2(k + ℓ + p) states in the pre-image. The nodes attached to the bridge partitions into four
adjacent parts: 2k defects attached to the point a, p nodes attached to through-arcs, 2ℓ defects
attached to the point b, and finally p more nodes attached to through-arcs. The 2(k + ℓ+ p)
states in the pre-image correspond to the possible rotations of this formation. As a result, we
have

dimM(p)

k,ℓ,x ,y,z(N) = 2(k+ ℓ+ p)dimWk+ℓ+p,z(N), p = 1, . . . , N
2 − k− ℓ . (4.8)

For p = 0, we study separately each quotient module N(0, r)

k,ℓ,x ,y,z(N). For a given state v
in this module, namely a link state of zero depth with a total of 2r defects, we draw the
bridge between the points a and b as above, and observe that the 2r defects are attached to
the bridge. We map the resulting diagram to the corresponding link state in Wr,z(N), with
the bridge replaced by the marked point. This map is one-to-one for r = |k − ℓ|, but not for
r > |k− ℓ|. In this last case, there are instead 2r states in the pre-image, corresponding to the
2r possible rotations of the defects. This yields

dimN(r)

k,ℓ,x ,y,z =

¨
dimW|k−ℓ|,z(N) r = |k− ℓ|,
2r dimWr,z(N) r > |k− ℓ|. , (4.9)

Altogether, we find

dimXk,ℓ,x ,y,z(N) =
k+ℓ∑

r=|k−ℓ|
dimN(r)

k,ℓ,x ,y,z(N) +
N/2−k−ℓ∑

p=1

dimM(p)

k,ℓ,x ,y,z(N)

= dimW|k−ℓ|,z(N) +
k+ℓ∑

r=|k−ℓ|+1

2r dimWr,z(N)

+
N/2−k−ℓ∑

p=1

2(k+ ℓ+ p) dimWk+ℓ+p,z(N)

= dimW|k−ℓ|,z(N) +
N/2∑

m=|k−ℓ|+1

2m dimWm,z(N) . (4.10)

We recall that the dimension of Wk,z(N), given in (2.13), does not depend on z. Moreover,
two modules Wk,y(N) and Wk,z(N) are in general non-isomorphic even if they have the
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same dimension. Thus the above formulas for the dimension do not fix the decomposition
of dimXk,ℓ,x ,y,z(N). With this in mind, the formula (4.10) for the dimension of Xk,ℓ,x ,y,z(N) is
nonetheless reminiscent of the result of Theorem 1. A simple inductive argument allows us to
simplify the formula for the dimension to

dimXk,ℓ,x ,y,z(N) = (
N
2 − |k− ℓ|+ 1)

�
N

N
2 − |k− ℓ|
�

. (4.11)

We note that the dimension of Xk,ℓ,x ,y,z(N) depends on k and ℓ only through the difference
|k− ℓ|.
4.2 Decompositions for q , z generic

In this section, we present a proof of Theorem 1. We achieve this by constructing two families
of non-zero homomorphisms

(i) Wm,ω(N)→M(p)

k,ℓ,x ,y,z(N) with m= k+ℓ+ p, (ii) Wr,ω(N)→ N(r)

k,ℓ,x ,y,z(N), (4.12)

for certain special values of ω given below. First, we describe the map of type (i) for a system
size N = 2m. Second, we give the construction of the map of type (i) for any value of N , using
the insertion algorithm. Third, we discuss the homomorphisms of type (ii).

Homomorphisms of type (i) for N = 2m. Throughout this discussion, we set m= k+ℓ+p.
Let us denote as vk,ℓ(m) the unique the link state in Xk,ℓ,x ,y,z(2m) that has depth p and its
nodes with labels 1, . . . , 2k attached to the point a by defects. For instance for X 3

2 , 1
2 ,x ,y,z(12),

this state is

v3
2 , 1

2
(6) =

1
2

3

4

5
67

8

9

10

11
12

. (4.13)

The vector space of M(p)

k,ℓ,x ,y,z(2m) is 2m-dimensional and is spanned by vk,ℓ(m) and its rotations

Ω·vk,ℓ(m), . . . ,Ω2m−1 ·vk,ℓ(m). The action of the generators e j on vk,ℓ(m) is always proportional
to a link state with depth strictly less than p. We write this as

e j · vk,ℓ(m)≡ 0
��

p− 1
��

, j = 1, . . . , 2m . (4.14)

We introduce the states

wk,ℓ,x ,y,z(m, n) =
1

2m

2m−1∑
j=0

ω− j
n Ω

j ·vk,ℓ(m), ωn = z(k−ℓ)/m eiπn/m, n= 0, . . . , 2m−1. (4.15)

These are in fact obtained by acting on vk,ℓ(m) with the projectors Πn (defined in (2.17)). By
construction, they satisfy the relations

Ω ·wk,ℓ,x ,y,z(m, n) =ωn wk,ℓ,x ,y,z(m, n) , e j ·wk,ℓ,x ,y,z(m, n)≡ 0 [[p− 1]], j = 1, . . . , 2m.
(4.16)

This implies that, as an element of M(p)

k,ℓ,x ,y,z(2m), the state wk,ℓ,x ,y,z(m, n) spans a one-
dimensional submodule of EPTLN (β), isomorphic to Wm,ωn

(2m). Hence, the linear
application that maps the unique state vm(m) of Wm,ωn

(2m) to wk,ℓ,x ,y,z(m, n) is a
homomorphism

Wm,ωn
(2m)→M(p)

k,ℓ,x ,y,z(2m) , m= k+ ℓ+ p ,

�
p ¾ 1 ,

n= 0, . . . , 2m− 1 .
(4.17)
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Homomorphisms of type (i) for N > 2m. In this case, we build a family of homomorphisms

Wm,ωn
(N)→M(p)

k,ℓ,x ,y,z(N), m= k+ ℓ+ p ,

�
p ¾ 1 ,

n= 0, . . . , 2m− 1 ,
(4.18)

with ωn = z(k−ℓ)/m eiπn/m as above. The construction uses an insertion map similar to the one
used in Section 2.5. For u ∈ Wm,ωn

(N), Φ(u) is obtained from u by selecting its 2m nodes
attached to defects, erasing those defects, and instead connecting these nodes to the state
wk,ℓ,x ,y,z(m, n). To illustrate, here is an example with a link state in W2,ωn

(12) mapped into
M(1)

0,1,x ,y,z(12):

u= 7→ Φ(u) = , (4.19)

where the pink disc indicates the insertion of the state w0,1,x ,y,z(2, n). As a second example,
the four link states of W1,ωn

(4) depicted in (2.11b) are mapped into M(1)
0,0,x ,y,z as

1

23

4

,

1

23

4

,

1

23

4

,

1

23

4

, (4.20)

where the pink disc represents the state w0,0,x ,y,z(1, n). The two above examples are of course
very reminiscent of (2.29) and (2.30).

By construction, this linear map is non-zero. Moreover, the action of the generators
e j yields a vanishing result in M(p)

k,ℓ,x ,y,z(N) if it connects nodes attached to wk,ℓ,x ,y,z(m, n),
as it then produces states with lesser depth. Otherwise, it permutes the nodes tied to
wk,ℓ,x ,y,z(m, n), in precisely the same way as it does for the defects in Wm,ωn

(N). Equivalently,
the map Φ satisfies the homomorphism relation

∀a ∈ EPTLN (β) , ∀v ∈Wm,ωn
(N) , a ·Φ(v) = Φ(a · v) . (4.21)

From these properties, we deduce that the states in the image of Φ span a nonzero
submodule of M(p)

k,ℓ,x ,y,z(N). For q and z generic, the standard modules Wm,ωn
(N) are

all irreducible and are pairwise non-isomorphic. This implies that each map in (4.18) is
injective. Therefore M(p)

k,ℓ,x ,y,z(N) has a submodule isomorphic to
⊕

n Wm,ωn
(N), wherein no

two summands are isomorphic. Using the dimension counting (4.8), we observe that this
direct summand exhausts the dimension of M(p)

k,ℓ,x ,y,z(N), and conclude that

M(p)

k,ℓ,x ,y,z(N)'
2m−1⊕
n=0

Wm,ωn
(N) , ωn = z(k−ℓ)/meinπ/m , m= k+ ℓ+ p , p ¾ 1 .

(4.22)

Homomorphisms of type (ii). The link states of M(0)

k,ℓ,x ,y,z(N) = X(0)k,ℓ,x ,y,z(N) have no

through-arcs. If ℓ = 0, the vector space of X(0)k,ℓ,x ,y,z(N) is identical to that of Wk,z(N).
Moreover, the action of EPTLN (β) acts identically in both modules: closing two defects
attached to the point a gives a vanishing result, and any defect that winds around the cylinder
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always crosses both dashed segments and is then assigned the weights z or z−1. We conclude
that

X(0)k,0,x ,y,z(N)'Wk,z(N) . (4.23)

The same ideas apply to the case k = 0, resulting in

X(0)0,ℓ,x ,y,z(N)'Wℓ,z−1(N) . (4.24)

For k = ℓ= 0, both (4.23) and (4.24) are valid because W0,z(N)'W0,z−1(N).

If k and ℓ are both non-zero, the module X(0)k,ℓ,x ,y,z(N) decomposes as a direct sum, which

we now investigate in terms of the quotient modules N(r)

k,ℓ,x ,y,z(N). Repeating the argument
that lead to (4.23) and (4.24), we find for the case r = |k− ℓ| the simple decomposition

N(|k−ℓ|)
k,ℓ,x ,y,z(N) = X(0, |k−ℓ|)

k,ℓ,x ,y,z(N)'W|k−ℓ|,zsign(k−ℓ)(N) . (4.25)

For k = ℓ, sign(k − ℓ) can be taken to be either 1 or −1 because W0,z(N) ' W0,z−1(N). For
r > |k− ℓ|, we use the insertion algorithm to define maps

Wr,ωn
(N)→ N(r)

k,ℓ,x ,y,z(N), ωn = z(k−ℓ)/reinπ/r , n= 0, . . . , 2r − 1 . (4.26)

For a given link state u ∈ Wr,ωn
(N), we select its 2r nodes attached to defects, erase those

defects, and connect these nodes to the state wra,rb,x ,y,z(r, n), with ra =
1
2(r + k − ℓ) and

rb =
1
2(r − k + ℓ). The result Φ(u) is a linear combination of link states of N(r)

k,ℓ,x ,y,z(N) that
only differ in the way the defects of u are distributed between the points a and b. For instance,
an example of the map W2,ωn

(12) → N(2)

3/2,1/2,x ,y,z(12) is obtained from (4.19) by modifying
the state inside the disc on the right-hand side to w3/2,1/2,x ,y,z(2, n). Likewise, the four states
obtained from the map W1,ωn

(4)→ N(1)

1/2,1/2,x ,y,z(4) are obtained from (4.20) by inserting the
state w1/2,1/2,x ,y,z(1, n) inside the pink disc.

We note that the two insertion maps described above for the homomorphisms of types (i)
and (ii) are in fact defined in exactly the same way. The only difference is that the inserted
state wk,ℓ,x ,y,z(m, n) is restricted to k+ ℓ < m for the maps of type (i) and to k+ ℓ= m for the
maps of type (ii).

It is straightforward to show that the maps (4.26) are non-zero. For q and z generic, the
standard modules Wr,ωn

(N) are irreducible, and as a result the homomorphisms mapping them
into N(r)

k,ℓ,x ,y,z(N) are injective. The dimension of the direct sum of these inequivalent standard

modules exhausts the dimension (4.9) of N(r)

k,ℓ,x ,y,z(N), so we conclude that

N(r)

k,ℓ,x ,y,z(N)'
2r−1⊕
n=0

Wr,ωn
(N), r = |k− ℓ|+ 1, . . . , |k+ ℓ| . (4.27)

End of the proof of Theorem 1. From the above construction of the homomorphisms, we
have a complete list of the composition factors of Xk,ℓ,x ,y,z(N), namely

N
2 −k−ℓ⋃
p=1

2(k+ℓ+p)−1⋃
n=0

Wk+ℓ+p,ωn
(N), W|k−ℓ|,zsign(k−ℓ)(N),

k+ℓ⋃
r=|k−ℓ|+1

2r−1⋃
n=0

Wr,ωn
(N), (4.28)

with ωn defined in (4.18) for Wk+ℓ+p,ωn
(N) and in (4.26) for Wr,ωn

(N).

For generic values of q and z, these cannot form indecomposable yet reducible modules.
Indeed, such modules can only arise between two standard modules if they have identical
eigenvalues for the braid transfer matrices F and F̄ . Using (2.18), we readily observe that no
two modules in the list (4.28) share the same eigenvalue of F . This therefore confirms that
the items in (4.28) all appear as direct summands in the decomposition of Xk,ℓ,x ,y,z(N). This
direct sum can be reorganised conveniently into (4.1), ending the proof of Theorem 1.
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4.3 Further properties of Xk,ℓ,x ,y,z(N) for q , z generic

In this section, we describe the explicit form of the homomorphisms into Xk,ℓ,x ,y,z(N), and
show that these modules are generated from the action of the algebra on the link states with
maximal depth.

The homomorphisms Wm,ωn
(N)→ Xk,ℓ,x ,y,z(N). In Section 4.2, we constructed two

types of homomorphisms, from the standard modules Wm,ωn
(N) onto the quotient modules

M(p)

k,ℓ,x ,y,z(N) or N(r)

k,ℓ,x ,y,z(N). Having worked out the complete decomposition of Xk,ℓ,x ,y,z(N),
we now describe the explicit homomorphisms into Xk,ℓ,x ,y,z(N) as follows. Let us focus on the
case k ¾ ℓ. The decomposition of the nested submodules is

X(p)k,ℓ,x ,y,z(N)'Wk−ℓ,z(N)⊕
k+ℓ+p⊕

m=k−ℓ+1

2m−1⊕
n=0

Wm,z(k−ℓ)/meiπn/m(N) , 1¶ p ¶ N
2 − k− ℓ , (4.29a)

X(0, r)

k,ℓ,x ,y,z(N)'Wk−ℓ,z(N)⊕
r⊕

m=k−ℓ+1

2m−1⊕
n=0

Wm,z(k−ℓ)/meiπn/m(N) , k− ℓ+ 1¶ r ¶ k+ ℓ ,

(4.29b)

X(0, k−ℓ)
k,ℓ,x ,y,z(N)'Wk−ℓ,z(N) . (4.29c)

We denote by
f0(z) = qk−ℓz + qℓ−kz−1 , fm,n = qmωn + q−mω−1

n , (4.30)

the eigenvalues of F for Wk−ℓ,z(N) and Wm,ωn
(N), respectively, with ωn = z(k−ℓ)/meiπn/m.

From the above results, the spectrum of F on X(p)k,ℓ,x ,y,z(N) and X(0, r)

k,ℓ,x ,y,z(N) is

X(p)k,ℓ,x ,y,z(N) : { f0(z)} ∪
�

fm,n | m= k− ℓ+ 1, . . . , k+ ℓ+ p , n= 0, 1, . . . 2m− 1
	
, (4.31a)

X(0, r)

k,ℓ,x ,y,z(N) : { f0(z)} ∪
�

fm,n | m= k− ℓ+ 1, . . . , r , n= 0, 1, . . . 2m− 1
	
. (4.31b)

The homomorphisms into Xk,ℓ,x ,y,z(N) can be presented in a unified way as
Wm,ωn

(N) → Xk,ℓ,x ,y,z(N), with m = k + ℓ + p for homomorphisms of type (i) and
m = r for homomorphisms of type (ii). The minimal value of m is k− ℓ and corresponds to a
homomorphism of type (ii). In this case, the homomorphism is trivial: it simply replaces the
single marked point of the states in Wk−ℓ,z(N) by two adjacent marked points. The maximal
value of m is N/2 and corresponds to a homomorphism of type (i). In this case, the image
of the homomorphism Wm,ωn

(N)→ Xk,ℓ,x ,y,z(N) is spanned by the single eigenvector of F in
X(p)k,ℓ,x ,y,z(2m) of eigenvalue fm,n. This eigenvector, denoted bwk,ℓ,x ,y,z(m, n), is written as

bwk,ℓ,x ,y,z(m, n) =Qm,n · vk,ℓ(m) , Qm,n =
F − f0

fm,n − f0

m∏
m′=k−ℓ+1

2m′−1∏
n′=0

(m′,n′)6=(m,n)

F − fm′,n′

fm,n − fm′,n′
, (4.32)

where we recall that vk,ℓ(m) is defined in Section 4.2. The operator Qm,n is a projector on
the eigenspace of F of eigenvalue fm,n. Moreover, bwk,ℓ,x ,y,z(m, n) is clearly non-zero in its
corresponding quotient module, so it is also non-zero in X(p)k,ℓ,x ,y,z(2m).

For k − ℓ < m < N
2 , the homomorphisms Wm,ωn

(N)→ Xk,ℓ,x ,y,z(N) are constructed using
the insertion algorithm. For each link state of Wm,ωn

(N), its 2m defects are erased and replaced
with the state bwk,ℓ,x ,y,z(m, n). The projectors Qm,n thus allow us to give an explicit form for
the homomorphisms into Xk,ℓ,x ,y,z(N).
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Cyclicity of the modules Xk,ℓ,x ,y,z(N). A module is cyclic if it can be generated by the action
of the algebra on a single state. While it would be useful to address the question of the cyclicity
of Xk,ℓ,x ,y,z(N) for all q, z ∈ C×, the proposition below instead focuses on the generic values,
showing that Xk,ℓ,x ,y,z(N) can be generated by the action of EPTLN (β) on any state of maximal
depth p = N

2 − k− ℓ.
PROPOSITION 4.1 For k + ℓ > 0 and generic q, z, the repeated action of the algebra EPTLN (β)
on the state vk,ℓ(N/2) generates the full module Xk,ℓ,x ,y,z(N). For k = ℓ = 0, the same result
holds if either αa 6= 0 or αb 6= 0.

PROOF. Let us recall that vk,ℓ(m) is defined at the beginning of Section 4.2. First, we note that
with the action of EPTLN (β) on vk,ℓ(

N
2 ), we can produce link states with arbitrary depths, by

acting iteratively with operators of the form

Ei j = e j−1e j−2 . . . ei , j ¾ i + 1 . (4.33)

For instance, for k+ ℓ > 0, we define the sequence of states

u0 = vk,ℓ(
N
2 ) , u1 = E2k,N · u0 , u2 = E2k−1,N−1 · u1 , . . . (4.34)

From the graphical rules defining Xk,ℓ,x ,y,z(N), we see that u0, u1, u2 are link states of depth
p0, p0 − 1, p0 − 2, with p0 =

N
2 − k− ℓ. The process can be iterated, and through the action of

the operators Ei j , one generates link states of any depth. Similarly, in the zero-depth sector,
well-chosen iterations of the Ei j ’s reduce the number of defects by steps of two, producing a
sequence of link states with total number of defects 2r, with r = k+ ℓ, k+ ℓ− 1, . . . , |k− ℓ|.

For k = ℓ= 0, the link state v0,0(
N
2 ) has depth p0 =

N
2 . The only way to produce a state of

depth N
2 − 1 by acting on v0,0(

N
2 ) is to form a closed loop around the point a or b. If αb 6= 0,

then

u0 = v0,0(
N
2 ),

u1 = α
−1
b E N

2 ,N · u0,

u2 = α
−1
b E N

2 −1,N−1 · u1 , (4.35)

...

u N
2
= α−1

b E1, N
2 +1 · u N

2 −1 ,

is a sequence of link states of depths N
2 , N

2 − 1, . . . , 0. If αa 6= 0, a similar sequence can be
constructed starting from u0 = ΩN/2 · v0,0(

N
2 ). In contrast, if αa = αb = 0, it is impossible to

create a link state with depth N
2 − 1, and the resulting module is not cyclic.

As explained above, the vectors QN/2,n ·vk,ℓ(
N
2 ), with n= 0, . . . , N−1, are the generators of

the one-dimensional submodules of Xk,ℓ,x ,y,z(N) isomorphic to WN/2,ωn
(N). For m< N/2, we

may also produce states in the submodule isomorphic to Wm,ωn
(N) using the action of Qm,n.

This is possible thanks to the push-through property (2.8). Indeed, the action of F on a link
state of Xk,ℓ,x ,y,z(N) pushes outwards all the arcs that are not through-arcs. To illustrate, here
is an example for N = 12:

F · = = = . (4.36)
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Thus the action of F ∈ EPTL12(β) on this link state yields a diagram wherein the braid transfer
matrix F ∈ EPTL6(β) is inserted on a restricted set of nodes, namely those attached to the
defects and through-arcs of the original link state. The same applies to any polynomial in F ,
and in particular to Qm,n: all arcs push outwards, and the result sees Qm,n inserted and acting
on the 2m nodes attached to defects and through-arcs.

Thus, acting with Qk+ℓ+p,n on a link state v of depth p, itself produced by the action of
EPTLN (β) on vk,ℓ(

N
2 ), we obtain a state in the image of the map Wm,ωn

(N) → Xk,ℓ,x ,y,z(N).
For generic q, z, the module Wm,ωn

(N) is irreducible, so the action of EPTLN (β) on Qk+ℓ+p,n ·v
generates the full submodule isomorphic to Wm,ωn

(N). The same idea applies to states v of
depth p = 0 and with 2r defects, to show that the submodule Wr,ωn

(N) can be generated from
the action of EPTLN (β) on Qr,ωn

· v. Because v is obtained from the action of the algebra on
vk,ℓ(

N
2 ), all factors in the decomposition of Xk,ℓ,x ,y,z(N) are thus generated from vk,ℓ(N/2),

ending the proof.

4.4 Examples of indecomposable modules for z non-generic

In this subsection, we investigate examples of module decompositions in the case where z is
non-generic. We set N to an even integer and focus our attention on the module X0,0,x ,y,z(N)
where there are no defects at all. We also set z = ϵqk with k a non-zero integer and
ϵ ∈ {−1,+1}. The discussion below uses two features that pertain to generic values of z:
(i) the invariant Gram product, and (ii) a conjecture for certain components of eigenvectors
of F in the representation X0,0,x ,y,z(N). After presenting these two elements, we discuss the
module structure of X0,0,x ,y,z(N) for z = ϵqk, first for k = N

2 , and second for the other values
of k.

The Gram product. We define the Gram product 〈v, w〉 for v, w two link states
v ∈ X0,0,x ′,y ′,z(N) and w ∈ X0,0,x ,y,z(N) as follows. We draw w on the top cap of the cylinder
and reflect v vertically, embedding it on the bottom cap of the cylinder. Joining the two caps
produces a diagram of non-intersecting loop segments drawn on the sphere with four marked
points. The two marked points on the top cap are denoted a and b whereas those on the
bottom cap are denoted ā and b̄. A closed loop on this sphere can wind around the four
marked points in eight possible ways. We assign it a weight β if it encircles none (or all) of the
marked points, and αa, αb, αā, αb̄, αa,b, αa,ā, αa,b̄ if it encircles a subset of the marked points.
For instance, a loop encircling the points a, ā and b̄ is equivalent to a loop encircling only the
point b and is assigned the weight αb. For the same reason, the two parameters z are chosen
identically for the modules X0,0,x ,y,z(N) and X0,0,x ′,y ′,z(N), so that αab = αāb̄ = z + z−1. The
Gram product 〈v, w〉 is then equal to the product of the weights of its loops. This product is
extended sesquilinearly to all v ∈ X0,0,x ′,y ′,z(N) and w ∈ X0,0,x ,y,z(N). Here are two examples
to illustrate:�

,

�
= αab ,

�
,

�
= βαb̄ . (4.37)

The Gram product is invariant under the action of EPTLN (β), namely 〈v, a ·w〉= 〈a† ·v, w〉,
where a† is obtained from a by a vertical reflection of the cylinder. In particular, we have
e†

j = e j , Ω
† = Ω−1 and (eie j)† = e jei .

Furthermore, we note that, restricted to states v, w of zero depth, the Gram product is
identical to the same product defined over W0,z(N), with αa,b→ α. We recall that in this case
the radical of the Gram product, namely the set of states w ∈W0,z(N) satisfying 〈v, w〉= 0 for
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all v in W0,z(N), is the maximal non-trivial submodule of W0,z(N). The quotient of W0,z(N)
by this submodule is the irreducible module I0,z(N), see Section 2.4.

Conjectural form for an eigenvector component. Let us define the two link states

v0 =

1
2

......

N−1
N

, v1 =

1
2

......

N−1
N

, (4.38)

whose depths are N
2 and 0, respectively. For generic values of q and z, on the module

X0,0,x ,y,z(N) the operator F satisfies the identity

�
F − f0(z)1
� N/2∏

m=1

2m−1∏
n=0

(F − fm,n1) = 0, (4.39)

where
f0(z) = z + z−1 , fm,n = qmeinπ/m + q−me−inπ/m, (4.40)

are the eigenvalues of F . We construct the unique stateψϵ in the one-dimensional submodule
of X0,0,x ,y,z(N) isomorphic to WN/2,ϵ(N) as

ψϵ =
F − f0(z)1

fN/2, j − f0(z)

N/2∏
m=1

2m−1∏
n=0

(m,n)6=(N/2, j)

F − fm,n1
fN/2, j − fm,n

· v0, j =

�
0 ϵ = +1,
N
2 ϵ = −1.

, (4.41)

Its eigenvalue of F is ϵ(qN/2 + q−N/2). Clearly, ψϵ is a non-trivial linear combination of
link states. We denote by κϵ its component along the state v1. We formulate the following
conjecture.

CONJECTURE 1 For ϵ = +1 and ϵ = −1, the component κϵ is

κϵ =

∏(N−2)/4
i=−(N−2)/4(q

2i x y + ϵ)(q2i x−1 + ϵ y−1)

2(qN/2z − ϵ)(z−1 − ϵq−N/2)
∏(N−2)/2

i=1 (qi − q−i)2
. (4.42)

We checked this conjecture for N = 2, 4, . . . , 12 using our computer implementation of the
module X0,0,x ,y,z(N).

Module decomposition of X0,0,x ,y,z(N) for z = ϵq N/2. The above conjecture has important
implications for the Jordan cell structure of F and the module decomposition of X0,0,x ,y,z(N)
for z = ϵqk. We start by discussing the case k = N

2 . In this case, we write zc = ϵqN/2 and
jc = 0, N/2 for ϵ = +1,−1 respectively. We focus on generic values of x and y , namely those
for which the numerator in (4.42) is non-zero. Under these circumstances, the equation (4.39)
still holds, and two of the factors on the left-hand side are identical because f0(zc) = fN/2, jc .
This implies that F may have Jordan cells of rank two tying the subrepresentations WN/2,ϵ(N)
and W0,ϵqN/2(N) that appear as direct summands for generic z. Because WN/2,ϵ(N) is one-
dimensional, there can be at most one such Jordan cell. To see that this rank-two cell indeed
arises, we consider the Laurent series of ψϵ around z = zc:

ψϵ =
ψ(−1)
ϵ

z − zc
+ψ(0)ϵ +O
�
z − zc

�
. (4.43)
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We know from (4.42) that ψ(−1)
ϵ is non-zero. Moreover, because z arises in X0,0,x ,y,z(N) only

in its submodule X(0)0,0,x ,y,z(N) 'W0,z(N), the only components of ψϵ that depend on z have

depth p = 0. We therefore conclude that ψ(−1)
ϵ ∈ X(0)0,0,x ,y,z(N). Let us also write the Taylor

series
F = F (0) + (z − zc)F

(1) +O
�
(z − zc)

2
�

. (4.44)

The identity (F − fN/2, jc 1) ·ψϵ = 0 is satisfied at all orders in z − zc . Equating the first two
orders to zero separately, we find

(F (0) − fN/2, jc 1) ·ψ(−1)
ϵ = 0, (F (0) − fN/2, jc 1) ·ψ(0)ϵ = −F (1) ·ψ(−1)

ϵ = (z−2
c − 1)ψ(−1)

ϵ . (4.45)

The last equality follows from the fact that dF
dz = (1− z−2)δp=01. We conclude that the pair

(ψ(−1)
ϵ ,ψ(0)ϵ ) forms a Jordan cell for F (0) with the eigenvalue fN/2, jc .

We now want to determine the structure of the resulting module X0,0,x ,y,zc
(N). From

the results of Graham and Lehrer (see Section 2.4), we know that the standard modules
W0,ϵqN/2(N) and WN/2,ϵ(N) have the Loewy diagrams

W0,ϵqN/2(N)'
I0,ϵqN/2(N)

IN/2,ϵ(N)
, WN/2,ϵ ' IN/2,ϵ . (4.46)

(All the other standard modules Wm,eiπn/m(N) that appear in the decomposition (4.1) for
q, z generic are irreducible.) The element F has a Jordan cell tying these two factors, so
these two standard modules cannot appear as the direct sum W0,ϵqN/2(N)⊕WN/2,ϵ(N) in the
decomposition of X0,0,x ,y,zc

(N). They instead join to form an indecomposable module. The
two possible structures are

I0,ϵqN/2(N)

IN/2,ϵ(N)

IN/2,ϵ(N)

and
I0,ϵqN/2(N)

IN/2,ϵ(N)

IN/2,ϵ(N)
. (4.47)

To determine which structure is the correct one, we define the state

ψ̃(0)ϵ =Qϵ(F) · v0

���
z=zc

, Qϵ(F) =
N/2∏
m=1

2m−1∏
n=0

(m,n)6=(N/2, jc)

F − fm,n1
fN/2, jc − fm,n

. (4.48)

This is an alternative construction of a Jordan partner to the state ψ(−1)
ϵ . Indeed, the existence

of a rank-two Jordan cell implies that

(F − fN/2, jc 1)Qϵ(F)
���
z=zc

6= 0 . (4.49)

This in turn implies that ψ̃(0)ϵ is non-zero and satisfies

(F − fN/2, jc 1) · ψ̃(0)j 6= 0, (F − fN/2 jc 1)
2 · ψ̃(0)j = 0 . (4.50)

Therefore ψ̃(0)ϵ −ψ(0)ϵ is a scalar multiple of ψ(−1)
ϵ . Because ψ̃(0)ϵ has components with depth N

2 ,
it has a non-zero component in the factor IN/2,ϵ(N) that lies in the head of the module.

29

https://scipost.org
https://scipost.org/SciPostPhys.12.1.030


SciPost Phys. 12, 030 (2022)

Let us now consider the state eN · ψ̃(0)ϵ . This state has no non-zero components with depth
p = N

2 . It therefore does not enter the factor IN/2,ϵ(N) of the head. It is instead in the
submodule X(0)0,0,x ,y,zc

(N) ' W0,ϵqN/2(N) of depth zero. If the rightmost structure in (4.47)

is the correct one, then this implies that the state eN ·ψ̃(0)ϵ is in the radical of the Gram product.
A simple calculation shows that this is not the case:

〈v1, eN · ψ̃(0)ϵ 〉= 〈eN · v1, ψ̃(0)ϵ 〉= β〈v1,Qϵ(F) · v0〉= β〈Qϵ(F) · v1, v0〉
= βQϵ
�

f0(zc)
�〈v1, v0〉= αN/2

b̄ βQϵ
�

f0(zc)
�
. (4.51)

This is non-zero for generic values of the parameters αb̄ and β . This calculation uses the
invariance of the Gram product, as well as the property F† = F . We conclude that, for generic
values of x and y , the decomposition of X0,0,x ,y,zc

(N) is

X0,0,x ,y,zc
(N)' I0,ϵqN/2

IN/2,ϵ

IN/2,ϵ

⊕
N/2⊕
m=1

2m−1⊕
n=0

(m,n)6=(N/2, jc)

Wm,eiπn/m . (4.52)

We comment briefly on values of z of the form z j = qN/2e2iπ j/N with
j ∈ {1, . . . , N

2 − 1} ∪ {N
2 + 1, . . . , N − 1}. In this case, we also have the equality f0(z j) = fN/2, j

of the eigenvalues of F over the factors W0,z j
(N) and WN/2,e2iπ j/N (N). One may thus think

that an indecomposable module tying these two factors can form for z = z j . However, this
cannot happen because the eigenvalues of F̄ on these factors do not coincide for z = z j . Thus
in this case, X0,0,x ,y,z j

(N) simply decomposes as the direct sum (4.1).

Module decomposition of X0,0,x ,y,z(N) for z = ϵqk . For k = 1, . . . , N − 1, the insertion
algorithm allows us to obtain the module decomposition for z = zc = ϵqk, with jc = 0, k for
ϵ = +1,−1 respectively. For a given link state v ∈Wk,ϵ(N), we select the 2k nodes of v attached
to through arcs, erase those through-arcs, and obtain Φ(v) ∈ X0,0,x ,y,zc

(N) by attaching to these
nodes the state ψ(0)ϵ on 2k nodes that we constructed above. Acting with F on this state, all
arcs not attached to the inserted state push outwards, as in the example (4.36).

Therefore F acts non-trivially only on the nodes attached to the inserted state ψ(0)ϵ .
Repeating the above analysis, we find that Φ(v) is the Jordan partner in a rank-two Jordan
cell of F . The determination of the module structure follows the same arguments as above
and yields the decomposition

X0,0,x ,y,ϵqk(N)' I0,ϵqk(N)

Ik,ϵ(N)

Ik,ϵ(N)

⊕
N/2⊕
m=1

2m−1⊕
n=0

(m,n)6=(k, jc)

Wm,eiπn/m(N), k = 1, . . . , N
2 . (4.53)

5 Connectivity operators and correlation functions

In this section, we describe the relation between the modules Xk,ℓ,x ,y,z(N) and connectivity
operators in the loop model, and argue that the module decomposition of Xk,ℓ,x ,y,z(N) gives
useful information about the physical correlation functions in the scaling limit.
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We note that this section is intended as an illustration of the relevance of the
representation-theoretic results presented in the previous sections, especially for the readers
interested in the CFT description of critical random curves – one of the main motivations
mentionned in the Introduction. However, the reader should be warned that, for the sake of
conciseness, we choose to present below some of the concepts and examples more loosely than
in the rest of the article.

5.1 Connectivity operators

Let us restrict the system size N to an even integer, and the defect numbers k and ℓ to integers.
We define the connectivity operators Ok,x( j) for j = 1, . . . , N as the diagrams

O0,x( j) =

1

...

j

j+1

...
N

, Ok,x( j) =

1

...

j

j+1

...
j+k−1...

N

, for k > 0 , (5.1)

where the indices j + 1, . . . , j + k − 1 are understood modulo N . For k ¾ 2, the connectivity
operator for j > N − k + 1 is defined in such a way that the dashed segment connects
the marked point with midpoint between 1 and N on the permiter without crossing any
defect. These operators are not elements of EPTLN (β). They can instead be seen as maps
Wℓ,y(N)→ Xk,ℓ,x ,y,z(N). The action of Ok,x( j) on a link state v of Wℓ,y(N) is defined as usual,
by drawing v inside Ok,x( j). The output is a state of Xk,ℓ,x ,y,z(N)wherein the marked points of
Ok,x( j) and of v are identified as the points a and b, respectively. The result is then simplified
with the diagrammatic rules described in Section 3.2. This action depends on the parameter
z, which we do not include as a label on Ok,x( j).

With these definitions, it is straightforward to check that the following relations hold for
k > 0:

ei Ok,x( j) =Ok,x( j) ei , {i, i + 1} ∩ { j, j + 1, . . . j + k− 1}= ; , (5.2a)

ei Ok,x( j) = 0 , i = j, j + 1, . . . , j + k− 2 , (5.2b)

Ω−1 Ok,x( j)Ω=Ok,x( j + 1) , j = 1, . . . , N − k . (5.2c)

For k = 0, we instead have

ei O0,x( j) =O0,x( j) ei , i 6= j , (5.3a)

e j O0,x( j)e j = (x + x−1) e j O0,x( j) , (5.3b)

Ω−1 O0,x( j)Ω=O0,x( j + 1) , j = 1, . . . , N − 1 . (5.3c)

It is easy to see that we have the identity

zkΩ−kOk,x(1) · vℓ(N
2 ) = vk,ℓ(

N
2 ) for k ¶ N

2 − ℓ, (5.4)

from which we conclude that the image of Wℓ,y(N) under Ok,x(1) includes a link state of
maximal depth. Applying the proper rotations, we find that the same result holds with Ok,x( j)
for the other values of j. From Proposition 4.1, for generic q and z, the repeated action of the
algebra EPTLN (β) on Ok,x( j) ·Wℓ,y(N) thus generates the whole module Xk,ℓ,x ,y,z(N):

Xk,ℓ,x ,y,z(N) = ÒOk,x ·Wℓ,y(N) , (5.5)
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where we have introduced the set of dressed connectivity operators

ÒOk,x =
¦

aOk,x(1) b , a, b ∈ EPTLN (β)
©

. (5.6)

Diving in one layer deeper, the connectivity operators also allow us to describe the standard
modules in terms of the vacuum module V(N). The action of connectivity operators on V(N)
takes as input link states with no marked point and outputs link states with a single marked
point. These operators are thus seen as maps V(N) → Wk,x(N). Moreover, the action of
Ok,x( j) is clearly nonzero. As a result, for q and x generic, the action of EPTLN (β) on
Ok,x( j) ·V(N) generates the full irreducible standard module Wk,x(N). In this sense, Ok,x( j)
is a connectivity operator associated to the standard module Wk,x(N). We summarise these
facts in terms of dressed connectivity operators as

Wk,x(N) = ÒOk,x ·V(N) . (5.7)

Combining the above results, we find that the operators Ok,x(i) and Oℓ,y( j), together with
the repeated action of EPTLN (β), generate the module Xk,ℓ,x ,y,z(N) from the vacuum module:

Xk,ℓ,x ,y,z(N) = ÒOk,x · ÒOℓ,y ·V(N) . (5.8)

More generally, the action of n connectivity operators Oki ,x i
( ji) on V(N) produces link

states with n marked nodes. This action involves a number of parameters zi that describe the
interaction between the connectivity operators. In the case where there are no defects, namely
ki = 0 for each i, there are precisely 2n− n−1 such parameters: 2n is the number of ways the
closed loops can encircle the n marked points in the disc, −n accounts for the parameters x i
that already parameterise the weight of the loops surrounding the individual marked points,
and the extra −1 accounts for the fact that loops encircling none of the marked points have
the fugacity β = −q− q−1.

5.2 Correlation functions in the loop model

The loop model on a cylinder. We consider the dense loop model on a cylinder of
perimeter N and height M , and with simple reflecting boundary conditions at the two ends of
the cylinder. A configuration of this model is a choice of the two possible loop tiles for each of
the MN faces of the lattice. An example of a configuration is given in Figure 1. The Boltzmann
weight of a loop configuration c is defined as

w(c) = β#(c) , (5.9)

where #(c) is the total number of closed loops in c. The corresponding Gibbs measure is

〈F〉= 1
Z

∑
c

w(c)F(c) , Z =
∑

c

w(c) , (5.10)

where F denotes any function of the loop configuration c. Here we shall focus on physical
observables where F is a product of connectivity operators. The transfer matrix T for this
system is

T =

1
2

...

N−1
N

, where = + . (5.11)
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Figure 1: A loop configuration on the cylinder of perimeter N = 12 and height M = 4.

The partition function on the cylinder is given by

Z =


b, T M · b� , (5.12)

where 〈v, w〉 is the Gram product of two states v, w in V(N), and b is the link state in V(N)
that defines the boundary conditions:

b =

1
2

......

N−1
N

. (5.13)

Correlation functions. To define the correlation functions of the connectivity operators, we
fix M to be an even integer and define coordinates (s, t) on the cylinder, where s ∈ [1, N] and
t ∈ [−M

2 , M
2 ] are the positions along the perimeter and height of the cylinder, respectively. The

insertion of an operator Ok,x at the position (s, t) corresponds to replacing T M in (5.12) by
T M/2−tOk,x(s)T M/2+t . We thus define the connectivity operators in the “Heisenberg picture”
as

Ok,x(s, t) = T−tOk,x(s)T
t . (5.14)

The n-point correlation function on the M × N cylinder is then given by

Ok1,x1

(s1, t1) . . .Okn,xn
(sn, tn)
�(M)
[z] =

1
Z



T M/2 · b,Ok1,x1

(s1, t1) . . .Okn,xn
(sn, tn)T

M/2 · b�[z] , (5.15)

where t1 ¾ t2 ¾ . . .¾ tn.
On the right-hand side, 〈v, w〉[z] denotes a generalised Gram product wherein v is an

element of V(N), whereas w belongs to a module of EPTLN (β) similar to Xk,ℓ,x ,y,z(N), but
generalised to involve n marked points. The Gram product of these two states is defined
similarly to the one described in Section 4.4. Here we give its definition only for the restricted
case where all twist parameters are set to 1, namely for the situation that is relevant for the
discussion of Section 5.3. Let v and w be elements of modules similar to Xk,ℓ,x ,y,z(N), but
whose link states have n1 and n2 marked points, respectively. To compute 〈v, w〉[z], we draw
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v and w on the top and bottom hemispheres of a sphere, respectively. Writing n = n1 + n2
and labelling the n marked points with the integers i = 1, . . . , n, we assign to a closed loop
surrounding the points i1, . . . , im the weight αi1,...,im = zi1,...,im+z−1

i1,...,im
. Because these loops live

on a sphere, we impose that for any subset I of {1, . . . , n} and its complement Ī = {1, . . . , n}\I ,
the parameters obey zI = z Ī . The Gram product 〈v, w〉[z] is then equal to the product of the
weights of its loops. It is thus defined in terms of the set [z] of variables zi1,...,im . With this
definition, we have the self-adjoint property



Ok,x(s, t) · v, w
�
[z] =


v,Ok,x(s, t) ·w�[z].

In the limit M →∞, the cylinder becomes infinitely long, and we have T M/2 · b ∼ ΛM/2v0,
where v0 is the Perron-Frobenius eigenvector of T in V(N) and Λ is its eigenvalue. We
normalise it so that 〈v0, v0〉= 1. We obtain the correlation function on the infinite cylinder of
circumference N , by sending M to infinity while keeping t1, . . . , tn fixed:


Ok1,x1
(r1) . . .Okn,xn

(rn)
�
[z] = lim

M→∞


Ok1,x1

(r1) . . .Okn,xn
(rn)
�(M)
[z]

=


v0,Ok1,x1

(r1) . . .Okn,xn
(rn) · v0

�
[z] . (5.16)

Here we have also introduced the more compact notation r j = (s j , t j) for the position of the
operators. Using the self-adjoint property of Ok,x(s, t), we can express the two-, three- and
four-point correlation functions as


Ok,x(r1)Ok,x(r2)
�
=


v0,Ok,x(r1)Ok,x(r2) · v0

�
, (5.17a)


Ok1,x1
(r1)Ok2,x2

(r2)Ok3,x3
(r3)
�
=


Ok1,x1

(r1) · v0,Ok2,x2
(r2)Ok3,x3

(r3) · v0

�
, (5.17b)


Ok1,x1
(r1)Ok2,x2

(r2)Ok3,x3
(r3)Ok4,x4

(r4)
�
[z] = (5.17c)


Ok2,x2
(r2)Ok1,x1

(r1) · v0,Ok3,x3
(r3)Ok4,x4

(r4) · v0

�
[z] . (5.17d)

Here, the states in the second entry of the Gram products are elements of certains modules
Xk,ℓ,x ,y,z(N). In the first two lines, the constraint that the Gram product be well-defined fixes
the extra parameters zi entirely (and we omit the indices [z] in these cases to lighten the
notation). For instance, for the two-point function with k = 0, a loop encircling both marked
points is equivalent on the sphere to a loop encircling none of the two points. It is thus assigned
a weight αab = β , corresponding to z = −q or z = −1/q. Loops that separate r1 and r2 instead
have a weight x + x−1. Hence the Gram product takes place over V(N) ⊗ X0,0,x ,x ,−q(N). In
the three point function (5.17b) with k1 = k2 = k3 = 0, a similar argument shows that the
parameter z must be set to z = x1 or z = 1/x1. Also, it is clear that the three-point function
vanishes if one of the defect numbers is larger than the sum of the two others (for instance if
k3 > k1 + k2). This is consistent with the fact that, in (5.17b), the vector Ok1,x1

(r1) · v0 lives
in Wk1,x1

(N), whereas Ok2,x2
(r2)Ok3,x3

(r3) · v0 lives in Xk2,k3,x2,x3,z(N), which decomposes on
standard modules Wm,ω(N) with m¾ |k2− k3|. Hence, if k3 > k1+ k2, then k1 < |k2− k3| and
the Gram product in (5.17b) is zero.

Lastly, in the four-point function with k1 = · · ·= k4 = 0, the subscript [z] accounts for four
free variables that parameterise the loops with non-trivial windings, and which can be chosen
as needed according to the correlation that we wish to study. If some of the defect numbers
are non-zero, these extra parameters zi arise in the twist factors as defects wind around the
marked points.

The two- and three-point correlation functions (5.17a) and (5.17b) can be related directly
to “physical” correlation functions, defined in terms of partition functions with certain
constraints or modified Boltzmann weights. For example,

Pc(r1, r2) =


O0,i(r1)O0,i(r2)

�
and Pℓ(r1, r2) =



O1,1(r1)O1,1(r2)

�
(5.18)
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are the probabilities that r1 and r2 sit on the same cluster and on the same closed
loop, respectively. The former is the natural physical observable in the Fortuin-Kasteleyn
interpretation of the loop model, with the weight of clusters set to Q = β2. Furthermore,
the three-point function

G(r1, r2, r3) =


O0,x1

(r1)O0,x2
(r2)O0,x3

(r3)
�

(5.19)

is built from the partition function with modified loop weights introduced in [15].

Four-point functions. We consider a four-point correlation function of the form

G(r1, r2, r3, r4) =


Oℓ,y(r1)Ok,x(r2)Ok,x(r3)Oℓ,y(r4)

�
z . (5.20)

Instead of considering the general case, from here onwards we focus on a special situation
where all the twist factors for windings of defects are set to 1. Moreover, for k = ℓ, we choose
to assign the weight z + z−1 to the loops encircling one, two or three of the points r1, . . . , r4,
and the weight β = −q − q−1 to all the other loops. The resulting observable then depends
on a single parameter z, which we write as a subscript without brackets in (5.20). In this
case, the four-point function (5.17d) is written in terms of a Gram product over two copies of
Xk,k,x ,y,z(N) for k = ℓ, and two copies of Xk,ℓ,x ,y,1(N) for k 6= ℓ. Using the decomposition of
Xk,ℓ,x ,y,z(N), we can write

G(r1, r2, r3, r4) =


G0,z(r1, r2, r3, r4) +

N/2∑
m=1

2m−1∑
n=0

Gm,exp(iπn/m)(r1, r2, r3, r4) , k = ℓ ,

G|k−ℓ|,1(r1, r2, r3, r4) +
N/2∑

m=|k−ℓ|+1

2m−1∑
n=0

Gm,exp(iπn/m)(r1, r2, r3, r4) , k 6= ℓ ,
(5.21)

where each Gm,ω is a quadratic sum of Gram products in the submodule of Xk,k,x ,y,z(N) or
Xk,ℓ,x ,y,1(N) isomorphic to Wm,ω(N). Indeed, let us denote by {µm,ω, j} an orthonormal basis
for the Gram product in this submodule, for q,ω generic. Then Gm,ω is defined as

Gm,ω(r1, r2, r3, r4) =
dimWm,ω(N)∑

j=1



Ok,x(r2)Oℓ,y(r1) · v0,µm,ω, j

�× 
µm,ω, j ,Ok,x(r3)Oℓ,y(r4) · v0

�
. (5.22)

This gives the contribution of the internal sector Wm,ω(N) to the correlation function, in the
fusion channel

Wk1,x1

Wk2,x2

Wm,ω

Wk3,x3

Wk4,x4

. (5.23)

Here and below, we sometimes drop the dependence on N of the modules Wk,z(N) and
Xk,ℓ,x ,y,z(N). An example of a physical four-point correlation function for the percolation or
Fortuin-Kasteleyn cluster configurations is the probability that all four points lie in the same
cluster. This observable corresponds to G(r1, r2, r3, r4) with k = ℓ= 0, and with the weights of
all loops that encircle a non-trivial subset of the four points set to zero.

5.3 Scaling limit

Closure of the fusion algebra. Before discussing the scaling limit, let us remark that the
definition (5.20) of four-point functions leads to a special situation where the fusion procedure
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closes on a finite set of modules. This situation is realised in a loop model where all the loops
that wind non-trivially around a non-trivial subset of the marked points are given the weight
α = z + z−1, with z generic, and any winding of the defects around the marked points is
allocated a unit weight. The corresponding fusion of two standard modules is defined as

Wk,x ×Wℓ,y :=

¨
Xk,ℓ,x ,y,z if k = ℓ ,

Xk,ℓ,x ,y,1 if k 6= ℓ .
(5.24)

The decompositions of the modules Xk,k,x ,y,z and Xk,ℓ,x ,y,1 then produce the fusion rules

W0,z ×W0,z →W0,z ⊕
N/2⊕
k=1

2k−1⊕
j=0

Wk,exp(iπ j/k) , (5.25a)

W0,z ×Wm,exp(iπn/m)→Wm,1 ⊕
N/2⊕

k=m+1

2k−1⊕
j=0

Wk,exp(iπ j/k) , (5.25b)

Wm,exp(iπn/m) ×Wm′,exp(iπn′/m′)→W|m−m′|,1 ⊕
N/2⊕

k=|m−m′|+1

2k−1⊕
j=0

Wk,exp(iπ j/k) , m 6= m′ , (5.25c)

Wm,exp(iπn/m) ×Wm,exp(iπn′/m)→W0,z ⊕
N/2⊕
k=1

2k−1⊕
j=0

Wk,exp(iπ j/k) , (5.25d)

where m, m′ take values in 1, . . . , N/2. Hence, this fusion closes on the set of modules:�
W0,z

	∪ �Wm,exp(iπn/m) | m= 1, . . . , N
2 , n= 0, . . . , 2m− 1

	
. (5.26)

Crucially, we note that the standard modules in (5.26) are precisely those that are required to
express the Markov trace on the torus (with weight α for non-contractible loops) as a sum of
traces [4,53].

An important subtlety arises if one wants to compute a correlation function such as

O0,z(r1)O0,z(r2)

�
. In this case, the loops surrounding both marked points are assigned a

weight αab = β , so in the fusion W0,z ×W0,z , one must instead select the fusion channel with
z →−q. This amounts to changing the first factor on the right side of (5.25a) to W0,−q. This
module W0,−q is reducible and has a non-zero quotient module isomorphic to the vacuum
module V, and as a result the correlator is non-zero. A similar process must be applied to
compute a correlation function with more than two points: the fusion rule for W0,z ×W0,z is
used repeatedly in the z channel, until only two fields are left and then one must use the −q
channel. In this process, the module W0,−q only appears at the very last step, and thus it is not
necessary to understand how it fuses with the other modules.

Conformal field theory description of the loop model. In the scaling limit, the loop model
with −2< β ¶ 2 is described by a conformal field theory with central charge

c = 1− 6(b−1 − b)2 , β = −2 cos(πb2) , 0< b ¶ 1 . (5.27)

We recall the Kac notation for the conformal dimensions

hr,s =
(r b−1 − sb)2 − (b−1 − b)2

4
. (5.28)

We denote by M(h, h̄) the module of heighest weight (h, h̄), over the pair of Virasoro algebras
Vir⊗ Vir. For generic values of h and h̄, M(h, h̄) is an irreducible module. By Coulomb gas
arguments [4], one finds that a generic standard module scales to

Wm,exp(iπµ)→
+∞⊕

p=−∞
M(hµ+p,m, hµ+p,−m) . (5.29)
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The primary operators in the right-hand side of (5.29) are denoted Φµ+p,m, with conformal
dimensions (hµ+p,m, hµ+p,−m). For |µ| ¶ 1/2, the leading primary operator is Φµ,m. More
generally, if r − 1/2 ¶ µ ¶ r + 1/2 with r ∈ Z, the leading primary operator is Φµ−r,m. We
note that, at finite N , the module Wm,exp(iπµ) is invariant under µ → µ + 2, whereas in the
scaling limit, the right side of (5.29) is periodic with µ→ µ+ 1. This is because Wm,exp(iπµ)
and Wm,−exp(iπµ) have the same scaling limit, although they are not isomorphic. Indeed, the
leading eigenvalues, which survive in the scaling limit, are equal up to an overall minus sign.
They therefore have the same conformal data.

For the set of standard modules discussed above, we get

W0,z →
+∞⊕

p=−∞
M(hµ+p,0, hµ+p,0) , Wm,exp(iπn/m)→

+∞⊕
p=−∞

M(hn/m+p,m, hn/m+p,−m) , (5.30)

where z = exp(iπµ) is set to a generic value. In the case α= β , by setting µ= 1− b2, one can
identify the primary conformal dimensions in the zero-defect sector as

hµ+p,0

��
µ=1−b2 = h1+p,1 , p ∈ Z , (5.31)

which are degenerate under the Virasoro algebra for p ¾ 0. This is the set of “energy-like”
operators of the loop model, as already pointed out in [4]. In this situation with a non-
generic parameter z = −q, we can expect from our analysis of the representations Xk,ℓ,x ,y,z
the appearance of indecomposable Virasoro modules in the scaling limit, with submodules
which may decouple from the Hilbert space. Hence, some of the Virasoro fusion rules will
be different from the Temperley-Lieb ones, as some of the submodules are suppressed by this
quotient. However, the analysis of this non-generic case is beyond the scope of the present
work.

Back to generic values of z, let us consider the scaling limit of the four-point function
(5.20). Each connectivity operator scales to the leading primary operator in (5.29):

Ok,x → Φλ,k , Oℓ,y → Φν,ℓ , (5.32)

where
x = exp(iπλ) , y = exp(iπν) , −1/2¶ λ,ν¶ 1/2 . (5.33)

It is sufficient to consider this range for λ and ν, because the operators Ok,x and Ok,−x have
the same scaling limit, up to alternating lattice factors. Hence the four-point function (5.20)
scales to 


Φν,ℓ(w1, w̄1)Φλ,k(w2, w̄2)Φλ,k(w3, w̄3)Φν,ℓ(w4, w̄4)
�

cyl , (5.34)

where we now use the complex coordinates w = t + is, w̄ = t − is on the cylinder. Since Φe,m
has conformal dimensions (he,m, he,−m), we also write Φe,m(w, w̄) = ϕe,m(w)⊗ϕ̄e,−m(w̄) for any
e, m.

In the partial sums Gm,ω(r1, r2, r3, r4) (5.22), the intermediary states µm,w, j scale to an
orthonormal basis of the Virasoro modules (5.29). The sum over these states can be organised
as a double sum:

Gm,ω(r1, r2, r3, r4)→
+∞∑

p=−∞

∑
[r]

〈0|Φν,ℓ(r1)Φλ,k(r2)|Φ[r]µ+p,m〉 × 〈Φ[r]µ+p,m|Φλ,k(r3)Φν,ℓ(r1)|0〉 , (5.35)

where ω = exp(iπµ) and for a given |Φe,m〉, the set {|Φ[r]e,m〉} denotes an orthonormal basis
in the module M(he,m, he,−m). As a result, we get, up to simple overall prefactors, the
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decompositions over conformal blocks

G0,z(r1, r2, r3, r4)→
+∞∑

p=−∞
C2
µ+p,0 Fµ+p,0(η)F̄µ+p,0(η̄) , (5.36a)

Gm,exp(iπn/m)(r1, r2, r3, r4)→
+∞∑

p=−∞
C2

n/m+p,m Fn/m+p,m(η)F̄n/m+p,−m(η̄) , (5.36b)

where Fe,m, F̄e,−m are the conformal blocks with internal conformal dimensions he,m, he,−m
respectively:

Fe,m(η) =

ϕν,ℓ(∞)

ϕλ,k(1)

ϕe,m

ϕλ,k(η)

ϕν,ℓ(0)

, F̄e,−m(η̄) =

ϕν,−ℓ(∞)

ϕλ,−k(1)

ϕe,−m

ϕλ,−k(η̄)

ϕν,−ℓ(0)

.

The cross-ratio is given by

η=
sinh πw34

L sinh πw21
L

sinh πw31
L sinh πw24

L

, wi j = wi −w j , (5.37)

where L is the physical circumference of the cylinder. The constants Ce,m in (5.36a) and
(5.36b) are the structure constants associated to the fusion Φλ,k × Φν,ℓ → Φe,m. A bootstrap
argument [14], using the degenerate “energy-like” operator of dimensions (h21, h21) which
lives in the sector corresponding to V, yields the ratio of coefficients Ce+1,m/Ce−1,m. Up to our
knowledge, a full determination of the coefficients Ce,m for the loop model is still lacking.

Here, to get the decompositions in terms of conformal blocks in the planar geometry, we
have used the conformal map

w 7→ sinh π(w−w4)
L sinh πw21

L

sinh π(w−w1)
L sinh πw24

L

. (5.38)

This analysis of the four-point functions strongly suggests that, for generic λ,ν and
z = exp(iπµ), the leading primary operators obey the fusion rules:

Φλ,k ×Φν,k→
∞∑

p=−∞
Φµ+p,0 +

∞∑
m=1

∞∑
p=−∞

Φp/m,m , (5.39a)

Φλ,k ×Φν,ℓ→
∞∑

p=−∞
Φp,|k−ℓ| +

∞∑
m=|k−ℓ|+1

∞∑
p=−∞

Φp/m,m , k 6= ℓ . (5.39b)

Crucially, this is precisely the expected form of fusion for non-chiral conformal fields, namely
it involves the fields that appear in the decomposition of the torus partition function whose
fractional Kac indices have arbitrarily large denominators [4]. We note that some of the
operators in the right-hand side may be suppressed if the corresponding contribution to
G0,z or Gm,exp(iπn/m) turns out to vanish. Since the subleading primary operators Φu+p,k are
obtained by fusing Φu,k with the degenerate operator of conformal dimensions (h21, h21), by
the associativity of the fusion algebra, the above fusion rules extend to all primary operators
in the loop model, as long as their parameters λ,ν are generic. Some subtle issues will occur
if we set z→−q, due to the appearance of Jordan blocks in the Virasoro representations. The
full study of this problem is left for future work.
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6 Conclusion

In this paper, we formulated a new prescription for the fusion of standard modules
of the enlarged periodic Temperley-Lieb algebra EPTLN (−q − q−1). The corresponding
representations Xk,ℓ,x ,y,z(N) have link states drawn on discs with two marked points. As such,
these states can be seen as living on a surface of genus two. We obtained the decomposition of
these representations over the irreducible standard modules for generic values of q and z, and
gave examples of non-trivial reducible yet indecomposable modules for non-generic values of
z. We also showed that the representations Xk,ℓ,x ,y,z(N) are elegantly described in terms of
the connectivity operators Ok,x( j) of the dense loop model, whose correlation functions are
the physically interesting observables of the model.

With our prescription, the fusion of standard modules Wk,x(Na)×z Wℓ,y(Nb) is well-defined
for all values of x and y , and is closed for generic values of q and z. Moreover, it is stable
as a function of Na and Nb, namely as these numbers increases, the dependence on k and ℓ
remains unchanged and the decomposition of the fusion product depends only on Na and Nb
through their sum, in the bounds of the direct sum of irreducible factors. It also satisfies the
relation

Wk,x(Na)×z Wℓ,y(Nb) =Wℓ,y(Nb)×1/z Wk,x(Na) . (6.1)

It is therefore not quite commutative, as exchanging the two modules requires selecting a
different fusion channel. We note however that, for certain specific physical situations like the
one considered in Section 5.3, the fusion product is in fact commutative. Furthermore, we
note that an explicit algebraic definition of this fusion similar to the definition (3.1) for the
ordinary Temperley-Lieb algebra is still missing.

Perhaps surprisingly, the module decompositions of Xk,ℓ,x ,y,z(N) for q and z generic given
in Theorem 1 do not depend on the value of x and y . It would however be incorrect to
say that all dependence over x and y is lost. These numbers appear directly in the matrix
representatives of the algebra’s generators, but they only enter in the couplings between the
different depth sectors. For q, z generic, these couplings do not result in the appearance of
indecomposable yet reducible modules over EPTLN (β). The situation is however different for
non-generic values of the parameters. This is exemplified in the calculation of Section 4.4,
where the module decomposition (4.52) holds only for generic values of x and y , namely
those where the numerator in (4.42) is non-vanishing. This resulting module structure is thus
different for generic versus non-generic values of x and y . A similar situation occurs if one
studies the decomposition of the standard module Wk,z(N) as a module over TLN (β). For q, z
generic, Wk,z(N) is isomorphic to a simple direct sum of irreducible standard modules Vℓ(N),
whereas for non-generic values, one gets a sum of indecomposables whose structures depend
on the relation between q and z. Returning to the modules Xk,ℓ,x ,y,z(N), although x and y do
not enter the module decomposition for q, z generic, we nevertheless expect these numbers to
appear in the conformal blocks in (5.36), and therefore to be physically relevant parameters.

Another natural question regards the associativity of the fusion product that we have
defined, namely�

Wka,xa(Na)×Wkb,xb(Nb)
�×Wkc,xc(Nc)

?
=Wka,xa(Na)×

�
Wkb,xb(Nb)×Wkc,xc(Nc)

�
. (6.2)

Answering this equation requires understanding how to fuse Wka,xa(Nb) with Xkb,kc,xb,xc,z(N).
In its current state, our prescription of fusion is not fully general, as it only applies to
pairs of standard modules. The question of associativity of the fusion product thus remains
unanswered. It will moreover be desirable in future work to obtain a completely general
algebraic definition of this fusion, that holds for all modules over EPTLN (β), including the
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standard modules Wk,z(N), the irreducible submodules and quotients of Wk,z(N) for q and/or
z non-generic, the modules Xk,ℓ,x ,y,z(N), and the modules arising in the periodic XXZ spin
chain.

Our construction is not equivalent to the two previous proposals by other authors [37–39],
as is made clear by the different module decompositions. A closer comparison is worthwhile.
The fusion of [37, 38] is constructed using the presence of two commuting subalgebras
EPTLNa(β) and EPTLNb(β) in EPTLNa+Nb(β). These are realised using the so-called braid
translation, whereby the generators Ω, Ω−1 and e0 of the smaller algebras are embedded in
the larger one using braid tiles. With this definition, the fusion of Wk,x(Na) and Wℓ,y(Nb)
is non-commutative and yields a vanishing result except if the ratio x/y is fixed to certain
integer powers of q1/2. In constrast, our construction gives non-vanishing results for all
values of x and y , both generic and non-generic. It also only uses the existence of the
subalgebra TLNa(β)⊗TLNb(β) of EPTLNa+Nb(β). In terms of this last property, our construction
is somewhat closer to the construction of [39]. This prescription for fusion constructs
representations of EPTLNa+Nb(β) from two standard modules Vk(Na),Vℓ(Nb) of the regular
Temperley-Lieb algebra. There are thus no twist parameters in this prescription for the fusion
of standard modules. Moreover, in contrast to (3.25), no extra quotient relations are imposed,
so the resulting modules are infinite-dimensional. The resulting modules decompose as direct
sums of projective indecomposable modules of EPTLNa+Nb(β), which are themselves infinite-
dimensional.

Our work leaves open a number of questions. In particular, we believe it will be worthwhile
to investigate in greater detail the module decomposition of Xk,ℓ,x ,y,z(N) for non-generic values
of q and z. The example worked out in Section 4.4 reveals that for non-generic z, the fusion
does not close on the standard modules. Furthermore, the structure of the fused modules
is of course expected to be more intricate if q is set to a root of unity. In the scaling limit,
the algebra Vir⊗ Vir is known to admit a large zoo of indecomposable modules. Repeatedly
fusing the standard modules together using the fusion prescription defined in this paper should
produce a subset of these indecomposable representations, which should be identified as the
physically relevant ones for the computation of the connectivity correlation functions. It will
also be interesting to work out the fusion rules for the irreducible modules that appear as
submodules and quotients in the decomposition of the standard modules. Lastly, the next step
in the program would be to apply the conformal bootstrap with the fusion rules obtained in
this paper, to obtain expressions for the structure constants in the operator product expansion.
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A Properties of the Jones-Wenzl projectors

We list here certain known properties of the Jones-Wenzl projectors Pn. These can be
represented diagrammatically in the plane in terms of tiles as

Pn =

1

1

1

1

1

2

2

2

2

...

...

...

n−2

n−2
n−1 =

1

1

1

1

1

2

2

2

2

...

...

...

n−2

n−2
n−1 , where k = +

[k]q
[k+ 1]q

.

(A.1)
The projector Pn thus involves n(n−1)/2 diamond boxes. As an element of TLn(β), it is a sum
of 2n(n−1)/2 diagrams, obtained by expanding each diamond box in terms of the two possible
diagrams, and weighted by the proper product of factors [k]q/[k+1]q. These projectors satisfy
the identities

PmPn = PnPm = Pn for n¾ m , (A.2a)

Pne j = e j Pn = 0 for j = 1, . . . , n− 1 , (A.2b)

enPnen = −[n+ 1]q
[n]q

Pn−1en. (A.2c)

From (A.1) and (A.2b), one can show that the projectors also satisfy the recursive relations

Pn = (11 ⊗ Pn−1)
�

1+
n−1∑
j=1

[n− j]q
[n]q

e1e2 · · · e j

�
(A.3a)

= (Pn−1 ⊗ 11)
�

1+
n−1∑
j=1

[ j]q
[n]q

en−1en−2 · · · e j

�
. (A.3b)

Here, we denote as a1⊗a2 the element of TLN (β) where a1 ∈ TLn(β) and a2 ∈ TLN−n(β) are
drawn side-by-side, for any n< N .

Finally, it is clear from its recursive definition that Pn can be written as

Pn = 1+
n−1∑
j=1

a je j (A.4)

for some elements a j ∈ TLn(β) ⊂ TLN (β).

B Proofs of the homomorphism relations

In this section, we give proofs of the three homomorphism relations (2.28). First, we show
that wk,z(ℓ) is non-zero. Using (A.4) for n= 2ℓ, we find

wk,z(ℓ) = vk(ℓ) +
2ℓ−1∑
j=1

a je j · vk(ℓ) , for some a j ∈ TL2ℓ(β) . (B.1)
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Each term in the sum is a linear combination of link states with strictly less than ℓ− k arches
crossing the dashed line. In the link state basis, the coefficient of wk,z(ℓ) along vk(ℓ) is thus
equal to one, confirming that wk,z(ℓ) is a non-zero element of Wk,z(2ℓ).

Second, the action of Ω on wk,z(ℓ) for z ∈ {qℓ,−qℓ, q−ℓ,−q−ℓ} is derived from the following
proposition.

PROPOSITION B.1 For any values of q and z, we have

Ω ·wk,z(ℓ) = λk,ℓ(z)wk,z(ℓ) +µk,ℓ(z) (P2ℓ−1 ⊗ 11)Ω · vk(ℓ) , (B.2a)

where

λk,ℓ(z) =
[ℓ+ k]q z + [ℓ− k]q z−1

[2ℓ]q
, (B.2b)

µk,ℓ(z) =
[ℓ− k]q[ℓ+ k]q
([2ℓ]q)2
�
(qℓ + q−ℓ)2 − (z + z−1)2

	
, (B.2c)

and 11 is the identity element of TL1(β). In particular, for z = ϵq±ℓ with ϵ ∈ {−1,+1}, we have
λk,ℓ(ϵq±ℓ) = ϵq±k, and µk,ℓ(ϵq±ℓ) = 0.

PROOF. Let us first consider the case k > 0. Using the property (A.3b) with n= 2ℓ, we find

wk,z(ℓ) = (P2ℓ−1 ⊗ 11)
�

1+
[ℓ− k]q
[2ℓ]q

e2ℓ−1e2ℓ−2 · · · eℓ−k +
[ℓ+ k]q
[2ℓ]q

e2ℓ−1e2ℓ−2 · · · eℓ+k

�
· vk(ℓ) .

(B.3)
Indeed, all other terms of the sum vanish due to the relations

e j · vk(ℓ) =

¨
e2ℓ− j · vk(ℓ) j ∈ {1, . . . ,ℓ− k− 1} ∪ {ℓ+ k+ 1, . . . , 2ℓ− 1},

0 j ∈ {ℓ− k+ 1, . . . ,ℓ+ k− 1} . (B.4)

In the first case, the contribution is zero because the resulting generator e2ℓ− j annihilates the
projector (P2ℓ−1 ⊗ 11), see (A.2b). The second and third terms in (B.3) are simplified using

e2ℓ−1e2ℓ−2 · · · eℓ−k · vk(ℓ) = zΩ · vk(ℓ), e2ℓ−1e2ℓ−2 · · · eℓ+k · vk(ℓ) = z−1Ω · vk(ℓ) , (B.5)

which yields

wk,z(ℓ) = (P2ℓ−1 ⊗ 11)
�

1+
[ℓ− k]qz + [ℓ+ k]qz−1

[2ℓ]q
Ω

�
· vk(ℓ) k > 0 . (B.6)

Similarly, for k = 0, only two terms contribute to P2ℓ · v0(ℓ), namely the identity term and the
term j = ℓ in the sum (A.3b), and we get

w0,z(ℓ) = (P2ℓ−1 ⊗ 11)
�

1+
[ℓ]q
[2ℓ]q

αΩ

�
· v0(ℓ) , (B.7)

which shows that (B.6) conveniently extends to k = 0. Repeating the above argument with
(A.3a) instead of (A.3b), we arrive at the two formulas

wk,z(ℓ) = (11 ⊗ P2ℓ−1)

�
1+
[ℓ+ k]q z + [ℓ− k]q z−1

[2ℓ]q
Ω−1

�
· vk(ℓ) , (B.8a)

wk,z(ℓ) = (P2ℓ−1 ⊗ 11)

�
1+
[ℓ− k]q z + [ℓ+ k]q z−1

[2ℓ]q
Ω

�
· vk(ℓ) . (B.8b)
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From (B.8a), one has

Ω ·wk,z(ℓ) = (P2ℓ−1 ⊗ 11)

�
Ω+

[ℓ+ k]q z + [ℓ− k]q z−1

[2ℓ]q
1
�
· vk(ℓ) , (B.9)

which, when compared to (B.8b), yields Proposition B.1 after some simple algebra.

Third, from the property (A.2b) of the Jones-Wenzl projectors, it readily follows that

e j ·wk,z(ℓ) = 0, j = 1, . . . , 2ℓ− 1. (B.10)

It thus only remains to show that e2ℓ ·wk,z(ℓ) = 0 for z ∈ {qℓ,−qℓ, q−ℓ,−q−ℓ}. This stems from
the following proposition.

PROPOSITION B.2 For any values of q and z, we have

e2ℓ ·wk,z(ℓ) = hk,ℓ(z) (11 ⊗ P2ℓ−2 ⊗ 11) · vk(ℓ) , (B.11)

where

hk,ℓ(z) =
[ℓ+ k]q[ℓ− k]q
[2ℓ]q[2ℓ− 1]q

¦
(z + z−1)2 − �qℓ + q−ℓ

�2©
, (B.12)

and 11 is the identity element of TL1(β).

PROOF. We start by applying e2ℓ to (B.8b), namely

e2ℓ ·wk,z(ℓ) = e2ℓ (P2ℓ−1 ⊗ 11)

�
1+
[ℓ− k]q z + [ℓ+ k]q z−1

[2ℓ]q
Ω

�
· vk(ℓ) . (B.13)

We can then simplify each term in (B.13) separately. The first simplifies to

e2ℓ(P2ℓ−1 ⊗ 11) · vk(ℓ) =
1
β

e2ℓ(P2ℓ−1 ⊗ 11)e2ℓ · vk(ℓ) = − 1
β

[2ℓ]q
[2ℓ− 1]q

(11 ⊗ P2ℓ−2 ⊗ 11)e2ℓ · vk(ℓ)

= − [2ℓ]q
[2ℓ− 1]q

(11 ⊗ P2ℓ−2 ⊗ 11) · vk(ℓ). (B.14)

At the second equality, we used the reflected version of (A.2c). Expanding the projector P2ℓ−1
of the second term of (B.13) using (A.3a), for similar reasons as above we find that only two
terms survive:

e2ℓ(P2ℓ−1 ⊗ 11)Ω · vk(ℓ) = e2ℓ(11 ⊗ P2ℓ−2 ⊗ 11)
� [ℓ+ k]q
[2ℓ− 1]q

e1e2 · · · eℓ−k−1

+
[ℓ− k]q
[2ℓ− 1]q

e1e2 · · · eℓ+k−1

�
Ω · vk(ℓ). (B.15)

We commute e2ℓ across 11 ⊗ P2ℓ−2 ⊗ 11, use the properties

e2ℓe1e2 · · · eℓ−k−1Ω · vk(ℓ) = z vk(ℓ), e2ℓe1e2 · · · eℓ+k−1Ω · vk(ℓ) = z−1vk(ℓ), (B.16)

and find that the second term in (B.13) is also proportional to (11⊗ P2ℓ−2⊗11)vk(ℓ). The final
result precisely has the form (B.11) with hk,ℓ(z) given by

hk,ℓ(z) = − [2ℓ]q
[2ℓ− 1]q

+
�

z
[ℓ− k]q
[2ℓ]q

+ z−1
[ℓ+ k]q
[2ℓ]q

��
z
[ℓ+ k]q
[2ℓ− 1]q

+ z−1
[ℓ− k]q
[2ℓ− 1]q

�
. (B.17)

This expression simplifies to (B.12) after simple algebra.
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