
SciPost Phys. 12, 034 (2022)

Particle fluctuations and the failure of simple
effective models for many-body localized phases

Maximilian Kiefer-Emmanouilidis1,2, Razmik Unanyan1,
Michael Fleischhauer1 and Jesko Sirker2

1 Department of Physics and Research Center OPTIMAS,
University of Kaiserslautern, 67663 Kaiserslautern, Germany

2 Department of Physics and Astronomy and Manitoba Quantum Institute,
University of Manitoba, Winnipeg R3T 2N2, Canada

Abstract

We investigate and compare the particle number fluctuations in the putative many-body
localized (MBL) phase of a spinless fermion model with potential disorder and nearest-
neighbor interactions with those in the non-interacting case (Anderson localization) and
in effective models where only interaction terms diagonal in the Anderson basis are kept.
We demonstrate that these types of simple effective models cannot account for the par-
ticle number fluctuations observed in the MBL phase of the microscopic model. This
implies that assisted and pair hopping terms—generated when transforming the micro-
scopic Hamiltonian into the Anderson basis—cannot be neglected even at strong disor-
der and weak interactions. As a consequence, it appears questionable if the microscopic
model possesses an exponential number of exactly conserved local charges. If such a
set of conserved local charges does not exist, then particles are expected to ultimately
delocalize for any finite disorder strength.
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1 Introduction

It has been conjectured that one-dimensional quantum lattice models with short-range hop-
pings and interactions enter a many-body localized (MBL) phase for sufficiently strong poten-
tial disorder [1–18]. Similar to Anderson localization (AL) in non-interacting systems [19–22],
particles in an MBL phase are believed to be localized and particle number fluctuations in
any partition of the system in the thermodynamic limit should therefore strictly be bounded.
On the other hand, introducing local interactions for the original particles induces exponen-
tially decaying long-range interactions between the Anderson localized eigenstates of the non-
interacting model leading to a dephasing. As a consequence, in a quench starting from a
product state, Anderson eigenstates which are a distance ` apart become entangled after a
time t ∼ e`. This leads, in particular, to the logarithmic increase of the von-Neumann entan-
glement entropy of a partition, S ∼ `∼ ln t, which is considered to be one of the hallmarks of
an MBL phase [23,24].

If the particles in an MBL phase are indeed localized, then this type of physics can be
described by effective models [8,10,25–27]

Heff =
∑

n

εnηn +
∑

nm

Jnmηnηm + · · · , (1)

with random energies εn and exponentially many conserved charges [H,ηn] = 0 with
ηn = d†

ndn being the occupation numbers of the localized orbitals. Note that in contrast to
Bethe ansatz integrable systems which have only linearly many independent local charges,
any combination of operators ηi which are centered near a lattice site n is again a new lo-
cal conserved charge [8]. For a fully localized system there are as many independent local
charges as there are eigenstates. Furthermore, Jnm are non-local interactions which decay ex-
ponentially with the distance between the conserved charges. Due to the assumed localized
character of the orbitals, the operators dn in the effective model are related to the original
fermionic operators ci in the microscopic model by a unitary transformation. Here the Wan-
nier states |i〉w corresponding to the ith lattice site are replaced by a basis of localized orbitals
|n〉. Note that a representation of a given microscopic Hamiltonian by an effective Hamilto-
nian as given in Eq. (1) is always possible if no restrictions are placed on the form of the ηn, in
particular, if they are allowed to be non-local [8,28]. What makes this representation special
for the MBL case is that the ηn are all supposed to be local, i.e., these operators only have
support—up to exponentially small tails—on a finite number of adjacent lattice sites. If one
wants to take into account the renormalization of the orbitals of a non-interacting Anderson
localized system when adding interactions, then one has to ensure that this renormalization
does not ultimately lead to delocalized orbitals. Otherwise the statement that the microscopic
model can be represented by an effective model of the form (1) becomes meaningless. This is
an important point which we will return to later. In a number of recent publications, we have
provided evidence that the spinless fermion model

Hmicro = −J
∑

j

(c†
j c j+1 + h.c.) + V

∑

j

n jn j+1 +
∑

j

Djn j , (2)

shows particle number fluctuations in a partition which are not bounded in the thermody-
namic limit for any finite disorder strength D [29–32]. Here J is the hopping amplitude, V
the nearest-neighbor interaction, and the potential disorder is drawn from a box-distribution,
Dj ∈ [−D/2, D/2]. An unbounded growth of particle fluctuations was also noticed by Weiner
et al. [33], here the authors suggested an additional phase which is located between the ther-
mal and the MBL phase. Throughout this paper we use J as unit of energy and J−1 as unit of
time, setting ħh= 1. Furthermore, n j = c†

j c j is the particle number operator. This finding seems
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to indicate that the microscopic model (2) can never be fully described by an effective model
of the type given in Eq. (1) with operators ηn which are fully local. On the other hand, while
the model (1) does not show any quasi-particle fluctuations for ηn = d†

ndn local and conserved,
it does show, even in this case, bounded particle fluctuations in the original fermionic basis
because the quasi-particles dn are a local linear combination of the ci particles.

The goal of this study is to understand in detail the differences in the particle number
fluctuations between the interacting microscopic model (2), the Anderson case (V = 0), and
simple effective models of the type shown in Eq. (1). Here we want to already stress that it
is not known how to exactly construct the local integrals of motion ηn—otherwise the MBL
problem would be fully solved—and that various approximative schemes have been discussed
in the literature [26,27,34,35]. We note, furthermore, that while a fully controlled Schrieffer-
Wolff type transformation from a microscopic quantum spin chain with disorder to an effective
model as in Eq. (1) has been claimed to be proven in Refs. [11,12], these results are currently
under debate. Here we will concentrate on one particular numerical scheme which has been
used, for example, in Ref. [34] but we will argue that the qualitative findings are generic: even
if the orbitals ηn are further renormalized, the number fluctuations have to remain strictly
bounded as long as the η-orbitals remain local. Our paper is organized as follows: In Sec. 2
we discuss how we construct the effective model and define the measures used to quantify the
particle number fluctuations. In Sec. 3, we present and compare numerical data, obtained by
exact diagonalizations, for the time evolution of disorder-averaged fluctuation measures after
a quantum quench for all three models. We find, furthermore, that clear qualitative differences
between the microscopic model (2) and the effective model (1) emerge if we consider the time-
averaged fluctuations in the diagonal ensemble which are an upper bound for the true particle
variance. These results are presented in Sec. 4. The final section provides a short summary
and a discussion of the remaining open questions.

2 Effective models and particle fluctuations in a partition

If a non-ergodic, many-body localized phase of a microscopic Hamiltonian H does exist, then
there must be a basis in which this Hamiltonian is diagonal with matrix elements 〈n|i〉w which
are exponentially decaying away from a localization center. The Hamiltonian in this localized
basis then takes the form (1) and has exponentially many local conserved charges. In practice
it is, however, a very difficult task to find these conserved charges.

Here we consider a specific approximation to obtain an effective model which takes all
interactions between localized orbitals into account but assumes that these orbitals ηn are
the localized Anderson (V = 0) orbitals [34, 36]. I.e., the renormalization of the ηn due to
interactions is neglected. This approximation is expected to be reasonable, in particular, for
small interaction strengths V . Furthermore, the results will remain qualitatively valid as long
as the renormalized orbitals remain local which is required if the MBL phase is truly localized.
For the numerical calculations, the effective model is obtained as follows:

• Construct the many-body Hamiltonian for V = 0 for a fixed random disorder configura-
tion.

• Obtain the transformation matrix U which diagonalizes the Hamiltonian for V = 0.

• Now, starting from the microscopic interacting t-V model (2), transform it into the An-
derson basis using the transformation matrix U .

• Keep only the diagonal of this many-body Hamiltonian matrix. These are the contribu-
tions which are diagonal in the Anderson basis.
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• Use the transformation matrix U−1 to transform back into the original basis.

• For the obtained effective model, measures of particle fluctuations in the original micro-
scopic basis can now be calculated and directly compared to the full microscopic model
and the Anderson case.

We carry out all of these steps for each disorder realization separately by using exact diagonaliza-
tion (ED). The number of disorder configurations is then increased till the considered averages
are converged on the scales the results are presented on. In the effective model constructed
in this way, off-diagonal contributions such as assisted hopping terms ∼

∑

lmnηl d
†
ndm + h.c.

and pair hopping terms ∼
∑

klmn d†
kd†

l dmdn + h.c., which naturally arise when transforming
the interaction part of the microscopic model into the Anderson basis, are neglected. Put an-
other way, the comparison between the microscopic and the effective model will tell us if it
is justified to neglect these terms. Note that all three models are always considered at half
filling and for exactly the same disorder configuration. Disorder averages can be obtained by
performing these steps many times for different random configurations. Starting from initial
product states |Ψ(0)〉, we calculate time evolutions using these three Hamiltonians and mon-
itor the time dependence of particle fluctuations in a partition of the system. For normalized
initial states, the expectation value of an operator O is then given by 〈O(t)〉 = 〈Ψ(t)|O|Ψ(t)〉
with |Ψ(t)〉= exp(−iH t)|Ψ(0)〉. All expectation values shown in this paper are averages over
many disorder realizations. Time averages are denoted as O. We want to stress already here
that care has to be taken when exactly the time average is performed, a point which will be
important for the following discussions.

In order to investigate particle number fluctuations in these models, we partition the system
in two equal halves and calculate the probabilities p(n, t) of having n particles in one partition
at time t. Based on p(n) we can define the average particle number

〈N〉=
∑

n

p(n)n , (3)

and the number variance

∆N2 = 〈N2〉 − 〈N〉2 =
∑

n

p(n)(n− 〈N〉)2 . (4)

In addition, we will also consider Rényi number entropies [29]

S(α)N =
ln
∑

n pα(n)
1−α

, (5)

where α≥ 0 is a real parameter. In the limit α→ 1 we obtain, in particular, the von-Neumann
number entropy SN = −

∑

n p(n) ln p(n) [37–46], and in the limit α→ 0 the Hartley number
entropy.

3 Numerical results for time-dependent fluctuation measures

We use ED for finite systems to investigate the quench dynamics in the full interacting model,
the Anderson model, and the effective model, constructed as described in the previous section,
starting from a charge density wave state |Ψ(0)〉 where every second site is occupied.

3.1 Entanglement and number entropy

We concentrate first on the time evolution of the disorder-averaged entanglement entropy S
and number entropy SN. In Fig. 1, we show results for two different disorder and interaction
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Figure 1: Results for L = 12 averaged over 80000 samples with D = 36 and V = 0.2
(top row) and D = 20 and V = 2.0 (bottom row). Left column (a, b): entanglement
entropy, right column (c, d): number entropy. The largest entropies occur in the full
model (blue) while the entropies quickly saturate in the Anderson case (green). The
effective model is in between those two cases (orange).

strengths. In the Anderson case, both the entanglement and the number entropy saturate
quickly. In the full model, on the other hand, both quantities increase as S(t) ∼ ln t and
SN(t) ∼ ln ln t before saturation due to the finite size of the system sets in. For the effective
model, we also observe a logarithmic increase of the entanglement entropy for both parameter
sets shown which is expected due to the long-range dephasing terms in Eq. (1). For the number
entropy the situation is less clear. While for D = 36 and V = 0.2, Fig. 1(c), the effective model
shows a similar behavior as the full model, this is not the case for D = 20 and V = 2.0,
Fig. 1(d).

Clearly, a more detailed analysis of the scaling of the entropies with system size L, disorder
strength D, and interaction strength V is required. Let us first recapitulate what we have
found for the full microscopic model (2): For times 1/V � t � td — where td is a common
deviation time for both SN and Sent due to the finite size of the systems studied — we have
found that [31,32]

S = const+
A
D3

ln t , SN = const+
B
D3

ln ln t , (6)

with some constants A, B. The common deviation time scales as td ∼ exp(L/ξ)/V with
ξ ∼ 1/

p

D− Dc(V ) and is a finite-size effect. For the full microscopic model, the value of
SN where the scaling starts to deviate from ln ln t and saturation starts to set in is therefore
given by
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SN (td) = const+
B
D3

ln
�

L
Æ

D− Dc(V )− const
�

, (7)

and does depend on D, V , and L.
In the effective model, on the other hand, particle fluctuations only occur inside each

localized Anderson orbital, such that ∆N2 ® ξA/a. Here ξA is the Anderson localization
length and a the lattice parameter. The scaling of the Anderson localization length is known
from transfer matrix approaches, ξA = ξ0/D

2. Furthermore, we have found [31, 32] that
SN ∼ − ln

�

1− 2∆N2
�

leading to a saturation value of the number entropy in the effective
model given by

Ssat
N ∼ − ln

�

1− 2ξ0/D
2
�

. (8)

Together with the double logarithmic scaling for SN < Ssat
N this allows to define a saturation

time tsat for the effective model by

const+
B
D3

ln ln tsat = − ln
�

1− 2ξ0/D
2
�

+ const . (9)

If tsat < td—which will always be true if the system is large enough—then the number entropy
in the effective model at long times will saturate to a constant which only depends on D
but not on V and L. I.e., in sufficiently large systems, we expect a very different scaling
behavior in the full and the effective model. Here we want to also stress that this qualitative
picture is general and independent of the specific effective model considered. It does hold
with some finite length scale ξ0 as long as the η-orbitals are local. For D = 20 and L = 8−16
this difference in scaling can already be observed numerically as shown in Fig. 2. While the
saturation value does depend on V and L in the microscopic model, it is independent of V in
the effective model and does become independent of L for L ≥ 14. We conclude that at least
this effective model where the conserved charges are simply the unrenormalized Anderson
orbitals cannot account for the observed behavior of the number entropy in the microscopic
model. However, renormalizing the Anderson orbitals and thus the average localization length
could potentially account for the observed V dependence. In this case though, Eq. (9) would
still apply for the renormalized and V dependent correlation length ξ̃(V ). For systems large
enough such that tsat < td there will then still be an L-independent saturation. The only
scenario where the effective model could explain the finite-size data is if in the effective model
with renormalized—but still local—conserved charges the saturation time tsat is always larger
than the deviation time td for all system sizes accessible by ED. Such a scenario can never be
ruled out entirely based on numerical data for finite system sizes.

3.2 Hartley number entropy

The number entropy is not sensitive to large particle fluctuations occurring with a low proba-
bility. As discussed in more detail in earlier publications [31,32], a better suited quantity is the
Hartley number entropy SH , formally obtained from the Rényi number entropy, Eq. (5), in the
limit α→ 0. However, since the unitary dynamics of the system immediately couples the initial
state with all the other states in the same symmetry sector, it is crucial to introduce a cutoff
and only include probabilities p(n)> pc in order to obtain a quantity which measures particle
fluctuations in a meaningful way. While the cutoff pc is arbitrary, the qualitative behavior is the
same for different cutoffs as long as they are small. Here we will choose a cutoff pc = 10−10.
Furthermore, we cannot take the limit α→ 0 exactly in the simulations and instead choose a
small fixed parameter α= 10−3.

For the Hartley entropy we expect a more pronounced difference between a model where
the particle movement is limited to their (renormalized) Anderson orbitals and a model where
hopping processes between such orbitals can occur. I.e., in a localized model,
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Figure 2: Number entropies for L = 8,10 (200000 samples), L = 12 (40000 sam-
ples), L = 14 (4000 samples), and L = 16 (3000 samples) with D = 20: The full
model is shown in the top row, the effective model in the bottom row. Left column
(a, b): dependence on interaction V for L = 12, right column (c, d): dependence
on length L for V = 2.0. The insets show a zoom-in into the time frame where SN
saturates for the effective model.

p(n) ∼ exp(−|n− nmax|) at long times where nmax is the particle number where the distribu-
tion is maximal. As shown in Fig. 3, we indeed find that SH saturates quickly in the effective
model while the microscopic model shows a ln ln t increase up to the deviation time td . This
difference becomes more pronounced with increasing interaction strength V .

Furthermore, we find that similar to the number entropy the saturation value of SH in the
effective model is again independent of V and becomes independent of L for L ≥ 12 while it
does depend on both parameters in the full model, see Fig. 4. Note also that in the full model
the time scale where the Hartley entropy deviates from the ln ln t scaling is again td as for the
entanglement S(t) and the number entropy SN (t). I.e., in the microscopic model there is only
a single finite-size time scale controlling the dynamics of all entropies.

3.3 Particle number fluctuations

Finally, we also want to compare directly the particle number fluctuations ∆N2(t) in all three
models which is the quantity which we will study further in Sec. 4. As for the Rényi en-
tropies, we start by comparing all three models for two different sets of disorder and interac-
tion strengths, see Fig. 5. The results are very similar to those for the number entropy shown
in Fig. 1. While the effective model for small system sizes captures the particle number fluc-
tuations well for small interaction strengths V and large disorder D, this is not the case for
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Figure 3: Hartley number entropy for L = 12 and 80000 samples with D = 36 and
V = 0.2 (left) and D = 20 and V = 2.0 (right). The largest Hartley number entropies
occur in the full model (blue) while the Hartley number entropies quickly saturate
in the Anderson case (green). The effective model is in between those two cases
(orange).
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Figure 4: Hartley number entropies for L = 8,10 (200000 samples), L = 12 (40000
samples), L = 14 (4000 samples), and L = 16 (3000 samples) with D = 20: The full
model is shown in the top row, the effective model in the bottom row. Left column
(a,b): dependence on interaction V for L = 12, right column (c,d): dependence on
length L for V = 2.0. For the effective model the insets show a zoom-in into the time
frame where SH saturates.
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Figure 5: ∆N2 for L = 12 and 80000 samples with (a) D = 36 and V = 0.2 and (b)
D = 20 and V = 2.0. The largest particle number fluctuations occur in the full model
(blue) while the particle number fluctuations quickly saturate in the Anderson case
(green). The effective model is in between those two cases (orange).

larger system sizes or larger V and smaller D.
If we consider again in more detail the scaling with V and L as shown in Fig. 6, then we

also find results which are consistent with those for the number entropy shown in Fig. 2. In
particular, the particle fluctuations in the effective model at long times are again independent
of the interactions strength V in contrast to the full microscopic model. We also observe that
∆N2(t →∞) in the effective model starts to become independent of system size for L ≥ 14
which is consistent with the results for SN .

4 Time-averaged number fluctuations

Instead of evaluating the time evolution of disorder-averaged quantities for which it is difficult
to attain analytical insights, it is useful to consider time-averaged quantities. The reason why
this is helpful is that in the average over infinitely large times only diagonal terms in the
eigenbasis survive for linear observables

〈O〉 = lim
T→∞

1
T

∫ T

0

d t 〈Ψ(t)|O|Ψ(t)〉 (10)

=
∑

k,m

〈Ψ(0)|m〉〈m|O|k〉〈k|Ψ(0)〉 lim
T→∞

1
T

∫ T

0

d t exp[i(Em − Ek)t]

=
∑

k

|〈k|Ψ(0)〉|2 〈k|O|k〉 .

The infinite time average is thus the same as the one obtained when averaging using the
diagonal ensemble ρdiag =

∑

k pdiag(k)|k〉〈k| with pdiag(k) = |〈k|Ψ(0)〉|2. Note that in the last
line of Eq. (10) we have assumed that energy eigenvalues are non-degenerate. If this is the
case, then only eigenstates enter and the dependence on eigenenergies drops out. Different
models with the same diagonal state, such as the Anderson and effective model, then have the
same time-averaged expectation values.
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Figure 6: ∆N2(t) for the full and effective models for different interaction strength
V and system sizes L. For L = 8,10 200000 samples were used, for L = 12 40000
samples, for L = 14 4000 samples, and for L = 16 3000 samples, all with D = 20. The
full model is shown in the top row, the effective model in the bottom row. Left column
(a, b): dependence on interaction V for L = 12, right column (c, d): dependence
on length L for V = 2.0. The insets show a zoom-in into the time frame where ∆N2

saturates for the effective model.

4.1 Time-averaged characteristic function and diagonal-ensemble number fluc-
tuations

One of the difficulties in analyzing the time-averaged particle fluctuations ∆N2 is that this
quantity is not described by a diagonal ensemble. This can be seen as follows:

∆N2 = 〈N2〉 − 〈N〉2 = 〈N2〉 − 〈N〉2 (11)

= lim
T→∞

1
T

∫ T

0

d t
�

〈Ψ(t)|N2|Ψ(t)〉 − (〈Ψ(t)|N |Ψ(t)〉)2
	

=
∑

k,m

〈Ψ(0)|k〉〈k|N2|m〉〈m|Ψ(0)〉 lim
T→∞

1
T

∫ T

0

d t ei(Ek−Em)t

−
∑

q,m,k,l

〈Ψ(0)|q〉〈q|N |m〉〈m|Ψ(0)〉〈Ψ(0)|k〉〈k|N |l〉〈l|Ψ(0)〉

× lim
T→∞

1
T

∫ T

0

d t ei(Eq−Em+Ek−El )t .

If we now evaluate the time integrals, then we obtain
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∆N2 =
∑

m

|〈Ψ(0)|m〉|2〈m|N2|m〉 (12)

−
∑

q,m,k,l
Eq−Em+Ek−El=0

〈Ψ(0)|q〉〈q|N |m〉〈m|Ψ(0)〉〈Ψ(0)|k〉〈k|N |l〉〈l|Ψ(0)〉 .

If we assume, furthermore, that the system has no degenerate energy gaps—a common assump-
tion believed to be true for interacting systems [47–50]—then we can simplify the last term
further by using

lim
T→∞

1
T

∫ T

0

d t ei t(Eq−Em+Ek−El ) = δqmδkl +δqlδkm −δqkδqmδql . (13)

Note that the condition of non-degenerate energy gaps, i.e. the condition that Eq−Em = El−Ek
implies that either Eq = Em and El = Ek or Eq = El and Em = Ek, does not restrict the occurance
of degeneracies in the energy spectrum itself. While this condition is expected to be true in
systems where all subsystems interact with each other, it can be violated in systems where
subsystems become independent of the rest of the system. In particular, we expect that this
condition is not fulfilled in an Anderson localized system.

If Eq. (13) is fulfilled, then we can write the time average of the particle fluctuations as

∆N2 =
∑

m

|〈Ψ(0)|m〉|2〈m|N2|m〉 −
�

∑

m

|〈Ψ(0)|m〉|2〈m|N |m〉
�2

︸ ︷︷ ︸

=∆N 2

(14)

−
∑

k,m
k 6=m

|〈Ψ(0)|k〉|2|〈Ψ(0)|m〉|2|〈k|N |m〉|2 .

We note that even in this case the time averaged particle fluctuations are not described by a
diagonal ensemble average which correspond to the first line of Eq. (14) only and which are
given by

∆N 2 = 〈N2〉 − 〈N〉
2

. (15)

The difference of the diagonal-ensemble and time-averaged particle fluctuations is therefore

δN2 =∆N 2 −∆N2 = 〈N〉2 − 〈N〉
2

, (16)

i.e., it is due to the order in which the square of the expectation value and the time average are
taken. We note that the square function is convex and therefore, due to Jensen’s inequality,
δN2 ≥ 0. In a spectral representation, this difference corresponds to the last line in Eq. (14)
if condition (13) is fulfilled. However, independent of whether or not this condition holds,
∆N 2 is always an upper bound for the true particle fluctuations ∆N2 which is important for
the following discussion.

The diagonal-ensemble fluctuations ∆N 2 naturally arise when we consider the time-
averaged distribution of particle numbers N in one partition of the system. The number dis-
tribution at a time t is fully described by the characteristic function

χ(θ , t) = 〈Ψ(t)|exp
�

−iθN
�

|Ψ(t)〉 . (17)

The number distribution in a time-averaged state is then governed by the time-averaged char-
acteristic function

χ∞ (θ ) = lim
T→∞





1
T

T
∫

0

d t χ (θ , t)



 , (18)
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from which we can obtain all moments, e.g.

〈N〉= i
∂

∂ θ
χ∞ (θ )

�

�

�

θ=0
, (19)

or the variance

∆N 2 = 〈N2〉 −
�

〈N〉
�2
= −

∂ 2

∂ θ2
lnχ∞(θ )

�

�

�

θ=0
. (20)

In the Anderson model, the number fluctuations in one partition of the system after a
quench are known to attain a finite asymptotic value independent of system size and so will
the number fluctuations∆N 2 in the corresponding diagonal ensemble. Since the eigenbasis of
the considered effective model is identical to the Anderson basis, ∆N 2 in the effective model
agrees with that in the Anderson model provided the initial states are the same. As a conse-
quence, the time-averaged number fluctuations ∆N2 in the effective model are bounded from
above by a quantity that becomes system-size independent when approaching the thermody-
namic limit. We have therefore proven that the particle fluctuations in the effective model are
bounded.

Finally, we note that the two fluctuations, ∆N2 and ∆N 2 agree in the thermodynamic
limit if the condition of non-degenerate energy gaps (13) is fulfilled and if |〈Ψ(0)|m〉|2 ∼ 1/Ω
where Ω is the dimension of the Hilbert space. In this case, the second line in Eq. (14) will go
to zero. We can expect the latter condition to be fulfilled for typical initial states |Ψ(0)〉 which
have an overlap with a macroscopic number of eigenstates |m〉. This point is discussed further
in the Appendix.

4.2 Numerical results

According to the results derived above, the time-averaged particle fluctuations in the diago-
nal ensemble ∆N 2 are identical in the effective model and in the Anderson model. I.e., the
fluctuations do not change when adding interactions as long as the Anderson orbitals remain
unchanged and the interaction is diagonal in those orbitals. This is confirmed by the exact di-
agonalization results shown in Fig. 7 where we perform in addition an average over all initial
states which we indicate by 〈〈· · · 〉〉i .

The long-time average is increasing with system size for the full microscopic model while
it is decreasing towards a finite asymptotic value in the thermodynamic limit for the Anderson
and the effective model. This decrease of the long-time average in the Anderson and the
effective model is a consequence of a 1/L correction when averaging over all initial product
states. It is caused by certain initial states where, for example, all particles are initially in one
half of the system, see the Appendix for a more in depth discussion. These 1/L corrections also
affect the scaling of the number fluctuations in the full microscopic model and make it harder
to analyze the finite-size scaling. In fact, these corrections might be the reason that the increase
of the number fluctuations with system size in the interacting model has been overlooked in
the past. If an average over all initial states is performed, then the finite-size scaling in the
interacting model should better be considered relative to those in the non-interacting case.
This largely eliminates the common 1/L corrections and shows that the relative fluctuations
increase roughly with a power law or logarithmically with L, see Fig. 8. Alternatively, we can
pick a typical initial product state such as the charge density wave state studied earlier where
every second site is occupied. In this case, the finite-size corrections in the non-interacting
case are much smaller, see Fig. 9.

The numerical data presented here clearly demonstrate that the particle fluctuations in the
microscopic model—even for the small system sizes accessible in ED—cannot be accounted for
by the effective model which has particle fluctuations which are finite in the thermodynamic
limit and identical to those in the Anderson model.
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Figure 7: Particle fluctuations in a partition averaged over all intial states




∆N 2(T )
��

i =
1
T

∫ T
0 d t





∆N 2(t)
��

i for the interacting spinless fermion model
with disorder compared to those in the Anderson and the effective model. 10000
disorder realizations are used for L = 8, and 5000 for L = 10.

Figure 8: (a) Time-averaged particle fluctuations




∆N 2
��

i for the full microscopic
model in dependence of system size L averaged over all possible initial states. (b)

Same as in (a) but relative to the fluctuations in the non-interacting case




∆N 2
AL

��

i .
The data are averaged over 10000 disorder realizations.
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Figure 9: Same as Fig. 8 with the charge-density wave state as initial state instead of
averaging over all initial product states. For L ≤ 10 the data is averaged over 50000
disorder realizations, 20000 for L = 12, and 10000 for L = 14.

Let us now return to the relation between the true particle fluctuations ∆N2 and those
in the diagonal ensemble ∆N 2. We start by numerically investigating the validity of the as-
sumption (13) of non-degenerate energy gaps. In Fig.10(a), a comparison between ∆N2 cal-
culated with and without this assumption is shown for all three models. We note first that
∆N2 obtained from Eq. (14), i.e. assuming that Eq. (13) is valid, is identical for the Anderson
and the effective model because this quantity only depends on the eigenstates which remain
unchanged. However, while this quantity appears to become identical to the time-averaged
number fluctuations ∆N2 in the thermodynamic limit for the effective model, this is not the
case for the Anderson model. Physically, this can be understood as follows: While the An-
derson model separates into subsystems which—up to exponentially small contributions—are
independent, the interaction present in the effective model does couple these subsystems. The
assumption of non-degenerate energy gaps, Eq. (13), therefore fails for the Anderson model
while it appears to be fulfilled for the effective model due to the interaction induced dephasing.
For the full microscopic model the condition (13) also appears to hold.

In addition, we also expect that for typical initial states the last line in Eq. (14) goes to
zero in the thermodynamic limit. I.e., for the effective and the full microscopic model we
expect that ∆N 2 → ∆N2 for L →∞. Fig. 10(b) confirms this expectation showing that the
difference between the two fluctuation measures goes to zero exponentially with system size.

5 Summary and conclusions

In this paper, we have investigated the particle number fluctuations in a partition of the t-
V model with potential disorder. We have compared the results with the conservative case,
and with an effective model with exponentially many local charges, obtained by only keeping
interaction terms which are diagonal in the Anderson basis. Using various measures for the
particle fluctuations such as the number and Hartley entropies as well as the variance, we have
found that there are quantitative and qualitative differences when comparing the time evolu-
tion after a quantum quench for the interacting microscopic model and the effective model.
In particular, while the number fluctuations in the microscopic model depend on interaction
strength and increase as a function of system size for a fixed disorder strength, they are inde-
pendent of interaction strength at long times for the effective model and become independent
of system size, i.e. they saturate to a finite value, for the largest system sizes considered.
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Figure 10: (a) Comparison of the time-averaged fluctuations ∆N2 obtained from
Eq. (14) where the assumption (13) has been used (triangles) with ∆N2(t →∞)
(dots) where the assumption (13) has not been used for the full microscopic model,
the effective model, and the Anderson model for L = 12. (b) δN2, Eq. (16), for
the microscopic model and different interaction strengths. In all cases, the data are
consistent with δN2 ∼ exp(−L). For comparison, the Anderson case is shown as
well. For L ≤ 10 the data is averaged over 50000 disorder realizations, and 20000
for L = 12.

To investigate the difference in the particle number fluctuations between these two models
further, we have shown that the time-averaged particle number variance ∆N2 = 〈N2〉 − 〈N〉2

can be bounded from above by the variance ∆N 2 = 〈N2〉 − 〈N〉
2

obtained from the time-
averaged characteristic function. The latter is entirely determined by a diagonal-ensemble
average, while the first is not. I.e., ∆N 2 is independent of the eigenenergies and diagonal in
the eigenstates. Furthermore, we have shown that the difference between the two fluctuation
measures, δN2 = ∆N 2 −∆N2, vanishes in the thermodynamic limit if the system does not
have degenerate energy gaps and if we start the quench from a typical state which does have
non-vanishing overlaps with a macroscopic number of eigenstates. For the fluctuation mea-
sure∆N 2 a clear, qualitative difference between the microscopic and the effective model then
emerges: while the fluctuations in the effective model are exactly the same as in the Ander-
son model, do not depend on interaction strength, and do not increase with system size, the
fluctuations in the microscopic model are larger and do increase with system size.

Thus, clearly, the studied effective model does not account for the observed increase of
the particle number fluctuations with system size in the microscopic model. In other words,
when expressing the microscopic model in the Anderson basis, off-diagonal terms describing
assisted and pair-hopping processes—which naturally arise from the interaction—cannot be
neglected. The question then is, whether these terms simply renormalize the Anderson orbitals
while still allowing for an effective description of the form (1) with local conserved charges
or whether such a renormalization ultimately leads to these charges becoming non-local. In
the latter case, the disordered many-body system would not be localized. We note that the
qualitative picture for the number fluctuations in the effective model remains valid as long as
the η-orbitals are local charges. In this sense, our results are general. Based on the numerical
data for the accessible system sizes we also believe that it is fair to say that there is no evidence
that∆N 2 and therefore∆N2 in the disordered t-V model is bounded. If an MBL phase and an
effective model with local conserved charges describing this model do exist, then the Anderson
orbitals are strongly renormalized and become much less local even for strong disorder and
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already for weak interactions. Such a strong initial renormalization is unexpected and needs
to be explained. In this context we also note that within the last year the critical disorder
strength in the model (2) has been strongly revised from Dc ∼ 16 to Dc > 28 [51] and very
recently to Dc > 80 [52]. This seems to imply that all previous results discussing the phase
transition at Dc ∼ 16 should be discarded. We note, in particular, that these results further
support our results in Refs. [30, 31] that the system is not localized up to at least D ∼ 40.
While we already responded to the criticism of our results by Luitz and BarLev [53] in detail
in [31] our current study has brought to light another issue: Performing averages over all
initial product states leads to a 1/L correction to ∆N 2 with a negative sign which is present
already in the non-interacting Anderson case and which can disguise the increase of∆N 2 with
system size in the interacting case. This might explain why this increase has been missed in
the past including in [53]. Lastly, we remark that if we assume that the overlap of a typical
initial state with each eigenstate is ∼ 1/Ω, where Ω is the dimension of the Hilbert space, then
∆N 2 ∼ 1

Ω

∑

m〈m|N
2|m〉− 1

Ω2 (
∑

m〈m|N |m〉)
2. I.e, under this assumption the question whether

or not ∆N 2 is bounded is reduced to an investigation of the fluctuations in the eigenstates of
the system which might be a useful simplification for further investigations.
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Appendix

A.1 Relation between ∆N 2 and ∆N 2

The number fluctuation ∆N 2 = −∂ 2
θ

lnχ∞(θ )
�

�

θ=0 obtained from the time-averaged charac-
teristic function are identical to the number fluctuations in the diagonal ensemble
ρdiag =

∑

m pdiag(m)|m〉〈m|with probabilities pdiag(m) = |〈m|Ψ(0)〉|2 determined by the initial

state |Ψ(0)〉. They are an upper bound to the time-averaged number fluctuations ∆N2, since

δN2 =∆N 2 −∆N2 = 〈N〉2 − 〈N〉
2
=
�

〈N〉 − 〈N〉
�2
≥ 0 . (21)

In the following we show that δN2 vanishes in the thermodynamic limit if condition (13)
holds. To this end, we note that in this case δN2 can be written as (see Eq. (14))

δN2 =
∑

k,m
k 6=m

|〈Ψ(0)|k〉|2|〈Ψ(0)|m〉|2|〈k|N |m〉|2 =
∑

k,m

pdiag(k)pdiag(m)Ckm , (22)

where C is the non-negative, symmetric matrix of overlaps
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C =

















0 |〈1|N |2〉|2 . . |〈1|N |Ω〉|2

|〈1|N |2〉|2 0 . . |〈2|N |Ω〉|2

. . .

. . .

|〈1|N |Ω〉|2 |〈2|N |Ω〉|2 . . 0

















. (23)

Ω is the dimension of the restricted Hilbert space with fixed total number of particles. In
our case Ω = L!/

�� L
2

�

!
�2

, which in the thermodynamic limit L → ∞ grows exponentially
Ω∼ L−1/22L .

The maximum eigenvalue of C is finite and can be bounded by [54]

min
m

�

∆N2
m

�

=min
m

∑

k

Cmk ≤ λmax (C)≤max
m

∑

k

Cmk =max
m

�

∆N2
m

�

, (24)

where
∆N2

m = 〈m|N
2 |m〉 − 〈m|N |m〉2 ≤ γL2 , (25)

is the fluctuation of particle number in the chosen partition in the eigenstate |m〉. γ is a system-
size independent constant. Hence δN2 can be bounded from above by

δN2 ≤ λmax (C)
∑

m

pdiag(m)
2 . (26)

∑

m pdiag(m)2 is the inverse participation ratio. In general, a typical initial state |Ψ(0)〉 overlaps
with many eigenstates of the system making

∑

m p(m)2 very small. Indeed, as has been shown
in [55], when averaging over all initial states with a fixed total number of particles N0 = L/2,
denoted by 〈〈. . . 〉〉i , one finds

¬¬∑

m

pdiag(m)
2
¶¶

i
<

2
Ω

. (27)

Thus

δN2 <
2
Ω

max
m

�

∆N2
m

�

−→
L→∞

0 . (28)

We conclude that—provided the condition of non-degenerate energy gaps (13) is fulfilled—the
time-averaged particle number fluctuations averaged over all initial product states, 〈〈∆N2〉〉i ,
and the corresponding diagonal-ensemble fluctuations 〈〈∆N 2〉〉i approach each other expo-
nentially with increasing system size L. Since condition (13) is fulfilled for the effective and
the full microscopic model we found indeed δN2 ∼ e−L as shown in Fig.10(b), while δN2 > 0
remains finite in the Anderson model.

A.2 Influence of initial states on the scaling of number fluctuations

In Fig. 7 we have seen that the diagonal-ensemble number fluctuations when averaged over
all initial product states decrease when going from L = 8 to L = 10 for the Anderson and
effective model. This scaling behavior, which points to a potential problem when analyzing
data obtained after averaging over initial states, is at first glance surprising and different from
the interacting model. It is an artifact of initial states with large number fluctuations.

In Fig. 11 we have plotted the diagonal-ensemble fluctuations for the Anderson model as
function of system size L for an initial density-wave state, i.e. a state where every second site is
occupied, and for an average over all random initial states. While for the initial density-wave
state∆N 2 increases with system size towards an asymptotic value which is quickly reached, as
naively expected, it decreases towards a system-size independent value when we average over
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Figure 11: Particle fluctuations in a partition for the Anderson model for an initial
density-wave state ∆N 2 (green triangles) and when averaged over all initial states
〈〈∆N 2〉〉i (blue dots). To perform the initial state average we used Eq. (30). The
data has been averaged over 50000 disorder realization for L ≤ 100 and 10000 for
L > 100. For the calculation of ∆N 2 starting from a charge density wave common
free fermion methods have been used.

all initial states. This∼ 1/L decrease is due to rare initial states with large number fluctuations
whose relative weight becomes smaller with increasing system size. This is illustrated in Fig. 12
where we show a histogram of particle fluctuations in eigenstates of the Anderson model. One
clearly recognizes that eigenstates with large fluctuations of the particle number have a much
larger probability in smaller systems. When an average over all initial states is taken, also
states are included that have a sizable overlap with these eigenstates which results in a larger
value of 〈〈∆N 2〉〉i for small systems.

The scaling 〈〈∆N 2〉〉i ∼ L/(L − 1) seen in Fig. 11, can be understood from a toy model
of localization. Let us consider a system with adjacent, spatially non-overlapping, localized
orbitals extending over exactly two lattice sites. We cut the system in two partitions assuming
that the cut splits the central orbital into two halves and calculate the fluctuations of particle
numbers in one partition in an arbitrary eigenstate. The eigenstates are product states of all
orbitals occupied by zero, one or two particles with the constraint of a fixed total particle
number. We here assume half filling, i.e. N = L/2 particles in L lattice sites. Then only those
eigenstates contribute to the number fluctuations where exactly one particle is in the central
orbital. The probability of such states can easily be computed from combinatorics. It is given
by the number of eigenstates where L/2−1 particles are distributed among the L−2 remaining
lattice sites outside of the central orbital divided by the total number of states, leading to

〈〈∆N 2〉〉i ∼

�2
1

�� L−2
L/2−1

�

� L
L/2

� =
L

2(L − 1)
. (29)

A more rigorous derivation of the particle number fluctuations 〈〈∆N 2〉〉i averaged over
initial states can be done for the Anderson model [56]. This leads to the following expression

〈〈∆N 2〉〉i =
L2

8 (L − 1)

�

1−
2
L

L
∑

m=1

〈〈α2
m〉〉

�

, (30)
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Figure 12: Histogram of particle number fluctuations in eigenstates |α〉 of the Ander-
son model for different system sizes L. One clearly recognizes that eigenstates with
large fluctuations become less and less important when increasing the system size.
In all plots we have used 5000 disorder realizations.

where 〈〈. . . 〉〉 is used to stress that a disorder average is taken over α2
m with

αm =
L
∑

p=1

�

�〈p|m〉w
�

�

2
Wpp , (31)

where Wpp = 〈p|
�∑L/2

j=1 | j〉w w〈 j|
�

|p〉 is the overlap of the pth Anderson orbital with the parti-
tion of length L/2. Eq.(30) is also used in the numerical simulation of the diagonal-ensemble
number fluctuations averaged over all initial states, shown in Fig. 11. In the thermodynamic
limit, the 〈〈αm〉〉 can be approximated as

〈〈αm〉〉 ≈
�

1− βm, for m≤ L
2

βm, for m> L
2

, (32)

where

βm =
L
∑

p=1

Cp

exp
�

1/4l(p)
�

− 1
exp

§

−
|m− L/2|

4l(p)

ª

. (33)

Cp is a normalization constant of order unity and l(p) is the localisation length of the pth
Anderson orbital

�

�

�〈p|k〉w
�

�

�

2
∼ exp

�

−
|p− k|
4 l(p)

�

, for |p− k| � l(p) . (34)

From Eq. (30) one can then derive the following upper and lower bounds

L
L − 1

lmin

2
exp

�

−
1

4lmin

�

≤ 〈〈∆N 2〉〉i ≤
L

L − 1
lmax , (35)

where lmin(lmax) is the minimum (maximum) of l(p).
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[25] M. Serbyn, Z. Papić and D. A. Abanin, Local conservation laws and the struc-
ture of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013),
doi:10.1103/PhysRevLett.111.127201.

[26] J. Z. Imbrie, V. Ros and A. Scardicchio, Local integrals of motion in many-body localized
systems, Ann. Phys. 529, 1600278 (2017), doi:10.1002/andp.201600278.

[27] A. K. Kulshreshtha, A. Pal, T. B. Wahl and S. H. Simon, Behavior of l-bits
near the many-body localization transition, Phys. Rev. B 98, 184201 (2018),
doi:10.1103/PhysRevB.98.184201.

[28] F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated in-
tegrable quantum spin chains, J. Stat. Mech. 064002 (2016), doi:10.1088/1742-
5468/2016/06/064002.

[29] M. Kiefer-Emmanouilidis, R. Unanyan, J. Sirker and M. Fleischhauer, Bounds on the en-
tanglement entropy by the number entropy in non-interacting fermionic systems, SciPost
Phys. 8, 083 (2020), doi:10.21468/SciPostPhys.8.6.083.

[30] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Evidence for un-
bounded growth of the number entropy in many-body localized phases, Phys. Rev. Lett.
124, 243601 (2020), doi:10.1103/PhysRevLett.124.243601.

[31] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Slow delocal-
ization of particles in many-body localized phases, Phys. Rev. B 103, 024203 (2021),
doi:10.1103/PhysRevB.103.024203.

21

https://scipost.org
https://scipost.org/SciPostPhys.12.1.034
https://doi.org/10.1103/PhysRevX.5.041047
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1142/7663
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1103/PhysRevB.98.184201
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.1088/1742-5468/2016/06/064002
https://doi.org/10.21468/SciPostPhys.8.6.083
https://doi.org/10.1103/PhysRevLett.124.243601
https://doi.org/10.1103/PhysRevB.103.024203


SciPost Phys. 12, 034 (2022)

[32] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Unlimited growth
of particle fluctuations in many-body localized phases, Ann. Phys. 435, 168481 (2021),
doi:10.1016/j.aop.2021.168481.

[33] F. Weiner, F. Evers and S. Bera, Slow dynamics and strong finite-size effects in many-body
localization with random and quasiperiodic potentials, Phys. Rev. B 100, 104204 (2019),
doi:10.1103/PhysRevB.100.104204.

[34] G. De Tomasi, F. Pollmann and M. Heyl, Efficiently solving the dynamics of
many-body localized systems at strong disorder, Phys. Rev. B 99, 241114 (2019),
doi:10.1103/PhysRevB.99.241114.

[35] R. Wortis and M. P. Kennett, Local integrals of motion in the two-site Anderson-Hubbard
model, J. Phys.: Condens. Matter 29, 405602 (2017), doi:10.1088/1361-648x/aa818e.

[36] L.-N. Wu, A. Schnell, G. De Tomasi, M. Heyl and A. Eckardt, Describing many-
body localized systems in thermal environments, New J. Phys. 21, 063026 (2019),
doi:10.1088/1367-2630/ab25a4.

[37] I. Klich and L. S. Levitov, Scaling of entanglement entropy and superselection rules,
arXiv:0812.0006.

[38] H. M. Wiseman and J. A. Vaccaro, Entanglement of indistinguishable par-
ticles shared between two parties, Phys. Rev. Lett. 91, 097902 (2003),
doi:10.1103/PhysRevLett.91.097902.

[39] M. R. Dowling, A. C. Doherty and H. M. Wiseman, Entanglement of indistin-
guishable particles in condensed-matter physics, Phys. Rev. A 73, 052323 (2006),
doi:10.1103/PhysRevA.73.052323.

[40] N. Schuch, F. Verstraete and J. I. Cirac, Nonlocal resources in the presence of superselection
rules, Phys. Rev. Lett. 92, 087904 (2004), doi:10.1103/PhysRevLett.92.087904.

[41] H. F. Song, C. Flindt, S. Rachel, I. Klich and K. Le Hur, Entanglement entropy from charge
statistics: Exact relations for noninteracting many-body systems, Phys. Rev. B 83, 161408
(2011), doi:10.1103/PhysRevB.83.161408.

[42] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie and K. Le Hur, Bipartite
fluctuations as a probe of many-body entanglement, Phys. Rev. B 85, 035409 (2012),
doi:10.1103/PhysRevB.85.035409.

[43] R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free
fermionic systems, J. Phys. A: Math. Theor. 52, 475302 (2019), doi:10.1088/1751-
8121/ab4b77.

[44] S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped
integrable systems: A corner transfer matrix approach, SciPost Phys. 8, 046 (2020),
doi:10.21468/SciPostPhys.8.3.046.

[45] S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in
two dimensional free quantum field theories, J. High Energy Phys. 08, 073 (2020),
doi:10.1007/JHEP08(2020)073.

[46] K. Monkman and J. Sirker, Operational entanglement of symmetry-
protected topological edge states, Phys. Rev. Research 2, 043191 (2020),
doi:10.1103/PhysRevResearch.2.043191.

22

https://scipost.org
https://scipost.org/SciPostPhys.12.1.034
https://doi.org/10.1016/j.aop.2021.168481
https://doi.org/10.1103/PhysRevB.100.104204
https://doi.org/10.1103/PhysRevB.99.241114
https://doi.org/10.1088/1361-648x/aa818e
https://doi.org/10.1088/1367-2630/ab25a4
https://arxiv.org/abs/0812.0006
https://doi.org/10.1103/PhysRevLett.91.097902
https://doi.org/10.1103/PhysRevA.73.052323
https://doi.org/10.1103/PhysRevLett.92.087904
https://doi.org/10.1103/PhysRevB.83.161408
https://doi.org/10.1103/PhysRevB.85.035409
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.1007/JHEP08(2020)073
https://doi.org/10.1103/PhysRevResearch.2.043191


SciPost Phys. 12, 034 (2022)

[47] A. J. Short, Equilibration of quantum systems and subsystems, New J. Phys. 13, 053009
(2011), doi:10.1088/1367-2630/13/5/053009.
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