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Abstract

Generalized dilaton gravity in 2d is the most general consistent deformation of the
Jackiw–Teitelboim model that maintains local Lorentz invariance. The action is generi-
cally not power-counting renormalizable, thus going beyond the class of models typically
studied. Nevertheless, all these models are exactly soluble. We focus on a subclass of
dilaton scale invariant models. Within this subclass, we identify a 3-parameter family
of models that describe black holes asymptoting to AdS2 in the UV and to dS2 in the IR.
Since these models could be interesting for holography, we address thermodynamics and
boundary issues, including boundary charges, asymptotic symmetries and holographic
renormalization.
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1 Introduction

An efficient way to define physical models is to write down the most general action compatible
with the desired field content, global and gauge symmetries, and other physical requirements,
such as power-counting renormalizability. In a second step one can then try to deform the
model, maintaining the number of field- and gauge-degrees of freedom, but allowing the sym-
metries to be modified, thereby obtaining a larger class of models. This is called “consistent
deformation”, for a review see [1] and for selected earlier work see e.g. [2, 3] as well as [4]
and refs. therein. Eventually one ends up with a rigid class of models, meaning that they can
only be deformed into each other, but not into any model outside this class.

Our work focuses on dilaton gravity in two dimensions (2d). Its purpose is two-fold: first,
we highlight and review that the most general consistent deformation of the Jackiw–Teitelboim
(JT) model to another 2d dilaton gravity model is not given by the commonly used bulk action
[5,6] (see also [7,8] and refs. therein),1

I[gµν, X ] = −
κ

4π

∫

d2 x
p

−g
�

XR− U(X )(∂ X )2 − 2V (X )
�

, (1)

but rather by an action that is not power-counting renormalizable in general

I[gµν, X ] = −
κ

4π

∫

d2 x
p

−g
�

XR− 2V
�

X ,−(∂ X )2
�

�

. (2)

1The dilaton is denoted by X and the gravitational coupling constant by κ= 1
4G , where G is the two-dimensional

Newton constant.

2

https://scipost.org
https://scipost.org/SciPostPhys.12.1.032


SciPost Phys. 12, 032 (2022)

II

I−

I+

Figure 1: Penrose diagram of black hole (red) with dS2 interior and AdS2 asymptotics

Plausibly, there are two reasons why (2) is not widely known:2 at first glance it seems
meaningful to impose power-counting renormalizability as selection criterion for the model
space. Note, however, that imposing power-counting renormalizability on a model space that
describes theories without local physical degrees of freedom seems dubious (see e.g. the corre-
sponding discussion of three-dimensional gravity [15]). Since dilaton gravity in 2d is a theory
without local physical degrees of freedom we drop the requirement of power-counting renor-
malizability. The second reason is more mundane, but still relevant: so far there appear to be
no interesting models (2) that do not reduce to the simpler class of models (1). Thus, our sec-
ond goal is to provide such models. We focus particularly on a subclass of models that exhibit
an extra symmetry at the level of equations of motion (EOM), namely dilaton scale invariance,
meaning that under constant rescalings

X → λX , λ ∈ R+ , (3)

a solution to the classical EOM is mapped to another solution. Within the more restrictive
class of models (1), JT gravity [16, 17] and the Witten black hole [18–20] are dilaton scale
invariant.3 As we shall see, within the model space defined by (2) there is an infinite class of
such models, labelled by one free function of one variable.

Within this infinite class, we identify a 3-parameter family of models, the solutions of
which asymptote to AdS2 in the UV (from a dual field theory perspective) and to dS2 in the IR,
without the need for matter degrees of freedom, domain walls or other auxiliary constructions.
Moreover, the solutions correspond to black holes, see Fig. 1 for a typical Penrose diagram.

Since these models may have useful applications in holography, the remainder of the pa-
per is devoted to their detailed study, including boundary issues, asymptotic symmetries and
holographic renormalization. We highlight here the most intriguing details of this analysis:

• All solutions are asymptotically AdS2 (or asymptotically flat) for large dilaton and ap-
proach dS2 for small dilaton. Almost all solutions have a horizon in between.

• There are simple expressions in terms of elementary functions for the Casimir of all these
models, which on-shell corresponds to the mass of the (black hole) solution.

• The models are labelled by two essential parameters only, one of which is a discriminant.
The (square root of the) discriminant has a geometric interpretation as Lifshitz exponent

2The action (2) has appeared, e.g., in [7, 9–12] and is also known as “kinetic gravity braiding” [13] or “Horn-
deski theory” [14]. As opposed to the action (1), so far few explicit examples were studied and did not involve
holographic considerations.

3Since in a string theory context usually φ = − 1
2 ln X is used as dilaton this property is also known as dilaton

shift invariance, φ→ φ − 1
2 lnλ [10].
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z, appearing in an asymptotic Killing vector associated with anisotropic scale invariance.
Thus, the bulk asymptotic symmetries suggest Lifshitz-type of scaling behavior, which is
corroborated by the Lifshitz-type scaling of entropy with mass. This is remarkable, since
from a boundary perspective there is only one dimension, so there is nothing obvious
with respect to which the boundary direction could be anisotropic.

• The value of the Ricci scalar at the horizon can have either sign, but even when pos-
itive, the near horizon region is never approximately dS2 since the Ricci scalar varies
too quickly. In a particular scaling limit we find a model that is locally AdS2 almost
everywhere outside the horizon, locally dS2 almost everywhere inside the horizon and
has a steep gradient of the Ricci scalar in a tiny region around the black hole horizon,
somewhat reminiscent of the black hole droplet model in the large D expansion where
also large gradients appear very close to the horizon [21,22]. This limiting model could
be tailor made for near horizon studies.

This paper is organized as follows. In section 2 we review the most general consistent
deformation of JT gravity, which is a Poissonσ-model with 3-dimensional target space; in order
for such a model to have a gravity interpretation we impose the requirement that local Lorentz
invariance is part of the gauge symmetries, which then reduces the model space to (2) in the
metric formulation. In section 3 we provide a detailed analysis of the phase space and relate the
first and second order formulations. From section 4 onward we focus on dilaton scale invariant
models, and more specifically on a simple but physically intriguing 3-parameter family therein.
In section 5 we present a detailed discussion of the asymptotic and curvature behavior, as well
as holographic renormalization and thermodynamical properties. A consistent set of boundary
conditions for dilaton scale invariant models is discussed in section 6. In section 7 we conclude.

2 Generalized 2d dilaton gravity theory

In this section, we review how to construct the most general consistent deformation of JT
gravity. In section 2.1 we recall the first order formulation of 2d dilaton gravity as a specific
type of Poisson σ-model with extra structure. In section 2.2, after reviewing what precisely is
a consistent deformation, we re-derive the most general consistent deformation of JT gravity.
In section 2.4 we translate the results into the second order formulation.

2.1 First order formulation as nonlinear gauge theory

Dilaton gravity in 2d has a gauge theoretic formulation as Poisson σ-model [23, 24], remi-
niscent of the Chern–Simons formulation of Einstein gravity in 3d [25, 26]. Its bulk action,

IPSM[AI , X I] =
κ

2π

∫

�

X I dAI +
1
2

P I J (X K)AI ∧ AJ

�

, (4)

depends functionally on a set of target space coordinates X I that span a Poisson manifold with
Poisson tensor P I J = −PJ I , subject to the non-linear Jacobi identity4

P I L ∂L PJK + PJ L ∂L PKI + PK L ∂L P I J = 0 . (5)

4The Jacobi identity (5) allows to interpret the target space as being non-commutative, in the sense that the
Jacobi identity for the Schouten–Nijenhuis bracket {X I , X J} = P I J is identical to (5). This target space non-
commutativity features prominently in the Kontsevich ?-product [27], but will not play a decisive role in the
present work.
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The gauge field 1-forms AI and the target space coordinates transform in general non-linearly,

δλX I = λJ PJ I , δλAI = dλI + ∂I P
JKAJλK , (6)

under gauge transformations that preserve the action (4). Whenever the Poisson tensor is
linear in the target space coordinates the gauge symmetries (6) are of Lie-algebra type, with
∂I P

JK being the structure constants. Finally, the coupling constant κ plays a role similar to the
Chern–Simons level in 3d; for theories with a gravity interpretation κ is proportional to the
inverse 2d Newton constant.

The EOM derived from the action (4)

dX I + P I J AJ = 0 , dAI +
1
2

�

∂I P
JK
�

AJ ∧ AK = 0 , (7)

are first order non-linear PDEs. Since the action (4) does not depend on any background
metric it is an example of a topological quantum field theory of Schwarz type, see e.g. [28].
Moreover, Poisson σ-models have no local physical degrees of freedom, so their physical phase
spaces can be interpreted holographically as boundary phase spaces. All these properties are
shared with 3d Chern–Simons theories.

JT gravity is a special case of a Poisson σ-model where the target space manifold is three-
dimensional and the Poisson tensor is linear in the target space coordinates. As a consequence
of this linearity we are back to the realm of non-abelian gauge theories. Indeed, JT gravity
can be understood as a non-abelian BF theory with gauge group SL(2,R) [29, 30] (or some
restriction thereof, see [31]).

The gauge field content of JT gravity comprises zweibein ea and (dualized) spin-connection
ω, AI = (ω, ea). The target space coordinates, X I = (X , X a) are physically interpreted as
dilaton field (X ) and Lagrange-multipliers for the torsion constraints (X a). In terms of these
variables the JT gravity action,

IJT[ω, ea, X , X a] =
κ

2π

∫

�

X dω+ X a
�

dea + εa
bω∧ eb

�

+
Λ

2
εab ea ∧ eb X

�

, (8)

has a natural geometric interpretation: variation with respect to X a establishes vanishing tor-
sion on-shell, and variation with respect to the dilaton X yields a curvature 2-form proportional
to the volume 2-form, and hence constant curvature solutions. Comparison between (8) and
(4) shows that for JT gravity the Poisson tensor is of the form

P I J
JT
(X , X+, X−) =





0 −X+ X−

X+ 0 ΛX
−X− −ΛX 0



 , (9)

where we used light-cone gauge for the Minkowski metric, η+− = 1, η±± = 0, and for the
indices a, b. Our sign convention is ε±± = ±1. Note that X aXa = 2X+X−.

In JT gravity the three gauge symmetries generated by λI = (λω,λa) have a simple geo-
metric interpretation: (λω, 0) generates local Lorentz transformations

δλωω= dλω , δλωe± = ∓λωe± , δλωX = 0 , δλωX± = ∓λωX± , (10)

while λa (together with a compensating Lorentz transformation) generates gauge transforma-
tions that on-shell correspond to 2d diffeomorphisms generated by some vector field ξµ, such
that λI = AIµ ξ

µ. This identification yields

δξea
µ ≈ ξ

ν∂νea
µ + ea

ν∂µξ
ν, δξX a ≈ ξν∂νX a ,

δξωµ ≈ ξν∂νωµ +ων∂µξν, δξX ≈ ξν∂νX , (11)
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where the similarity sign ≈ denotes on-shell equivalence, using the condition of vanishing
torsion (constant curvature) in the first (second) line. This is again in analogy to 3d gravity in
the Chern–Simons formulation, see e.g. [32].

Since we are interested in the most general consistent deformation of JT gravity we can
phrase what we want to achieve as follows: we search for the most general consistent defor-
mation of 2d BF theory that still allows for a gravity interpretation.

2.2 Most general consistent deformation of JT gravity

Consistent deformations (in the sense of [2]) allow to deform the gauge symmetries, but do
not change the number of field- or gauge-degrees of freedom. Thus, consistent deformations
maintain the number of local physical degrees of freedom. Since JT gravity has no local phys-
ical degree of freedom, its most general consistent deformation also has this property. JT
gravity is a non-abelian BF theory (which in turn is a consistent deformation of abelian BF
theory). We are thus interested in the most general consistent deformation of 2d BF theory.

Izawa showed that the most general consistent deformation of 2d BF theory is a Poisson σ-
model with the same dimension of the target space [33]. The gist of the proof is as follows. Any
deformed Lagrangian L̃ must obey the consistency relation (s and d are BRST and de Rham-
differential, respectively)

sL̃+ dã1 = 0 (12)

together with the descent equations sã1 + dã0 = sã0 = 0 (they all follow from the master
equation, see [2]). Starting from 2d abelian BF theory, Izawa constructed the BRST differential
s, found the most general solutions for the bottom of the descent ladder, the ghost-number 2
term ã0, as well as the higher steps in the ladder, ã0 and L̃ = 1

2 P I J (X K)AI ∧ AJ (up to terms
containing antifields), where consistency of the deformation demands the Jacobi identities
(5). Thus, the class of Poisson σ-models (4) with fixed target space dimension is rigid, i.e., no
consistent deformation can move us out of this class.

This is almost the solution we want. However, as stressed before we need a bit more
structure to interpret a Poisson σ-model as gravity theory. In particular, we demand local
Lorentz invariance. This means that the most general 2d dilaton gravity model that emerges
as consistent deformation from JT gravity must have a Poisson tensor of the form

P I J =





0 −X+ X−

X+ 0 V(X , X+, X−)
−X− −V(X , X+, X−) 0



 , (13)

where V is an arbitrary function of all three target space coordinates, subject to constraints
imposed by the Jacobi identities (5). Before solving these constraints let us stress that the
first row and column of the Poisson tensor must be as given in (13) in order for (10) to hold.
Moreover, an immediate consequence of the anti-symmetry, P I J = −PJ I , is the existence of a
vanishing eigenvalue of the 3 × 3-matrix (13). Associated with this vanishing eigenvalue is
the existence of a Casimir function C(X , X+, X−) that is absolutely conserved on-shell, dC = 0
(see e.g. [9]). Its physical interpretation in the context of 2d dilaton gravity is as mass of the
state, e.g., the black hole mass [5, 34, 35]. We shall construct the Casimir function explicitly
in examples below.

The last two terms in the Jacobi identities (5)

PX+∂+V + PX−∂−V +V∂−P−X −V∂+PX+ = 0 (14)

always cancel, but the first two terms only cancel provided the potential only depends on
two independent arguments, V(X , X+, X−) = V(X , 2X+X−). Rephrasing this result in a frame-
independent way, the most general function V(X , X a) compatible with the Jacobi identities

6

https://scipost.org
https://scipost.org/SciPostPhys.12.1.032


SciPost Phys. 12, 032 (2022)

can only depend on Lorentz invariant combinations

V(X , X a) = V(X , X aXa) . (15)

Like for JT gravity, Latin indices are raised and lowered with the Minkowski metric ηab.
In conclusion, the most general 2d dilaton gravity theory that has the same number of

gauge- and field-degrees of freedom as JT gravity is given by the first order action

Igen[ea,ω, X , X a] =
κ

2π

∫

�

X dω+ X a
�

dea + εa
bω∧ eb

�

+
1
2
εab ea ∧ eb V(X , X cX c)

�

. (16)

The EOM are

dX + X aεa
beb = 0 , (17a)

dX a − X bε
baω+ εabeb V = 0 , (17b)

dω+
1
2
εabea ∧ eb ∂XV = 0 , (17c)

dea + εa
bω∧ eb +

1
2
εcbec ∧ eb ∂X aV = 0 . (17d)

We shall refer to this model as “generalized dilaton gravity”.

2.3 Solving the equations of motion

The solutions of the EOM (17) fall into two classes, linear and constant dilaton vacua. We
start with the former.

2.3.1 Linear dilaton vacua

We now derive all solutions in the linear dilaton regime for the generalized dilaton gravity
theory in the first order formulation (16). To do so, it is convenient to write the EOM (17) in
the light-cone gauge introduced above. The potential (15) can be written as a function of X
and

X̃ :=
X aXa

2X 2
=

X+X−

X 2
. (18)

The EOM

dX + X−e+ − X+e− = 0 , (19a)

(d±ω)X± ± e±V = 0 , (19b)

dω+ ε
∂ V
∂ X
= 0 , (19c)

(d±ω)e± + ε
∂ V
∂ X∓

= 0 , (19d)

contain the volume form ε= 1
2ε

abea ∧ eb = e− ∧ e+.
Taking a linear combination of the two equations in (19b), multiplied, respectively, by X−

and X+, and then inserting (19a), obtains d(X+X−) − V dX = 0 or, in terms of X̃ defined in
(18),

dX̃ +
�

2X̃ −
V
X

� dX
X
= 0 . (20)

The relation (20) implies Casimir conservation dC = 0 and can be integrated to yield the
Casimir function C(X , X̃ ). However, we postpone doing so and focus on solving the other
EOM first.
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We assume now X+ 6= 0.5 The equation (19b) implies

ω= −
dX+

X+
− Z V , (21)

where Z = e+/X+. Similarly, the equation (19a) yields

e− =
dX
X+
+ X−Z , (22)

and the volume element ε= −Z ∧ dX . Combining the upper signs (19d) and (19b) obtains

dZ = (Z ∧ dX )
1

X 2

∂ V
∂ X̃

. (23)

Inserting Z = dv eQ(X ) into this equation yields

dQ
dX
= −

1
X 2

∂ V
∂ X̃

, (24)

which can be formally integrated as Q(X ) = −
∫ X 1

X 2 ∂X̃V by virtue of (20). The line element
reads as

ds2 = 2e+e− = 2eQ dv dX + 2X̃ e2QX 2 dv2, (25)

where X̃ is determined by (20) and Q(X ) by (24). The solution space is parametrized by
two constants of integration. The one coming from the integration of (20) is non-trivial and
related to the Casimir of the theory, while the one coming from (24) is trivial and can be
fixed by a choice of units. Note that Q(X ) can depend on the Casimir in generalized dilaton
gravity models, in contrast to the commonly studied models (1). In appendix A, we specialize
the algorithm above to the power-counting renormalizable models (1), where we explicitly
perform the integrals related to Eqs. (20) and (24), thereby recovering well-known results.

As may have been anticipated (see e.g. [38]), all linear dilaton solutions for all generalized
dilaton gravity models obey a generalized Birkhoff theorem, in the sense that all solutions (25)
exhibit a Killing vector ∂v .

2.3.2 Constant dilaton vacua

In addition to the linear dilaton solutions discussed above, there can be a constant dilaton
sector, provided the non-differential equations

V(X , X aXa) = 0= X a (26)

have solutions. All these solutions have constant dilaton, constant curvature and are locally
maximally symmetric. Since these solutions do not differ in any essential way from the well-
known constant dilaton vacua of ordinary 2d dilaton gravity (see e.g. [39]), we shall not
discuss them in our work.

5This choice implies Eddington–Finkelstein gauge for the metric. Since the EOM are symmetric with respect to
X−↔ X+, we could choose X− 6= 0 instead in case X+ = 0, which corresponds to changing from in- to outgoing
Eddington–Finkelstein gauge. If both vanish in an open region, X± = 0, we obtain a constant dilaton solution
instead. If both vanish on an isolated point then our coordinate system breaks down, which happens at bifurcation
points of Killing horizons. To provide a local chart containing the bifurcation point one can use a Kruskal-type of
coordinate system, required only in the near horizon approximation. See [36,37] for more details.
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2.4 Translation to second order formulation

Following the standard procedure of integrating out the auxiliary fields in (16) (see e.g. [7]),
one can rewrite the generalized 2d dilaton gravity theory in the second order metric formalism.
We briefly summarize these steps.

In terms of the zweibein and the spin-connection, the curvature and the torsion 2-forms
read as Rab = 2 dωεab and Ta = dea + εa

bω ∧ eb, respectively. We denote the torsion-free
part of the spin-connection by ω̃, i.e., Ta(ω̃) = 0. The spin-connection can be decomposed as

ω= ω̃− eaTaµνε
µν , (27)

where ω̃ = ea(∂µeaν)εµν or equivalently ω̃µε
a

b = ea
ν∇µeνb , and we also define

Rabµν = (∂µω̃ν − ∂νω̃µ)εab. The EOM (17d) and (17a) yield

Ta = −
1
2
εcbec ∧ eb∂X aV , X a = −ea

νε
µν∂µX , (28)

and hence X̃ = −(∂ X )2/(2X 2). Injecting these expressions into the first-order action (16) to
eliminate the auxiliary fields ω and X a establishes the second order action

Igen[gµν, X ] = −
κ

4π

∫

d2 x
p

−g
�

R X − 2V
�

X ,−(∂ X )2
�

�

, (29)

where gµν = ea
µηabeνb is the spacetime metric and R= Rabµνeaµebν = (∂µω̃ν−∂νω̃µ)εµν is the

Ricci scalar. Note that we have thrown away a boundary term

Ifirst order
gen

= I second order
gen

+
κ

π

∫

d2 x ∂µ
�

X
p

−g∇µX∂∇V
�

. (30)

The EOM for the theory (29)

∇µ∇νX − gµν∇2X − 2(∂µX )(∂νX )(∂∇V)−V gµν = 0 , (31a)

R+ 8(∇µ∇νX )(∂µX )(∂νX )∂ 2
∇V − 4(∇2X )∂∇V − 4(∂ X )2∂∇∂XV − 2∂XV = 0 , (31b)

are non-linear second order PDEs. We used the notation ∂∇ := − ∂
∂ ((∂ X )2) and ∂X := ∂

∂ X .

3 Phase space for generalized dilaton gravity

In this section, we analyze the phase space of generalized dilaton gravity in 2d and provide
the general expressions for the charges using the standard methods of covariant phase space
formalism [40–44]. We present the results in both first and second order formulations and
then relate them.

3.1 First order formalism

We denote the dynamical fields of the theory summarily by φ = (ea,ω, X , X a). Keeping the
boundary terms in the variation of the action (16) when deriving the EOM obtains the canon-
ical presymplectic potential

δIgen[φ] = (EOM)δφ+

∫

∂M
Θ1,gen[φ,δφ] , Θ1,gen[φ,δφ] =

κ

2π
(Xa δea + X δω) . (32)

9
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The index 1 stands for first order. The presymplectic current is obtained by taking a variation
of the presymplectic potential

ω1,gen[φ,δφ,δ′φ] =
κ

2π

�

δXa δ
′ea +δX δ′ω

�

− (δ↔ δ′) . (33)

The symmetries of the action (16) are given by the diffeomorphisms parametrized by vector
fields ξµ and the so(1,1) local Lorentz transformations parametrized by λω. The infinitesimal
variations of the fields are given in (10) and (11).

The co-dimension 2-form of the theory associated with these symmetries, which is a 0-
form in two dimensions, can be deduced by contracting the presymplectic current (33) with
an infinitesimal symmetry. We obtain

kξ,λω[φ,δφ] = −
κ

2π

�

ea
ρ ξ

ρ δXa + (ωρ ξ
ρ +λω)δX

�

. (34)

Since the theory (16) is a first order covariantized Hamiltonian theory in the sense of [45],
there is no ambiguity in the definition of the charges at this level, and the Barnich–Brandt
[42,43] and Iyer–Wald [40,41] procedures coincide with each other.

3.2 Second order formalism

In the second order formulation (29), the dynamical fields are given by φ = (gµν, X ). The
boundary terms obtained by integrating by parts in the variation of the action (29) to obtain
(31) define the canonical presymplectic potential of the theory,

Θ
µ
2,gen
[φ,δφ] = −XΘµEH[g,δg]−

κ

4π

p

−g
�

∇µX (δg)νν−(δg)µν∇
νX +4(∂∇V)δX (∇µX )

�

, (35)

with the Einstein–Hilbert presymplectic potential

Θ
µ
EH[g,δg] =

κ

4π

p

−g
�

∇ν(δg)µν −∇µ(δg)νν
�

. (36)

The index 2 in (35) stands for second order. One can then derive the presymplectic current as
ω
µ
2,gen
[φ,δφ,δ′φ] = δΘµ2,gen

[φ,δ′φ]− (δ↔ δ′). The symmetries of the generalized dilaton
gravity theory (29) are given by the diffeomorphisms which act through Lie derivatives on the
fields, i.e., δξgµν = Lξgµν and δξX = LξX . The Barnich–Brandt co-dimension 2-form is given
by

kµρ
BB,ξ[φ,δφ] =

κ

2π

p

−g
�

2(∇[µδX )ξρ] − 4δX (∂∇V)ξ[ρ(∇µ]X )

−δX∇[µξρ] + ξ[µδgρ]α ∇
αX
�

. (37)

The relation between Barnich–Brandt [43,44] and Iyer–Wald [40,41] procedures is controlled
by the object

Eµν[φ; δφ,δ′φ] =
κ

4π

p

−g X δgµσ δ
′gνσ − (δ↔ δ′) , (38)

so that
kµν

BB,ξ[φ; δφ] = kµν
ξ
[φ; δφ]− Eµν[φ; δξφ,δφ] , (39)

where kµν
ξ
[φ; δφ] stands for the Iyer–Wald co-dimension 2-form. On-shell, we have the con-

servation law
∂νkµν

ξ
[φ; δφ] = −ωµ[φ; δξφ,δφ] . (40)

The results presented in this section consistently reduce to those established in [46] when
restricting to the class of models (1).
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3.3 Relation between first and second order symplectic potentials

The presymplectic potential (35) obtained by varying the action (29) in the second order
formulation is related to the one of the first order formulation obtained in (32) through

Θ
µ
2,gen
[φ,δφ] +δ

hκ

π

p

−g X∇µX∂∇V
i

= Θµ1,gen
[φ,δφ] + ∂ν

h κ

2π
|e|X e[µa δeν]a

i

, (41)

when setting the auxiliary fields on-shell in the first order formulation and writing
|e|= |det(ea

µ)|=
p
−g. The δ-exact term in the left-hand side comes from the relative bound-

ary term between first and second order actions that we have thrown away in (30). This term
plays no role in the charges. However, the relative corner term ∂νY µν, with

Y µν[φ,δφ] =
κ

2π
|e|X e[µa δeν]a , (42)

may generically bring a contribution to the charges for a given set of boundary conditions,
depending on whether we work in the first or the second order formulation. We will discuss an
explicit example in appendix B. Note that (42) is of the same form as the corner term found in
higher-dimensional Einstein gravity when relating first and second order formulations [47,48],
up to the presence of the dilaton.

The corner (42) can be rewritten as

Y µν[φ,δφ] =
κ

4π
εabε

µνX eaρδeb
ρ , (43)

using eµa = −εµνεabeb
ν .

4 Dilaton scale invariant models

In this section we focus on specific dilaton scale invariant models, which we define in section
4.1. In section 4.2 we solve the classical EOM explicitly.

4.1 Potential for dilaton scale invariant models

Among the generalized dilaton gravity theories (2) there is a particular subclass for which the
potential takes the form

V(X , X aXa) = −X U(X̃ ) , with X̃ :=
X+X−

X 2
. (44)

All models in this subclass are scale invariant in the following sense. Rescaling the dilaton as
(λ ∈ R)

X±→ λX± , X → λX , (45)

the action (2) transforms multiplicatively,

Igen→ λ Igen . (46)

This rescaling is therefore a symmetry of the EOM, but not of the Lagrangian. (See [49] for a
discussion of such symmetries.)

To investigate the properties of scale invariant models, we take the simplest expression
for the potential that allows to include new models not described by the subclass (1). More
specifically, we consider quadratic polynomials for the potential U in (44),

U(X̃ ) = a0 + a1X̃ + a2X̃ 2 , (47)
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where a0, a1, a2 are real constants.
The case a0 6= 0, a1 = 0, a2 = 0 corresponds to JT and a0 6= 0, a1 = −2, a2 = 0 to the

Witten black hole. More generally, all cases with a2 = 0 are included in (1), but not a2 6= 0.
Therefore, the case a2 6= 0 is a non-trivial generalization of (1). From now on we assume
a2 6= 0.

In summary, the remainder of this work is devoted to the study of generalized dilaton
gravity models (2) with the 3-parameter potential

V = −a0 X + a1
(∂ X )2

2X
− a2

(∂ X )4

4X 3
, a2 6= 0 . (48)

4.2 Solutions of dilaton scale invariant models

In this section, we specialize the generic solution (25) derived in section 2.3 to the potential
(44) and then specify it for the particular case (47). The equation (20) for X̃ can be integrated
as

ln
X
C
= −

∫ X̃
dỸ

U(Ỹ ) + 2Ỹ
(47)
= −

∫ X̃
dỸ

a0 + (a1 + 2) Ỹ + a2Ỹ 2
, (49)

where C is an integration constant corresponding to the on-shell value of the Casimir. The
equation (24) for Q becomes

dQ
dX
=

1
X
∂ U
∂ X̃

(47)
=

1
X

�

a1 + 2a2X̃
�

. (50)

We start by solving the equation for X̃ (49), depending on the sign of the discriminant

∆ := (a1 + 2)2 − 4a0a2 . (51)

4.2.1 Positive discriminant

For ∆> 0, equation (49) leads to

X̃ = −
a1 + 2
2a2

+
p
∆

2a2
tanh

�

p
∆

2
ln

X
C

�

, (52)

where C will be related to the mass below. Furthermore, equation (50) leads to

X
dQ
dX
=
p
∆ tanh

�

p
∆

2
ln

X
C

�

− 2 , (53)

which can be integrated to give

eQ =
b2

X 2
cosh2

�

p
∆

2
ln

X
C

�

, (54)

where b is a constant. Inserting these results into the metric (25), we find explicitly

gvX =
b2 C

p
∆

4X
p
∆+2

�

X
p
∆

C
p
∆
+ 1

�2

, (55a)

gvv =−
b4 C2

p
∆

16a2X 2
p
∆+2

�

X
p
∆

C
p
∆
+ 1

�3�
�

a1 + 2−
p
∆
�X
p
∆

C
p
∆
+ a1 + 2+

p
∆

�

. (55b)

The case of positive discriminant will be studied in more detail in section 5.
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4.2.2 Vanishing discriminant

For ∆= 0, one can set a0 = (a1 + 2)2/(4a2). Solving (49), one has

X̃ =
1

a2 ln X
C

−
a1 + 2
2a2

. (56)

Note that this solution does not correspond to the limit ∆ → 0 of the case ∆ > 0 presented
above. Indeed,

lim
∆→0

X̃∆>0 = −
a1 + 2
2a2

(57)

is a constant. Therefore, one has to treat this sub-case separately. Equation (50) gives

eQ =
b2

X 2
ln

X 2

C2
. (58)

Inserting these results in the metric (25), we have explicitly

gvX =
b2 ln2 X

C

X 2
, (59)

gvv =
b4
�

2− (a1 + 2) ln X
C

�

ln3 X
C

a2X 2
. (60)

In particular, these solutions involve logarithmic functions that diverge for vanishing C . For
this reason we do not study them further in the present work.

4.2.3 Negative discriminant

Finally, for ∆< 0, equation (49) gives

X̃ = −
a1 + 2
2a2

−
p

|∆|
2a2

tan
�

p

|∆|
2

ln
X
C

�

. (61)

Integrating (50), one deduces

eQ =
b2

X 2
cos2

�

p

|∆|
2

ln
X
C

�

. (62)

These solutions involve periodic functions in the dilaton field. It is unclear whether such
solutions are physically relevant, so we shall not study them further in the present work.

5 AdS2-to-dS2 models

From now on, we focus on solutions with positive discriminant ∆> 0. We will show that they
have striking properties, including (i) a well-defined vacuum, (ii) an interpolation between
an AdS2 or flat region in the asymptotics and a dS2 region in the center, and (iii) physically
meaningful thermodynamical properties.

In section 5.1 we consider geometric, in particular asymptotic, aspects of these solutions,
recast into Schwarzschild-like gauge. In section 5.2 we analyze the Ricci scalar, with particular
focus on asymptotic values, values at the horizon and for vanishing dilaton. In section 5.3
we study the variational principle and holographically renormalize the action, assuming the
boundary to be a dilaton iso-surface. In section 5.4 we exploit the previous results to derive
the free energy and other thermodynamical quantities.

13

https://scipost.org
https://scipost.org/SciPostPhys.12.1.032


SciPost Phys. 12, 032 (2022)

w

z
w= z + 1w= −(z+1)

z = −1

z = 0

z = 1

Figure 2: Solutions with horizon are in colored domain of (w, z)-parameter space

Before starting, it is convenient to recombine the parameters ∆, a1, a2 as

z :=
p
∆− 1, w := a1 + 2 , y2 :=

a2

a1 + 2−
p
∆

. (63)

Note that y has dimension of length, and z, w are dimensionless; as we shall demonstrate, z
is a Lifshitz-like anisotropy coefficient.

5.1 Asymptotic behavior, Lifshitz-like scaling and ground state

Let us start from the solution (55). By studying the zeros for X of the equation gvv = 0, one
can show that there is a horizon at

XH = C
�

z + 1+w
z + 1−w

�
1

z+1

, (64)

provided
|w|< z + 1 . (65)

Furthermore, requiring Lorentz signature outside the horizon implies

y > 0 . (66)

Finally, we set
b = 1 , (67)

since we found that this parameter does not play any role in the analysis; it corresponds to a
choice of time unit. The solutions are summarized in Fig. 2. The right diagonal in the figure
lies outside our class of models and corresponds to the AdS–Schwarzschild–Tangherlini black
branes discussed in appendix A.

Rewriting the metric (55) in a Schwarzschild-like gauge

ds2 = Ω(X )
�

− ξ(X )dt2 +
1
ξ(X )

dX 2
�

, (68)

with

Ω=
|z|z+1

z

�

XH

y

�2(z+1)�z + 1−w
z + 1+w

+
X z+1

X z+1
H

�2�X
y

�−(z+3)
, (69a)

ξ=
|z|z+1

z

�

XH

y

�z+1�z + 1−w
z + 1+w

+
X z+1

X z+1
H

��

1−
X z+1

H

X z+1

�

, (69b)
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is convenient for studying thermodynamical properties of the solution, which we shall do in
section 5.4.

Expanding the solution (68) for large dilaton

gt t = −z2z
�

X
y

�2z

− z2z
�

3
z + 1−w
z + 1+w

− 1
��

XH

y

�z+1�X
y

�z−1

+O(X−2) , (70a)

gX X =
� y

X

�2
+
�

z + 1−w
z + 1+w

+ 1
��

XH

y

�z+1 � y
X

�z+3
+O

�

X−2(z+2)
�

, (70b)

establishes the following properties of the metric: (i) it is field-independent at leading order,
which allows to have a good notion of time asymptotically, no matter the specific value of the
parameter XH , (ii) the limit z → 0 is regular and leads to an asymptotically flat metric, and
(iii) for finite z, the metric gµν exhibits anisotropic scale invariance with Lifschitz-like exponent
z. Indeed, the leading order terms in (70) are preserved by the anisotropic dilatation Killing
vector

ξLif = −zt∂t + X∂X . (71)

The isotropic case is obtained for z = 1.
For a fixed value of the parameters w, z and y , the vacuum of the theory is found by setting

XH = 0. The expressions (69) simplify to

Ω=
|z|z+1

z

�

X
y

�z−1

, ξ=
|z|z+1

z

�

X
y

�z+1

, (72)

and yield the ground state metric

ds2
vac
= −

z2z

y2z
X 2z dt2 + y2 dX 2

X 2
. (73)

This corresponds to Poincaré patch of AdS2 spacetime with AdS radius ` = y
z when z is finite

and non-zero, and to Poincaré patch of Minkowski spacetime in the limit z → 0. Note that
global AdS2 is not part of the solution space. The anisotropic Killing vector (71) generates
an isometry of the ground state metric (73). In total, the ground state metric (73) has three
Killing vectors,

L−1 = ∂t , L0 = −t ∂t +
X
z
∂X , L1 = t2 ∂t −

2tX
z
∂X +

y2z+2

z2z+2
X−2z ∂t , (74)

and hence is maximally symmetric. The ground state isometry algebra

[Ln, Lm] = (n−m) Ln+m , n, m ∈ {−1, 0,1} , (75)

is given by sl(2,R) regardless of the value of z 6= 0 (and an İnönü–Wigner contraction thereof
for z→ 0). As expected, for linear dilaton vacua (see e.g. [39]), the isometry algebra is broken
to u(1) by the dilaton, which is only annihilated by L−1.

5.2 Ricci scalar

In two dimensions, spacetime curvature is completely encoded in the Ricci scalar. For the
solutions (68) the Ricci scalar is given by

R= −
2
y2

�

X z+1

X z+1
H

+
z + 1−w
z + 1+w

�−2 �

z2
�

X
XH

�2(z+1)
+
(z + 1)2 − 2w

w+ z + 1

�

X
XH

�z+1

−
z + 1−w
z + 1+w

(2+ z)2
�

. (76)
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w= z + 1
2

RH < 0RH > 0

w= z + 1w= −(z+1)

w

z

z = −1

z = 0

z = 1

w= 3
2w= 1

2

Figure 3: Four domains in (w, z)-parameter space with different qualitative Ricci
behavior

In particular, at the origin and at the asymptotic boundary, the Ricci takes finite values

R0 = lim
X→0

R=
2(z + 2)2(z + 1+w)

y2(z + 1−w)
, R∞ = lim

X→∞
R= −

2z2

y2
=: −

2
`2

. (77)

Hence, the solutions are asymptotically AdS2 when ` is finite (which happens for any positive z)
and become asymptotically Minkowski in the limit z→ 0. The constraint (65) implies positive
Ricci scalar at the origin X → 0. Thus, generic solutions (with z 6= 0) interpolate between an
asymptotically AdS2 region and a dS2 region. This is the main property of the Ricci scalar that
we want to highlight. The Penrose diagram for black hole solutions with finite XH is depicted
in Fig. 1.

Below we discuss further properties. The value of the Ricci scalar at the horizon (64),

RH = −
�

w− 3
2

� (1+ z +w)
y2

, (78)

is positive for w< 3
2 , negative for w> 3

2 , and vanishes for w= 3
2 . The Ricci scalar vanishes at

one specific value of the dilaton,

X z+1
R=0 =

X z+1
H

2z2(w+ z + 1)

�

2w− (z + 1)2

+ (z + 1)
�Æ

−4w2(z(z + 2)− 1)− 4w+ z(z + 2)(4z(z + 2) + 1) + 1
��

. (79)

For XH → 0 (and X finite), the Ricci scalar (76) is constant and takes the same value,

lim
XH→0

R= −
2z2

y2
= −

2
`2

, (80)

as for AdS2 metric (assuming finite `).
The qualitative behavior of the Ricci scalar as function of the parameters z and w is sum-

marized in Fig. 3, with the shape of the Ricci scalar for each colored area depicted in Fig. 4.
We distinguish four domains:
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X
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R
z  0.5 , w -1

(a) Blue domain

5 10 15 20
X0.0

0.5

1.0

1.5

R
z  -0.1 , w -0.25

(b) Yellow domain

0.5 1.0 1.5 2.0
X
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R
z  2 , w 0

(c) Green domain

2 4 6 8 10 12 14
X

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
R

z  -0.75 , w 0

(d) Red domain

Figure 4: Illustration of Ricci scalar behavior in the four domains (XH = 1, y = 1).
Grey vertical (horizontal) dashed lines denote horizons (asymptotic Ricci values).
Red dot-dashed (blue dotted) lines show minimum (inflection point)

• Blue domain (middle left and upper right): this subsector lies in the domain
(z > 1, z + 1

2 < w < z + 1) ∪ (0 < z < 1,−(z + 1) < w < z + 1
2). The Ricci scalar

admits one minimum at

X z+1
min
= X z+1

H

(z + 3)
�

2w2 +w− 2z2 − 5z − 3
�

(z − 1)(w+ z + 1)(−2w+ 2z + 1)
. (81)

Furthermore, it has two inflection points X±
infl

such that X−
infl

, XR=0 < Xmin < X+
infl

.

• Yellow domain (lower left): this subsector lies in the domain (−(z+1)< w< z+1
2 , z ≤ 0).

The Ricci scalar admits one minimum (81) and one inflection point X+
infl

such that
XR=0 < Xmin < X+

infl
.

• Green domain (upper left and middle right): this subsector lies in the domain
(−(z + 1) < w, w ≤ z + 1

2 , z ≥ 1) ∪ (0 < z ≤ 1, z + 1
2 ≤ w < z + 1). The Ricci has

no minimum, but it admits an inflection point X−
infl

such that X−
infl
< XR=0.

• Red domain (lower right): this subsector lies in the domain (−(z + 1) < w < z + 1,
z+ 1

2 ≤ w, z ≤ 0). The Ricci has neither minimum, nor inflection point. In particular, for
z = 0, the Ricci vanishes only asymptotically, i.e., XR=0 defined in (79) goes to infinity.

The Ricci curvature tends to a sign function when taking the limit z →∞ while keeping
w and ` finite

R
�

�

z→∞ = −
2
`2

sign(X − XH) . (82)

The transition between positive and negative curvature regions matches with the position of
the horizon, i.e., XR=0→ XH (see Fig. 5). In other words, there is a sharp transition from dS2
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Figure 5: Ricci scalar approaches sign function with jump localized at horizon

in the interior to asymptotically AdS2 outside the black hole for large anisotropy coefficient,
z� 1. The steep gradient near the horizon is reminiscent of the large D-expansion of general
relativity [21, 22, 50, 51], suggesting that 1/z could be fruitfully used as perturbation param-
eter for black hole perturbations, backreactions, etc. More precisely, the large D limit can be
understood as a double limit w−1→ z→∞, according to the example (121) in appendix A.

Finally, we exploit our results to discuss potential cosmological applications, e.g. along
the lines of [52]. To be more specific, we pose the question whether there exists a range of
parameters for which the region around the horizon has almost constant positive curvature, so
that it can be approximated as a dS2 horizon. To this end we define the dimensionless quantity

σ :=

�

�

�

�

d ln R
d ln X

�

�

�

�

. (83)

If both the inequalitiesσ|XH
= (2w2+w−2(z(z+2)+2))/(2w−3)� 1 and w< 3

2 are satisfied,
the horizon is within a region of approximately constant positive curvature, since the (positive)
Ricci scalar varies slowly as a function of the dilaton. However, these inequalities [together
with the convexity condition (65)] are never satisfied simultaneously, since for w < 3

2 the
quantity σ|XH

is bounded from below, σ|XH
≥ 1

2 . Hence, a positive Ricci scalar always changes
considerably in the region around the horizon. (By contrast, we can have an approximately
AdS2 horizon for w> 3

2 .)
The quantity (83) can also be computed in the limits X → 0 and X →∞. We findσ→ 0 in

both cases, which means that the center of the spacetime and infinity are constant curvature
regions. This concurs with our previous conclusion that all solutions interpolate between a
dS2 region in the center and an asymptotic AdS2 region for z > 0.

5.3 Holographic renormalization

In this section, we perform the holographic renormalization of the action along the lines of
[53]. Specifically, we work with metrics of the form (68) that are well adapted for this study.
Having in mind thermodynamical applications, we work with Euclidean time coordinate τ= i t
and identify periodically τ∼ τ+2πβ with β = T−1. We assume the boundary to be a dilaton
iso-surface, i.e., δX |∂M = o(X ).
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The first term in the action,

I = −
κ

4π

∫

M
d2 x
p

g
�

RX − 2V
�

X ,−(∂ X )2
��

−
κ

2π

∫

∂M
dx
p
γX K , (84)

is the bulk action for generalized dilaton gravity (29). The second term is the Gibbons–
Hawking–York-like boundary term, suitable for a Dirichlet boundary value problem; K =∇µnµ

is the extrinsic curvature and nµ the normal to the boundary ∂M . The variation of the action
(84) yields on-shell

δI ≈
κ

2π

∫

∂M
dx
p
γ
�

πabδγab +πXδX
�

, (85)

where

πab = −
1
2
γabnµ∇µX , πX = −2(∂∇V)nµ∇µX − K . (86)

We need to add a boundary counter term Ict to the action (84) so that the total action,

Γ = I + Ict , (87)

has a well-defined variational principle, δΓ ≈ 0, for all solutions (68). This will additionally
ensure finiteness of Γ when evaluated on solutions (68).

The bare on-shell action, denoted by Ireg, is evaluated at a certain cutoff X = XR

Ireg ≈
κβ

2π
|z|z+1

z

�

−
�XR

y

�z+1
+

2(z + 1)2 − 4w
2(w+ z + 1)

�XH

y

�z+1

+
z + 1−w
z + 1+w

�XH

y

�2(z+1)� y
XR

�z+1�
. (88)

The counter-term that ensures a well-defined variational principle,

Ict =
κ

2πy

∫

∂M
dτ
p
γX , (89)

is essentially the same as for the JT model. Once the counter-term (89) is added to the action,
the cutoff can be removed, XR→∞, yielding a finite on-shell action (87)

Γ
�

�

EOM
= −

κβ

4π

�

1+
z + 1−w
z + 1+w

�

|z|z z
�XH

y

�z+1
. (90)

By construction, the action (87) with the counter-term (89) has a well-defined variational
principle, δΓ ≈ 0.

5.4 Thermodynamics

Using the results of the previous section we investigate now the thermodynamics of the so-
lutions (68). We start with the temperature, continue with the mass and finish with entropy,
free energy and specific heat.

The Hawking–Unruh temperature of the solutions (68) is determined from the Euclidean
metric

ds2 = f (r)dτ2 +
1

h(r)
dr2 , f (r) = Ω(r)ξ(r) , h(r) = Ω−1(r)ξ(r) . (91)

The horizon (64) is a (simple) zero of f (r) and h(r). Expanding around r = XH ,
f (r) = f ′(XH)(r − XH), h(r) = h′(XH)(r − XH) and performing the coordinate transforma-
tion ρ = 2

p

(r − XH)/(h′(XH)), θ =
τ
2

p

f ′(XH)h′(XH) the near horizon metric dρ2 +ρ2 dθ2
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is regular at ρ = 0 provided θ ∼ θ + 2π. This implies the periodicity of Euclidean time
β = 4π/

p

f ′(XH)h′(XH) the inverse of which is the Hawking–Unruh temperature

T =
(z + 1)2 |z|z

2π(z + 1+w)yz+1
X z

H . (92)

Temperature (92) has length dimension −z − 1, and the same is true for the mass defined
below.

Evaluating the general expression for the charges (37) on the solutions (68) for the Killing
vector ξ= ∂τ associated with Euclidean time translations obtains the mass

M =
κ(z + 1) |z|z

2π(z + 1+w)yz+1
X z+1

H
(64)
≡

κ(z + 1) |z|z

2π(z + 1−w)yz+1
Cz+1 . (93)

The vacuum (73) has vanishing mass, M = 0. Furthermore, one can check that the first law is
satisfied,

δM = T δS , (94)

with the Wald entropy [54]
S = κXH . (95)

The scaling of entropy with mass
S ∼ M

1
z+1 (96)

is compatible with the expected one for theories with anisotropic scale invariance, see e.g. [55–
57].

The free energy deduced from the results above,

F = M − T S = −
κ

2π
z(z + 1)|z|z

(z + 1+w)yz+1
X z+1

H , (97)

is consistent with the on-shell value of the holographically renormalized action (90), i.e.,

F = β−1 Γ
�

�

EOM
. (98)

Specific heat for positive z is given by6

C = T
∂ S
∂ T
=
κ

z2

�

2π (w+ z + 1)yz+1

(z + 1)2

�1/z

T1/z . (99)

It is always positive, showing perturbative thermodynamical stability of our black hole solu-
tions. In the limit z→ 0+ temperature (92) is state-independent and the inverse specific heat
vanishes, which are features shared with the CGHS model [58].7

Since the free energy (97) of all black hole states is negative, while the vacuum free energy
is zero, the black holes are also stable non-perturbatively, i.e., there is no Hawking–Page like
phase transition.

6For negative z specific heat has the same magnitude as in (99) but a negative sign. Thus, for negative z all
black hole solutions are perturbatively thermodynamically unstable, a feature shared with the Schwarzschild black
hole.

7The same is true for the ÔCGHS model [59], but not for its twisted version [60].
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6 Boundary conditions and asymptotic symmetries

In this section we investigate some boundary conditions and the associated asymptotic sym-
metries for the scale invariant dilaton gravity models. Specifically, we focus on models with
the potential (44) of the quadratic form (47). We found that the asymptotic analysis depends
drastically on the choice of Lifschitz scaling z.

In the present work we focus on the isotropic case, z = 1 (this implies ` = y). The main
goal of this section is to show that this case exhibits the following features: (i) the asymptotic
symmetry algebra generates Diff(S1)nC∞(S1) asymptotic symmetries, (ii) the boundary con-
ditions involve fluctuating dilaton at leading order, and (iii) the charges are finite and can be
made integrable after suitable field-dependent redefinitions of the parameters, leading to the
Heisenberg algebra.

6.1 Solution space

Our boundary conditions for the metric and the dilaton,

gt t = −
r2

`2
+ g(0)t t (t) +O

�

r−2
�

, gr r =
`2

r2
+ g(4)r r (t)

`4

r4
+O

�

r−6
�

, (100a)

gt r =
2
r

�

`2Φ′(t)−Ψ(t)
�

+O
�

r−3
�

, X = eΦ(t) r , (100b)

are motivated by the falloff behavior of the solutions in Schwarzschild-like gauge (70).8 The
state-dependent functions Φ(t) and Ψ(t) can be freely chosen, while the remaining functions
are determined through on-shell conditions from them. Namely, the EOM (31) together with
the quadratic potential (44), (47) imply

g(0)t t = `
2
�

(w+ 1)Φ′2 −Φ′′
�

+
4(w− 1)
`2

Ψ2 + (w− 1)g(4)r r + 2
�

(1− 2w)Φ′Ψ +Ψ′
�

, (101a)

g(4)r r = −`
2Φ′2 −

4
`2
Ψ2 +

4π
κ

M e−2Φ + 4Φ′Ψ , (101b)

M ′ = 0 . (101c)

Here, M is a constant of motion coinciding with the mass (93), related to the Casimir C by
M = κ

π`2
1

(2−w)C
2. In particular, one recovers the solution (70) by setting Φ= 0= Ψ.

Since some length dimensions are unusual we mention them explicitly: t has dimension
2; ` has dimension 1; r, X ,Φ,Ψ, C ,κ are dimensionless; M has dimension −2.

6.2 Asymptotic Killing vectors

The boundary conditions (100) are preserved under diffeomorphisms generated by

ζ=
�

F(t) + G(t)
1
r2
+O

�

r−4
�

�

∂t +
�

− F ′(t)r −Φ′(t)G(t)
1
r
+O

�

r−3
�

�

∂r . (102)

At leading order, these asymptotic Killing vectors satisfy the Lie-bracket relations
�

ζ
�

F1, G1

�

,ζ
�

F2, G2

��

= ζ
�

F1 F ′2 − F2 F ′1, (F1 G2)
′ − (F2 G1)

′� . (103)

In Euclidean signature, the boundary is S1 and this algebra corresponds to Diff(S1)nC∞(S1).
The state-dependent functions transform as

δζΦ= −F ′ + FΦ′ , δζΨ = −
G
`2
−
`2

2
F ′′ + (Ψ F)′ , (104)

8The quantity X̃ is determined in terms of the dilaton X and the Casimir C by (49).
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while the Casimir is invariant, δζC = 0. The latter statement follows trivially from the Poisson
σ-model formulation, since in Casimir–Darboux coordinates the Poisson tensor has a row and
column of zeros corresponding to the Casimir direction, so that the analogue of the left trans-
formation equation (6) implies Casimir invariance under all gauge transformations (including
improper ones).

6.3 Charges and Cardy formula

Inserting the solutions described in section 6.1 and the asymptotic Killing vectors derived in
section 6.2 into the general expression (37) and evaluating it at r →∞ yields the variation
of the charges9

2π
κ

kt r
BB,ζ = δeΦδζΨ −δζeΦδΨ + F e−Φ

2π
κ
δM . (105)

This expression is finite in the radial expansion parameter r but not integrable in field space.
A procedure to render these charges integrable is described below. The charges consists of two
qualitatively different pieces: (i) a boundary contribution coming from the term F e−Φ 2π

κ δM
and (ii) a corner contribution coming from the part δeΦδζΨ −δζeΦδΨ.

The charges (105) were computed in the second order formulation, using the Barnich–
Brandt expression (37). One can show that the E-term (38) relating the Barnich–Brandt and
the Iyer–Wald procedures does not contribute to the charge expression for r → ∞, which
implies kt r

BB,ζ = kt r
ζ

at the spacetime boundary.
If one specifies the analysis to the stationary solutions (70), the charges (105) reduce to

kt r
BB,ζ|stationary = F δM , (106)

which reproduces the mass (93) when taking F = 1. Furthermore, the entropy (95) can be
rewritten suggestively as

S = 2π`

√

√ c M
6

, c =
3κ
2π
(w+ 2) , (107)

which is (a chiral version of) the Cardy formula. Since the mass M is just a constant, it is fair
to ask whether there is a Virasoro tower L that reduces to M/`2 for zero mode solutions and
that transforms with an infinitesimal Schwarzian

δζL = F L′ + 2F ′ L +
c

12
F ′′′ , (108)

with the central charge c given in (107). The answer is affirmative and can be deduced by
analogy to section 5 in [61], yielding

L =
M
`2

e−2Φ −
κ

16π
(w+ 2)

�

Φ′2 + 2Φ′′
�

. (109)

6.4 Heisenberg charges and algebra

Finally, we resolve the non-integrability of the charges (105). As there are no local phys-
ical degrees of freedom in generalized dilaton gravity models, according to [62, 63] there
exists an integrable slicing of the state space. Technically, this means that there must exist a
field-dependent redefinition of the symmetry generators, such that the resulting charges are
integrable. We show now by explicit construction that this is indeed the case.

9See appendix B for the first order analysis.
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Considering

λq = e2Φ
� G
`2
+
`2

2
F ′′ + F ′Ψ − FΨ′ − 2FΨΦ′

�

, λM = e−Φ F , (110)

and defining λp = λ′M , q = e−Φ and p = e2ΦΨ, the charge variation reduces to

2π
κ

kt r
BB,ζ = λq δq+λp δp+λM

2π
κ
δM . (111)

Since we define λp,q,M to be state-independent, we can integrate (111) in field space to obtain
the boundary charges

Q[λq,λp,λM ] =
κ

2π

�

λq q+λp p
�

+λM M (112)

that obey the Heisenberg algebra

δζq = λp , δζp = −λq . (113)

Of course, the Casimir, and hence the mass, remain invariant for this (or any other) slicing,
δζC = δζM = 0. In appendix B we show that the same results can be obtained in the first
order formulation.

This particular slicing of the state space where the charge algebra reduces to the Heisen-
berg algebra is sometimes called fundamental slicing [62, 63]. It arose first in the context
of near horizon boundary conditions and soft hair excitations in three-dimensional Einstein
gravity [64], and it has also been shown to appear in the asymptotic boundary analysis of two-
dimensional spacetimes [46]. Another similarity to higher-dimensional gravity (see [65, 66]
and refs. therein) is that the entropy is linear in the Casimir and blind to the (soft hair) excita-
tions generated by q and p. This comparison suggests to reinterpret the Casimir C as the near
horizon Hamiltonian and to implement the near horizon soft hair program in (generalized)
dilaton gravity in two dimensions.

7 Outlook

Generalized dilaton gravity in two dimensions (2) provides numerous research avenues. As an
outlook, we list a few of them below, without claiming to be exhaustive. We start with more
specific issues related to the dilaton scale invariant models on which we focused.

• SYK-like correspondences. Given the developments in the past half decade (see [67]
and the reviews [68–70]) it seems natural to attempt finding an SYK-like model [71,72]
dual to the z = 1 model studied in section 6 and check e.g. whether or not it saturates
the chaos bound [73,74] and/or can be interpreted as matrix model [75].

• Schwarzian type boundary actions. An important link between gravity and field theory
is the boundary action describing (from a gravity perspective) the dynamics of edge
modes. Since the JT analysis of the Schwarzian boundary action [76] generalizes e.g. to
higher spin theories [77] and to flat space dilaton gravity [59], it is plausible that some
(or even all) of the models presented in this work also lead to boundary actions that have
a physical interpretation in terms of edge modes and a mathematical interpretation as
some group action associated with certain coadjoint orbits.
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• Holographic renormalization for fluctuating dilaton. In section 5.3 we assumed dila-
ton iso-surfaces as boundary to obtain a holographically renormalized action suitable for
deriving the free energy. However, in SYK-like contexts this assumption is dropped and
the dilaton is allowed to fluctuate at the boundary, which leads to a kinetic boundary
term [78,79]. For the class of models introduced in section 4 it is plausible that similar
terms are needed. It could be instructive to construct them.

• Boundary conditions for z 6= 1. The boundary conditions discussed in section 6 are
valid for the isotropic case, z = 1. It might be rewarding to generalize this discussion to
the anisotropic case, z 6= 1, to check, among other things, whether or not a Lifshitz-type
Cardy-like formula for the entropy emerges and if again the Heisenberg algebra pops
up. Such an analysis may also help to understand the somewhat mysterious origin of
the Lifshitz anisotropy in these models.

• Large z limit and horizon localization. The sign-function behavior of the Ricci scalar
(82) at large z means that all non-trivial aspects of geometry localize near the horizon,
reminiscent of what happens in the large D-limit of general relativity [21, 22]. When
adding matter to the system, it could be useful to treat 1/z as small parameter and sim-
plify the technical discussion of black hole formation, stability and evaporation. More-
over, there might be a simplified “membrane theory” that localizes around the horizon
and that captures the essential features of black holes. This route may provide models
of comparable simplicity and universality as the CGHS model [58] or the Almheiri–
Polchinski model [80, 81]. In order to proceed along these lines in a meaningful way
one would have to add matter to the system, see below.

• Other singular limits. Recently, various limits — including non- and ultra-relativistic
ones — of the JT model and generalizations thereof were derived [82, 83]. The same
limits can be applied to generic models (2), as indicated already in [82]. It should be
possible (and might reveal interesting new aspects) to be exhaustive in classifying all
meaningful limits of generalized dilaton gravity; part of the challenge is to be precise
what “meaningful” means in this context.

• Applications of dS-AdS. In our work we have merely observed that solutions in a certain
parameter range interpolate between dS in the IR and AdS in the UV. However, we have
not attempted to exploit this fact for studying physical aspects of dS holography or toy
model cosmology. While we are not confident that the specific models studied in section
4 will be useful for this purpose, it seems likely that within the generic class of models
(2) there will be useful ones that could allow a refinement of the discussion initiated
in [52].

• Generic dilaton scale invariant models. Scale invariant models of type (1) were stud-
ied recently from a holographic perspective in [84]. It could be of interest to generalize
their discussion (and ours) to generic dilaton scale invariant models (44).

We conclude with more general remarks that go beyond the dilaton scale invariant models.

• Bottom-up model building. The model space provided by (2) is not only infinitely
larger than the one provided by (1), it also yields qualitatively new features that may be
propitious for (toy) model building. To give one specific example, for all models (1) it
is true that the Weyl factor [denoted by Q(X )] appearing in the metric depends only on
the dilaton and some rather irrelevant integration constant, but not on the mass of the
state. By contrast, for generic models (2) the function Q(X ) also depends on the Casimir
(and hence the mass of the state); see for example the explicit construction in section
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4.2. This qualitatively new feature may allow for (families of) hitherto unknown models
that highlight certain aspects of gravity, holography and black hole physics not captured
by the more restrictive class (1).

• Top-down model constructions. While we have no concrete proposal, it is conceivable
that the higher derivative terms allowed by the action (2) may appear in some top-
down constructions, say, from string theory. Indeed, the developments of black holes
in string theory [18–20, 85] were intimately related with some of the developments in
two-dimensional dilaton gravity, see e.g. [86].

• Charting the model space. All models (2) are deformations of each other in a technical
sense, but this does not imply that any two given models are physically close to each
other. For instance, geometric properties such as the asymptotic behavior, number and
types of Killing horizons, presence or absence of singularities, as well as the precise form
of the boundary action and the associated asymptotic symmetries depend on the choice
of the function V . It could be valuable to either find a measure for the proximity of a
model or to group all models into suitable subclasses, such that within a given subclass all
models are reasonably similar to each other. The attribute “similarity” might be defined
in terms of intrinsically two-dimensional entities, such as the asymptotic behavior or the
boundary action, or in terms of external structures, such as possible lifts to a specific
higher dimension or reformulations in terms of matrix models. See, for instance, the
discussions in [8,87,88].

• Matter, backreactions and black hole evaporation. As alluded to in some of the pre-
vious items, an exciting prospect is to add some matter action to the geometric one (2)
to address issues like black hole formation, stability and evaporation. Some of the de-
velopments for usual dilaton gravity (1) are summarized in the review [7]. Basically,
one could go through this review line-by-line and attempt to generalize the results to
generic dilaton gravity with matter. Given the qualitative changes mentioned above this
route could be more than just work-therapy and lead to novel insights into evaporating
black holes. Of course, also more recent developments could be generalizable, such as
the island proposal [89,90] (see also [91] and refs. therein).

• Entropy universality. The results of section 6.4 suggest that the Casimir C has a phys-
ical interpretation as near horizon Hamiltonian. The appearance of the Heisenberg al-
gebra and the fact that entropy is linear in this putative near horizon Hamiltonian in-
dicates a universal feature of generalized dilaton gravity that rhymes well with higher-
dimensional constructions of soft Heisenberg hair [64, 92] and points towards a uni-
versality of entropy, S ∼ C , in all gravity theories (including higher spins [93], higher
derivatives [94], higher form degrees [95], and higher dimensions [66]). It should be
possible to test entropy universality, as well as the related conjecture [96] that entropy
is slicing-independent, for generalized dilaton gravity (2).

• Origin of the corner term. We derived the corner term needed to connect the first and
second order symplectic potentials. It could be interesting to study whether it has a
geometric interpretation in terms of boundary quantities along the lines of [97–99].

In summary, exciting new possibilities are provided by generalized dilaton gravity in two di-
mensions (2).
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A Geometries for power-counting renormalizable models

For pedagogical reasons, in this appendix we apply the general algorithm of section 2.3.1 to
the power-counting renormalizable models (1), thereby recovering well-known results, see
e.g. [7,36,37].

The potential V is given by

V = −X+X−U(X ) + V (X ) . (114)

The algorithm works exactly as explained in the main text, so the only new information pro-
vided here are explicit integrations. In particular, (20) simplifies to

d
�

X+X−
�

+
�

X+X−U(X )− V (X )
�

dX = 0 , (115)

which can be integrated explicitly upon introducing the integrating factor

Q(X ) :=

∫ X

U(y)dy , (116)

yielding
dC = 0 , C := eQ(X )X+X− +w(X ) , (117)

where

w(X ) := −
∫ X

eQ(y)V (y)dy . (118)

The quantity C is the Casimir, which on-shell is conserved in time and space (117).
The quantity Q(X ) defined in (116) coincides with the corresponding quantity in (24).

Therefore, the explicit form of the metric (25),

ds2 = 2dv dr − 2eQ(X (r))
�

w(X )− C
�

dv2 , (119)

depends on the value of the Casimir (117) and on the two functions (116) and (118), which are
uniquely determined from the dilaton potentials U(X ) and V (X ), up to irrelevant integration
constants. The radial coordinate r is related to the dilaton by

dr = eQ(X ) dX , (120)

which can be integrated to express the dilaton as function of the radius, X = X (r). Evidently,
all solutions (119), (120) have at least one Killing vector, the coordinate vector ∂v , which
proves explicitly the generalized Birkhoff theorem for power-counting renormalizable models.

26

https://scipost.org
https://scipost.org/SciPostPhys.12.1.032


SciPost Phys. 12, 032 (2022)

Note that in this special class of models the function Q(X ) is independent from the Casimir.
As mentioned in the main text, this ceases to be true for generic models (2).

An even more concrete class of examples is provided by AdS–Schwarzschild–Tangherlini
black branes in D-dimensional Einstein gravity, dimensionally reduced to two spacetime di-
mensions, assuming D > 3. In this case, the potentials are given by

U(X ) = −
D− 3
(D− 2)X

, V = −
(D− 1)(D− 2)

2
X
`2

, (121)

recovering the JT model for D→ 3 [100] and the Witten black hole for D→∞ [51]. These
models lie on the right diagonal in Figs. 2 and 3. Inserting the potentials (121) into the
expressions in this appendix yields the dilaton

X =
� r

D− 2

�D−2
, (122)

and the metric

ds2 = 2dv dr −
�

r2

`2
−

2M
rD−3

�

dv2 , (123)

where the mass parameter M is linearly related to the Casimir,

M = (D− 2)D−3C . (124)

B Comparison with charges in first order formalism

In this appendix, we compare the results for charges between first and second order formula-
tions, using as basis the boundary analysis of section 6 in the second order formulation.

To proceed with the first order formulation, we choose the dyad
�

e+r e−r
e+t e−t

�

=

� gr r
2 1

1
2

�

gr t +
p

|g|
� 1

gr r

�

gr t +
p

|g|
�

�

, (125)

where the components of the metric gµν are given in (100). On-shell, we have

e+r =
1

2r2
+
�

κ

2π
Me−2Φ −

�

Φ′ − 2Ψ
�2

2

�

1
r4
+O

�

r−6
�

, (126a)

e+t = −
1
2
+
Φ′ −Ψ

r
+O(r−2), (126b)

e−r = 1 , (126c)

e−t = r2 + 2r(Φ′ −Ψ) +O(r0) , (126d)

where we set `= 1 throughout this appendix. The gauge symmetries in the first order formu-
lation are the combination of Lorentz transformations (10) and diffeomorphisms (11), viz.,
δξ,λωea = Lξea − λωεa

beb. They preserve the solution space (126) provided the diffeomor-
phism parameters ξ are given by (102) and the Lorentz parameter satisfies

λω = F +
2G
r
+O

� 1
r2

�

. (127)

The Lorentz parameter does not bring additional symmetries into the analysis and is deter-
mined from the diffeomorphism generators (102).
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Computing the corner term (42) for the solution space (126) in the limit r →∞ yields

Y t r[φ,δφ] =
κ

2π
eΦδ

�

Φ′ −Ψ
�

. (128)

Interestingly, this term does not vanish, implying that the charge computation in first and
second order formalism does not produce the same charges. In particular, this contribution
cancels the first two terms of the second line of (105) corresponding to the Heisenberg part
of the charge algebra. Explicitly, the charges in the first order formulation are obtained by
evaluating the general expression (34) for our solution space and evaluating it at the boundary,

2π
κ

kt r
1,ζ ,λω

= δ
�

−2eΦ
�

G +δ
�

eΦ(2Ψ −Φ′)
�

F ′ +δ
h κ

2π
M
i

e−ΦF

+ 2eΦ(δΦΨ′ −δΨ Φ′) + eΦ
�1

2
δ(Φ′)2 −Φ′′δΦ

�

F, (129)

where the index 1 stands for first order. Again, as in the second order formalism, the charges
are finite but not integrable. They are related to the charges obtained in (105) via the corner
term (128) as

kt r
BB,ζ[φ,δφ] = kt r

1,ζ ,λω
[φ,δφ]− (δζ,λωY t r[φ,δφ]−δY t r[φ,δζ,λωφ]) . (130)

By analogy to the main text, we render the charge expression (129) integrable by perform-
ing field-dependent redefinitions of the symmetry parameters,

λ1,q = e2Φ
�

2G − F ′Φ′ + 2Ψ
�

F ′ − 2FΦ′
�

+ F
�

2(Φ′)2 +Φ′′ − 2Ψ′
��

, (131)

λM = e−ΦF , (132)

and λp = λ′M . Using similar definitions as in section 6.4, q = e−Φ and p1 = e2Φ
�

2Ψ −Φ′
�

, the
charges reduce to

2π
κ

kt r
1,ζ ,λω

= λ1,q δq+λp δp1 +
2π
κ
λM δM , (133)

and satisfy the algebra
δζq = λp , δζp1 = −λ1,q , (134)

which, again, corresponds to the Heisenberg algebra.
For this particular example, we have shown that the first and second order formulations

lead to the same number of parameters (F and G) for the residual diffeomorphisms. From gen-
eral considerations on auxiliary fields, it is expected that the number of parameters is the same
when dealing with exact symmetries (see e.g. [101]). However, when treating asymptotic sym-
metries, this is not guaranteed a priori (one could have additional parameters appearing in the
local Lorentz transformations) and one has to verify it explicitly, which is what we did above.
See [99] for a similar analysis in higher dimensions.

Another interesting feature is that although the respective solution spaces and residual
gauge symmetries are the same in first and second order formulations, their symplectic struc-
tures differ. This difference is controlled by the corner term (42) appearing at the level of the
Lagrangians. Despite of this discrepancy, after judiciously redefining the symmetry parameters,
the charge algebras are identical in the two formulations and yield the Heisenberg algebra.
This could have been anticipated, since the charges form a representation of the asymptotic
symmetry algebras, which are the same in the two formulations.
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