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Abstract

The f-functions describe how couplings run under the renormalization group flow in
field theories. In general, all couplings that respect the symmetry and locality are gener-
ated under the renormalization group flow, and the exact renormalization group flow is
characterized by the ff-functions defined in the infinite dimensional space of couplings.
In this paper, we show that the renormalization group flow is highly constrained so that
the B-functions defined in a measure zero subspace of couplings completely determine
the p-functions in the entire space of couplings. We provide a quantum renormalization
group-based algorithm for reconstructing the full f-functions from the f3-functions de-
fined in the subspace. As examples, we derive the full -functions for the O(N) vector
model and the O;(N) x Ox(N) matrix model entirely from the f3-functions defined in the
subspace of single-trace couplings.
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1 Introduction

One of the greatest advances in modern theoretical physics is the invention of the renormal-
ization group (RG) [1-12]. The idea is to organize a complicated many-body system in terms
of length scales of constituent degrees of freedom. Thanks to locality that greatly limits the
way short-distance modes influence long-distance modes, one can understand coarse grained
properties of the system in terms of effective field theories without considering all degrees of
freedom in the system. This opens the door for systematic understandings of many physical
phenomena that are otherwise too difficult to study theoretically.

The central object in RG is the f-function. It describes how an effective theory gradu-
ally changes as the length scale is increased. The renormalization of the couplings for long-
wavelength modes is driven by fluctuations of short-wavelength modes, which creates the RG
flow in the space of theories. While the B-function contains the full information on the fate of
a system in the infrared limit, it is in practice hard to keep track of the exact RG flow. Even
if one starts with a relatively simple theory with a small number of couplings at a short dis-
tance scale, all couplings that respect symmetry and locality are eventually generated at larger
distances. In general, one has to deal with the RG flow in the infinite dimensional space of
couplings.

Therefore, it is desirable to take advantage of constraints that f-functions satisfy if there
is any. It is easy to see that not all S-functions are independent around free field theory fixed
points. For example, the scaling dimension of ¢2" is n times that of ¢? at the Gaussian fixed
point. Therefore, the 3-function of the former is fixed by that of the latter to the linear order
in the sources for the operators. It is then natural to ask whether such constraints exist for
interacting theories and, if so, what the general rules are. There are proposals under special
circumstances [13,14]. In this paper, we show that -functions in all field theories are highly
constrained : the f-functions defined in a measure zero subspace of couplings completely fix the
B-functions in the entire space of couplings.

Our result is beyond the well known constraint for beta functions present in continuum
field theories. Consider a field theory defined non-perturbatively with a finite UV cutoff. Ex-
amples include field theories regularized on lattice. While infinitely many couplings can be
turned on in the UV theory, at energy scales much smaller than the UV cutoff all couplings
are fixed by a finite number of marginal and relevant couplings. As a result, the flow of most
couplings is controlled by the marginal and relevant couplings in the low-energy limit. How-
ever, the constraints discussed in our paper applies to 3-functions at all energy scales including
the scales that are comparable to the UV cutoff. At high energy scales close to the UV cutoff,
irrelevant couplings can be tuned independently, and they are not fixed by the marginal and
relevant couplings through the usual constraint that emerges only in the low-energy limit. In
this paper, we are concerned about the general kinematic constraints that 3-functions obey at
all energy scales.

To uncover the constraints that -functions satisfy in general field theories, we use the
quantum RG [15,16]. Quantum RG reformulates the Wilsonian RG by projecting the full RG
flow onto a subspace of couplings. The subspace is spanned by couplings for the so-called
single-trace operators. Single-trace operators are basic building blocks of general operators
in that all operators that respect the symmetry can be written as composites of single-trace
operators. In large N theories, the set of single-trace operators consists of the operators that
involve one trace of flavor or color indices [17]. However, the notion of single-trace operators
can be defined in any field theory once the fundamental degrees of freedom and the symmetry
of the theory are fixed [16]. Although quantum RG does not include composites of the single-
trace operators (called multi-trace operators) directly, it exactly takes into account their effects
by promoting the single-trace couplings to dynamical variables. The pattern of fluctuations
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Figure 1: RG flow of a toy model considered in Sec. 5.1. J;(J,) is the single-trace
(double-trace) coupling. The B-functions in the J, = 0 subspace, which is denoted as
the red horizontal line, fix the full 3-functions in the space of J; and J,. The full -
functions exhibit rich structures that include one stable and one unstable fixed points
away from the single-trace subspace, which are fully encoded in the f-functions
within the subspace of J, = 0.

of the single-trace couplings precisely captures the multi-trace couplings. As a result, the
classical Wilsonian RG flow defined in the full space of couplings is replaced with a sum over
RG paths defined in the subspace of single-trace couplings in the quantum RG. The 3-functions
of the Wilsonian RG is then replaced with an action for dynamical single-trace couplings that
determines the weight of fluctuating RG paths. The bulk theory constructed from quantum
RG is free of UV divergence as far as the original theory is regularized.

For a D-dimensional field theory, the theory for the dynamical single-trace couplings takes
the form of a (D + 1)-dimensional theory, where the dynamical couplings depend on the D-
dimensional space and the RG scale. The theory includes dynamical gravity because the cou-
pling functions for the single-trace energy-momentum tensor is nothing but a metric that is
promoted to a dynamical variable in quantum RG [16]. For this reason, quantum RG provides
a natural framework for the AdS/CFT correspondence [18-20] in which the extra dimension
in the bulk is interpreted as the RG scale [21-28].

In the Wilsonian RG, a field theory is represented as a point in the space of all couplings.
In quantum RG, a field theory is represented as a wavefunction defined in the subspace of
the single-trace couplings. The peak position of the wavefunction indicates the value of the
single-trace coupling. Around the peak, the second and higher moments of the fluctuating
single-trace coupling contain the information on the double-trace and higher-trace couplings.
The classical flow of couplings in the Wilsonian RG is replaced with a quantum evolution of the

In order to construct a background independent gravitational theory for fluctuating couplings in quantum RG,
one needs to use a coarse graining scheme [29] that does not introduce a fixed background [15,30] and satisfy
a consistency condition [31,32]. For our purpose of demonstrating the existence of constraints of f-functions,
however, the issue is not crucial. The quantum RG is an exact reformulation of the Wilsonian RG in any coarse
graining scheme irrespective of whether the scheme is background independent or not.
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wavefunction in quantum RG. The bulk theory that governs the quantum RG flow is entirely
fixed by the B-functions defined in the subspace of single-trace couplings [15,16]. Since the
wavefunction at an RG scale encodes the full information on all couplings at the scale, the bulk
theory fully determines the f3-functions of all multi-trace couplings. This implies that the full
B-functions is fixed by B-functions defined in the subspace of single-trace couplings. A simple
example that illustrates the main result of this paper is shown in Fig. 1.

In this work, we provide a general algorithm for extracting the full 3-functions from the
pB-functions defined in the subspace of single-trace couplings. The algorithm consists of the
following steps. First, we construct the bulk theory for quantum RG from the 3-functions
defined in the space of single-trace couplings. Second, we solve the (functional) Schrodinger
equation that evolves an initial state fixed by the UV theory to IR. Finally, we identify the
ground state of the quantum RG Hamiltonian as the IR fixed point of the theory, and states
with local excitations as the IR fixed point deformed with local operators. This allows us to
extract the full B-functions from the spectrum of the quantum RG Hamiltonian. This dictionary
in the algorithm is summarized in Tab. 1.

Table 1: Dictionary of correspondence between boundary field theory and bulk the-
ory.

boundary field theory bulk theory for quantum RG
RG time (logarithmic length scale) extra bulk dimension
single-trace coupling (operator) dynamic field (conjugate momentum)
Boltzmann weight in the partition function bulk state

RG transformation radial quantum evolution
stable fixed point ground state of the RG Hamiltonian

local scaling operators local excitations
scaling dimensions spectrum of the RG Hamiltonian

The rest of the paper is organized as follows. In Sec. 2, we present the main result of our
paper using two concrete models : the O(N) vector model and the O; (N)x Oz (N ) matrix model
regularized on a lattice. Through quantum RG, the exact RG flow is mapped into quantum
evolution of a wavefunction defined in the space of single-trace couplings. We show that
the resulting quantum theories from quantum RG flow of the regularized field theories are
finite and well defined. We explicitly compute the full -functions for these models from the
pB-functions defined in the subspace of single-trace couplings. Eq. (37) and Eq. (60) are
the main results. In Secs. 3 and 4, we generalize the results obtained through the concrete
examples. In Sec. 5, we consider toy models in which the bulk theory is non-interacting, and
the exact RG flow equation can be exactly solved through quantum RG.

2 Constraints on 3 functions

In this section, we illustrate the main result of the paper using two examples. The first example
is the O(N) vector model, and the second one is the O;(N) x Oz(N) matrix model. To be
concrete, we consider those theories regularized on a D-dimensional Euclidean lattice. We first
review how the exact Wilsonian RG defined in the space of all couplings can be reformulated as
a quantum evolution of wavefunction defined in the subspace of single-trace couplings [15,16].
From this, we constructively show that the full beta functions are determined from the beta
functions defined in the subspace of single-trace couplings.
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2.1 The O(N) vector model

In describing RG flow of a theory, it is convenient to choose a reference theory as the origin
of the space of theories. A general theory is then viewed as a theory obtained by adding a
deformation to the reference theory. The RG flow then describes the change of the deformation
as a function of length scale. We write the O(N) vector model as

Sle]l=Sol¢]+S:1[¢], 1)

where S, is the reference action,

1
Solel= §m2 Z(‘Pi(l)i), (2)
and S, is a deformation,
J@
S ZZJi(J-l)(¢i¢j)+TZ(¢i2)Z- (3)

ij
¢? is a real field with flavour a = 1,2,..,N defined at site i, and (¢;¢;) = ;, Pl o7. So

represents the trivial gapped fixed point. Jl.(].l) is the hopping amplitude between site i and j,

and J® is the on-site quartic interaction. Depending on the magnitudes of the deformations,
the theory may stay in the insulating phase, or flows to a different fixed point associated
with the critical point or the symmetry broken state. Our goal is to understand the exact RG
flow of the theory. Since we choose the ultra-local gapped fixed point action as the reference
action, we use the real space RG scheme in which S, is invariant under the coarse graining
transformation. However, different RG schemes can be used as is discussed in Appendix A.
The choice of RG scheme does not affect the physics.

2.1.1 Classical RG

We first review the exact Wilsonian RG.? The exact Wilsonian RG flow is generated from the
following steps [6].

* Separation of ¢ into low-energy modes and high-energy modes :

This is needed before we integrate out the high-energy modes to obtain an effective
action for the low-energy modes. In the real space, we usually consider a scheme where
a block of sites is merged to generate a coarse-grained lattice [2]. However, this forces
the RG steps to be discrete. To avoid this, we employ the scheme in which the field ¢ is
partially integrated out without changing the number of sites. For this, we introduce an
auxiliary field ® with mass u. The total action is written as

S[¢,®]=So[Pp1+So[@]+S1[¢], @)

where
& _1 2§ : 2
SO[Q]— Eu i <I>i. 5

Now we rotate ¢ and ® into a new pair of fields,

¢i =i+ &), & =Ap;+BE, (6)

2In this paper, we use the terms Wilsonian RG and classical RG interchangeably.
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_m B e m
where A = T and B = I with g = T «/ﬁ dz is an infinitesimal parameter

that labels the continuous coarse graining steps. The coefficients are chosen such that
the original field ¢ is given by the sum of the low-energy field (¢’) and the high-energy
field ('), and the low-energy field has mass me®. The action for ¢’ and ¢’ becomes

VAR m2e2dz 2, M 2
S[',@1=5m*e™ ) (4D +22d (@) +5,[¢" +']. %

The field ¢’ acquires the larger mass indicating that it has less fluctuation than ¢. The
missing fluctuation is transferred to the higher energy field ¢’

* Coarse graining :

The high energy field &’ is integrated out. This has the effect of partially including
fluctuations of physical degrees of freedom without reducing the number of sites. This
gives rise to corrections that renormalize S; to S; + S, where

dz 02 951 \2
5= 1 st G ®

up to the leading order in dz.

* Rescaling of field;

To be able to perform this coarse graining procedure iteratively, we need to bring the
mass from me?* back to m. This can be done by rescaling the field as

Pl =e . 9

This restores the original reference action and generates an additional correction to Sy,

—dz ¢! (10)

la¢//

This completes one cycle of the coarse graining. After this exact RG transformation, the
effective action becomes S(dz) =S + 6S, where

_ © 1 &) @)
5 = —Ndz[ ) p! +Nzﬁibh(¢il¢h)+ >, /31.1,]112]2N2(¢11¢h)(¢12¢]2)
i {151} {i1,J1500,52}

D I ISP Ly 03)(61,6,)(1,03) ] (11)

{i1,J1,i2,J213 73}
Here the beta functions are

0 2 a
pOLIW, s@1= = g0

mz i’
2
1 1 1 1
ﬂi(j)[‘](l)’J(Z)] :2‘]1(]) ZJ( )J( ) _ (1+ )5ij:
@ ;0 ;@ @ 16 5@
/jiljlizjz [/, S ] =4J 611]1 6]1]251112 + J11]151112512]2 >
(2)y2
3) 1) @27 16(*)
ﬁi1j1i2f2i313[J ST = m2 51111 512]2513]36111251113
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The exact RG transformation not only renormalizes the terms that are already present in the
action but also generates new operators that are order of ¢°. In the subsequent RG steps,
infinitely many other operators are generated. The general effective action takes the form of

oo
S=So+ND. > IO e (12)
K=1 iy jroixoic
where
1 K
Oiy iy ivoic = NE ﬂ(%n é;.) (13)

is the set of most general O(N) invariant operators. O;
erator. O;

‘ iy jusiyjos i with K = O is the 1denF1ty op-

’s with K = 1 are referred to as single-trace operators because they involve
K)

ity eiioie

()

ll’jl""aiK’jK
are O(1). Even in the large N limit, multi-trace couplings are not negligible.

1J1sl2dos-lk K
one summation of flavour indices. Those with K > 1 are multi-trace operators.
the source for O;
and O;

In Eq. (12) and Eq. (13), factors of N are chosen so that J

1oJ1seeolioJ

J1seolkJK
The exact RG flow is encoded in the beta functions,
ag©
11,]15--1K5JK — (K) (1) (2)
dz o ﬁil’jl""’iK’jK (J ’J e ) ’ (14)

J&

S } Since each cou-
11,]15--lK5JK

that is defined in the infinite dimensional space of couplings, {

pling in {Ji(lli')l,--»,ix,jx} can be added to the UV theory in Eq. (1) and tuned independently,

there is in general no particular relation among the couplings at high energy scales. A uni-
versal relation among couplings emerge only in the long distance limit as all couplings are
determined in terms of a few relevant and marginal couplings in the continuum limit. Here
our goal is to describe the entire RG flow that covers from the lattice scale to the long distance
limit. At short length scales, couplings are not related to each other, and the full beta functions
at general values of couplings are needed in Eq. (15). While the full B-functions define the
vector field in the infinite dimensional space of all couplings, we will show that the information
of all B-functions is entirely encoded in the -functions defined in a subspace of single-trace
couplings. We emphasize that this constraint among beta functions holds at all length scales
even close to the lattice scale, and is not a consequence of the relations that emerge in the
long distance limit.

2.1.2 Quantum RG

The exact RG flow of the effective action can be written as [6]
9S:(z) i[ o 0 881(2))2}_(1) 281(2)
0z - om? ¢ 0¢; ¢, Lo

where the total effective action at scale z is given by S(z) = Sy + S;(2). This, in turn, can be
written as a differential operator acting on e~ as

$1)—( (15)

e 5@ = e_Hze_S, (16)

where

A=y i) + ) e, an

i,a

3For local theories, the multi-local couplings should decay exponentially in space.

8
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and 7t} = —ig%_a is the conjugate momentum of 431‘1 In Eq. (16), e~° plays the role of a

wavefunction, and H acts as a quantum Hamiltonian for an imaginary time evolution. Here,
the imaginary time corresponds to the logarithmic length scale in RG. For this reason, we call
H the RG Hamiltonian.

The observation that the RG flow can be generated from the quantum RG Hamiltonian
suggests that the space of theories can be viewed as a vector space. In this picture, e is viewed
as a wave function, and the partition function becomes an overlap between two wavefunctions
[30],

7= f D¢ e5 =(1]S), (18)
where
|S) = f D¢ e5L9)|p) (19)

is the state associated with the action S [30], and

1) =JD¢ o)) (20)

is the state whose wavefunction is 1. |¢) denotes the basis state whose inner product is given
by (¢’|¢) = ]_[i’a 5((1);“ — d)la) Although |1) is not normalizable, the overlap in Eq. (18) is
well defined. One can check that the RG Hamiltonian leaves Eq. (20) invariant when applied
from the right : (1|H = 0 or equivalently H'|1) = 0. Therefore, the partition function is
invariant under the insertion of the RG evolution operator in the overlap,

Z = (1]e~*H|s), (21)

where dz is an infinitesimal change of the logarithmic length scale. This reflects the fact
that the partition function is unchanged under the RG transformation. Only the form of the
effective action changes as a function of the length scale. The flow of the effective action is
encoded in the state evolution,

IS(2)) = e *|3), (22)

and the effective action at scale z is given by S(z) = —In(¢|S(z)). Even if S has only simple
interaction terms such as the ultra-local quartic interaction, all local operators that are invari-
ant under the O(N) symmetry are generated in S(z) for z > 0. This makes it difficult to follow
the exact RG flow in the space of actions.

The complication can be alleviated in quantum RG that takes advantage of the facts that
the space of theories can be viewed as a Hilbert space, and that there exists a set of basis states
that span the full Hilbert space. The full Hilbert space associated with the O(N) invariant
action is spanned by a set of basis state whose wavefunctions include only the single-trace
operators,

biP;
The basis states are written as
) = J Dep e 0N 210 ). 24)

9
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Here S, is the fixed reference action, and the basis state is labeled by the bi-local field, t;;.
Because general O(N) invariant operators in Eq. (13) can be written as polynomials of Eq.
(23), Eq. (24) forms a complete basis. Suppose we start with the general O(N) invariant
action shown in Eq. (12). The state associated with Eq. (12) can be written as a linear
superposition of |t) as

1S) =JDt v, [c]le), (25)

where

i S x) o p
v, [t] = J’Dp e iN 2ij tijPij NZilJlrwsiKJKJilel,u.,iKJKp‘lJl"'p‘KJK‘ (26)

Here the integrations over the dynamical sources t; j and its conjugate field pij are defined
along the real axis as th =11 f_ozo dt;; and po =[1; f_ozo dp;j. ¥;[t] is the wave-
function defined in the space of the single-trace couplings. Due to the linear superposition
principle, the RG evolution of the general action can be carried out solely in terms of how
each basis state is evolved under the RG Hamiltonian. After an infinitesimal RG evolution, we
obtain |S(dz)) = e~%*H|S), where

S AINS O Or_; B ir0 10, )dz
|S(dz)) _—fDqs |:f Dty [t]e So+iN 33 tuOU+N(ﬁ [~it,0,.1+23;; B;; [=it.0, ](’)U)d ]Iqb).
27)

The resulting state can be written as a linear superposition of the basis states as
[S(dz)) = th’ \I!fz[t’]lt’), where the new wavefunction is given by

/
tij—tij

. / . . ’
dZN<_lZijpij = +/5(0)[_”:0]+Zij/38)[_”,0]171']')

\Ilfz[t’] = J Dp Dt e v, t]. (28)

Now, Eq. (28) can be viewed as an evolution of the wavefunction defined in the space of
single-trace coupling t,

W[ 1] = e Nk [ 1], (29)

where Hy,x is the bulk Hamiltonian given by

d . A A 1 .n
Hyage = —pO[=it,01—= > p;;B [~it,0]
ij
20 O, Na 2 4 A oa s
= Eztkk_zlzpkltkl+E2pijtiktkj. (30)
k Kl kji
Here, t and p are conjugate operators [fij,f)kl] = —ﬁ (6ik5ﬂ + 51151(]-). The state at scale z
becomes
U] = e VoM huk [ ], (31)

and the exact renormalized effective action at scale g is given by S(z) = —log f Dt Wi t]{¢]t).
w7[t] is not Gaussian, and the non-Gaussianity of the wavefunction encodes the higher order

10
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operators that are generated in the effective action. Through the standard mapping, Eq. (31)
can be written as a path integration as

VAR f DtDp e NSwuik pO[¢0], (32)

where thDp = IHOSZ,Q Dt? [To<r<s Dpzl sums over RG paths for t;;(z) in the subspace
of the bi-local single-trace couplings (and the conjugate variables), and S, is the bulk action
that determines the weight for each RG path,

Z
Sbutk ZJ dz' | i) p%auts + Hyylp™ %1 | . (33)
0 ij
The bulk theory is fully regularized and well defined because the bi-local variables are on
the lattice on which the original field theory is defined. For a system made of L sites, there
exist L(L+1)/2 independent bi-local fields, and Eq. (31) has no UV divergence. The exact RG
evolution originally defined in the space of all couplings is now replaced with a path integration
of fluctuating RG paths in the subspace of single-trace couplings [15]. This mapping is exact
at any N. In the large N limit, one can use the semi-classical approximation to replace the

bulk path integration with a saddle-point approximation.* For alternative approaches to the
O(N) vector model, see Refs. [34-36].

2.1.3 Full B-functions
Hpx in Eq. (30) is entirely fixed by the B-functions defined in the space of single-trace cou-

plings with J® = 0 for K > 1. For the O(N) vector model, only f(® and ﬂi(].l) are non-zero in

the subspace, and H,,x depends only on (®[—it,0,..] and p(V[—it,0,..]. Since the full RG
flow is controlled by Hy,, the full beta functions can be recovered from these B-functions .
To see this, let us write 6S = S(dz) — S in terms of the beta functions as

K

5s=—dzNy. > B ][0 (34)

K iy,J15e0lk50k n=1

In quantum RG, 6S can be written as

th [e_NdZHb"lk\PJ[t]:IeiNZij t;;0;
—In

5S = _ (35)
fpt \I]J[t]elNZij tijOyj
Equating Eq. (34) and Eq. (35), we have
) . o J Dt [y [e]]e™ 2015
Z Z ﬁil’jl""’iK’jK l_[ injn - (36)

- iN D, t;iO;;
K 1,10 i)k n=1 fo W[t ]etN 2 Oy

In the large N limit, all single-trace operators are independent, and the general beta functions
are obtained by equating the coefficient of monomials of single-trace operators in Eq. (36),

pr (ID,03,..)

11,151k JK

(2 ), (o) 1P Dt
-

_I? 8(9i1j1 O th \_I/J[t]eiNZij tijoij

(37)

“For an explicit computation of the effective action in the large N limit, see Ref. [33].
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For a finite N, not all single-trace operators are independent. For example, 0;;0y; = O;0j; for
N = 1. This leads to multiple ways to express general operators in terms of the single-trace
operators. This is analogous to a gauge freedom in which one physical state can be represented
in multiple ways. Namely, 6S is gauge invariant, but there are multiple ways to express it as a
polynomial of O;;. In this case, one has to fix the gauge freedom to determine the f3-functions
unambiguously. The natural choice is to treat (’) as independent variables in Eq. (36). This
is possible because both Eq. (34) and Eq. (35) are functions of O;; only. In this prescription,
Eq. (37) holds for any N. This is not the only prescription, but Eq (37) certainly gives the
exact RG flow of the effective action for any N. The right-hand side of Eq. (37) depends only
on J& , BO[—it,0] and pMV[—it, 0] through Eq. (26) and Eq. (30). This shows that

15J15e00lK0JK
all beta functlons in the presence of general couplings Jl( ])1 i Are completely fixed by the
beta functions defined in the subspace of the single-trace couplings.

From Eq. (37), we can find the general expression for [0, J@), . ] from @M —it,0].
Starting from the general action in Eq. (12) associated with the wave function in Eq. (26), we

obtain

Hyai ¥y (6] = (= BO[—i£,01= > p; BV [—it, 01)¥, 1] (38)
ij
:poe_iNtijPij(_ ﬂ(o)[_l i, 0] _Zpijﬂ(l)[_l i’ O])e_le(l . i P P
N dp 5 N dp
This gives
J Dt [ Ay, [£]] N 259 = (—ﬁ(o)[—ﬁ 700~ Z uﬁ(l)[_ﬁ% ])
xexp{—-NJ&) 0.0} (39)
In the O(N) vector model, $(? and ) take the form of
BOLD, 0] = Z O, DD, 0)= PB4 S 2w 40)
Kkl
where
o= —%51@ ﬁi(jl)’l =2, /55},3;2 = %5k1- (41)
Through Eq. (39) the full B-functions can be written solely in terms of /3(0) ! p l.(].l)’l and /51.(].1]31’2
as
B e = KD 2B s HBLR I i
- %Zﬁgl et Lo
+ Z MEK+1-M )Z U A e W SRR C)

It is noted that the full B-functions at general couplings are completely characterized by the
data in Eq. (41) that defines the f3-functions in the subspace of single-trace coupling.® This

SAs a special case, one can check that the -functions in the presence of Ji(jl) and Ji(i2i3 are reproduced.
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shows that 3-functions away from the subspace of single-trace couplings is fixed by 3-functions
in the subspace.

The O(N) model is rather special in that H,, is linear in p; j [37], and the single-trace
coupling t;; is non-dynamical in the bulk. However, the constraints among f3-functions hold
for general theories in which Hy,, is not linear in the conjugate momenta. To see this, we
consider a matrix model as our next example [15].

2.2 A matrix model

As a next example, we consider a matrix model defined on a D-dimensional Euclidean lat-
tice. The fundamental field is a real N x N matrix field, qblfm/, where i is the lattice site and
a,a’ =1,2,..,N are the flavour indices. Under the global O; (N) X Oz(N) symmetry, the matrix
field transforms as ¢; — A¢;B, where A € O;(N) and B € Ox(N). Single-trace operators that
are invariant under O; (N) x Oz(N) symmetry are denoted as

1
Or= Sty &L 9,97 - by, DL ), (43)

where the trace sums over the flavour indices, and I = (iy,i5,. . . ,iy,,) is a short-hand notation for
a series of sites that form a loop through a trace over flavour indices. Because the trace is invari-
ant under cyclic permutation and transpose, (i1,1,i3,i4,- - - slam—1>L2m) = {35145 - - y1om—1>l2m>11512)
and (i1,1,. - - ,iom) = (@2m>lom—1s- - - 12,11 )- Henceforth, we refer to I as a loop. The set of single-
trace operators plays the special role because general O(N) invariant operators can be written
as polynomials of the single-trace operators as

O . (44)

Il’IZw-’IK = n

=
Il =~
_

2.2.1 Classical RG

The general action that is invariant under the symmetry can be written as

(o]
S(z") =S, +N? > o0, (45)
K=1{I,,...Ix}

J®

_N_2 Ty ; : : :
where S, = 3m*tr(¢; ¢, ) is the reference action, and Iyl 1S the coupling for the K-trace

operators. Under the exact renormalization group flow, the scale dependent couplings obey

(x)

I, 1o, I _ (K) 1 2
dz =P 1,0k (J( ), J¢ ),-n), (46)
where 8 1(11(1)2 I is the beta functions. Even if one starts with a simple UV action, all multi-trace

operators are generated under the RG flow. Each coupling can be tuned independently at UV,
and the exact RG flow is encoded in the beta functions of all couplings defined in the presence
of general couplings. Below, we show that the general -functions are completely fixed by the
B-functions defined in the subspace with J&) = 0 for K > 1 as is the case for the O(N) vector
model.

2.2.2 Quantum RG

As is discussed in the previous section, the space of theories is identified as a Hilbert space.
The Hilbert space can be spanned by a set of basis states whose wavefunctions include only
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single-trace operators. For the matrix model, the basis states are chosen to be

t) = f D ¢StV LiuOn |g), (47)

where t; is the source for the single-trace operator ;. The quantum state associated with the
general O(N) invariant action in Eq. (45) can be written as a linear superposition of the basis
states as

IS) = f@m})[r]m, (48)

where \IJ?[t] is the wave function defined in the space of t;,

\I/O[t]—JDp exp{—lN Ztlp[ NZ Z Z J(K) le...pIK}. (49)

K=1{L,....Ix}

Here Dt = ]_[If dt; represents the integration over each single-trace coupling along the
real axis. p; represents the field that is conjugate to t;, and Dp=] [, f dp;. Itis straightfor-

ward to check that the integration over t; and p; reproduce the original action: |S) f DpeS|p).
As is shown in the previous section, the exact real space RG flow is generated by the RG
Hamiltonian,

A= e_§°Z [ltr(qbln )+ L tr(ﬂ: frT)] (50)

i

p ba The renormal-

where 7'[ @ is the conjugate momentum of d)ab In the |¢) basis, 7; a ¢a,,

ized action at scale z is obtained by S(z) = —log(¢|S(2)), where |S(z)) = e—2H |S). Because the
set of basis states {|t)} is complete, it is enough to know how each basis state is evolved under
e, Furthermore, |S(z)) can be also written as |S(z)) = f Dt Wi[t]|t), where ¥3[t] is the
wave function at scale z. Following the steps used in the previous section, it is straightforward
to show that W[t ] is related to \D?[t] through the evolution given by

wile] = e N g0 ], (51)

where Hy,; is the induced RG Hamiltonian for the dynamical single-trace couplings t; and
their conjugate momenta p;,

Hye =—PO—it,01= > p BV[—it,01= > py, by, B [—it, 0]. (52)
T L,
ﬂ(o)[J(l),O], ﬂ(l)[J(l),O], and ﬂ(z)[J(l),O] are the f-functions for the identity operator, the
single-trace operators and the double-trace operators, respectively, in the presence of single-
trace couplings J(V) only,

2
O g1=_N"2,0
ﬁ [J 30] - Z mZJ(ii)’

i

W) 41— . D 2 a2 m, 1 ) (1)
By LT, 0] =nyJ; m2 Z i Nm2 Z Ty +m2 Z Iy s

I'€L4y reLy,, (', 1"eLf

2
i1, 01=—— > 7P, (53)

=
reL; .
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t; and p; obeys the commutation relation, [f;,p;/] = —# 01/, where 6, denotes the Kro-

necker delta function defined in the space of loops. J (l.li) denotes the source of tr(¢i¢iT ). ng
denotes the number of ¢ fieldsin O;. L;,, denotes the set of loops that can be made by adding

two identical sites to I consecutively. L., denotes the set of loops that can be made by adding

two identical sites at two even positions or at two odd positions of loop I. For I = (iy, iy, i3, i4),
LI+2 = {(]3]: i]_) i23 i3) i4)) (i]_)j:j) iz, i3) i4)) (i]_) i2:j;j, iB) i4)5 (i]_) i2) i33j3j) l4) . ] € R})
Ly o ={ Uit 3ot i3, 14, (g, B o 0 1), (it B, oo 60, (i, B3, o s ) ﬂ jeRr},

(54)

where R represents all possible sites. L} is the set of pairs of loops that can be merged into loop
I by removing one common site from each of the two loops. For example, for I = (iy, iy, i3, i4),

L7={((i1,i2,i3,j),(j, i), ((ias 15 22, 1, G 1)), (G 4,11, 0, G 12))s (G s 0, 0, G 1),

(G0 s i3, 1)), (G 13, G 1,120 ), (G iz),(ig,u,il,j)),((j,il),(iz,ig,u,j))\jek}.
(55)

Finally, Ly o, denotes the set of loops that can be split into two loops I; and I, by removing two
identical sites, one at an even position and the other at an odd position. For I; = (iy,i,) and
I, = (i3, 14), Ly, = {(il,i2,j, is,14,)|j € R}. In the path integral representation, Eq. (51)
can be written as [15, 38]

Wi t*] = J DtDp e N Stk wO[ 0], (56)

where f DtDp = f [ To<sws Dt [ Tocs< Dp? represents the sum over RG paths in the space
of single-trace couplings and

b4
Sbulk:J dz/[izpil@/t?/+Hbu1k[pf/:tf/] (57)
0 7

is the bulk action. The bulk theory, which is fully regularized and well defined, describes
dynamics of loop variables in the bulk. Unlike the vector model, the bulk action is quadratic
in p; and the loop variables are genuinely dynamical in the bulk.® While the mapping itself
is exact at any N, the bulk theory becomes weakly interacting only in the large N limit. For
general N, one has to solve the quantum theory of strongly interacting loops, which is a hard
problem. However, one can extract the general constraints that f-functions obey without
solving the full quantum problem for general N.

2.2.3 Full B-functions

The bulk Hamiltonian is given by the beta functions in the presence of the single-trace cou-
plings only [15,16]. Because the evolution generated by Eq. (52) contains the full information

There are no higher order terms in p; because double-trace operators are generated, but triple or higher trace
operators are not generated in the subspace of single-trace couplings.
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of the exact RG flow, all beta functions can be extracted from p[—it,0], fV[—it,0] and
B@[—it,0]. The change of the effective action under an infinitesimal RG transformation,

:—dezz Z Bl L IW,JD,.10,0,.0,, (58)

.....

can be also written as

fpt [ ~N2dzHyuig [t]]eiNZZ, 40y
f’Dt \IIJ[t] iN23 60y

5S = (59)

in quantum RG. Equating Eq. (58) and Eq. (59), the general beta functions can be extracted
from I:Ibulk as

®) -
ﬂ11,12 ..... Ix (J( ),J( ),)

1 0 ol th [Hbulkqjj[t]]eiNZZI 4O,
__Ia 8(911 aOIK th\IIJ[t]eiszltlol

(60)

0=0

From

o N2, 0, _ [ Lo (1)
JDt[Hbqu‘PJ[t]]eN 21140 _( ﬁ(O)[ N230O’ 0] 201/5 [ N280’ O]

Z 1 0 - J®
- OhOIzﬂI(lz,)Iz[ N2 80 0]) e N* ZKZH ~~~~~ ix Iy, IKOI"'OIK’ (61)
11,12

the general -functions are obtained to be

2
0 __ = 1)
B = m2 J(ii)’

i

K
(K>O) (K+1) (K) (K)
ﬁ —(K+ 1)_ ZJ(H),Il ,,,,, Ix + (Z )JII Lyl Z JI' Aoseess

t=1 1 €Ly 42
(K) (K+1)
Z s Ix JI’ 1"I4,..
I’eL; 2 1/ A"€Ly

1 JE=M+1) ()
* m_ Z Z (K—M+1)MJ "L, IK—MJI/’IK—M+1 ----- Ig1
I, I”eL+ M=1

— (K- 1)— DI (62)
I’eLI*1 I
It is noted that the full B-functions in Eq. (62) are entirely determined from f®[—if,0],
BM[—it,0] and pP[—it,0].

We close this section with a few remarks. First, the -functions in Eq. (42) and Eq. (62),
which have been derived from the -functions defined on the subspace of single-trace cou-
plings, are exact for any N. The validity of the mapping from the exact Wilsonian RG to
quantum RG and the constraints that are derived from it do not require that the bulk theory is
in the semi-classical limit. Second, the constraints can be extended to general theories because
the notion of single-trace operators can be defined in any theory. This follows from the fact
that the space of theories can be in general viewed as a Hilbert space, where an action S[ ¢ ] for
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S

fundamental field ¢ defines a wavefunction e~5[%] in the Hilbert space. Furthermore, there
exists a set of basis states that span the Hilbert space. In general, there exist multiple choices
of basis states. The basis states do not need to be orthogonal, and an over-complete set is an
acceptable choice. All we need for quantum RG is one choice of complete basis states.” For the
vector model and the matrix model, the complete set of basis states are given in Eq. (24) and
Eq. (47), respectively. Once a complete set of basis is chosen, the wavefunctions of the basis
states define a set of actions. The operators that are needed to construct the wavefunctions of
the basis states define the set of single-trace operators in general theories. They are given in
Eq. (23) and Eq. (43) for the vector model and the matrix model, respectively. Because the
Hilbert space structure and the basis states can be defined in any theory, there exist constraints
among f3-functions in general theories. The generalization is discussed in the next section. Fi-
nally, the full B-functions could have been computed directly from the exact Polchinski RG
equation in Eq. (15). The salient point of our paper is not the exact f3-functions itself but the
fact that the entire -functions are fully characterized by a small set of data defined in the sub-
space of single-trace couplings. As a result, it is impossible to change a theory or RG scheme
such that the 3-functions away from the subspace of single-trace couplings are modified with-
out modifying -functions in the subspace. Because multi-trace operators are composites of
the single-trace operators, the RG flow in the presence of general multi-trace operators are
completely fixed by the S-functions defined in the subspace of single-trace couplings. This
constraint holds even when multi-trace operators have large anomalous dimensions.

3 Generalization

In this section, we generalize the results obtained for the two concrete models in the previous
section. Let us consider a field theory in the D-dimensional Euclidean space with the partition
function,

7 = J D¢ e Stel (63)

where ¢ (x) represents a set of fundamental fields and S is an action that is invariant under a
symmetry group G. The RG flow is defined in the space of local theories in a given symmetry
sector. To describe the RG flow, one first needs to coordinatize the space of theories. For this,
we divide S into a reference action S, and a deformation,

S=Sol¢p]+ ZJ dPx Jyy (x)0p (x). (64)
M

Here the reference action S, sets the origin in the space of theories. {O,;(x)} represents the
complete set of local operators that are invariant under the symmetry G. We call these opera-
tors ‘symmetry-allowed operators’. Jy;(x) is the coupling function that deforms the reference
theory. One infinitesimal step of coarse graining consists of integrating out fast modes of the
fundamental fields, and rescaling the space and fields. The one cycle of coarse graining puts
the theory into the same form as before except for renormalized sources,

7 = J D¢ e_SO[¢]_ZMIde(JM(X)_ﬁM[J;X]dZ)OM(X)’ (65)

where dz is an infinitesimal parameter and f3,,[J; x] is the beta function for the local oper-
ator Oy;(x). By [J;x] is a function of x and a functional of coupling functions Jy(x). In

7It may well be the case that one choice of basis states gives a simpler bulk theory than others.
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weakly coupled field theories, one may ignore operators whose couplings remain small in the
perturbative series. In general, one has to keep all couplings. Successive applications of the
coarse graining give rise to the exact Wilsonian renormalization group (RG) flow in the infinite
dimensional space of couplings [6].

Alternatively, the RG flow can be projected to a subspace of couplings at the price of pro-
moting the deterministic RG flow to a path integration over RG paths (quantum RG) within
the subspace [15,16]. To see this, we define a quantum state from the action by promoting the
Boltzmann weight to a wave function as in Eq. (19) [30]. This correspondence between a D-
dimensional action and a D-dimensional quantum state is not the same as the correspondence
between a D-dimensional action and the ground state defined on a (D — 1)-dimensional slice
with a fixed imaginary time. As we pointed out in Eq. (18), the partition function in Eq. (63)
can be written as an overlap between two states, Z = (1|S), where |1) is defined in Eq. (20),
represents the trivial fixed point with zero correlation length. In this picture, one infinitesimal
step of coarse graining is generated by a quantum operator inserted between the overlap of
(1] and |S). Here, we rewrite the Eq. (21) for convenience,

Z = (1]e"#H]s), (66)

where H is the RG Hamiltonian that generates the coarse graining transformation that satisfies
(I|H = 0 [30]. A concrete example of RG Hamiltonian is discussed in Sec. 2. Since |1) is
invariant under the evolution generated by H, the partition function remains the same under
the insertion of the operator. Nonetheless, H generates a non-trivial evolution of |S) once it is
applied to the right in Eq. (66).%

The one-to-one correspondence between states and actions implies that the resulting state
corresponds to a renormalized action,

e~ H|S) = |S + 88), (67)

where
6S =—dzZJ dxB[J; x]0, (). (68)
M

Successive applications of the coarse graining transformations give rise to a scale dependent
quantum state which corresponds to the scale dependent Wilsonian action,

e Hs) = J D & Hl#1 2 [ T ue0u) ), (69)
where Jy;(x,2) is the renormalized coupling function that satisfies
dJy(x,z
PMEE) s, (70)

with the initial condition J,;(x,0) = Jy,(x). In Eq. (69), Jy;(x,2)’s are classical parameters
that keep track of the exact Wilsonian RG flow. However, Eq. (70) is a rather inefficient way
of keeping track of the evolution of quantum state in that the number of classical parameters
one needs to keep is far greater than the number of linearly independent quantum states.
Once we realize that the space of theories can be viewed as a vector space, a more natural
description of the RG flow is to take advantage of the linear superposition principle. Instead

8In more generality, one may choose |S,) = f”qu e S+|¢) with a different fixed point action S, instead of
|1) [30]. In this case, the partition function is written as Z = (S,|S;), where S; = S — S, is the deformation
measured with respect to S,. In this case, the coarse graining Hamiltonian that satisfies (S,|H’ = 0 is related to H
through a similarity transformation, H' = e5He ™5+,
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of labeling a quantum state in terms of classical parameters, a quantum state is expressed as a
linear superposition of basis states, which as a set is much smaller than {J,;(x)}. A complete
set of basis states can be chosen to be

|t) = J D eS8+ X [ 4" tn ()00 ()| ) (71)

where {O,,(x)} is a subset of symmetry-allowed local operators from which all symmetry-
allowed local operators can be written as composites,

Oyt () = Oy () 8,8, Oy ()] [ 84,8, Oy ()] [ 848, O, )] 72)

We call this subset of operators single-trace operators because they are the set of operators
that involve one trace in large N matrix models.

In the example of the scalar field theory with the Z, symmetry, the single-trace operators
are given by the set of quadratic operators, O,, , ., (x) = ¢(x)J,, J,,-.0, ¢(x). Other Z,
invariant operators that are quartic or higher order in ¢ can be written as composites of the
single-trace operators, and they are called multi-trace operators. It is noted that the distinction
between single-trace and multi-trace operators depends not only on the field content of the
theory but also on the symmetry. In the absence of the Z, symmetry, the fundamental field ¢
is the only single-trace operator, and everything else is regarded as multi-trace operator. We
emphasize that operators can be divided into single-trace operators and multi-trace operators
in any theory.

It is straightforward to see that Eq. (71) forms a complete basis, and Eq. (19) with Eq.
(64) can be written as [15,16]

1S) = J Dt ;[ t]|t), (73)

where ¥;[t] is a wavefunction defined in the space of the single-trace sources. In the next
section, we will provide a prescription to find ¥;[t] from a general action. The measure and
the integration path of the sources in Eq. (73) will be carefully defined when we discuss
examples in the following sections. The state for a general theory with multi-trace operators
can be written as a linear superposition of those whose wavefunctions only include single-trace
operators. The multi-trace operators that are not explicitly included in the description endows
the single-trace couplings with quantum fluctuations.

Because H is a linear operator, the RG flow in Eq. (67) is entirely fixed by how the coarse
graining operator acts on the basis states,

e 4H|s) = J Dt ¥, [t]e 4 H[t). (74)

To figure out the resulting state, we simply use the expression in Eq. (69) by turning off all
multi-trace sources. From Eq. (71), we obtain

e—dzHlt) _ J Dé e—Sol91+i%, [ dPx tn(x)Om(x)—dzZMfdeﬁM[—it,o,..;x]oM(x)|¢) . (75)

Here the beta functions are expressed as By [J;x] = By[—it,—it!?] ..;x], where —it is the
single-trace coupling and —it!*'’s with k > 2 are the couplings for k-trace operators which
are composites of k single-trace operators. f,,[—it,0,..; x] is the beta function defined in the
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5) / DEw[i]|t)

z

e iz |\ & B [J1, Ja, .. .5 2] Barlt,0,...;x]» e =
z+ dz @<
1S + 65) / DU A1)

Figure 2: A field theory S at scale g is represented by a quantum state |S) on the upper
left corner. The vertical arrows represent an infinitesimal step of coarse graining
generated by H. The coarse graining directly applied to |S), denoted as the vertical
arrow on the left, maps |S) to |S + 6S). S + &S is the renormalized action at scale
% + dz, and 6S encodes the information on the full 3-functions. Alternatively, |S)
is first written as a linear superposition of basis states whose action only includes
single-trace deformations through the horizontal arrow that points to the right. The
result of the coarse graining applied to that state, denoted as the vertical arrow on the
right, only depends on the 3 functions defined in the space of single-trace couplings.
The resulting coarse grained state on the lower right corner is finally mapped back
to a renormalized action on the lower left corner. The commutativity of the diagram
implies the full B-functions are fixed by the 3-functions defined in the subspace of
single-trace couplings.

subspace of single-trace sources. Because {|t)} is complete, Eq. (75) can in turn be expressed
as a linear superposition of |t) as

e 4|ty = f Dt &4, [t;¢']1t), (76)

where &, [t; t/ ] is a propagator of the RG transformation that is determined from f3,,[—it,0,..;x].
This allows us to write the resulting state after a coarse graining transformation as

e ®Hs) = J D [t']1t), 77)

where

\D//[t/]:JDt W, [t]®g, [65t]. (78)

In the end, the RG transformation leads to the evolution of wave function, ¥ = e~ "4*¥ where
‘H is an induced coarse graining operator defined by H¥[t'] = —%( f Dt [t]®4, [t ;t’]—\P[t’]).
By equating Eq. (74) with Eq. (67), we obtain

e—dzH|S> — f D‘P oS0 |:f Dt/(x)‘lf// [t/] eizndex t:l(x)Om(x):| |¢>
_ J D¢e_SO_ZMIdx(JM(X)_dZﬁM[JQX])OM(X)|¢>. 79)

This shows that

J Dt/Dt\DJ [t]quz I:t; t/:| eizn dex f:l(X)Om(x) — e_ZMfdx(‘]M(x)_dZﬁM[J;x])oM(x)' (80)
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Eq. (80) is the main result of the paper. On the left hand side of Eq. (80), ¥;[t] is fixed by the
theory at scale z through Eq. (73), and ®,, [t; t’ ] is entirely determined from f,,[—it,0, ..; x]
through Egs. (75) and (76). This, in turn, fixes the full beta functions f,,[J; x] through Eq.
(80). Therefore, the beta functions defined in the subspace of the single-trace operators completely
fix the full beta functions away from the subspace. This is illustrated in Fig. 2.

4 Quantum Renormalization group

In this section, we lay out an algorithm for extracting general scaling operators, scaling dimen-
sions and operator product expansion coefficients from f-functions defined in the subspace of
single-trace operators.

4.1 Action-state correspondence
To be concrete, we consider a partition function given by

Z [J1:J23' . ] = <1|SJ1,J2,4..>) (81)

where

1S),,..) = f pp e/ (2, J"(’“)On["“x”*"')|¢>. (82)

Here S is the reference action. (O(x) is a real and local single-trace operator. O"(x) with
n > 1 represents local multi-trace operators. The ellipsis includes multi-trace operators with
derivatives as is shown Eq. (72). We assume that the deformation is bounded from below,
and the highest multi-trace operator is an even power of O with a positive coupling. We can
remove the multi-trace operator in the action by using an identity,

f(O(}’)) f Dt/Dp/ e—idex t/(x)[P/(X)—O(x)]f(p/(y))
R

- f DtDp e ] 4" L0 £ (_jp(y)), (83)
1

for any f (x). The integration of t’(x) and p’(x) are defined along the real axes. In the second
line, we define t(x) = —it’(x) and p(x) = ip’(x) so that the integration for t(x) and p(x)
are defined along the imaginary axes.” The path of the integration variables is denoted by the
subscripts R (real) and I (imaginary). Then, Eq. (82) can be rewritten as

. . —[dP —i LE
I

(84)

:f DtDp e—fde(it(x)p(x)+zn(—i)”Jn(x)p”(x)+...) [JDq&e‘so_f Py dx)o(”l(b)]-

I

This implies that the state can be written as a linear superposition of the basis states as

1Ss,0,,..0 = J Dt ¥, ;5 [t]]t), (85)
I
where

) = f D¢ |$) Ty, (86)

This Wick’s rotation has the advantage that the source for O is simply represented by t(x).
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is the complete basis state whose wavefunction is made of the reference action and the single-
trace deformation only,

Ty, = e—so—f dPx t(x)O(x)’ (87)

and
—[dPx(i —)" (P ()
¥, [t]= f ppe’ (1P T, 7, ")+ ) (88)
I

is the wavefunction of the dynamical single-trace source. The integration over p in Eq. (88) is
convergent for deformations that are bounded from below. This allows us to write the original
partition function in terms of partition functions that involve only single-trace deformations,
Z[Jy,Jo,.. 1= [, Dt ¥y ;  [t1Z[t,0,...]with (1]t) = Z[t,0,...].

Let us first consider a simple example with an ultra-local deformation (no derivative terms)
with J,~, = 0. In this case, the wave function is Gaussian,

2

—f de(itp—ile—szz) TT dex (1)1 ()]
v t]l= | Dpe = e RO 89
10, L] JI p |x| ) (89)

We note that t in Eq. (89) is to be integrated along the imaginary axis, and the wavefunction
is normalizable if J, > 0. This shows how both single-trace and multi-trace couplings are
encoded in the wavefunction :

(@, 5, 1Oy, 5,) = J1(x),
(T, 12Ny 1) — (T 5 [tCONy, 5,0 = —2T5(x).

The expectation value of t(x) gives the single-trace coupling, and the second cumulant gives
the double-trace coupling. The second cumulant is negative because t(x) fluctuates along the
imaginary axis.

If double-trace operators have a support over a finite region, the action becomes

(90)

S’ =8, + f dPx (7, (x)0(x) + f dPx'J,(x —x)O(x)O(x")), (91)

where J,(x — x”) is the source for the bi-local double-trace operator. The corresponding wave
function is written as

Uy g [t]= J 'Dp(x)e_fde(if(X)P(x)—ih(x)p(x)—f de/JZ(X_X/)p(x)p(x’))
| I (92)

— \/det [njz_l(x _ x’)]e‘l't J dPx [ dPx'Te(x)=11 ()5 (o= [e(x ) =11 ()]
The non-zero correlation length for j gives
(£0E(x) — (£ (e (x)) = —2J5(x —x). (93)

This shows that the correlation between fluctuating single-trace sources encodes the infor-
mation on how the source for the bi-local double-trace operator decays in space. In general,
all multi-trace couplings can be extracted from higher order cumulants. It is noted that the
single-trace coupling has non-trivial quantum fluctuations only in the presence of multi-trace
couplings'®. Moreover, Eq. (82) can be written as

1Sy, 0,0 = J D¢ Wy [J1,J3,...]1¢), (94)

°In the context of the holographic renormalization group, this amounts to the fact that integrating out bulk
degrees of freedom generates multi-trace operators at a new UV boundary [26, 39].
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where

Ll (95)

W¢ [Jl,Jz,...] = J Dt Td),tq/.]l,.]z
I

We denote the vector spaces formed by {WW,} and {\IIJ[t]} as W and V, respectively.
W is the space of Boltzmann weights within a given symmetry sector with inner product,
W, W= fDd) W; thb V is the space of wavefunctions of the single-trace sources with inner
product, (¥, ¥") = thDt’ U e(t|t/) ' [t']. Eq. (95) provides a bijective map, 7 : V — W.
Accordingly, for every linear operator flqb that acts on W, there exists a linear operator .A ; that
acts on V such that

(A¢W)¢ [J1,J2,... 1= f Dt sz,t(At‘I’)Jl,Jz,... [t]. (96)
i

In order to find the correspondence between fl¢ and A,, we consider the detailed form of ¥
in Eq. (88). flt, generated by % and t, gives the relations

5 e s o
\IJ.I],... [t] = Dp (_l)p(x)e fd x(lt(x)p(x)-‘rzn( l) Jn(X)P (X))
ot(x) !

o n n .
(O, [6]= j Dp (= 10 e SN T8 )i [ €5 0000,
I op(x)

J

97)

Since p(x) is already identified as iO(x) in Eq. (84), t(x) and % acting on V correspond
to following operator acting on W.!!

19)
< O(x),
ot(x) 5 (98)
_ oS0 So
t(x) = —e 60(x)e .

Therefore, we obtain A, [t, %] = _,fl¢ [_e—so %650’ O].

4.2 RG flow as quantum evolution

Identifying the space of theories as a vector space naturally leads to the quantum RG [16]. We
first consider the field theory in Eq. (81) defined in a finite box with the linear system size
1/A, where A corresponds to an IR cutoff energy scale. From Eq. (84), the partition function
is equivalent to

Z3 [y, ... 1= J Dty  [t©] z,[¢90,...], (99)
1

'We can explicitly derive this correspondence as

| Pt 00 == [ D T 10 == [ D0 101 [ D9 Tt 20
= f Do(x)(OW, )19,
JDt (t(x)qul,Jz,m [t])|t> = f IDtJ‘,Dd) “IJJ1,J2,4.,[t] t(x)67507dex t(X)O(x)M'))

:fqu (—e—So%eSow¢)[Jl,J2,...]|¢).
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[t(o)] is the wavefunction defined in Eq. (88), and

where ¥; ;.

Z,[t?,0,.. ]=(1]t®) f D e=Sof P O)00)

The subscript A of Z keeps track of the IR cutoff. Next we perform a coarse graining transfor-
mation on Z; [t(o), o,... ] as is discussed in the previous section: integrating out high-energy
modes of ¢ which reduces the UV cutoff from A to A’ = bA with b = e™% < 1. In general, not
only the single-trace source is renormalized but also multi-trace operators are generated. Un-
der rescaling of the field and the space, ¢’(x’) = b~2¢ ¢(x) with x’ = bx, A’ is brought back
to A, but the system size decreases as 1/A’ = b/A. The resulting partition function becomes'?

b/ / ’ / n(y./
Zl [t(o), 0’ . :| — J D¢ e—So[qb]e_f dPx {t(O)(X )O(x )_dzznzoﬁn[t(o)’o,.,. ]O (x )} (100)

The change of the coupling for O"(x) with increasing length scale is given by —f,,dz. —fydz
corresponds to the free energy contributed from the high-energy modes that are integrated
out in the infinitesimal coarse graining step. In general, the f-functions depend on all the
couplings J,,. However, what enters in Eq. (100) are the beta functions in the subspace of
single-trace couplings only. From Eq. (84), the partition function in Eq. (100) can be written
as

—[¥*qp [ O {_p©@ ), _ip(Wyn

dPx|ipt| -t dz Y, B,dz(—ip?) ]

I (1-e0) Zy 1, [(D,0,..].

(101)

After M steps of coarse graining, we take the dz — O limit, keeping Mdz = z* fixed. This
results in

7, [t®,0, ...]:JD tM0PpM(x)e

I

[£0)]eJo LIz [¢(2*),0,...],  (102)

yeee

Zy[Jq,J9,... 1= J Dt(x,z)Dp(x,2)¥;, ;,
I

where z is the extra direction in the bulk that labels the logarithmic length scale. The bulk
Lagrangian is given by

e F/A
L[t,p,z]=f dPx(ip(x,2)3,t(x,2)— Y Ba[t(2),0,.;x] (—ip(x,2))").  (103)

n=>0

In Eq. (102), the RG flow of the D-dimensional field theory is replaced with a (D + 1)-
dimensional path integration of the dynamical single-trace sources [15,16]. The fluctuations of
the RG paths encode the information of the multi-trace operators. The sum over all possible RG
paths within the subspace of the single-trace sources is weighted with the (D + 1)-dimensional
bulk action. Equivalently, the RG flow is described by the quantum evolution of the wave-
function of the single-trace source. In the Hamiltonian picture, t(x) and p(x) are canonical
conjugate operators that satisfy the commutation relation [t(x), p(x’ )] =—i5(x—x"). The RG
HA

evolution can be viewed as an imaginary time evolution, R(z+dz,z) = e~ 7 [6P214% generated

by the bulk RG Hamiltonian,

e ?/A
Hl[t,p,z]=—2f dPx B,[t,0,..;x](—=ip(x))", (104)

n=0

2Here we omit an additional subscript A/b in S, to avoid clutter in notation.
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where the superscript A represents the IR cutoff scale associated with the finite system size.
H* depends on z explicitly through A as the system size decreases with increasing z. In the
thermodynamic limit (A = 0), H° is independent of z. Being an operator that acts on wave-
functions defined in the space of single-trace sources, 7* generates the quantum evolution of
the state associated with the RG flow. The RG Hamiltonian is fixed by the -functions within
the subspace of the single-trace sources only.

4.3 Reconstruction of the Wilsonian RG from the quantum RG

In this section, we explain how the full S-functions of a field theory can be reconstructed
from the quantum evolution with the RG Hamiltonian, although the latter is fixed by the
pB-functions within the subspace of the single-trace couplings. Suppose that there exists a
unique IR fixed point in the thermodynamic limit. The fixed point action is invariant under
the RG transformation, and the corresponding quantum state should be an eigenstate of H*
at A = 0. Furthermore, the stable IR fixed point must correspond to the ground state of #°
because generic initial state is always projected onto it in the large z limit. More generally,
one can consider excited states of H°. States of particular interest are eigenstates that support
excitations local in space. Those states correspond to the IR fixed point perturbed with local
operators with definite scaling dimensions. These scaling dimensions are given by the energy
differences between the excited states and the ground state. In the rest of this section, we
establish the correspondence between the ground state (excited states) and the stable fixed
point (the stable fixed point with operator insertions).

4.3.1 Stable IR fixed point as the bulk ground state

We begin with the discussion of the ground state. The ground state of H° satisfies

HO%,o [t]= Egpo[t] (105)

with the lowest eigenvalue. The partition function for the the IR fixed point is given by
Z* (505, ] = [, Dt o le] [ D eSo=] dPx 1000, (106)
where O is the single-trace operator. To extract the multi-trace couplings at the fixed point,

we use the cumulant expansion (™) = e~ @+ 3 ()= 5 rewrite Eq. (106) as

0

Z*[J3J35, .. ] =JD¢e_SO (e~ [ 4"x )00y

= f D(i)e_SOe_f dPx(t(x)) 4o OC)+3 [ dPxdP y((£(e)E()) g —(()) g (t(y))wO)O(x)O(y)+._,,

(107)
where (F[t]),, = f ; Dt o [t]F[t]. Identifying this as the fixed point action,
7% [JT’J;’ o :| — J Do e—So—f dPxJ; (x)O(x)—[ dedDsz*(x—y)O(x)O(y)—...’ (108)
we obtain the couplings at the fixed point,
J100) = (), »
. 1 (109)
T3 =) = = ({0, = (G, ey )

Sources for higher-trace operators at the fixed point are given by the higher cumulants.
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4.3.2 Scaling operators as local excitations of the bulk theory

Next, let us study excited states of °. We start by considering states with local excitations.
The n-th excited state that supports a local excitation at x satisfies

_ 240 —
€ " an,x =€ gnzwn,e—zw (110)

where &, is the n-th eigenvalue. For general x, this is not a genuine eigenvalue equation
because the dilatation generator in the RG Hamiltonian preserves only one point in space
which is chosen to be x = 0 here. A local operator inserted at x is transported to e *x under
the RG flow. Only the states that support local excitations at x = 0 can remain invariant under
the RG evolution. {1, o} forms the complete basis of states that support local excitations at
x = 0. Generic excited states can be obtained by applying local operators, denoted as fln,x,t,
to the ground state as

P 6] = (An o) [£]. (111)
fln,x,t, which consists of t(x) and %, creates local excitations at x, where flo,x,t = 1. From

the correspondence in Eq. (96), fln,x,t is dual to an operator that acts on the Boltzmann
weight,

f Dt (An,x,f«po)mjw e So=[ dPx 1O - J D¢ (AnxoWg [J5505,-.- ], (112)
I

where /Aln,x@ consists of O(x) and %(x). ftn,x,t (An,x,d)) is the representation of the operator
in space V (W). Henceforth, we use fln,x to denote the operator itself when there is no need
to specify its representation.

We now verify that excited states indeed correspond to the fixed point perturbed with local
operators that have definite scaling dimensions. For this, we consider the IR fixed point theory
with a small perturbation added at the origin,

efn,oAnvo|st’J;,m) = f Do (enotnos W), [J5,7%,... ]16), (113)

where €, is an infinitesimal parameter. The RG Hamiltonian generates an evolution of this
state as

e—Hdz I:ee"’OA“’OlSJf,J;,...)] = f

Dt e 4 (yot]+ € 01Pnolt] ) J D¢ ¢ So=) xtI0W) )
I

_ —E&ydz e, e En—E0ldz }
— ¢ ©€0aZ5€n0 n,0|SJTJ* )

to the linear order in €, o. This implies that the infinitesimal source evolves as o
deno
—2 = (&= Eodeno (115)
under the RG flow, and An,O,d) is a scaling operators with the scaling dimensions
A, =E—&. (116)

The spectrum of H° encodes the information of all scaling operators and their scaling dimen-
sions. A, ,’s create local excitations with definite scaling dimensions, and are called scaling
operators. On the other hand, O,;(x)’s represent general multi-trace operators in terms of
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which the UV action is written, and are called UV operators. In general, the scaling operators
can be written as linear superpositions of UV operators :

An,x,qb = Zgn,MOM(x)~ 117)
M

The inverse of Eq. (117) can be written as Oy, (x) = Zn(g_l)M’"fln,x@.
From the local scaling operators, one can generate translationally invariant eigenstates by
turning on the sources uniformly in space. For example,

wn[t]=fd”x Yo [t] (118)

is an eigenstate with energy A, —D. The shift in the energy by —D is from the spatial dilatation
included in H°,

e_HOdzwn [t]= e_Ande dPx wn,e—dzx [t]= e_(An_D)de dPx wn,fc [t], (119)

where x = e%*% is used. If A, > D for all n, the fixed point is stable as all deformations with

spatially uniform sources are irrelevant. Local excitations with energy gap less than (equal to)
D correspond to relevant (marginal) operators. Throughout this paper, we assume that local
excitations of the RG Hamiltonian have a non-zero gap (A, > 0).

4.3.3 Mixing matrix

According to Eq. (117), g,y encodes the relation between scaling operators, An,x,qb and UV
operators, O;;(x). By writing

en,x“zln,x,qb = Z GIL\ZV(X)OM(X) (120)
n,x M,x

and using Eq. (117), we obtain the relation between the sources for the scaling operators and
the UV operators,

V()= €nx8urts Enx = ey (X)(gTHMM. (121)
M

n

To the linear order in €, the B-functions of these UV couplings are

deVV (x)
Aé—z = _Z(Sn - go)en,xgn,M
" / (122)
== D e (@™ gy (En —Eo).
n,M’
This gives the mixing matrix
MMy == (g M g (€, — Eo)- (123)
n

It is noted that what appears on the right hand side of Eq. (123) is determined from the
spectrum of H° which is fixed by the beta functions defined in the subspace of the single-trace
couplings. Eq. (123) shows that this small set of data completely fixes the full mixing matrix
that involves all multi-trace operators. This shows that the -functions for general multi-trace
operators are fixed by those for the single-trace operator to the linear order in the deformation.
In the following two subsections, we show that this holds beyond the linear order.
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An/,fz/Q,gb X An,z/2,¢> 77bn,n’,(1:/2,7z/2)

wl,o

Figure 3: The procedure of extracting OPE between two local operators. Two local
operators An/ —x/2,¢ and An/ x/2,¢ Shown in the upper left corner undergo a series
of transformations following the arrows in the clockwise direction : 1) the operators
inserted to the IR fixed point corresponds to the ground state with two local excita-
tions through the action-state correspondence (right arrow T); 2) the state is evolved
with the RG Hamiltonian for z, = In Iz_l (down arrow e Mz ); 3) the resulting state
supports local excitation near the origin which is then expressed as a linear superpo-
sition of the eigenstates 1); o with local excitations at the origin weighted with c,, ,,/ ;;
4) the resulting state corresponds to the fixed point with local operator insertions at
the origin (left arrow T); 5) the theory is evolved backward in RG time by —z,. (up
arrow e"’? ). The identification of the final operator with the initial product of two
operators gives the desired operator product expansion.

4.3.4 Operator product expansion

The operator product expansion (OPE) between general multi-trace operators is also fully
encoded in the spectrum of H°. Suppose we insert two local scaling operators An,x/z
and .An/,_x /2 at x/2 and —x/2, respectively. The wavefunction for the resulting theory is
Yo (x)2-x/2) [t] = (A, x/2, Ay —x/2,:¥0) [t]. Under the evolution generated by HO, the sep-
aration between the two operators decreases exponentially in z. For z < ln where a=A"!
is the short distance cutoff length scale, the two local excitations remain Well-separated in
space, and evolve independently,

_10,, 2 A _ , A A
7 Z(~/4n,x/2,t~/4n’,—x/2,t11b0) [t] e (Bt +go)z(~/411,xe*2/2,t~'4n’,—x¢fz/2,t71b0) [t] . (124)

This follows from the facts that 1) ftn/’_x /2 and ftn’x /2 create local excitations with energies A,
and A,, above the ground state; 2) " is local at length scales larger than a, and two operators
evolve independently with the total energy given by &, ,» = & + (A, + A,/) in the limit that
their separation is large. As two excitations approach, they interact, and the state evolves into
a more complicated state. Nonetheless, the state obtained after evolving the initial state for

=In= |x| can be written as a linear superposition of eigenstates of the RG Hamiltonian with
local exc1tati0ns located at the origin,

_1/0 A A _ , N
e # Zx(~An,x/2,t~’4n’,—x/2,t¢0) [t] =€ (BB +Eo)ax ZFn,n’,l(x)(Al,O,two) [t] B (125)
1

where F, ,;(x) is a function that captures the effect of interaction. It is a regularization de-
pendent function which can be computed from the RG Hamiltonian. There is no interaction
between two operators when the separation is much larger than a. This follows from the fact
that one only integrates out modes whose wavelengths are order of a in each coarse grain-
ing step. As a result, F, ,,;(x) exponentially approaches a constant in the large |x| limit,
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limy 00 [P 1 (X) — Cpppr | ~ e /e where Cn = Fp v 1(00). Now the state in Eq. (125) is
evolved backward in RG time z,, which results in

(/A /2, W) [E] = D Py (x) B35 (A po) [1t]. (126)
1
From this, we obtain the OPE of scaling operators :
Anjog * Aw g = Z Comr ) Ao, (127)
1
where
Fpw(x)

Cn,n’,l(x) = m (128)

Cn,n/,l

In the large |x| limit, this reduces to the standard form, C, ,/ ;(x) ~ AT The procedure
used to extract the OPE is summarized in the Fig. 3.

4.3.5 f-functionals

Now we are ready to derive the full beta functions. For generality, we consider the case in
which the sources are position dependent, and derive the beta functionals of the Wilsonian
RG from the quantum RG. We consider a UV theory with general deformations added to the
fixed point theory S* parametrized by J*

n,x’
S=5* +f dPx € Anxps (129)

— * R
where €, , =J, , —J e’ and repeated indices are summed over.

The state that corresponds to this deformed theory is given by
%) = lpo) — | d” —2 | @ Clmn(X) | [Wn ) +0(®)  (130)
=1%o X | €nx 2 X el,x+x7/€m,x—x7/ Imn\X n,x €

to the second order in €,,, where we use A, ., J2.6 S 2.6 = Dn Clmn(x’)fin,x@ obtained
in Eq. (127). Under the evolution generated by the RG Hamiltonian, the state evolves to

—&pdz —A,dz 1 / /
[(2)) =5 [l%)—e aud f d°x (en,x—g f 4P,y € Comn(X ))m,xe-@)}w(é)

1
_ —&d —adz | qDw,Dd 1 pe pa ) ) dz
=e Z|:|¢O>_e ZJd xe Z(en,edzic zf d’%’e Zel’edz(f(.'.%/)em’edz(j_%’)Clmn(e Zx/))|¢n,fc):|

+0(e%),

(131)
where the renormalized spatial coordinate is defined as x = %e? in the second line. The final
state can be written in the form of Eq. (130) provided €, , is replaced with renormalized
source,

_A 1 - (A +A . _X -
€ s =¢ A"dzen,edzi+§dexl El’edz()”(+%)em’ed2()?—%/)|:e (AI+Am)dZClmn(X/)_e(D A")dzclmn(edzx/)]+o(€3);

(132)
where A, = A, —D. |¥(z)) corresponds to the action,

A

S(z)=S*+ J dPx € Anxg (133)
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where the renormalized source is given by

~ d 1
€y = en,x+dz{ — Anen’x+xaen,x+£ dex’ €1t €t Glmn(x')} +0(e®) (134)

to the linear order in dz with

%,
Glmn(y) = _Clmn(.y)yﬁ lnFlmn(.y)' (135)
The term quadratic in € in Eq. (134) describes the fusion of two operators into one. Since
Gymn(y) decays exponentially in the large y limit, operators whose separation is smaller than
a mainly contribute to the fusion process. This shows that the f-functionals of J, , are local,

d . 3 .
E']n,x = _(An _D)(Jn,x _Jn,x) +xa(Jn,x _Jn,x)

. (136)
- D,/ P , — J* / __1%\3
+2fd X' LA G Jm,x+%,)Glmn(x)+O((J J).

x
l,X+7

2

This also confirms that couplings are irrelevant (relevant) if A, > D (A, < D). It is noted that
these are 8 functions for sources of the scaling operators. The 3 functions for the sources of
the UV operators are obtained from Eq. (136) through a linear transformation in Eq. (121).

5 Toy models

In the previous two sections, it is shown that there exist general constraints that 3-functions
satisfy due to the fact that the full Wilsonian RG can be replaced with a quantum RG defined
in the subspace of single-trace couplings. While the quantum theory is well-defined, it is in
general no easier than the original problem. Only in the large N limit, the quantum problem
can be solved with a semi-classical approximation. See Refs. [33] for recent development. In
this section, we consider toy models in which the bulk theory is non-interacting and can be
solved explicitly.

5.1 O-dimensional solvable Example

In this section, we consider a toy model of a 0-dimensional theory. For simplicity, we assume
that there is only one single-trace operator, and that only single-trace and double-trace oper-
ators are generated under the coarse graining when the reference theory S, is deformed by
the single-trace operator. We assume that the reference theory is invariant under a Z, sym-
metry, and the single-trace operator is odd under the symmetry. The symmetry constrains the
form of the f-functions. We assume that the f-functions in the subspace of the single-trace
deformation take the following form

Bo(t,0,.)=f —wt?,

pB1(t,0,.))=at,

Bo(t,0,..)=—Db,
ﬂn>2(t1 O) ) =0. (137)

Here t stands for the source for the single-trace operator. 3, describes the flow of the identity
operator. 3; (f35) is the beta function for the single (double)-trace coupling. a, b, w and f are
non-zero real parameters. Under the 7, transformation, the single-trace coupling transforms
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as t — —t. This guarantees that 3, and f3; are even in t, and f3; is odd in t. Eq. (137)
describes how couplings are renormalized when S, is deformed by the single-trace operator. In
particular, b # 0 implies that the double-trace operator is generated and the RG flow leaves the
subspace of single-trace deformation even if the UV theory has only single-trace deformation.
From Eq. (137), it is unclear where the double-trace coupling t, eventually flows under the
RG flow. Depending on the sign of B5(t, t,) at large t,, the theory may or may not flow to a
scale invariant fixed point in the IR. Remarkably, f,(t, t,) at general values of t, is already
encoded in Eq. (137), which determines the fate of the RG flow in the space of all couplings.

Following the formalism in Sec. 4.2, we obtain the bulk RG Hamiltonian in Eq. (104). It
is convenient to shift the RG Hamiltonian to remove a constant piece,

a2 2
- a ia . a‘—4bw |.
Hz?—[—l—( ——)zb[~ —t] +| — |3, 138
f=3 P79 4b (138)
where f = it and p = —ip fluctuate along the real axis.!®> They satisfy commutation relation

[p,t] =i. This is a TP-symmetric non-Hermitian quadratic Hamiltonian [40]. As is shown in
Appendix B, the spectrum of this RG Hamiltonian is given by

By = (14 )47 (139)

where 1 = a? — 4bw. Unlike the Hermitian cases, the left and right eigenstates take different

forms,
1 € 22 €
Regy— _ + ¢ & \1/4 i \/j~
t)= e H t],
VD= —2—() 5]
1 € 72 €
Lezy — & ¢ € N\1/4 =&t &z
t)= e H t],
D) Jzn_m(zn) ”[\/; ]
where &p ;| = %(ﬁﬂ: a), € = %ﬁ and H,(x) is the Hermite polynomial : Hy(x) = 1,
H,(x)=2x, Hy(x) =4x>—2, ...
The spectrum of the Hamiltonian is determined by the parameters in the -functions, a,
b and w. First, the eigenvalues of the Hamiltonian are real for > 0. Second, the eigenstates
are square-integrable for £g ; > 0. These conditions are satisfied for b > 0 and w < 0 for any
real a. In the following, we first focus on this parameter region that supports a real spectrum
with normalizable eigenstates. At the end of this section, we will see that violation of these
conditions is associated with a loss of stable fixed point in the IR.

(140)

5.1.1 Fixed point

A generic initial state evolves to the right ground state of 7 in the large z limit,
Repy — (& \1/4 &2
Yo(t)=(5) et (141)
2

As discussed in Sec. 4.3, the right ground state corresponds to the stable fixed point of the
theory. To extract the fixed point action, we write the right ground state as

|0)=JD¢J DE Pg()e 0" p)
R

=(§)“4\]§R f Dp ).

13The additional shift a/2 is generated from the normal ordering.

(142)
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The logarithm of its wavefunction in the ¢ basis gives the fixed point action,

S* =8y +J;0 +J;0%, (143)

with J¥ = 0 and J; = %. We emphasize that the stable fixed point exists away from the
subspace of the single-trace coupling, yet the position of the fixed point is fully determined
from the beta functions defined in the subspace.

5.1.2 Scaling operators and their OPEs

Now we turn our attention to excited states of 7{. Each right eigenstate corresponds to the
fixed point theory with an operator insertion. The n-th excited state is

In) =JD¢f DE R(E)e 50710 g)

N (144)
1/4 e—So H, \/7 ] 5 02 .
- [ o= Eeom 5 5 ] o
The excited states can be reached by applylng raising’ operators to the ground state,
In) = A,0), (145)

where fln is the operator that maps the ground state to the n-th excited states that has scaling
dimension ,/mn. In general, the n-th scaling operator is given by a linear superposition of all
k-trace operators with k =n,n—2,n—4,... Forn =0, 1,2, 3,4, we obtain

g =

A= i%(’),

A= e~ T

As = _81'1/\/68_;(93 + 21\/‘/5_;(% - 1)(9,

A= f/zgg; ot + 4‘2;22(1 — 2%)02 2‘5_(1 - E)Z (146)

It is straightforward to identify all scaling operators in this way.
The OPE coefficient can be computed accordingly. For instance, two A; fuse to

.Al XAl —(1—?)./404‘\/_./42, (147)
R
and the associated OPE coefficients are given by C;;0 = (1 — ﬁ), Cy15 = V2. Similarly, all
OPE coefficients can be extracted from the eigenstates of the RG Hamiltonian. In Tab. 2, we
list all OPE for A, x A,, up to n,m = 2.

5.1.3 Full B-functions

Based on Sec. 4.3.5, we can immediately write down the full B-functions of the theory. In 0
dimension, there is no x dependence of the couplings and OPE coefficients. By setting D =0
and Cj,n(x) = ¢jmn in Eq. (132), we readily obtain the -function,

iJn = _An(Jn _J:)
dz

1 (148)
+ 580 = A= Ap)eimnUi = I =03 +0(0 = 7).
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Table 2: Operator product expansion of ftn X flm forn,m=0,1,2.

n
0 1 2
m
0 AO Al AZ
A | =54+ V24, VI(1— ) A, + V3 A,
~ ~ A 5 A ~ ~
2 | Ay | V21— g5) A1+ VBA; | (1= 550" Ap +2v2(1 = 55-) A, + V6 A,
(J3)+ (J5)+ 1 (J2)x
(a) T oa () 12 (b2)
2.0 100 1.0
o8 g-g
' 0.6 04
10 0.4f " . 0.2 04y 0.6 0.8
f’ b 3.0f 72 )i
05 04 08 02 0.1 > i \\0.4\ 06 038 2.5—(b3)
2.0¢
b = 0.0001 / 0.001 b=0.1 o
w oW\ MA A P w X\WATH A A 151 o oy N
04 1 oaf \ 7 AN\ 7 0.2 04 T 0e 0.8
; R et By B S soi(J3)+
J2 00 o AN Y 0.0 LRSS 75
-0.2 - Al *ny * 0.2 ; /1/ \>x “ 7.0 (b4)
A Ok p 6.5
-0.4 0.4 6.0
2 10 1 2 o 55
- J 2 -1 0 1 2J 2 -1 0 1 2J
(Cl) ! (02) ! ((33) ' 02 &, 08 08

Figure 4: The double-trace coupling J, at the stable (blue line) and unstable (orange
line) fixed point as a function of w at b = 0.2 (a); as a function of b at w = —0.5
(by), w=-0.2 (by), w =—0.05 (b3), w =—0.01 (by). Three RG flow diagrams at
w = —0.5 and b = 0.0001 (c;), b = 0.001 (cy), b = 0.1 (c3), b = 0.5 (Fig. 1) are
also presented. a = —0.1 is used for all plots.

From Eq. (139) that implies A, = ,/mn and Table 2, we obtain the beta functions for the
couplings of A; and A,,

d € 1 €
—J=—y7m|1+ — J—24/2n(1— =) J, +O((J —J*)®),  (149)
dz ! ﬁ|: 2‘/5&:}% ﬁgR] 1 n 2, 12 ( )
d, 41, &0 _ V1
dz"? " 28 8y2E%  4v2E2
€ 1 €
—2/n|1+ — Jo—24/2n(1—=—=—)2+0((J—J")?), (150)
Vi [ 2v2ER ﬁgR] ’ 22,10l )
where %Jn = —f,. Although fB,., = 0 in the subspace of single-trace coupling, they are in

general non-zero away from the subspace. It is straightforward to compute f3,, for any n order
by order in (J —J*). This shows that the full beta functions are indeed encoded in the RG
Hamiltonian that is fixed by the beta functions defined in the space of single-trace couplings.

The beta functions for multi-trace operators allow us to explore the RG flow away from the
subspace of the single-trace coupling. Egs. (149) and (150) computed to the quadratic order
in 6J = (J —J*) can be trusted near J = J*. To describe the RG flow far away from the stable
fixed point, one needs to take into account terms that are higher order in 6J and higher trace
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couplings. Here we focus on the flow in the space of J; and J, near J = J*. To the quadratic
order in 6J, J,, with n > 2 are not generated, and we can trust Egs. (149) and (150) near
J = J*. The RG flow in the space of J; and J, is shown in Fig. 1 for a = —0.1, b = 0.5 and
w = —0.5. We find two fixed points at

W) = (o, é) (151)
Ay &)
’ 4Er (e —2&R) ’

where 0 < (J5)_ < (J3), because &g > 0 and & > 2&p. In either the small & or large ¢ limit,
the second fixed point is close to the stable fixed point, and the terms that are higher order in
6J in Egs. (149) and (150) are negligible near these two fixed points. The first fixed point in
Eq. (151) is the stable fixed point identified from the ground state of the RG Hamiltonian in
Eq. (143). Both 6J; and &6J, are irrelevant whose scaling dimensions are —,/n and —2,/7,
respectively. The second fixed point in Eq. (152) is an unstable fixed point. Both 6J; and 6.J,
are relevant with scaling dimensions, ,/7 and 2,/7), respectively. In Fig. 4(a) and Fig. 4(b;.4),
we plot the value of J, at the two fixed points as b and w are varied, respectively. For b > 0
and w < 0, the spectrum of the RG Hamiltonian is real and the eigenstates are normalizable.
In this case, £z and € — 2&R are both positive and finite such that the two fixed points remain
separated, as shown in Fig. 4(cy.3). The RG flow changes qualitatively if b or w approaches
0. In Appendix C, we examine the RG flow in the w — 0~ and b — 07 limits in more details.

U505, = (0 (152)

5.2 D-dimensional solvable example

In this section, we extend the discussion in the previous section to a D-dimensional field theory.
For simplicity, we continue to assume that there is only one single-trace operator, and that
multi-trace operators higher than double-trace operator are not generated when the reference
action is deformed only by the single-trace operator. We also assume that the reference theory
is invariant under the spatial translation, the rotation and the inversion symmetry, and has
an internal Z, symmetry under which the single-trace operator is odd. The symmetry largely
fixes the form of the -functionals in the subspace of the single-trace couplings order by order
in the coupling. To be concrete, we consider the following f3-functionals in the subspace of
single-trace couplings,

Bolt,0,.;x] = f —g[0,t(x)]* —wt*(x),
P1lt,0,.5x] =at(x)—x0d,t(x),
By [t,0,..;x]=—Db,
Br=3[t,0,.;x]=0. (153)

Here B, [t™), t®, t®), _:x] represents the -functional for the k-trace operator at (t(l), t@ G .),
where t(™ is the m-trace coupling. (8,t)* = 23:1(8“t)2, and xaxtzzll;:l xto,t. f,g,w,a,b
are constants that represent the contributions to the beta functions generated from integrating
out short distance modes and rescaling the fundamental fields at every RG step. The last term
in f3; dilates the space because the coordinate in the (I + 1)-th RG step is related to that in the
previous step through x(*1 = x(De~*  The rescaling makes sure that the UV cutoff remains
invariant under the RG flow, and the same coarse graining can be applied at all steps. On the
other hand, the rescaling of space reduces the size of the system in real space by e 9% at every
RG step.

Eq. (153) fixes the bulk theory in Eq. (103), which in turn determines the fate of the
field theory in the low-energy limit. The wavefunction that fully determines the renormalized

34


https://scipost.org
https://scipost.org/SciPostPhys.12.2.046

Scil SciPost Phys. 12, 046 (2022)

action at scale g is given by the path integration of the single-trace source and its conjugate
variable,

w[t,z] = f De(x,5)Dp(x,5) Wy, g, [6(0)]e Jod=H L] (154)
I

t(z)=t

While the bulk Lagrangian is quadratic in the present case, it depends on x explicitly because
of the dilatation term in f3; of Eq. (153). This gives rise to a mixing between different Fourier
modes in the momentum space.'* The mixing makes it hard to compute the path integration
directly. To bypass this problem, we follow the three steps described below.

1. We introduce new variables in the bulk,
t(x,2) = —if(xez,z)egz, p(x,2)= if)(xez,z)egz. (155)

Besides the rescaling of spatial coordinate that undoes the dilatation, the fields are also
multiplied with a factor e2* to compensate the z-dependent volume of the space. =i
is multiplied so that f and p fluctuate along the real axis. In the new variables, the
dilatation effect disappears and Fourier modes with different momenta do not mix as
will be shown later.

2. The path integration in Eq. (154) is performed in ¢ and p. This is done in the Hamilto-
nian picture.

3. The scale transformation is reinstated by expressing the z-dependent state in terms of
t'(x,2) = E(xez,z)e%z, p'(x,2) =f)(xez,z)e%z. (156)

In the following sections, we implement these steps to identify the IR fixed point and the
spectrum of scaling operators at the fixed point.

5.2.1 The RG Hamiltonian

In terms of the variables introduced in Eq. (155), the bulk Lagrangian is written as

1/A
D ~ (n—=2)D
— D L I S-S z. ~n b4
L[t,p,z]—J dX(1p82t+12pt Z[jn[t,X]pe 2 ), (157)

n>0
where
PLEX] = Biltsx]—ie"XoE,
BulE;X] = Bult;x] forn#1, (158)
with X = xe®. £(X) and p(X) obey the canonical commutation relation,
[£),p(X")]=—i6(X —X"). (159)

The RG Hamiltonian density is given by

. .D .. 5 o a.p (22D
HIEp, 2] =igpi— ) fulliXTp"e =~ (160)

n>0

4The mixing arises because the momentum in the (I + 1)-th RG step is related to the momentum in the previous
step as k(D = kDedz,
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By shifting the Hamiltonian by a constant, we write the Hamiltonian density as

S - 1 D
H[t,f),z:l:H[t,p,z:l'i‘e_sz_E(G—E)s(O) (161)
- - .1 D . .. P -
= —ge® [ I(X)]* —wi*(X) + i (a+ ) ECOPCN) + PEOECO)]+ bp*(X).
As expected, the dilatation in Eq. (153) cancels with that in Eq. (158). Instead, the RG

Hamiltonian acquires explicit z dependence.
In the Fourier basis,

- 1 X 1 i
fX)=—= ) X ¥, pX)=—=) e“*py,
JV ; kK> P JV ; Px (162)
where V = A7 is the volume of the system, the RG Hamiltonian can be written as
7:[(2) = Z EK: (163)
K
where
hy = b{[f’K+i§EK][ﬁ—K+iCE—K]+QIZ<,ZEKE—K} (164)
with
QF =0 +ae®K>. (165)
Here, { = 2—1b(a+§), o= ﬁ(a+%)2—v—b” and a = —g/b. Henceforth, we set b = 1/2, resulting
in=a+ %, o ={?—2w and a = —2g. iy and p_g are canonical conjugate variables that
satisfy [f,px/] = —i0k _x,. While fx_o and pg— are real, fx,o and Px.o are complex with

tx = t*4 and px = p* . The Hamiltonian can be decomposed into a sum of time-dependent
harmonic oscillators,

/

A=) = ho+ D (hao) + hio), (166)
K>0

where ZK>0 runs over the half of non-zero momenta with K identified with —K, and

hO = b{ [ﬁo + lgzo]z + Q(Z),ZE(Z)},

- N . 2 .

hr.x>0) = b{ [p(R;K) + lgt(R;K)] + szgz(t(R;K))z}; (167)
z . e 2 y

h(1;x>0) = b{ [Baio +iCtam ] + Qi,z(f(l;K))Z}:

with Friy.x) = v2Re(Im) fx and Pr):k) = v2Re(Im) py that satisfy the commutation rela-
tion I:E(S;K),f)(s’;K’)] = _i5K,—K’5SS’ with S,S/ =1I,R.
The RG flow is described by the imaginary time Schrodinger equation,

. - a .
H(z)¥ [t,2] = —a—\IJ [t,2]. (168)
Z
The three parameters {, o and a fully determine the solution W[, z]. The problem of the har-
monic oscillator with time-dependent frequency has been studied extensively in Refs. [41-43],

which is reviewed in Appendix D. We consider a UV theory obtained by adding the single-trace
and double-trace couplings to the reference theory S, in a translationally invariant way. In this
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case, the initial wavefunction is a Gaussian product state in the K-space. Because the Hamil-
tonian is non-interacting, ¥ [f,z] remains Gaussian at all z. The solution is written as

/7

W[E,2]= o [0, 21 | | {®imaor [ 2] Wt (a2 } (169)
K>0

/
where [ [,.., runs over the half of the non-zero momenta. The wavefunction for each mode
satisfies h, W, [f,,2] = —%\IJS [Z,,2], where the subscript s stands for 0, (R;K) or (I;K). The
initial state can be written as

U, [£,0]= > ¥, [£,,0], (170)

m

where {¥,, ;[f;,0]} represents the eigenstates of the Hamiltonian h, at z =0 and {c,,} is a set
of z-independent coefficients. Under the RG flow, the state evolves to

U [F,2]= D U, [Ei2], (171)
m
where
1 1 1
U [f,2] = ————e 2%zexp|— 2| x
i a7
exp [—ws’z EZ]H [— Ass i] exp [— Do Ez]
m =
2A§,z ) vV Q5;,0 5t8 2A§,z ’
-1
Here w; , = [ Ozjzz + Qlo] . A, , is a function that satisfies A'S’Z —AS’ZQSZZ =0withA;p =1
A _ A _’ —As, — Wy 5 1 _ As,z Ws 5 _ 1 .
and A; g =0 (A= G,A). e = A o R {+ a, t @, - Atz =0, A, I reduced to

Q0+ ¢, and e+ becomes /€ .
Finally, the z-dependent state is written in terms of the variables in Eq. (156),

/

VI, =9 [th2] | [Yrio [tER;KeZ)’Z] Y0 [tél;KeZ)’Z]
K>0

/

=¥, [tg,z] l_[‘Ij(R;ke*Z) I:tER;k)’Z] \D(I;ke*z) I:tEI;k)’z] . (173)
k>0

Here we use fx = t; for the Fourier modes, where x = e “X and k = e’K 1> For a finite system
size, k and K are discrete,
21 _2me®

K= T(nlﬂrlZJ"J nD)J k= I (n11n2:") nD)J (174)

where L = V1/? is the linear system size and n;’s are integers.

15This follows from

12 12 )
. d°X _ikx- d’x _.
tx = — (X, 2) = =2 iKX=z t'(Xe™*,2)
vV vV
e Z/A
de —ikx ¢/ /
= ‘/ﬁe t (X,Z) =t
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Our next goal is to extract the fixed point of the full Wilsonian RG and local scaling opera-
tors with their scaling dimensions from the scale dependent state obtained from the quantum
RG. As discussed in the previous sections, the asymptotic ground state that emerges in the
large z limit corresponds to the stable fixed point, and eigenstates with local excitations and
eigenvalues give scaling operators and scaling dimensions, respectively. However, it is not easy
to extract the asymptotic state in the large z limit because the RG Hamiltonian is z-dependent.
Even if one prepares an initial state to be an eigenstate of the instantaneous RG Hamiltonian
at z = 0, the state does not remain the same under the RG evolution as is shown in Eq. (172).
Therefore, we use the following strategy. Given that the RG Hamiltonian is invariant under
the Z, symmetry, we consider a generic initial state in each of the Z, even sector and the Z,
odd sector. Under the quantum RG flow, those initial states evolve within each sector as

: + — =&z,
Jlim [ (z))—;e In; +),

Jim 97 (2) = D eI -), (175)
n

where |n, £) corresponds to the eigenstates of the RG Hamiltonian that emerges in the large z
limit in each parity sector, and S: is the corresponding eigenvalue. From this, we identify the
eigenstate with the lowest eigenvalue in the even sector as the ground state that represents the
stable IR fixed point. The excited states in each parity sector correspond to the states obtained
by deforming the ground state with scaling operators with the corresponding 7, parity and
scaling dimension, £, — &7

5.2.2 Fixed point

In this section, we identify the IR fixed point of the theory from quantum RG. As an initial
state, we choose the ground state of the instantaneous RG Hamiltonian at z = 0, which has
the translational invariance and even 7, parity,

/

W [£,0] =Wy k- [fo,0] l_[ o, r:) L EriK) 01%0,(1:10) [ E(1:K)5 O1- (176)
K>0

In the large z limit, the z-dependent wavefunction for each s-mode becomes

U, [Es,2] = g2 exp|— 2. a77)
’ 2A; °
The asymptotic many-body wavefunction is written as
txt
U[t,z]=N'(z)exp|— K=K, 178
[£,2]=N"(2) p[;%@’ (178)

1
where N'(z) = []_[K n_l/“e_fAK’Z] and Ay , are expressed in terms of a, { and o as

Ak =[Gges(a,0)+L171, (179)

where 1 K
Gyla,0) = -va————=(I_ Valk|]+1 Valk|]) (180)
k 2 Io- [ﬁlkl] 1+1/E|: :I 1+\/E|: :I
in the large z limit with fixed k = Ke* (see Appendix E for the details). This shows that Ay ,
converges to a z-independent function when viewed as a function of k. Physically, this is due
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to the fact that the scale invariance becomes manifest if one zooms in toward the K = 0 point
progressively as z increases. The overall normalization of the wavefunction decreases with
increasing z due to the damping associated with the imaginary time evolution.'®

To show that the wavefunction approaches a scale invariant asymptotic in the large z limit,
we need to go back to the scaled variable in Eq. (156). The wavefunction for t,’(, p,’( is written
as

1T/ — A . i/ /
W[t 2] = N'(z)exp( Zk:zﬂktkt—k)a (181)

where A, = Age— - Inthe large z limit for a fixed k, A takes the following forms (see Appendix
E),

1
I (‘/Efro for |k| < 1, (182)
k == for |k| > 1.
[Valkl+(]

This confirms that in the large z limit ¥'[t’,z] evolves to a z-independent state up to the
z-dependent normalization factor.

Similar to what we studied in Sec. 5.1.1, the state in the large z limit encodes the infor-
mation on the IR fixed point. Defining J;,k = A, we rewrite the asymptotic state in the large
z limit as

Zl—i},lgo |\II(Z)> — N/(Z)J D¢ e—SO J Dt/e_(%Zk(J;’k)_lt/kt/_k_i Zk t;(o—k)|¢>
R

:/\/'(z)f D¢ e *'|¢), (183)

where NV (z) = N'(z) det [27'CJ§]1/ 2 and the fixed point action S* is given by

1 1
S*=So+3 D 5 OO0 = So + 3 f dPxdPx'J5 0,0, (184)
K
where
* 1 * o,—ik(x—x') dk - —ik(x'—x)
JZ,X—X/ = Ve—DZ ZJZ,ke = (27_L_)D Ake . (185)
K

Here we use Oy = 1/% f dPxO,etkx,

As is shown in Fig. 5 (see Appendix F for the details), lim,_, J; ,_,» converges to a
universal profile in the thermodynamic limit. J;" +—, is peaked at x—x’ = 0 with a finite width
that is order of the short distance cutoff. It decays exponentially at large |x’—x|. We emphasize
that the IR fixed point that exists away from the subspace of the single-trace couplings has been

extracted solely from the f-functions that are defined in the subspace.

16The normalization factor N”(z) is determined by

O.1/4

. ——
2A.:(a,0)

e—AK,z ~

~

in the large z limit, where A is a function of k = Ke*(Eq. (234) in Appendix E),

21+ g3V I [ﬁ|k|:| R

Adeo) === /) T—vo)
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Figure 5: (a) J;,_,, asa function of x —x’ at c = 2.0l and { = —0.1for D =1

atz = 22 (orange) z = 23 (green), z = 24 (blue). For the computatlon the lattice
regularization is used with the total number of sites L /a = e30. () J 2 v atc=0.01
and ¢ = 0.1 with the corresponding value of z for each color as in (a). a = 1.

5.2.3 Scaling operators

In this subsection, we extract scaling operators from excited states of the RG Hamiltonian.

We first consider the Z, odd sector. In the Z, odd sector, we consider an initial state in
which one of the Fourier modes is excited. Suppose that the mode with momentum P is in
the first excited state with respect to the RG Hamiltonian at z = 0, where the momentum is
measured in the coordinate system defined at z = 0. In the large z limit, the state evolves to
(see Appendix G for derivation)

[91,5(2)) = (VDN () f D (o Ry 0p ) I6). (186)

2 PeZ

N (2) is the normalization of the ground state defined in Eq. (183). Compared to the ground
state, the weight of the first excited state with a definite momentum decays as e v°? in the
large z limit. The state that supports an excitation at P # 0 at z = 0 can not be invariant under
the RG flow because a non-zero P is pushed toward larger momenta in the large z limit due
to the rescaling. Namely, a source that is added periodically in space at UV flows to a periodic
source with a shorter wavelength at larger z when measured in the rescaled coordinate system.
The excited state with P = 0 is an exception. In the presence of a uniform source, the ex-
cited state flows to a scale invariant state in the large z limit. Using O,, = f dPx e P*XQO,

, we rewrlte Eq. (186) for

. 1/4 %
|\p1’0(z)) — e—(ﬁ—D/z)zlﬁfz\[\;ZV)Z Ag f D¢ (J dPx OX)C_S*W)- (187)
0

—Dz

for the Fourier transformation at z, where p = Pe® and x = Xe™*

P=0as

The first excited state with the uniform source flows to f D¢ ( f dPx Ox) e™5"|¢) in the large
z limit with the z-dependent amplitude, e~ (Vo=D/2)z relative to the ground state. This im-
plies that the spatially uniform deformation of the Z, odd single-trace operator is relevant
(irrelevant) if /o < D/2 (y/o > D/2).

The other type of eigenstates that are invariant under the RG evolution is the ones that
support excitations localized in space. In order to find local scaling operators associated with
states with local excitations, we consider an initial state in which the single-trace operator is
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Figure 6: JJ(CLI) at z = 22 (orange), z = 23 (green), z = 24 (blue) with L/a = e3°

in

D = 1. We set parameters to be a =1 and (a) 0 =2.01 and { =—0.1; (b) 0 =0.01

and { =0.1.

inserted at X. For z > 0, the state becomes
1

Uy x(z)) = ﬁge”m,p(z».

In the large z limit, the state evolves to'”

lim [ x(2) = (V2N (2)e (VTHP/2% J Do A(Xe™)e™ |9),

where

x—x'

A (x) = J dPx'7MYo,

with
ol/4

(2n)P 2A, P

gL —

(188)

(189)

(190)

(191)

Al (x) inserts a single-trace operator around x with distribution given by J)(cl_}) Henceforth, we

use J™ to denote the contribution of the m-trace operator to the n-th scaling operator. The
local operator inserted at X at the UV boundary evolves to a distribution of local operators
centered at Xe * at z > 0. The shift of the central position is due to the rescaling of the
space. In the large z limit, the local operator evolves to .4;(0), which we identify as the local
scaling operator inserted at the origin. The broadening of the distribution in chl’l) is due to

17

hm NJLX( )> (l‘/—)N(Z)J Z_Apeze Gzopezeipx)e_s*|¢>

(ivV2)N(2)e V" ol/4 (e s+
- e (T hoes )

Ve—Dz/2

. —J/oz 1/4
_ WANEe f D ( f @ 31 TR, M0, ) |g)
p p

= (iV2)N(z)e Wo+P/2 J D A, (Xe™)e S |¢),

where we used ;25 Z f (Zn)D at z.
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the correlation in the fluctuations of the single-trace coupling at the fixed point. Irrespective
of the initial profile of the local operator at the UV, it converges to the universal profile J )((1’1) at
large z in the thermodynamic limit. In Fig. 6, we numerically plot J 3(61’1)(2) which converges to
a z-independent profile in the large z limit. Compared to the ground state, the overall weight
of the first excited state with the local excitation decays as e"(Vo+P/2)% in the large z limit.
This implies that the operator O, has scaling dimension A; = 4/o + D/2. This is consistent
with the fact that the operator is relevant (irrelevant) if /o < D/2 (/o > D/2).

If we impose the Z, symmetry, the Z, odd operator is not allowed. To see if the low-
energy fixed point is stable in the presence of the Z, symmetry, we need to consider local
scaling operators in the even parity sector. The operator with the smallest scaling dimension
in the even sector is the identity operator. In the following section, we obtain the next lowest
scaling operator in the even sector.

Now, let us consider the 7, even sector. Excited states in the Z, even sector should include
even number of excited modes. Let us consider an initial state with two excited modes labelled
by momenta P and P’. Under the RG evolution, the state in general evolves into a linear
superposition of the ground state (for P + P’ = 0) and excited states. Since we are interested
in the excited state above the ground state, we discard the slowest decaying state (the ground
state). The state with the next slowest decaying amplitude in the large z limit is given by (see
Appendix H)

o/Gx ol/2
|\I’2’p’p/(2§)> :—\/EN(Z)G 2/a fD(i) (WAPeZAP’eZOPeZOP’eZ
Pez 43p/ez
o2 1 /o (192)

- 5P+P/,0 |: Wpez:| )e—s* |¢);

4A2 . Aper * 2vaP2+0o
where N(z) encodes the rate at which the ground state decays and e 2¥°? is the additional
decay for the next slowest decaying state. Again, the state with non-zero momenta can not
be invariant under the RG evolution due to the rescaling that shifts momenta to larger values
with increasing z. To find a local scaling operator, we consider the state that evolves from an
initial state that supports local excitations at positions X and X’,

1 : /v’
[ (2)) = o D e 10y i (2)). (193)
BP’

In the large z limit, the state evolves to'8

Wy ¢ x/(2)) = —V2N (g)e 2V +D)= J Do Ay(Xe ™, X e?)e™5 |¢), (194)

18

]. : ! v/
|\IJ2,X,X/(Z)) = v Z etPXHPX |‘I’2,P,P/(Z))

RP/

1 . — Iyl 1 . 7\, *
- —2+/0z - ip(Xe ®)+ip’(X'e*) 1(2,2) - ip(X—Xx")e™* 1(2,0) —S
= —V2N(z)e qua (V§ e 1%20,0, V§ e JE01)e S |¢)

p.p’ p

Z eip(Xe’Z—y)+ip'(X’e’z—y/)JIE’2,%) Oy Oy/)e—s* |¢>

VZ e—ZDz P
p.p’

= —V2N(z)e” VTP f D¢ (f d’ydy’'

1 . o
—(24/0+D)z ip(X—X")e™* 7(2,0) —S
+ V2N (2)e fDd) (Ve*DZ E e J, ]l)e o),
P
where p = Pe* and
1/2 1/2 1/2
22_ O _— @0 _ 0" % Vo o' 1

JoV =—ANN, J=— A+ —— W  ~ A+ -W
P.p 47, A, PP p 4‘/A127 Py apZe % + o P 4A12) PP

in the large z limit.
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where

flz(x,x’):JdD Py %2, 0,0, -2, (195)

with

D, 4D/ 1/2
@2 _ d“pd”p" o O I
J Ay Ay e PP

x,x’ (27‘5)2[) 4APA /
dD ) 1/2
JJ(CZ’O): (2751) elpx|:UA2 p+ W i| (196)
' 7.5 15
—7.5
~15 - |
0.04] ' /
0. 0%5 ,
J& 0 02\ |
o_m\
0.00 <A
—15 75

7.5 15

Figure 7: The profile of J "~ (22) 35 a function of x and x’ at z = 25 for a system with
L/a=e**inD=1. We use a=1,f=0.1 and o = 0.01 for the plot.

A,(x,y) is a composite operator that supports two single-trace operators centered at po-
sition x and y respectively. In the large z limit, the initial state flows to the state obtained by
applying .A,(0,0) to the ground state. Therefore, we identify .4,(0,0) as the lowest scaling
operator above the identity operator in the even sector. It is noted that A,(0,0) is a linear
superposition of a double-trace operator and an identity operator. This is because the double-
trace operator and the identity operator mix under the RG flow. J (2 , that describes the

distribution of the two single-trace operators, can be written as J; (2 2) =J; (1’1)J (1) , and its

profile in the real space is determined by that of J (LD In Fig. 7, J (2 2) is shown as a function

of x and x” at a fixed z. It has a peak at the origin and decays exponentlally away from the peak
with the width that is comparable to the short distance cutoff scale. According to Eq. (194),
the local deformation induced by this scaling operator decays with rate 2,/ + D relative to
the ground state. Thus, its scaling dimension of the local operator is 24/0 + D which is twice
of the single-trace operator. It is an irrelevant operator due to y/o > 0.

It can be shown that general scaling operators have scaling dimensions given by n (ﬁ + %)
forn=1,2,3,... See Appendix I for the details. All operators in the even sector are irrelevant
for /o > 0. This shows that the fixed point in Eq. (183) is stable in the presence of the 7,
symmetry. The fact that the scaling dimensions are additive is a feature of the generalized
free theory for which the bulk RG Hamiltonian is quadratic. For general theories whose RG
Hamiltonian is not quadratic, this is no longer the case. It will be of great interest to consider
large N theories whose RG Hamiltonian includes interactions that are suppressed by 1/N, and
compute 1/N corrections to the scaling dimensions from the quantum RG.
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5.2.4 Operator Product Expansion

Now we consider the OPE between two parity-odd operators with the lowest scaling dimen-
sion. For this, we insert .4; at X and —X in the stable fixed point theory. The deformed theory
corresponds to the initial state with two local excitations,

10115, x(0)) = —v2N(0) f Do A1 (X) A, (—X)e™ |$). (197)

Then, following the steps explained in Sec. 4.3.4, we evolve the state with the RG Hamiltonian
forz=1In I)E(l to obtain

W1 x1x,—x(2)) = —ﬁN(z)e_(2ﬁ+D)ZJD¢A1(a)fl1(—a)e_s*|¢>

_ —(2 D D, 4D (1,1) ;(1,1) —S*
= —v2N(z)e Yo+ )ZJqu J dPydPy )0l 0,067 |¢),

(198)

where a is the short distance cutoff length scale. In the second equality, we use the expression
for A; in Eq. (190). By using Eq. (195) for A,, we rewrite Eq. (198) as'®

W115x,-x () = —V2N (3)e” @Yo +D) f Do [12V1 + Ay(a,—a) | |p).  (199)
We expand A,(a,—a) in a to obtain
W1 x,-x (2)) = V2N (z)e "2V P): f DY[IZV1+ 450,00 +... [ 5 [9),  (200)

where the ellipsis includes derivative terms such as ad, A, (x, ¥ly=y—o and —ac?yflz(x, Nly=y=o-
Finally, the backward evolution for RG time —z restores the initial state,

¥151%,-x(0)) = —v2N (O)J D[ @VTP2 2O + 4,(0,0)+... ] p).  (201)

Comparing this with Eq. (197), we obtain the OPE for two .A; operators inserting at X and
—X as

A N (20) a 2A1 N N
A () % Ay (—x) = I )—{‘ Ao+ A45(0,0) + .. (202)

where flo = 1 and A; = /o +D/2. Eq. (202) shows the channels in which two single-
trace operators fuse into a local double-trace operator with spin 0 and the identity operator.
The ellipsis includes double-trace operators with larger spins and descendants. Following the
procedure explained in Sec. 4.3.5, one can compute the f-functions for general multi-trace
couplings.

6 Conclusion and discussion
In this paper, we show that the full 3-function of the exact Wilsonian RG is completely fixed

by the -function defined in the subspace of single-trace couplings. We establish this gen-
eral constraints on f-functions using the quantum RG, which is an exact reformulation of

YF, v1(x) introduced in Eq. (125) is independent of x because the RG Hamiltonian is quadratic in this case.
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the Wilsonian RG. In quantum RG, the conventional RG flow in the space of couplings is re-
placed with a quantum evolution of a wavefunction defined in the subspace of single-trace
couplings, where fluctuations of the dynamical single-trace couplings encode the information
about all multi-trace couplings. Since the quantum evolution of the RG flow is completely
determined from the f-functions defined in the subspace of single-trace couplings, the full
Wilsonian f-functions can be extracted from the f3-functions defined in the subspace. This is
used to compute the full -functions of two concrete models : the O(N) vector model and the
O;(N) x Ox(N) matrix model.

We also provide the general algorithm for extracting other field theory data such as scaling
operators and OPE. The general procedure consists of two steps. First, we construct the RG
Hamiltonian that generates the quantum RG flow from the -functions defined in the subspace
of the single-trace couplings. Second, we establish the correspondence between the ground
state of the RG Hamiltonian with the stable IR fixed point. Similarly, excited states with local
excitations are mapped to the IR fixed point deformed with corresponding local operators.
The energies of the excited states determine the scaling dimensions of the local operators.
From the completeness of the eigenstates of the RG Hamiltonian, one can also extract the OPE
coefficients among general operators and reconstruct the full -functions.

We conclude with open questions and future directions. First, QRG can be used to com-
pute the exact quantum effective action. The scale dependence of the quantum effective action
obeys the exact RG equation [6,8]. In general solving the exact RG equation is challenging be-
cause the exact effective action includes operators made of arbitrarily many fields and deriva-
tives. As a result, exact effective actions remain unknown even for relatively simple theories.
In QRG, the exact RG equation is mapped to a quantum evolution of a wavefunction for single-
trace couplings. Since the set of single-trace operators is far smaller than the set of all possible
operators, QRG can be potentially more tractable. For general quantum field theories, it is
still difficult to solve the corresponding quantum evolution problem in QRG. However, in the
large N limit, quantum fluctuations of the single-trace couplings become weak, and the theory
that describes QRG evolution becomes classical. In the large N limit, the solution to the ex-
act RG equation can be obtained from the saddle-point solution. Recently, the exact effective
action for the O(N) vector model has been computed from QRG in the large N limit [33]. It
would be of great interest to compute exact effective actions for matrix models in the large N
limit. Second, QRG provides a concrete prescription for constructing the holographic duals for
general quantum field theories [16]. The construction gives a well-defined bulk theory that
includes dynamical gravity as far as the boundary theory is regularized [15,30,38]. However,
the continuum limit of the bulk theory obtained from regularized boundary theories such as
lattice models is not fully understood. It is of great interest to understand how the regularized
bulk theory obtained from QRG is related to continuum theories conjectured as holographic
duals of known field theories in the semi-classical limit. Third, the 3-functions in the subspace
of single-trace couplings include the information on all fixed points that exist away from the
subspace as is discussed in Sec. 5.1. As multiple fixed points collide with a parameter of the
theory tuned, the stable fixed point can disappear in the space of real couplings. It will be
of interest to understand how the loss of conformality or an appearance of non-unitary fixed
points [44-47] manifests itself in the bulk. Finally, it would be interesting to consider cases
in which the bulk RG Hamiltonian supports multiple ground states. One can consider a few
scenarios in which degenerate ground states for the RG Hamiltonian arise. Degenerate ground
states can be related to each other through symmetry, in which case the emergence of degen-
erate ground state is a sign of a spontaneous symmetry breaking. A degeneracy can also arise
due to a suppression of tunneling between topologically distinct RG paths [38]. An exactly
marginal deformation can also give rise to degenerate ground states.
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A Wilsonian RG with Gaussian action as reference action

In this appendix, we show the form of an RG Hamiltonian that generates the exact RG flow
for the ¢*- theory starting from the deformed Gaussian action [6,30]. Let us consider a D-
dimensional scalar field theory whose Euclidean action is written as

S=S,+S5,. (203)

Here SO isa quadratic reference action,
0 2 A ( ) k k> ( )

2
where k is momentum, and le(k) = e/k\_2 k? is a regularized kinetic term that suppresses
fluctuations at momenta larger than UV cutoff A. S; is a deformation that includes interactions
and higher derivative terms. The standard exact RG flow equation can be obtained by lowering
the UV cut-off as A — Ae~%* followed by a rescaling of field and momentum, ¢; — e¥dz¢edz K
[6]. The correction to the effective action generated from this coarse graining is obtained by

applying an RG Hamiltonian to the wavefunction e~ as

e—HdZe—S — 6_8_55, (205)

where 68 is the correction to the effective action, and

. G(k D+2
H=€_SOJ<de|:%7Tk7T_k—l‘( 5 ¢k+k3kqbk) n_k+C]eso (206)
is the RG Hamiltonian. Here 7; = —i% is the conjugate momentum of ¢;. G(k) = aaGﬁl(k)

is the propagator of the high-energy modes that are integrated out in the coarse graining
scheme. C =— f d’k5P(0) [ngl + 1] is a constant. One can check that the RG Hamiltonian

leaves the trivial state invariant, (1|H = 0, and the partition function is invariant under the
RG evolution,

(11S) = (L]e™%=H]s). (207)

B Solving Non-Hermitian Harmonic oscillator

The RG Hamiltonian considered in the paper takes the following form,

1 1
H=—n+-mw?*(x +iym,)?, (208)
2m * 2
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where x (7t,) corresponds to p (j) in the RG Hamiltonian in the main text. The conjugate
variables satisfy the commutation relation [x, 7, ] = i. The RG Hamiltonian is invariant under
the P and 7 symmetries,

PxP=—x, Pn,P=-—mn, PiP=i,

TxT=x, TnJT=—mn, TiT=—i. (209)

o . T 2 .. e
Under the similarity transformation S = e2"x, the non-Hermitian RG Hamiltonian is trans-
formed to an Hermitian RG Hamiltonian as

1 1
Hy=SHS'= [%nﬁ + 5mwz 2]. (210)

In terms of the n-th eigenstate |1,,) of H,, the right and left eigenstates of H are given by

[YR) =S ), (YL = (Y,lS, (211)

with eigenvalue (n + %)w. Their wavefunctions in the 7, basis are given by

R(m) = (m yR) = NRe i Gatnmiy (Tx
Pu(7y) = (meliy) = Ne Hn(m),

Tx

vmow

where NR®) are the normalization constants. The right (left) eigenstates are normalizable if

1 1

From the standard ladder operators of the Hermitian Hamiltonian,

(212)

PYE(ry) = (melpl) = Nle 2o W, (—2),

m i m i
af =/ 2 (x — —m,), a= P2+ — ), (213)
2 meo 2 mow

the raising and lowering operators for the non-Hermitian Hamiltonian can be obtained via the
similarity transformation,

1
a=5"a's =/ 2 [x +iy — —)nx],
2 mow
1
a2=8_1a8= ‘/@[x+i(y+—)ﬂ:x]. (214)
2 mew

The non-Hermitian RG Hamiltonian can be written in terms of a; and a, as

w
H = waja, + X (215)

C p-functions for the 0-dimensional model in limiting cases

In this appendix, we analyze the RG flow of the 0-dimensional example in various limits.

e w— 0 limitwitha<Oand b>0:

In the w — 0~ limit, £ approaches 0*. In this limit, the two fixed points are pushed to
the region with large J, as is shown in Fig. 4(a). As &y vanishes in the small w limit,
the eigenstates of the RG Hamiltonian become non-normalizable.
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e w— 0 limitwitha>0and b>0:

In this case, £g = 5 and € = § are finite and positive, and the right wave function is
normalizable. Because € —2&; = 0, the 3-functions become

L=y +o(U-r),

dz
d ﬁ "
=" 28] — 240, +0((T =),

The unstable fixed point is pushed to positive infinity, and only the stable fixed point
located at (J7,J5)_ = ( )35 ) survives.

e b > 0" limitwithw<Oanda<0:

In the small b limit, £z = 41b(|a| +a— 2bW) and e —2&; = ‘%b(lal —a— 2|bT‘|”). Fora <0,
Er =3¢ and e—2p ~ —55 — 00 ™, The /5 -functions in Eq. (149) and Eq. (150) become

d  _V2e—28) | 2285+ (e —2&R) 3
FE He—28)En srolt=ry)
4, - ,/27;5_25"@ —i) —2y7(7 —i)+o((J—J*)3)
dz"? Er 2 a4k, 2 4k, '

As ¢ — 2&y approaches infinity in the small b limit, the second term in %Jz is negli-
gible. Thus, the two fixed points are getting closer to each other until they collide at
U, J3)e = (O, %) This is shown in Fig. 4(c; 5). Before collision, the stable (unstable)
fixed point has two irrelevant (relevant) directions. As the fixed points collide, both
directions become marginal because the negative and positive scaling dimensions can
meet only at 0. It turns out that the perturbations are marginally irrelevant from one
side and marginally relevant from the other side. If b becomes negative, the normaliz-
able ground state disappears, which suggests a loss of stable fixed point in the real space
of the couplings [44—47]. It will be of interest to understand constraints on the range of
conformality from unitarity.

e b > 0" limitwithw<Oanda>0:

Ifa>0, &g =5; = 00" and ¢ — 28 = —3; is finite. In the b — 0" limit, the unstable
fixed point moves towards the positive infinity, while the stable fixed point moves to the
origin. The f-functions in this limit are given by

Ly =T+ o( -7,

dz

d

Ty N2/ + o(w-74?),
V4

where 1) ~ a?.

D Solution to the Schrodinger equation for the time-dependent
harmonic oscillator

We first review the evolution of a time-dependent harmonic oscillator with Hamiltonian

1
H=§x +2Q§ m? (216)
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where €, is a function of imaginary time z. An initial state can be written as a superposition
of the eigenstates of the instantaneous Hamiltonian at z =0 as ¥ [7,,0] = Y. ¢, ¥, [7,,0],

where . Q14 ;
\Dm[nx,o]=‘/?n!(?0) Hn[\/ﬂonx]exp[—ﬁﬂoni]. (217)

The time dependent state satisfies the Schrodinger equation,

1 92 1,5, oV [m,,2]
—Ea—r!:)zc\lf[nx,z]+aﬁznxlll[nx,z] :_a—zx' (218)
We introduce a new variable, £ = % and write the time-dependent solution as
V[m,z]=C exp[-AZK, S|P [E,0], (219)

where K,, C, and 6, are function of z which are related to A, through K, = 2‘2 , C,=—C,K,

and 0(z) = 1/A%> with A, = dA,/dz. ¥ [&, 0] satisfies

SU[E,0] 162 . B
= E552\1/[5,9] =0. (220)

A, —A,02] €0 TE, 01

We choose A, so that A, —Azﬂf =0, and ¥ satisfies

_69[£,6], 182

=6 5(,552@[5,9]:0. (221)

This is the Schrodinger equation of a particle in the free space, which has a one-parameter

family of solutions,
2

B, [£,0]= exp [—%e(z)] exp[—ilE(2)], (222)

where £ is a real parameter that corresponds to the momentum conjugae to £ in the particle
analogy. The general solution is given by a linear superposition of ¥, as

1 A, ° ¢ (% ds A,
\Il[nx,z]:\/—xexp(—ﬁnﬁ)J d€{¢[€]exp[—EJ A—z}exp[—l n
Z Z —00 0 o/

Z

] L 23

where ¢ [£] is the weight for the mode labelled by £, and 6(z) = f OZ j—il is used. At z =0, the

initial conditions A, = 0 and Ay = 1 lead to

w[n,,0] =fd€{¢[€]exp(—i€nx)}. (224)
Thus, ¢ [£] is the Fourier transformation of ¥ [, 0],

oL]= % f W[ n’,0]exp(itn’)dn’,. (225)

The n-th eigenstate of the H at z = 0 has the Fourier components given by

1 Qg4 1 .
¢"[€]=2n—«/ﬁ(7) JHn[\/Q_Onx]exp(_EQOﬂi)exp[wndenx 226

V2 4 , 5 e
:m(ﬂ_o) Hn(—l Qoa)exp[—z—ﬂo].
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Because the Hermite polynomial is complete, ¢, [£] can be decomposed as a linear superpo-

sition of /3 5 A
~ 2 T \1/4 1) !
wll=———(=) " Hy|i— |exp| —|. 227
dwlt] 2nv2"’n’!(90) [ \/QO] P[ 28 | (227)

Inserting Eq. (227) into Eq. (223), we obtain a solution,

Van A4 [ A [ A, 68 :| [ w
v [r,,z]l=———( — —Zexp(——=n?)H, |——= exp| ——=n? |, (228)
2V 2V n’! (QO) A, p( 24, X) Vv om, P L 242 X

Z

-1

z / . . . .

where we use w, = [ f 0 j—i + ﬂio] as in the main context. First three states are given by
Z/

1 /4 [, 1A,  w,\ ,
s = —| — B _ =4+ —
o721 ﬁ(ﬂo) \JAZ eXp[ 2(Az Ag)nx :

1 T \1/4 | w, 1 AZ Wi\ o w,
U [m,,2] = —| — _= — |2+ =2)\r 2 n, |,
1[ xZ] ,_27-[(_0) Zexp[ 2( ] g) X AZ QO x

. 2
1 TN\1/4 | w 1/A w w 40
U, [m,,2]= — —Zex [—— =+ = 71:2:| 4( z n)—Z— 1.
2 X 24 277?(90) Az P 2(Az A% ) * Az Vv Q0 ) QO

Now we consider the non-Hermitian RG Hamiltonian which is of our interest :
/ 1 . 2 1 2,2
H = E(x +iym, )+ Eﬂzﬂ:x' (230)

This is related to Eq. (216) through the similarity transformation, H' = e 2" He?™. Accord-
ingly, its solution is related to Eq. (228) through \PT/I = 3 v,

Var /4 [w 1 A A, b 1)
/ _ z T 2\ ,2 g % 2
v [7y,2]= P 2“n!(_ﬂo) _Az exp 2(y+A—Z)nx H, T om, exp ST |

)4 /
where we use w, = |:f0 f‘—i
Z/

(231)

-1
+ Qlo] as in the main context.

E Computation of A, ,, w,,, A;, and A,

In this appendix, we provide the expressions for A ,, w;,, A, and A, , that appear in the
solution for the RG Hamiltonian in Sec. 5.2. Since the expressions of A; ,, w;,, A;, and A,
are the same for s = (R; K) and s = (I; K), we will just denote them as Ay ,, wi , Ag, and Ag ,
in this appendix. For b = 1/2, we express the solution for the Schrodinger equation Eq. (168)
in terms of a = —2g, C=a+% and o = (% —2w.

E.1 A,
We start with A, , that satisfies As,z —AS’ZQS2 , = 0 with the initial conditions Ao,o = 0 and

Apo=1. For K =0, Ag, = cosh(4/0z) is the solution. For general K, Ay , is given by

m/& Z
s = ey e VAl ] (Lo s [Vawi) v g Lvaw])

— 15[ ValKle*] (I yz [Valk|] + L= [ vValkl] )}
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In the large z limit with fixed k = Ke*, Ag , can be written as

A, = lim A
k,z 200 K,z

= Ay(a,0)eV,

where

2_1+ﬁna_%ﬁ1ﬁ[\/&|k|]lkl_ﬁ
sin(7/o) I'(—+/0) '

This has the following limiting behaviour in k = Ke®.

A(a,0)~—

E.1.1 |Klef<K1:

For yalK|e* € v/1—+/0 < v/ 1+ 4/0, one can approximate Ak to

Ag gz~ AK,le_ﬁz + AK,zeﬁz,

where
__nva”? 1 -5
Ag 1= 27 sin(n o) T(1— vo) K| (I—1+ﬁ[\/a|K|:| +1, 5[ ValK]] ),
— nyva e 1 14+V0
A2 =~ v Tt 7o) (e [Valkl ]+ 1 s [ Valk]])-

In the large z limit with fixed k, Eq. (236) becomes

~ 1 ak?e™* 1

= li ‘ =—+ +0( (ke™™)*),
A= Jim Al =5+ =g e o)
~ 1 ak?e™* 1

= 1i ‘ —+ +0( (ke™®)*).
A2 = M0 Axa| = 5 T e =) (ke™?)

E.1.2 |[K|e#>1:

For |K|e* > 1, Ak, can be expanded in powers of 1/|K|e?,

JalK|e? —
e 1(40—1) 1
AK,Z:AK,BW[]' +O( )],

8 JalK|e (Ke?)2
where s 1
__T Polltgy 1/2
Ags=—=—"——IKI"%,
44/2sin(m+/0)
and

gk = Ly ys [ValKI]+ I 5 [ ValK|] =11 5 [ ValK|] - s [ ValK]].

In the large z limit with fixed k, we obtain
A = |i — _1_1/5 (l+ﬁ)z -z §_\/E
Ao = lim AK,g‘k Vak T VTV 1 o (ke )37,

where

—1/4-Y2
/2144 1

_2_‘5*% sin(7t+/0) I(—/0)

V3:
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E2 o,

Here, we show that

1 -1
Oy = lim oy,| ~ VT [1-Wee 2], (243)
where
1 k<1,
W, ~ B _ (244)
e 1- e e )] ks,

in the large z limit with fixed k = Ke”.

E2.1 |[Klef<K1:

Using Eq. (235), we obtain

1 e T 1 2V 1 -
os=|g—*| o | *lg=+* —| . e
k0 Jo Ax ko 270 (Ag 1+ Ak 2)(Ag 1 + Ak 2€2Y9F)

According to Eq. (237), we find

“ . 1 - -1
B = lim | ~ 51/5[1—.:3 2eE] (246)
where we used lim,_, o, QK’0|k = o.
E.2.2 |K|e*>1:
According to Eq. (238), we have
o ~[ 1 N K2Y7 1 N 1 (_e_zﬁlKlez N e 2Va ):I—l
o 200 (A + Ar2) (A + A K 290) T AZ Y 2/alk]  24/alk]

(247)
In the large z limit, based on Eq. (241) we find

-1
1
s = lim wgs| ~ E‘/E[l — k(1 L(e_zﬁ — e—zﬁ"))e—zﬁZ] (248)

4VEJa
for k> 1.

E3 A,

In this section, we compute A, , defined by

1 A w
=+ 2+ 22, (249)
AS,Z AS,Z AS,Z
2z dg’ -t
where w;, = [ 0 fz—z, + ﬁ] . In Fig. 8, we show the profile of Ay , for two sets of param-

eters. Ag, smoothfy interpolates the two limiting behaviours of the Ke* > 1 and Ke* < 1
limits. If one takes the large z limit with fixed k = Ke*, A , approaches a universal function
as is shown in Fig. 9. Now, let us find the analytic expression for

A= lim Ag,| , (250)

Z2—00 k
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Figure 8: Ay , plotted as a functions of K or z with a =1 in D = 1. For (a), (b), (c),
we choose { =—0.1 and o = 2.01. For (d), (e), (f), we choose { = 0.1 and o = 0.01.
(a) Ak, vs z at K = 0.001 (blue), 0.005 (orange), 0.01 (green), 0.05 (red) and 0.1
(purple). (b) Ak, vs K at z =2 (blue), 3 (orange), 4 (green), 5 (red). (c) él_zAK,Z A
g for K = 0.001, K = 0.005 and K = 0.01. For each value of K, the minimum occurs
at z = 7.82184, z = 6.2124 and z = 5.51925, respectively. At all minima, Ke* takes
the same value, 2.49448. (d) Ak, vs z at K = 0.001 (blue), 0.005 (orange), 0.01
(green), 0.05 (red) and 0.1 (purple). (e) Ak, vs K at z = 2 (blue), 3 (orange), 4
(green), 5 (red). (f) %AK’Z vs g for K = 0.001, K = 0.005 and K = 0.01. For each
value of K, the minimum is located at z = 6.47645, z = 4.86718 and z = 4.17465.
At all minima, Ke® takes the same value, 0.649.

where the limit is taken with k = Ke”® fixed.
In the large z limit, as we shown in Eq. (233) and Eq. (243), &y , approaches %\/E, and

-1
@y ; K Ay ;. So the dominant contribution to Ay , in Eq. (249) is from [ﬁiz +Z ] . Therefore,

Ak, approaches a universal form as a function of k = [K|e?,

Ap =[Grla,0)+¢T7, (251)
as the large z limit is taken with fixed k, where

A 1 k|
Gyla,0) = A =3 \/E—IU [1/&|k|:| (14 y5 [W/E|k|] +hy /s [\/a|k|])- (252)

Gy(a, o) becomes

Cla,0) ~ Vo (253)

for k < 1, and
G(a,0) ~ Valk| (254)

for k > 1. In order for the wavefunction to be normalizable, the width of the Gaussian wave-
function in Eq. (172) should be finite. This requires Ag , > 0 for all K and z. This, in turn,
implies that Qy o > —{ for all K, equivalently v/o > —.
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Figure 9: Ag, = A vs k for various values of z between 0 and 20 in D = 1. The
arrows point towards the direction of increasing z. (a) a =1, =—0.1and o = 2.01
(b) a=1,¢=0.1and o =0.01. The curves converge to a universal one in the large
z limit.

02 04 056 08 0 2 )
Ak, Ak,

50 120F

40F (d) 100 (6)
8o
30f

60
20f wob

201

K
0.2 0.4 0.6 0.8 10 2 4

Figure 10: (a) and (d): Ak, plotted as a function of K at z = 1 (blue), z = 2
(orange), z = 3 (green) and z = 4 (red) for (a) { = 0.1, 0 =0.01, and (d) { =—0.1,
o =2.01. (b) and (e): Ak, plotted as a function of z at K = 0.001 (blue), K = 0.01
(orange), K = 0.05 (green) and K = 0.1 (red) for (b) { = 0.1, o = 0.01, and (e)
{ =—0.1, 0 =2.01. (c) and (f) are (b) and (e) shown in the logarithmic scale. In
all plots, wesetD=1and a=1.

E4 A,

According to Eq. (233) and Eq. (243), we have expressed Q o, Ag , and wg , in terms of k
and z. In the large z limit, we have

wK,z 1 0.1/4

N — e
AK,z QK,o 2 Age:(a,o0)

e Bk = —Joz, (255)

This analytical expression is consistent with the numerical plot of Ag , shown in Fig. 10. As a
function of k, A , at different z behave in the same way except for a vertical shift, as is shown
in Fig. 11. This agrees with our analytical expression, Ag , = —log2— % logo +log A+ Voz.
Under the RG transformation from length scale z to z + dz followed by the rescaling of K to
Ke™, Ay, transforms to Ay , + +/0dz.
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Figure 11: Ay , as a function of k = Ke* at different values of z ranging from z = 22
(bottom) to z = 60 (top) for (a) { = 0.1, 0 = 0.01, and (b) { = —0.1, o = 2.01.
D =1 and a =1 are used for both plots.

F Numerical calculation of J;x o
It is hard to obtain a full expression for J; _, in a closed form. In this appendix, we compute
it numerically for D = 1. This requires UV and IR regularizations. Consider a one-dimensional
lattice with N sites. Before doing the scale transformation in Eq. (156), if the lattice spacing
is a, a function fy_,. , at z =0 can be expressed as

0 21

1 N .2 dK
fxo = N Zf%melmmx = aJ ~— fr0e™". (256)
m=1

For g # 0, the lattice spacing increases to ae” and the number of sites decreases to N(z) = Ne™*
Then Eq. (256) becomes

N(z) Age™* o?
1 . 2m dK dk
frerz = E:fZ_ﬂ elN(Z)amx:aJ fK =af fk —z s
T UN(z) A e o =¢ o ez

(257)

where k = Ke* and x = e7*X. If fj, -, = fi is independent of z for a fixed k, f, = frez s 18
scale invariant, i.e. z-independent. Since Ag , = Ay, the profile of J, ,_,, would be invariant
under RG transformation.

Now, let us numerically compute J which is expressed as

2,x—x"?

N(z)

Iyt = N(z) Z Aan cos|:N( )(x X )] (258)

with a = 1. The profile is shown in Fig. 5. For large enough system size N, the coupling in
the real space reaches a z-independent profile at large z provided Ne™ > 1. This profile is
universal because it does not depend on Q o at UV. We note that there are regions of negative
coupling at large |x — x’|. We attribute this phenomenon as a finite size effect. In Fig. 12, as
the system size N increases, the coupling becomes more positive.
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Figure 12: (a) J; _, in D = 1 plotted as a function of x — x’ for o = 2.01 and
{ =—0.1for z = 26 at N = ¢3° (red), N = e3! (green), N = ¢3? (blue), N = ¢33
(black), N = ¢34 (orange). (b) The profile at ¢ = 0.01 and { = 0.1. Curves with a

same color are the ones with a same N. a is set to 1.
G Wavefunction with one excited mode in the D-dimensional ex-
ample

Suppose that the mode s is in its first excited state, where s can be either P = 0, (R; P) or (I; P).
The wavefunction for mode s is given by

- - 1 .
) [E,2] = V430 (\/ze—As,z ts) exp [— 0 tf] , (259)
5,2

where H;(x) = 2x is used. The excited state corresponds to the following state in the rescaled
variables in the large z limit,

TR0 )eS 1),

1/4
[W1,0(2)) = N (z) f D e (V27 e

r‘ . 1/4
101 (r,p)(2)) ZN(Z)J D¢ (lziApez

e VT Rper(Opes + O_pe) ) S [9),  (260)

r 0-1/4 _ﬁz ~ _S*
[,0)(®) = N) | D (55— Y Apes(Opes = Ope) )™ 1),
J Pe?
where we used e ks & #&(ﬂe—ﬁz and k = e*K. N(z) is the z-dependent normal-

ization of the ground state in Eq. (183). P labels the initial momentum of the excited
mode. It is scaled to be Pe* as z increases. For P # 0, we can construct the excited
state with a momentum £P by making linear superpositions of [¥; z.p)(2)) and |¥; (;.p)(2)):

|\P1’ip(2)> = %(llpl,(RZP)(Z)> + i|\P1’(I:p)(Z)>). This leads to Eq. (186).

H Possible wavefunctions with two excited modes in the D-dimen-
sional example

In order to derive Eq. (192), we first list the wave functions for two excited modes as
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~ 2(‘)02 ~
W, 000, 2] = 4 380s — |:2(e Bosf)2—1— ]ex [— t2:| (261)
2,0,0 Lto /3 Q p 0

0,0 2Mo

1 . . 1 2w
=—U, 4 [tg,2] X ¥y g[tg,2] ——=(Q+—= )\IJ [fo,2],
/2 1,0Lto0 1,0Lto0 /2 20, 0,0Llo
~ 1 ~ 2 Pz 1 ~
U (s. | ts.p,2 zn_l/“e_%ARZ—[Z(e_ARZt. )2—1— - ]exp[——tz, ]
2,(S,P),(S,P)[ S;P ] /2 S;P QP,O 2AP,z S;P

1 - N 1 2w N
= E\PL(S;P) [Es;p2 ] %Wy (5,p) [ Esipr2 ] — E(l + K,P:)‘I’o,(s;m [ts.p.2],

q’z,(s;P),(s’;P/)yé(s;P) = ‘I’l,s;P [fs;p,z] X ‘Pl,s';P/ [ES’;P’,Z] .

Here S and S’ can be R or I. Using Eq. (243) and Eq. (255), we rewrite the excited states in
terms of rescaled variables p in the large z limit as

B} Ny(2) ol/? o
|‘I’2,0,0(2)) = ZTZZJD¢ ZW [Azoz])e s )

1 ollZ2 . —2./5z%
* 752t R 11 W Jiwo(@),
Na(2) _ ol e
W5 (r;p),(r;P) (2)) = 12/5 D¢ 4A2 pez(oPeZ+O—Pez)) 5¢)
Pez
1, 0% s Jo
+—(2 e VIR — 1 — —— [ 1= Wpee 277 | )| ¥y(2)), (262)
75 (2an be e [1- Wpee % Jwo(a)
N (Z) ol/? e
Wy, (1.p), ;7Y (2)) = 2 4 /Az A2, (Opes — (9—pez)2)€ Sle)
Pez
1 0.1/2 5 1/6
+—(2———e2VE . —1— —Y [ 1— Wpee 2V9% | )|W,y(2)),
\/5( 4A123ez Pe m[ Pe :I)| O( ))
1/2 .
[y (), (1:p) (%)) Nz(z)fpd) AAZ Pez [O}%ez —(’)Epez])e_s |p),
Pez

1/2

2.0, (2)) = No(z) f D (V27— RohneOo[O-ps + Op1 )™ [9),
Pez £30
1/2

4A,.: A,
ol/2

[y (r;p), ;P (2)) = M(Z)J D¢ (%—AAP’ezAPeZ [Opes + O_pe: [[Opres + O_pi: ] )e—s*|¢
Pez 43 P’ez

|\I’20(1 P)(Z) NZ(Z)JD¢ l‘/_ AO;\PeZOO [Opez_o—pez])efsw(i)),

Ap/ezi\pez [OPEZ + O—PEZ] [Op/ez - _p/ez e

%2, @ipyaon () = Na(2) f e 4APezAP’ez

Ga s 1)e
15 (1,p),r;p)(2)) = N’z(z)f D¢ (4AP zAp/ - Apres Apes [Opes = O_pe: 1[Opres + O_p: ] )e
Gaa— 1)

Ap/ezi\pez [Opez - O—Pez] [Op/ez - —P’ez e

92,0, (2)) = Na(2) f e 4AP¢ZAP’eZ

(263)
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where Ny (2) = N (2)e2V%. For P # P/, we can superpose the wavefunctions above to obtain

V2 ) .
|y pp(2)) = T(l‘yz,(R;P),(R;P/)(Z)) + 1%y r.p),(1:p1(2)) = [Wo (1.p) (1:p1 (2)) + l|"P2,(1;P),(R;P/)(Z))),
V2 ) .
[¥y p_pi(2)) = T(|‘I’2,(R;P),(R;p/)(2)> — 1y rep) 1.1 (2)) + o (1.p) (1.p (2)) + l|‘1’2,(1;P),(R;Pf)(Z)>)
V2 ) .
¥y _ppi(2)) = T(l\pz,(R;P),(R;P’)(Z» +1|Ws r.py 1.1 (2)) + W2, (1:p) (1.2 (2)) — ll\I"Z,(I;P),(R;P’)(Z»);
V2 .
|‘I’2,—p,—P/(Z)> _(N’z (R;P),(R; P’)(Z» — [P, L(R;P),(I; P’)(Z)> |‘"I'2,(1;P),(I;P/)(Z)) - l|‘1’2,(1;P),(R;P/)(Z)>)
1 .
[y 0.p(2)) = §(|\I’2,0,(R;P)(Z)) + 1%y 0.1:p)(2))),
1 .
[Py 0_p(2)) = §(|“I’2,0,(R;P)(Z)) —i[Wy0,1.p)(2)))-
(264)
For non-zero P, we have
1 .
¥y pp(2)) = §(|‘I’2,(R;p),(R;p)(Z)) =5 (1;p),(1:p) (2)) + \/El|‘1’2,(R;p),(1;p)(Z)>),
1 .
[0y —p—p(2)) = §(|‘I’2,(R;P),(R;p)(z)) = %o (1:p), .2y (2)) — \/El|‘1’2,(R;P),(1;p)(Z)>), (265)
1 1 Jo
[y p_p(2)) = E(N’z,(R;p),(R;p)(z)) + |‘I’z,(1;p),(1;p)(z))) + 7 [1 + ﬁ] [Wo(2)).
Finally, together with
[¥2.0.0(2)) = [Wy0,0(2)) + V2|,(2)), (266)

|Wy pp/(2)) for any P and P’ can be written in the general form given in Eq. (192).

I Other scaling operators

In this section, we consider general excited states. The wavefunction for n excited modes is

n‘/_ n l_[ A e e W0z *
|\Pn,{p}(z)>=[( 0 f]N()JD¢ s zszpez /7 [l‘[opez] )¢ 1g),
(267)

where ... includes terms with less number of Op,. operators. This wave function leads to state
of the system as

D el P, oy (2)
P} (268)

[( " 1/‘/:]/\/(2)6‘(”‘/_+ 2 )ZJDGb Ay({x =Xe"Pe 5 |p) +

where the scaling operator is defined as

[n/2] n—2m n—2m
A= f [ 1 dDyl]Jg: ”yf"”[]_[ Oyi], (269)
m=0 i i

1
|\Pn,{X}(Z)) = V”/2

with

n—2m ;D
d p n—2m
—2 —2
J(nn m) _ J |: || —l:|J{(;}n m) 12 pi(xi—=yi) lzl o 2m+1p1x16( E pl). (270)
i

{x—y} D
= (27‘5) i=n—2m+1
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Here J"2™) represents the weight for (n — 2m)-trace operators to the n-th scaling operator.
For example, the contribution from the n-trace operator is given by

n o~
J(n,n) — sn/4 l_[i Api

(O — T 271)
{p} on l_[i AP{

The local operator A, has scaling dimension n (ﬁ + %)
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