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Abstract

We study the persistent current in a system of SU(N) fermions with repulsive interaction,
confined in a ring-shaped potential and pierced by an effective magnetic flux. Several
surprising effects emerge. As a combined result of spin correlations, (effective) magnetic
flux and interaction, spinons can be created in the ground state such that the elementary
flux quantum can change its nature. The persistent current landscape is affected dra-
matically by these changes. In particular, it displays a universal behaviour. Despite its
mesoscopic character, the persistent current is able to detect a quantum phase transition
(from metallic to Mott phases). Most of, if not all, our results could be experimentally
probed within the state-of-the-art quantum technology, with neutral matter-wave circuits
providing a particularly relevant platform for our work.
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1 Introduction

Quantum technology intertwines basic research in quantum physics and technology to an un-
precedented degree: different quantum systems, manipulated and controlled from the macro-
scopic spatial scale down to individual or atomic level, can be platforms for quantum devices
and simulators with refined capabilities; on the other hand, the acquired technology prompts
new studies of fundamental aspects of quantum science with an enhanced precision and sen-
sitivity. Amongst the various quantum systems relevant for quantum technologies, ultracold
atomic systems play an important role due to their excellent coherent properties and enhanced
control and flexibility of the operating conditions [1]. Atomtronics is an emerging research
area in quantum technology exploiting cold atoms matter-wave circuits with a variety of dif-
ferent architectures [2]. Being characterized by distinctive physical principles, atomic circuits
can define a quantum technology with specific features. In particular, one of the peculiar knobs
that can be exploited in atomtronics is the statistics of the particles forming the quantum fluid
flowing in the circuit. Most of the studies carried out so far have been devoted to atomtronic
circuits of ultracold bosons, whilst ones comprised of interacting ultracold fermions require
extensive investigations.

In this paper, we focus on quantum fluids comprising of interacting multicomponent spin
SU(N) fermions. Strongly interacting fermions with N spin components, as provided by
alkaline-earth and ytterbium cold atomic gases, are highly non-trivial multicomponent quan-
tum systems [3, 4]. Such systems extend beyond the physics of interacting spin-1

2 electrons
found in condensed matter systems [5,6]. They are very relevant both for high-precision mea-
surement [7–9] and to enlarge the scope of cold atoms quantum simulators of many-body
systems [10–13]. Additionally, atom-atom interactions can be made independent on the nu-
clear spin. This feature effectively enlarges the symmetry of the systems to the SU(N) one.
Such a feature makes cold alkaline-earth atoms, especially with lattice confinements, an ideal
platform to study exotic quantum matter, including higher spin magnetism, spin liquids and
topological matter [14–16] and, beyond condensed matter physics, in QCD [17].

Here, we consider Np SU(N) fermions with repulsive interaction, trapped in a ring-shaped
circuit of mesoscopic size L [18] and pierced by an effective magnetic field. We study the
persistent current response to this applied field, which provides a standard avenue to probe
the coherence of the system [19].

Different regimes depending on the filling fraction ν = Np/L are explored. i) For incom-
mensurate ν, the persistent current is non-vanishing for any value of the interaction. Moni-
toring the numerical results for the spectrum of the system with the exact Bethe ansatz anal-
ysis [20], we find that as the effective magnetic flux increases, spinon excitations can be created
in the ground state. Such a remarkable phenomenon occurs as a specific ‘screening’ of the
external flux, which being a continuously adjustable quantity, can be compensated by spinons
excitations (quantized in nature) only partially. This in turn results in an imbalance and causes
the persistent current to display characteristic oscillations with a period of 1/Np shorter than
the bare flux quantum. For two-spin component fermions in the large interaction regime, such
a phenomenon was studied in [21,22]. We shall see that such a process depends on Np, num-
ber of spin components and interaction in a non-trivial way. ii) In contrast with the SU(2)
case [23], SU(N) fermions with N > 2 undergo a Mott quantum phase transition for a finite
value of interaction U = Uc at integer fillings. Accordingly, a metallic behaviour crosses over
to a regime in which the current is exponentially suppressed. This regime is also monitored by
Bethe ansatz [24] and corroborated by exact diagonalization and Density Matrix Renormaliza-
tion Group (DMRG) [25,26]. We shall see that, despite the persistent current being mesoscopic
in nature, the onset of the Mott transition is marked by a clear finite size scaling. The onset to
the gapped phase progressively hinders the spinon creation phenomenon.
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2 Methods

A system of Np SU(N) fermions residing in a ring-shaped lattice composed of L sites threaded
with a magnetic flux φ can be modeled using the Hubbard model [14]

HSU(N) = −t
L
∑

j=1

N
∑

α=1

�

eı 2πφ
L c†

α, jcα, j+1 + h.c.
�

+
U
2

∑

j

n j(n j − 1) , (1)

where c†
α, j (cα, j) creates (annihilates) a fermion with colour α, n j =

∑

α c†
α, jcα, j is the local

particle number operator for site j. The parameters t and U > 0 account for the hopping
strength and on-site repulsive interaction respectively. The effective magnetic field is realized

through Peierls substitution t → teı 2πφ
L . For N = 2, the Hubbard model describing spin-1

2
fermions is obtained. In this case, the Hamiltonian (1) is integrable by Bethe Ansatz (BA)
for any U/t and ν [23]. For N > 2, the BA integrability is preserved in the continuous limit
of vanishing lattice spacing, (1) turning into the Gaudin-Yang-Sutherland model describing
SU(N) fermions with delta interaction [20,27]; such a regime is achieved by (1) in the dilute
limit of small ν. Another integrable regime of (1) is obtained for n j = 1∀ j and large repulsive
values of U � t for which the system is governed by the Lai-Sutherland model [14,24].

In our approach, the exact solution plays a very important role in classifying the eigen-
states of the system. According to the general theory of BA solvable models, the spectrum
of the model is obtained through the solution of coupled transcendental equations, which are
paramterized by a specific set of numbers called the quantum numbers [28]. Indeed, they label
all the excitations. For the specific case of the integrable SU(N) Hubbard models, the many-
body excitations are labeled by quantum numbers: Ia, a = 1 . . . Np and Jβ j

, β j = 1 . . . M j
for j = 1 . . . N − 1 with Ia and Jβ j

being integers or half-odd integers, and M j referring
to the number of particles with a given component [20, 28, 29] (see Supplementary mate-
rial). It is well known that, at zero flux φ, the ground state is found to be characterized by
Ia = I1, I1 + 1, I1 + 2, . . . I1 + Np and Jβ1

= Jβ1
, Jβ1

+ 1, Jβ1
+ 2, . . . Jβ1

+M1. Instead, sequences
of Ia = I1 − 1, ∨ , I1 + 1, I1 + 2, . . . I1 + Np and Jβ j

= Jβ j
− 1, ∨ , Jβ j

+ 1, Jβ j
+ 2, . . . Jβ j

+ M j
with ‘holes’ correspond to excitations; in particular holes in {Jβ} characterize the so-called
spinon excitations [30]. For SU(N) fermions, there can be N −1 different types of such spinon
states [31,32]. For non-vanishingφ, we shall see the quantum numbers configurations {Ia, Jβ}
can change. For intermediate interactions and intermediate fillings, the model (1) is not inte-
grable and approximated methods are needed to access its spectrum. Indeed, Hubbard models
for SU(2) and SU(N) fermions enjoy very different physics. For incommensurate fillings, a
metallic behaviour is found with characteristic oscillations of the spin-spin and charge corre-
lation functions that, for N > 2 can be coupled to each other. At integer ν, fermions may be
in a Mott phase. Such a phase is suppressed only exponentially for N = 2 [23]; in striking
contrast, for N > 2 the system displays a Mott transition for a finite value of U/t [14,33].

At mesoscopic size, the properties discussed above are displayed as specific traits [18]. We
refer as mesoscopic effects as those ones arising on length scales that are comparable with
the particles’ coherence length. In this regime, even though the application of the magnetic
flux does not change the nature of the possible excitations, we shall see that the latter may
be indeed promoted to ground states. Our diagnostic tool is the persistent current, providing
access to the particles’ phase coherence [19, 34]. At zero temperature, the persistent current
of the system is given by I(φ) = − ∂ E0

∂ φ where E0 is the ground state energy. The persistent
current is of mesoscopic nature in that it corresponds to 1/L corrections of the ground state
energy [19].

For a quantum system in a ring, the angular momentum is quantized (see [35,36] for recent
experiments). Accordingly, I(φ) displays a characteristic sawtooth behaviour, with a period-
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Figure 1: Persistent current I(φ) at incommensurate filling for SU(3) fermions with
different interaction strengths U in the dilute filling regime of the Hubbard model.
The exact diagonalization L = 30, Np = 3 is monitored with the BA of the Sutherland-
Gaudin-Yang model. The red, black and green dots in the main figure depict the Bethe
ansatz results for the persistent current for U = 0.1, 1.0 and 10,000 respectively.
These dots are meant to be a guide to the eye, to aid in perceiving the fractionalization
of the persistent current with increasing interaction Insets show how the BA energies
need to be characterized by X 6= 0, to be the actual ground state. At U = 0, the
ground state energy is a periodic sequence of parabolas meeting at degeneracy points
φd (φd = 1/2 for the case in this figure). The values of the flux at which spinons are
createdφs have been included as an example in the top inset, which for an interaction
U = 1, range from 0.37 to 0.63.

icity that Leggett proved to be fixed by the effective flux quantum φ0 of the system [37–39].
Furthermore, the persistent current is parity dependent: for systems with even (odd) number
of spinless particles, the energy is decreased (increased) by the application of the external flux;
therefore, the persistent current displays a paramagnetic (diamagnetic) behaviour. Leggett
predictions are independent of disorder. In particular, the periodicity of the persistent current
reflects the structure of the ground-state. For example in the case of a BCS ground-state, the
period of the persistent current is halved due to the formation of Cooper pairs [37,40]. Simi-
larly for bosonic systems, the persistent current fractionalized with a period of 1/Np, indicating
the formation of a bound state of Np particles [41]. The specific parity effects also hold for
SU(N) systems and SU(2) fermions [37,38] (see Supplementary material).

In our approach, we combine exact diagonalization or DMRG analysis with, whenever pos-
sible, BA results. Specifically: in the integrable regimes of dilute systems (described by Gaudin-
Yang-Sutherland model), and a filling of one-particle per site & large interactions (captured
by the Sutherland model), the BA results (through the Bethe quantum numbers introduced
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Figure 2: Figures of merit for spinon creation in the ground state of SU(N) fermions.
We consider the minimum value of U required for spinons to be created in the ground
state for a given value ofφ; all the values ofφ where a spinon is created are recorded.
The displayed curves are calculated by monitoring all the distances |φs−φd | at which
the state with no spinons crosses states with any spinon states, where φs is the flux
at which spinons are created and φd is the degeneracy point (see Fig. 1). a) Spinon
creation flux distance |φs − φd | against interaction U . The inset contains the data
in the intermediate U regime. b)Spinon creation flux distance against the interac-
tion, rescaled by N and Np respectively, in the limit of low UNp. In this limit, spinon
production is found to be a universal function of Np/N c) Spinon creation flux dis-
tance |φs −φd | against interaction per particle U/Np in the low U/Np regime. One
can observe the enhancement of spinon production with increasing N . All the pre-
sented results are obtained by BA of Gaudin-Yang-Sutherland model for L = 40, with
Np = 1(circles), 2(squares), 3(crosses) per spin component, with N = 2,3, 4,5. Thus,
the dilute limit of the Hubbard model (1) is covered.

above) are exploited as bookkeeping to monitor the eigenstates provided by the numerical
results. This way, the nature and physical content of the system’s ground state can be estab-
lished as functions of the parameters. We shall see that the actual lowest energy of the system
can only be obtained with Bethe quantum numbers corresponding to spinon excitations. In
the non-integrable regimes, we rely on numerical analysis. Here, only systems with an equal
number of particles per species are considered. In the following, the energy scale is given by
t = 1.

3 Persistent current of SU(N) fermions at incommensurate fillings

Our analysis begins in the low ν regimes (continuous limit) wherein we can rely on ex-
act results based on the Gaudin-Yang-Sutherland model BA. The numerical analysis shows
that, by increasing φ, specific energy level crossings occur in the ground state of the sys-
tem. The BA analysis (see Supplemental material) allows us to recognize such level crossings
as ground state transitions between no-spinon states and spinon states. Specific 1/Np peri-
odic oscillations occur in the ground state energy as φ is varied; therefore, a curve with Np
cusps/parabolic-wise segments per flux quantum emerges. Such a feature was evidenced for
two-spin component fermions in the large interaction regime [21,22]. Here, we find that spinon
creation defines a phenomenon occurring for any value of U; additionally, we shall see that the
spinon creation mechanism displays a non-trivial dependence on the number of spin components
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N . Indeed, the different N − 1 spinon configurations are found to play a relevant role for the
phenomenon. The quantity X =

∑N−1
j

∑M j

β j
Jβ j

can be exploited to characterize the properties

of the specific spinon excitations that are created in the ground state.
Specifically, for small and intermediate U , while the system’s ground state with no spinons

is found to be non-degenerate, the one with spinons can be made of degenerate multiplets cor-
responding to Bethe states with distinct configurations of the quantum numbers Jβ j

(see inset
of Fig. 1). By further increasing U , the spinon states organize themselves in multiplets of in-
creasing degeneracy on a wider interval of the flux. At large but finite U , the exact BA analysis
shows that the spectrum can be reproduced by a suitable continuous limit of a SU(N) t − Je f f
model with Je f f = 4E∞/(U L), where E∞ is the energy of the Gaudin-Yang-Sutherland model
at infinite interaction (see Supplementary material). We remark that the specific features of
the SU(N) fermions enter the entire energy spectrum of the system through the SU(N) quan-
tum numbers {Ia, Jβ j

}. In the limit of infinite U , the persistent current is analytically obtained
as (derivations in Supplementary material)

I(φ) = −2
�

2π
L

�2 Np
∑

a

�

Ia +
X
Np
+φ

�

. (2)

Equation (2) shows that, in this regime, the persistent current displays 1/Np reduced period-
icity; such a phenomenon is observed for U L/Np� 1, for any number of spin components N .
Therefore, in this regime, the bare flux quantum of the system is evenly shared among all the par-
ticles. We note that, in the infinite U regime, the ground state reaches the highest degeneracy
(see inset of Fig.1).

As a global view of spinon creation in the ground state, we monitor, for different values of
U , N , and Np, the values of the flux φs at which the ground state energy in the system is no
longer given by a state with no spinons – Fig 2. Such values provide the number of spinons that
can be present in the ground state at a given U . At moderate U, spinon production is found to be
a universal function of the Np/N– see Fig. 2b; for systems with lower Np, spinons are generated
at a lower value of interaction. For large U , spinon production is dictated by Np, with a fine
structure that is determined by N : Systems with higher Np produce spinons at a lower value
of U; for fixed Np, systems with the lower value of Np/N generate spinons at a lower U– see
inset of Fig 2a. Such a phenomenon depends on the specific degeneracies of the system dis-
cussed previously, that facilitate spinon creation by increasing N . This feature emerges also by
analysing the dependence of the phenomenon on the interaction per particle U/Np – Fig. 2c.
We observe that N enhances the spinon production . While the number of spinons decreases
with Np for N = 2, such a trend appears to be reversed for N > 2. For intermediate values of
U , discontinuities arise in the curves in cases where Np/N > 1 (see Supplementary material).
These discontinuities correspond to jumps ∆X in the spinon character X . By comparing sys-
tems with the same Np but different N , we note that the discontinuities tend to be smoothed
out by increasing N and L (see Supplementary material). The value of∆X results to be parity
dependent.

4 Commensurate fillings regime

At integer filling fractions ν = 1, the system enters a Mott phase for U > Uc (thermodynamic
limit). In this phase, a spectral gap opens. For small U , the current is a nearly perfect sawtooth.
For our mesoscopic system, we observe that I(φ) is smoothed out, indicating the onset of the
Mott phase transition by increasing U (see Fig. 3a). Such a behavior is found to hold for
all N . The gap indicating the onset of the Mott phase transition is studied in Fig. 3c (see
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Figure 3: SU(N) persistent current I(φ) at integer filling. a) I(φ) for N = 3, L = 9
against flux φ. Insets display BA results of the Sutherland-Lai model for different
spinon configurations X for N = 3 and Np = L = 6 compared with exact diagonal-
ization. The ground state energy at small φ can only be reached with spinon Bethe
quantum numbers configuration. b) Maximal current Imax = maxφ(I) for N = 3
(lower curves) and N = 4 (upper curves, shifted by factor 20) plotted against U c)
Minimal energy gap Emin against U for N = 3 (lower curves) and N = 4 (upper
curves, shifted by 0.3). All curves with L > 9 were calculated with DMRG.

Supplementary material). For N = 2 such gap opens at U = 0; for N > 2 the spectral gap
opens at a finite value of U . Both the current amplitude Imax = maxφ(I) and ∆Emin are
suppressed exponentially for large U – Fig. 3b and Fig. 3c. ∆Emin is around the same specific
value U for larger system sizes (L ≥ 8), which depends on N (U ≈ 2 for N = 3, U ≈ 3 for
N = 4). We carry out a finite size scaling analysis [42] of the current I for values of U around
the Mott instability. In Fig. 4a, the persistent currents display a crossing point at a particular
value U∗ ≈ 2.9 (see also [43–46]); a clear data collapse is obtained in Fig. 4b.

The onset to a gapped phase affects the spinon creation process substantially. For N = 2
(U∗ = 0), spinon states have energies larger than the ground state energy for any value of U .
In contrast for N > 2, spinons can be created for U < U∗ (see inset of Fig. 3a); for U > U∗

spinon energies result to be well separated from the ground state energy. We note that the
Lai-Sutherland BA results can reproduce the qualitative features of the low lying states of
the model even for intermediate U obtained by numerics; as expected, for large U , BA and
numerics match exactly (see Supplementary material).

5 Conclusion

In this work, the coherence of a quantum gas of SU(N) interacting fermions as quantified by
the persistent current, is studied. The analysis is carried out both for incommensurate and
commensurate filling ν regimes. We highlight the nature of the ground state of the system by
corroborating the numerical analysis (exact diagonalization and DMRG) with Bethe ansatz,
which allows the access to the specific physical nature of the system’s states. For both incom-
mensurate and commensurate ν, the ground state can have spinon nature. Such a remarkable
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Figure 4: Finite size scaling of the persistent current for N = 3. a) Finite size critical
crossing of Imax at U∗ = 2.9 b) Data collapse. L = 6,9 were calculated with exact
diagonalization; larger L were obtained with DMRG. The critical indices are η≈ 0.2
and ζ≈ 0.7

phenomenon implies that the spin correlations can lead to a re-definition of the system’s effec-
tive flux quantum and, for incommensurate ν cases, yields the 1/Np fractional periodicity for
the persistent current observed at large U (see insets of Fig.1). The reduction of the effective
flux quantum indicates that a form of ‘attraction from repulsion’ can occur in the system, with
this feature being consistent with [47]. Despite the similarities, such a phenomenon follows
a very different route from the flux quantum fractionalization occurring for electrons with
pairing force interaction (that could compared to our study for N = 2 only) [37, 38] and for
bosons with attractive interaction (occurring as consequence of quantum bright solitons for-
mation) [48,49]: For SU(N) fermions the persistent current and the aforementioned redefinition
of the flux quantum reflects the coupling between the spin and matter degrees of freedom. The
ground state spinon creation displays a marked dependence on the number of spin compo-
nents N with distinctions between the N = 2 and N > 2 cases (see Fig. 2). At moderate U,
spinon production is found to be a universal function of Np/N – see Fig. 2b. For integer ν, spinon
creation is suppressed by increasing U . The sawtooth shape of the current is smoothed out
(see Fig. 3). This feature arises since the Mott gap hinders both the motion of the particles and
the creation of spinons in the ground state. Remarkably, a clear finite size scaling behaviour
is observed for N > 2, albeit the persistent current is a mesoscopic quantity (see Fig. 4). Such
a result provides an operative route for the detection of the Mott phase transition in SU(N)
systems, a notoriously challenging problem in the field.

We believe that systems in physical conditions and parameter ranges as discussed here, can
be realized experimentally on several physical platforms, including cold atom quantum tech-
nology [5,6,50,51]with the twist provided by atomtronics [2]. Recently, the persistent current
of SU(2) fermions was experimentally realized [52]. The momentum distribution through the
time of flight expansion of cold atom systems has been demonstrated to provide a precise probe
for persistent currents [2]. Most of the features that we observe in the persistent current are
expected to emerge in time of flight images of the system. Finite temperature is expected to
reduce the visibility of the time of flight images. Nonetheless, based on the predictions for
N = 2, the main features of the persistent current are expected to be feasibly detectable [53].
The temperature can activate transitions between different angular momentum states, thereby
causing a decay in the amplitude of the persistent current [54]. Recently, the dependence of
persistent currents on finite temperature effects has been investigated for SU(2) fermions [55].
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However, the actual decay of the persistent current of SU(N) fermions needs an in-depth study.
In particular, here we mention that it was previously demonstrated how the flux fraction-

alization could allow to approach the Heisenberg quantum limit for rotation sensing [49]. Our
study indicates how SU(N) systems can provide the platform for high precision sensors.
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Supplementary material

In the following sections, we provide supporting details of the theory discussed in the main
manuscript.

The derivation of the persistent current for SU(N) fermions is sketched out in the limit of
infinite interaction U . The analytics are carried out for the two integrable limits of the Hub-
bard model: incommensurate low filling fractions and integer fillings. A specific analysis is
devoted to the energy and consequently the persistent current at large but finite U . The per-
sistent current undergoes a non-trivial change of the bare flux quantum. This feature occurs
because of the presence of spinons in the ground state of the system. Spinons of different types
correspond to specific Bethe quantum numbers configurations. The Bethe quantum number
configurations needed for the given value of X are provided. We then proceed to discuss
|φs − φd | providing the figure of merit for the generation of spinons. Spinon generation is
inhibited for commensurate fillings due to a spectral gap that opens up for a finite value of U .
Lastly, the parity effect for incommensurate systems is considered.

Derivation of the Persistent Current in the limit of infinite U for SU(N) Fermions

The derivation of the persistent current for SU(N) fermions in the limit of infinite interaction
U , is sketched out for the two integrable limits of the SU(N) Hubbard model.

A system of interacting fermions with SU(N) spin symmetry residing on a chain of length L
threaded by an effective magnetic flux φ, is described by the Gaudin-Yang-Sutherland model
[20,27],

H =
N
∑

m=1

Nm
∑

i=1

�

− ı
∂

∂ x i,m
−

2π
L
φ

�2

+ 4U
∑

i< j,m,n

δ(x i,m − x j,n) , (3)

where Nm is the number of electrons with colour α of SU(N) symmetry with m= 1, . . . N . The
model is integrable by Bethe ansatz and is given by the following set of equations:

eı(k j L−φ) =
M1
∏

α=1

4
�

k j −λ(1)α

�

+ ıU

4
�

k j −λ
(1)
α

�

− ıU
, j = 1, . . . , Np , (4)
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Mr
∏

β 6=α

2
�

λ(r)α −λ
(r)
β

�

+ ıU

2
�

λ
(r)
α −λ

(r)
β

�

− ıU
=

Mr−1
∏

β=1

4
�

λ(r)α −λ
(r−1)
β

�

+ ıU

4
�

λ
(r)
α −λ

(r−1)
β

�

− ıU
·

Mr+1
∏

β=1

4
�

λ(r)α −λ
(r+1)
β

�

+ ıU

4
�

λ
(r)
α −λ

(r+1)
β

�

− ıU
,

α= 1, . . . , Mr ,

(5)

for r = 1, . . . , N − 1 where M0 = Np, MN = 0 and λ(0)
β
= kβ . Np denotes the number of

particles, Mr corresponds to the colour with k j and λ(r)α being the charge and spin momenta
respectively. The energy corresponding to the state for every solution of these equations is

E =
Np
∑

j
k2

j .

Taking the SU(3) case as an example, one obtains a set consisting of three non-linear equations

eık j L =
M1
∏

α=1

4(k j −λ(1)α ) + ıU

4(k j −λ
(1)
α )− ıU

, (6)

M1
∏

β 6=α

2(λ(1)α −λ
(1)
β
) + ıU

2(λ(1)α −λ
(1)
β
)− ıU

=
M0=Np
∏

β=1

4(λ(1)α − kβ) + ıU

4(λ(1)α − kβ)− ıU

M2
∏

β=1

4(λ(1)α −λ
(2)
β
) + ıU

4(λ(1)α −λ
(2)
β
)− ıU

, (7)

M2
∏

β 6=α

2(λ(2)α −λ
(2)
β
) + ıU

2(λ(2)α −λ
(2)
β
)− ıU

=
M1
∏

β=1

4(λ(2)α −λ
(1)
β
) + ıU

4(λ(2)α −λ
(1)
β
)− ıU

, (8)

which can be re-written in logarithmic form as

k j L + 2
M1
∑

α=1

arctan

�

4(k j −λ(1)α )
U

�

= 2π(I j +φ) , j = 1, . . . , Np , (9)

2
Np
∑

β=1

arctan

�

4(λ(1)α − kβ)

U

�

+ 2
M2
∑

a=1

arctan

�

4(λ(1)α − la)

U

�

− 2
M1
∑

β=1

arctan

�2(λ(1)α −λ
(1)
β
)

U

�

= 2πJα , α= 1, . . . , M1 , (10)

2
M1
∑

β=1

arctan

�4(la −λ
(1)
β
)

U

�

− 2
M2
∑

b=1

arctan

�

2(la − lb)
U

�

= 2πLa , a = 1, . . . , M2 , (11)

where λ(2)
β

was changed to la for the sake of convenience with I j , Jα and La being the Bethe
quantum numbers, the first being associated with charge momenta and the other two for
spin momenta. Carrying out a summation over α and over a for Equations (10) and (11)
respectively,

2
M1
∑

α=1

Np
∑

β=1

arctan

�

4(λ(1)α − kβ)

U

�

+ 2
M1
∑

α=1

M2
∑

a=1

arctan

�

4(λ(1)α − la)

U

�

− 2
M1
∑

α=1

M1
∑

β=1

arctan

�2(λ(1)α −λ
(1)
β
)

U

�

= 2π
M1
∑

α=1

Jα , (12)
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2
M2
∑

a=1

M1
∑

β=1

arctan

�4(la −λ
(1)
β
)

U

�

− 2
M2
∑

a=1

M2
∑

b=1

arctan

�

2(la − lb)
U

�

= 2π
M2
∑

a=1

La (13)

and noting that the last term on the left hand side in both of the above equations goes to zero,
leads one to the following expression

2
M1
∑

α=1

Np
∑

β=1

arctan

�

4(λ(1)α − kβ)

U

�

= 2π

� M1
∑

α=1

Jα +
M2
∑

a=1

La

�

. (14)

In the limit U
Np
→ ∞, the k j terms can be neglected since they are significantly smaller in

magnitude compared to the spin momenta. Consequently,

2
M1
∑

α=1

Np
∑

β=1

arctan

�

4λ(1)α
U

�

= 2π

� M1
∑

α=1

Jα +
M1
∑

a=1

La

�

=⇒

=⇒ 2
M1
∑

α=1

arctan

�

4λ(1)α
U

�

=
2π
Np

� M1
∑

α=1

Jα +
M1
∑

a=1

La

�

,

(15)

which upon substitution in Equation (9) yields

k j L = 2π

�

I j +
1

Np

� M1
∑

α=1

Jα +
M2
∑

a=1

La

�

+φ

�

. (16)

Squaring the above expression,

k2
j =

�

2π
L

�2
�

I2
j + 2I j

�

X
Np
+φ

�

+

�

X
Np

�2

+ 2φ
X
Np
+φ2

�

, (17)

the ground state energy of the system is given by

E0 =
Np
∑

j

k2
j =

�

2π
L

�2
� Np
∑

j

I2
j + 2

Np
∑

j

I j

�

X
Np
+φ

�

+ Np

�

X
Np

�2

+ Np

�

2φ
X
Np
+φ2

��

, (18)

assuming the I j quantum numbers are a consecutive integer/half-integer set, where

X =

� M1
∑

α=1
Jα +

M2
∑

a=1
La

�

. At zero temperature the persistent current of the system is defined

as

I(φ) = −
∂ E0

∂ φ
. (19)

Therefore, the persistent current in the limit of infinite U turns out to be

I(φ) = −2
�

2π
L

�2 Np
∑

j

�

I j +
X
Np
+φ

�

. (20)

In the case of SU(N) fermions, one would still have the same expression for the persistent

current. The only difference is that X =
N−1
∑

j

α j
∑

Jα j
.

The other integrable limit of the SU(N) Hubbard model, is for commensurate filling fractions
in the presence of a lattice. The model is described by the Lai-Sutherland model [14, 24]
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with the energy of the system being given by E = −2
Np
∑

j
cos k j . The Bethe ansatz equations

for this model are similar to the ones outlined in Equations (4) and (5). However, in this
case in Equation (4) there is sin k j instead of k j on the right hand side and for Equation (5)

one substitutes λ(0)
β
= sin kβ when required. By following the same procedure one arrives to

Equation (16). Substituting this expression in the energy of the system, one arrives to

E0(φ) = −Em cos

�

2π
L

�

D+
X
Np
+φ

��

(21)

and in turn the persistent current is of the following form,

I(φ) = −Em

�

2π
L

�

sin

�

2π
L

�

D+
X
Np
+φ

��

, (22)

where Em = 2
sin
�

Npπ
L

�

sin
�

π
L

� where D = Imax+Imin
2 , which comes about due to the I j being consecutive

for the ground state configuration. The above expression is a generalization of the ground
state energy for SU(2) fermions obtained in [21, 22]. In particular, at infinite U for the same
number of particles the pre-factor Em is the same for SU(N) as it was for SU(2). This in turn
implies that the ground state energy for fermions carrying different SU(N) spin, say SU(2)
and SU(3), will coincide if their phase shift is the same. The same also holds true for expres-
sion (18).

Corrections to the infinite U limit: derivation of the Energy Spin correction

In this section we generalize the energy spin correction, obtained for SU(2) fermions in [22],
for SU(N) fermions. At infinite U the system is highly degenerate, meaning that there are
multiple ways of choosing the spin rapidity Jα distribution [21, 22]. In order to find out the
lowest energy state at finite U when the degeneracy is lifted, leading order 1

U corrections have
to be introduced for the Bethe ansatz equations at infinite U . When U is at infinity, the charge
momenta k j are of order unity whilst the spin momenta λβ are of order U . With this picture

in mind, we expand the arctangent function in Equation (9) to leading order in
k j
U . Defining

the scaled variables xα as

xα = lim
U→∞

�

2λα
U

�

, (23)

through Taylor expansion one finds that

f (x + h) = arctan(2xα)− 2
k j

U
1

x2
α +

1
4

. (24)

Therefore, for large but finite U , the k j have leading 1
U corrections,

δk j = −2
k j

U L

M
∑

α

1

x2
α +

1
4

, (25)

where the xα has to satisfy the remaining Bethe equations which in the SU(3) case for example
are Equations (11) and (12). The total ground state energy reads

E =
Np
∑

j

(k j +δk j)
2 =

Np
∑

j=1

�

k2
j + 2k jδk j + (δk j)

2
�

. (26)
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Therefore, the leading order 1
U correction is given by

+2k jδk j = −
4

U L

Np
∑

j

k2
j

M
∑

α

1

x2
α +

1
4

= Je f f

M
∑

α

1

x2
α +

1
4

. (27)

In the presence of a lattice, the energy correction is of a similar form

+2δk j sin(k j) = Je f f

M
∑

α

1

x2
α +

1
4

, (28)

but Je f f = −
4

U L

� Np
∑

j=1
sin2 k j

�

in this case, whereby k j in Equation (27) was replaced by sin k j .

The leading order 1
U correction to the Bethe ansatz equations for SU(N) fermions has the same

expression as the one obtained for SU(2) in [22]. This was to be expected since Equation (9),
which is the primary equation relating the charge and spin rapidities, is the same for all SU(N).

Bethe Ansatz Spinon Configurations

To obtain the minimum energy for a given value of the fluxφ, one requires that the summation
over the spin rapidities satisfies the degeneracy point equation having the form [21,22]

2w− 1
2Np

≤ φ + D ≤
2w+ 1

2Np
, where X = −w , (29)

with w only being allowed to have integer or half-integer values due to the nature of the spin
rapidities.

Consider the case of three fermions with SU(3) spin. There are three sets of quantum num-
bers: one pertaining to the charge momenta I j and the other two belonging to the spin mo-
menta denoted as Jα1

and Jα2
. The ground state configuration for such a system is given as

I j = {−1, 0,1}, Jα1
= {−0.5, 0.5} and Jα2

= {0}. The correction of the spin quantum numbers
for all the values of the flux per Equation (27) is as follows

Table 1: Spin quantum number configurations with the flux for Np = 3 with SU(3)
spin with M1 = 2 and M2 = 1.

Magnetic flux Jα1
Jα2

X
0.0− 0.1 {−0.5,0.5} {0} 0
0.2− 0.5 {−1.5,0.5} {0} −1
0.6− 0.8 {−0.5,1.5} {0} +1
0.9− 1.0 {−0.5,0.5} {0} 0

As can be seen from Table (1), in cases where X = 0, the spin quantum number configuration
is different from the ground state one and ‘holes’ are introduced such that the spin quantum
number configurations are no longer consecutive, with the I j set remaining unchanged. There
are two notable points worthy of mention. The first is that one could have chosen a different
way to arrange the set of quantum numbers. An alternative arrangement is given by Table (2).
The target value X is reached via a different configuration, which in turn leads to a degenerate
state. Such a phenomenon is a characteristic property of SU(N) systems that is not present
for SU(2). As N increases, the number of degenerate states that are present in the system
increases due to the various Bethe quantum number configurations that one can adopt.
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Table 2: Alternative spin quantum number configurations with the flux for Np = 3
with SU(3) spin with M1 = 2 and M2 = 1.

Magnetic flux Jα1
Jα2

X
0.0− 0.1 {−0.5,0.5} {0} 0
0.2− 0.5 {−0.5,0.5} {−1} −1
0.6− 0.8 {−0.5,0.5} {+1} +1
0.9− 1.0 {−0.5,0.5} {0} 0

The other point concerns the value of X for φ = 0.6− 0.8 and φ = 0.9− 1.0. According to
Equation (29), X should be equal to −2 and −3 respectively. The reason behind this is due to
the fact that the degeneracy equation has to be applied within a specific flux range that de-
pends on the parity of the system: for a flux in the interval of −0.5 to 0.5 for Np = N(2n+ 1)
and in the range of φ = 0.0 to 1.0 in the case of Np = N(2n). The ground state energy of the
system is given by a series of parabolas in the absence of an effective magnetic flux. These
parabolas each have a well defined angular momentum l. They intersect at the degneracy
points, which is parity dependent, and are shifted with respect to each other by a Galilean
translation [56]. Consequently, when the magnetic flux piercing the system falls outside the
range outlined previously, one needs to change the I j quantum numbers in order to offset the
increase in angular momentum l that one obtains on going to the next energy parabola.

For positive φ one requires that the I j quantum numbers need to all be shifted by one to
the left. For example in the case considered above for φ > 0.5, the I j go from {−1,0, 1} to
{−2,−1,0} for 0.5 < φ < 1.5. On going to the next parabola, they would need to be shifted
again by one to the left. In the case of negative φ, the shift occurs to the right.

Note that there are other combinations of the quantum numbers, not outlined in Tables 1
amd 2, whose total sum reaches the target value of X . However, these configurations do not
give the lowest value for the energy as the ones mentioned, even though the value of X is
the same. At infinite U , the system is solely dependent on the value of X and not on the
arrangement of the spin quantum number configuration. Consequently, the system is highly
degenerate. This is also observed in the SU(2) case. However, as mentioned in the derivation
of the energy correction, the degeneracy is lifted on going to large but finite U and one is left
with only one combination that gives the lowest energy in the case of SU(2) systems. On the
other hand, for SU(N) systems whilst this degeneracy is also lifted, they also benefit from an
extra ‘source’ of degeneracy due to the different configurations of the Bethe quantum numbers
as shown in Tables 1 and 2.

Spinon creation in the ground state for SU(N) Fermions

The SU(N) Hubbard model is not integrable in all limits, unlike its SU(2) counterpart. The
Hamiltonian is integrable by Bethe ansatz for incommensurate and commensurate filling frac-
tions. In this section, we take a look at spinon creation for SU(N) fermions in these two
regimes.

For a system with incommensurate filling fractions, spinons are created with increasing U as
can be observed from Fig. 5. Level crossings occur between the ground state with no spinons
and levels with spinon character X , with the value of X obtained as outlined in the previous
section. The creation of spinons starts out around the degeneracy pointφd (see Fig. 5b), which
is parity dependent. The degeneracy point φd is 0 for Np = N(2n) and 0.5 for Np = N(2n+1)
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a)

d)

Figure 5: Spinon creation in incommensurate SU(N) fermionic systems. The case of
N = 3 is considered for Np = 3 fermions residing on a ring composed of L = 30 sites.
The above figures show how the Bethe ansatz energies need to be characterized by
spinon quantum numbers in order to have the actual ground state for various values
of the interaction U . All curves are calculated with the Bethe ansatz of the Gaudin-
Yang-Sutherland model and exact diagonalization.

systems. Comparing Fig. 5a and Fig. 5d, we observe that the elementary flux quantum φ0
has been renormalized in the latter case and that 1/Np periodicity is achieved, resulting in Np
cusps/parabolic-wise segments that corresponds to 3 in this case.

In the case of commensurate filling fractions, spinon creation is drastically impacted by a spec-
tral gap that opens around the transition to the Mott phase (see Fig. 7). The energy gap is
determined as the minimal gap for any flux ∆E = minφ(∆E). For the special case N = 2,
the gap opens at U = 0, whereas for any other N it opens at non-zero U indicating the on-
set to the Mott phase transition. Indeed if spinon creation in a system with SU(2) fermions
(Figs. 6a),d),g)) is compared to systems with SU(3) (Figs. 6b),e),h)) and SU(4) (Figs. 6c),f),i))
spin components, we note that no spinons are created in the SU(2) case for any value of U .
On the other hand for SU(N) systems, spinon creation is present in the system for values of
U below the threshold value of where the transition happens U∗, which was calculated to be
around 2.9. An interesting feature that pops up, is that after passing U∗, one no longer needs
to change the I j quantum numbers on going from one energy parabola to the other, as can be
seen by comparing (Figs. 6c),f)).

A good way to visualize the impact of SU(N) fermions on spinon creation in the ground state
is by having a figure of merit. By considering all the values of the flux φ at which spinons can
be created and noting down the value of the interaction U , at which there is a level crossing
between the ground state and an excited state, one can obtain this figure of merit. The curves
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d)

e)

g) h) i)

Figure 6: Spinon creation in commensurate SU(N) fermionic systems. The systems
taken in consideration are SU(2) with Np = 6 (left column), SU(3) with Np = 6
(middle column) and SU(4) with Np = 4 (right column). The different Bethe ansatz
energies of the Lai-Sutherland model characterized by different spinon configurations
needed to make up the ground state of the system are considered for different values
of interaction with U = 1 (top row), U = 5 (middle row) and U = 100 (last row). All
the presented results are obtained with Bethe ansatz of the Gaudin-Yang-Sutherland
model for Np = L. The Bethe ansatz states with no spinons, having two different
colours (orange and red), are used to indicate that the I j quantum numbers are
shifted due to being in different energy parabolas. In the case of U = 1, the Bethe
ansatz did not converge for certain values of the flux. This does not have an impact
on what we are trying to discuss here and so they were left out.

displayed in Fig. 8 are obtained by monitoring the spinon flux distance |φs − φd | at which
there are crossings between states with spinons and those without, with φs being the flux
at which spinons are created and φd being the degeneracy point. Figure depicts the spinon
creation flux distance against the interaction per particle U/Np. The inset denotes the data in
the intermediate U/Np regime. Due to the specific N−1 types of excitations that are inherently
present in SU(N) fermions for N > 2, spinon creation is facilitated with N . This can be clearly
seen from Figs. 9a),b). In the case where Np/N > 1, discontinuities arise in the intermediate
U regime as can be seen from the insets of Figs. 9a),b). The discontinuites arise due to jumps
∆X in the spinon character X and are absent when Np/N = 1 (inset of Fig. 9a). Additionally,
when comparing systems containing the same Np, the discontinuities tend to smoothen out
with increasing N and L. This can be clearly seen from Figs. 9b),c)

16

https://scipost.org
https://scipost.org/SciPostPhys.12.1.033


SciPost Phys. 12, 033 (2022)
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Figure 7: SU(N) energy gap at integer filling. Minimal energy gap Emin =minφ(∆E)
for different N against U at comparable system sizes (N = 2 and N = 4 with L = 8
and N = 3 with L = 9). All curves were obtained by exact diagonalization.

Figure 8: Figure of merit for spinon creation in the ground state of SU(N) fermions
against the interaction per particle U/Np. We consider the minimum value of U re-
quired for spinons to be created in the ground state for a given value of φ; all the
values of φ where a spinon is created are recorded. The displayed curves are cal-
culated by monitoring all the distances |φs −φd | at which the state with no spinons
crosses states with any spinon configurations where φs is the flux at which spinons
are created and φd is the degeneracy point. The inset contains the data in the inter-
mediate regime. The discontinuities observed in the intermediate U/Np regime when
Np/N > 1, are more pronounced for larger values of Np/N for a system with the same
Np but different N . All the presented results are obtained by Bethe ansatz of Gaudin-
Yang-Sutherland model forL = 40, with Np = 1(circles), 2(squares), 3(crosses) per
spin component, with N = 2, 3, 4, 5.
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a) b) c)

Figure 9: Comparison of spinon creation in SU(2) fermions and SU(N) fermions.
a) Spinon creation flux distance |φs −φd | against interaction U is considered for a
ring of L = 40 sites with Np = 4 fermions with N = 2 and N = 4 spin components,
where φs is the flux at which spinons are created and φd is the degeneracy point.
The intermediate U regime (inset) highlights the discontinuity present in the SU(2)
case. b) Spinon creation flux distance against interaction for a ring of L = 40 sites
with Np = 6 fermions with N = 2 and N = 3 spin components. The inset depicts the
disconituities for intermediate U in both systems. c) Spinon creation is for a system
with Np = 6 particles with N = 3 with various system sizes, L = 20, L = 30 and
L = 40. All the presented results are obtained with Bethe ansatz of the Gaudin-Yang-
Sutherland model.

Figure 10: Parity effect for SU(N) fermions. Ground state energy E0(φ) is plotted
against the flux φ for different N ranging from 3 (circles) to 5 (diamonds). Since
the energy is suppressed (increased) by the effective magnetic field, systems with
even (odd) number of particle per spin component are paramagnetic (diamagnetic).
All the presented results are obtained by Bethe ansatz of Gaudin-Yang-Sutherland
model for L = 30, with Np taken to be 1 particle and 2 particles per species for each
N corresponding to n= 0, 1 respectively.
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a) b)

c) d)

e) f)

g) h)

Figure 11: SU(N) persistent current and the corresponding ground state energy at
incommensurate filling for different interaction strengths U . a),b) Ground state en-
ergy and Persistent current for Np = 3 for U = 0.1. c),d) Ground state energy and
persistent current for Np = 3 for U = 10,000. e),f) Ground state energy and Per-
sistent current for Np = 6 for U = 0.1. g),h) Ground state energy and persistent
current for Np = 6 for U = 10,000. All curves are calculated with Bethe ansatz for
the Gaudin-Yang-Sutherland model with L = 20.
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Parity effect

Specific parity effects are observed for SU(N) fermions. Both for commensurate and incom-
mensurate fillings, the persistent current is found diamagnetic (paramagnetic) for ring systems
containing Np = (2n + 1)N (Np = (2n)N) fermions, with n being an integer. The nature of
the current can be deduced by looking at the ground state energy of the system, whereby if
the system has a minimum (maximum) at zero flux, then it is diamagnetic (paramagnetic) -
Fig. 10. Such phenomena generalize the 4n/4n+ 2 of spin-1

2 fermions [57]. Indeed, for both
non-integer and integer fillings fractions, we demonstrate how results of Byers-Yang, Onsager and
Leggett on the landscape of the system persistent current can be generalized to SU(N) fermions
[37–39].

The behaviour of this parity effect holds for small and intermediate U but it is washed out
at infinite U for incommensurate fillings or above a finite threshold of interaction for integer
fillings. Indeed, the character of the current is diamagnetic, since the fractionalization of the
bare flux quantum causes the ground state energy to always be a minimum at zero flux. In
the cases where the current already had a diamagnetic nature at small values of U , its nature
remains unchanged. The washing out of the persistent current can be clearly observed from
Fig. 11 whereby comparison of SU(3) systems with Np = 3 and Np = 6 clearly show the stark
difference in the nature of the current for the latter case between the different regimes of U .
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