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Abstract

The accuracy of the forward scattering approximation for two-point Green’s functions
of the Anderson localization model on the Cayley tree is studied. A relationship between
the moments of the Green’s function and the largest eigenvalue of the linearized transfer-
matrix equation is proved in the framework of the supersymmetric functional-integral
method. The new large-disorder approximation for this eigenvalue is derived and its
accuracy is established. Using this approximation the probability distribution of the
two-point Green’s function is found and compared with that in the forward scattering
approximation (FSA). It is shown that FSA overestimates the role of resonances and thus
the probability for the Green’s function to be significantly larger than its typical value.
The error of FSA increases with increasing the distance between points in a two-point
Green’s function.
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1 Introduction

The forward-scattering approximation (FSA) for disordered quantum systems is the simplest
approximation for describing the Anderson and many-body localization at strong disorder [1–
5], which for some situations [6,7] is well corroborated by numerics. It takes into account only
the non-repeating paths connecting two points i and j in the Green’s function Gi j(E) = (E−ÒH)−1

i j ,
and only those with the shortest length (“spaths”) equal to the distance ri j:

Gi j(E) =
∑

spaths

∏

p∈spath

V
E − εp

, (1)

where εp ∈ [−W/2, W/2] is the box-distributed random on-site energy, and V = 1 is the
nearest-neighbor hopping amplitude. The distance ri j is defined on the corresponding graph
or lattice by the minimal number of edges needed to hop in order to connect points i and j.

The simplest situation is when there is only one path between the points i and j, as it
happens in one-dimensional systems and on the Cayley tree. In this case ln |Gi j(E)| ≡ ln |G| is
a sum of ri j i.i.d. random variables ln |V/(E − εp)|, and for the box-shaped distribution of εp
and at E = 0 the PDF P(ln |G|) is the Poisson distribution, shifted by r ln(W/2) [4]:

PFSA(z = ln |G|+ r ln(W/2)) =
zr−1

(r − 1)!
e−z . (2)

The condition of non-repeating paths that does not pass through the same point twice, even
along the same set of links, usually applies to strong disorder W � V . The naive reason for this
condition is that increasing the length of the path by an extra link brings about a small factor
V/W � 1. Such a justification, however, ignores completely the possibility of resonances
when |E−εi|< V �W . This makes the status of FSA uncertain even at large W/V , especially
on the “loopy” lattices or graphs like a hypercube lattice of Quantum Ising model [8–11] and
Quantum Random Energy model [12–14] or its cross-section of XXZ Heisenberg chain [15–21].
In such lattices there are many paths of the same length r which interfere with each other.

The necessity to evaluate the random Green’s functions Gi j(E) and their distribution func-
tion emerges in many problems, of which probably the first was the problem of mesoscopic
fluctuations and magneto-resistance in strongly disordered semiconductors [22]. The present
interest to FSA is boosted by the study of many-body localized states of disordered interacting
systems [2–5].
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Figure 1: Quality of FSA The relative error
Err(δ) = |[ln P(ln |G|)− ln PFSA(ln |G|)]/ln PFSA(ln |G|)| in ln P(y = ln |G|) as a
function of the relative deviation δ = ln(|G|/Gt yp)/| ln Gt yp| from the typical value
Gt yp for r = 10 and r = 100 at modestly strong disorder W = 50 and for r = 10 at
extremely strong disorder W = 10.000. In all the cases the typical value Gt yp and
the distribution function of ln |G| at small deviations from it is well described by
FSA, while at a sufficiently large deviation (δ > 0.05 at W = 50, r = 100; δ > 0.55
at W = 50 and r = 10; δ > 0.85 at W = 10.000, r = 10 ) the error changes the
sign (resulting in a cusp on a plot of its absolute value) and increases indefinitely
as the deviation further grows. Extremely large disorder may delay the onset and
reduce the slope of this growth but it does not suppress the error completely. At
a large distance ri j between the points i and j in Gi j(E) the overestimation of
ln P(y = ln |G|) by FSA at large |G|> Gt yp is greatly enhanced.

In this paper we show that even for the Anderson model on a Cayley tree where there is
only one geometric path from the initial to the final point, the status of FSA is subtle. The typ-
ical value Gt yp = exp[〈ln |G|〉] and the distribution function P(ln |G|) at small deviations from
the typical value is described quite well by FSA in all the cases. However, FSA greatly over-
estimates the probability for sufficiently large deviation from the typical value at |G| > Gt yp
(see Fig. 1), especially at a large distance r between the initial and a final points in the Green’s
function. By increasing disorder one can suppress this error but for large r it happens only at
an unrealistically strong disorder.

The paper consists of three parts. In the first part we show, using the Efetov’s super-
symmetry method [23], that the moments m = 2β < 1 of the real Green’s function Gi j(E)
on a Cayley tree are exactly expressed in terms of the largest eigenvalue εβ of the linearized
transfer-matrix (TM) equation [24] in the large ri j = r limit:

〈|Gi j|2β〉= cβ [εβ]
r . (3)

This allows to compute the distribution function P(y = ln |G|) by the Mellin transform in the
saddle-point approximation. In the second part, we derive approximate formulas for εβ at
large W � 1. Finally, we compute the distribution function P(y = ln |G|) at large W � 1 for
different relations between r and W and discuss the accuracy of FSA.

Note that Eq. (3) is important in its own right. The point is that at small and intermediate
disorder one has first to solve a non-linear integral equation in order to find a “renormalized”
distribution of on-site energies and only afterwards to solve a linear spectral problem to obtain
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εβ for the renormalized distribution of disorder. This renormalization is highly non-trivial, and
it is absent in the nonlinear sigma-model (NLSM) version of the problem [25]. The linear spec-
tral problem emerges in the asymptotic regime of TM equation in which certain (Liouvillian)
factor in the kernel is dropped. Likewise, Eq. (3) is also valid in the asymptotic regime r � 1,
which, however, looks totally different from that in the TM equation. Yet, it is proven in this
paper that it is the same function εβ that controls both the dynamics of the kink solution of
TM equation and the moments of Green’s functions on a Cayley tree at any disorder.

If this non-trivial point is taken for granted, one may guess [26, 27] Eq. (3) from the
results of Ref. [28] and Ref. [25]. The first of these works employed the one-step replica
symmetry breaking (RSB), while the second one used the super-symmetric NLSM machinery.
Despite difference in the methods and interpretation of the results, the basic equations in
these two works appeared to be exactly the same. From the identity of these equations one
may immediately deduce the close relationship, Eq. (3), between the moments of real Green’s
functions (entering the formalism of RSB) and the largest eigenvalue εβ of the linearized TM
equation (governing the dynamics of the kink solution in the framework of NLSM). In this
work we present a formal derivation of Eq. (3) by the supersymmetry method but without the
constraint of the NLSM which significantly simplifies the TM equation. Thus our paper proves
the validity of Eq. (3) for a Cayley tree with one orbital per site rather than for an infinite
number of orbitals per site as in NLSM. An alternative way of justifying Eq. (3) is presented in
Ref. [29].

2 TM equation and renormalization of disorder distribution

The model Hamiltonian is given by

H = T + V, Vkm = εkδkm, Tmk = Tkm , (4)

where k, m = 1, .., N , N is the number of graph nodes, and T is the symmetric dimensionless
adjacency matrix describing a tree with K + 1 nearest neighbors in the bulk (and the root has
only K nearest neighbors). We also assume Tkk = 0. The on-site energies εk are identically
distributed according to the distribution function F(ε).

The retarded (advanced) Green’s functions G±nm(E) ≡ (E −H ± iη)−1
nm can be represented

via functional integral over commuting (SR/A) and anti-commuting (χR/A) variables as fol-
lows [23]:

G±nl(E) = −
∫

∏

k

[dΦkdΦ†
k] χR/A(n)χ

∗
R/A(l)e

−S0[Φ,Φ†] ,

S0[Φ,Φ†] = −i
∑

mk

Φ†
m L (Eδmk −Hmk + iηΛδmk)Φk ,

(5)

where the super-vector Φk is defined as:

Φk = (SR(k), χR(k), SA(k), χA(k))
T , k = 1, ..., N (6)

and the symmetry-breaking matrices L = diag{1, 1, −1, 1} and Λ= diag{1, 1, −1, −1}. The
matrices Λ and L are introduced to ensure correct analytic properties of the Green’s functions
(and convergence of the integrals). The measure is defined as

[dΦkdΦ†
k]≡ −

d2SR(k)d2SA(k)
π2

dχ∗R(k)dχR(k)dχ
∗
A(k)dχA(k) . (7)

Using this functional representation one can average over random Hnm at an initial stage thus
replacing the quadratic in Φk action S0 by the non-quadratic one S[Φ,Φ†] and then to evaluate
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r=0, R-th generation
r=1 (first iteration)

Root, first generation,
r=(R-1)-th iteration a path of the length 4

Figure 2: Cayley tree with K=2. Iterations start from the boundary (Rth generation).
The root (first generation) corresponds to (R−1) iterations. A path between the root
and a point at a distance 4 is also shown.

the generating functional:

Y (Φn,Φ†
n) =

∫

∏

k 6=n

[dΦkdΦ†
k] e
−S[Φ,Φ†] , (8)

which allows to compute various observables. Remarkably, for the one-dimensional system
(K = 1) and for the Cayley tree (K > 1) this calculation can be done by iterations starting
from the boundary of a tree where Y (Φn,Φ†

n) = 1 and moving towards the root according to
the transfer-matrix equation [24,30]. The superscript r in this equation enumerates iterations,
the number that enumerates generations on a tree is R − r, where R is the total number of
generations, see Fig. 2. The root corresponds to the first generation which is reached after
R− 1 iterations. In enumerating the nodes of a tree it is natural to denote the root by n= 1.

For a Cayley tree with one orbital per site the generating function Ωr(t, v) obeys the
transfer-matrix equation:

Ωr+1(t, v) =

∫ ∞

−∞
d t ′dv′ L(t − t ′, v, v′) e−et′

[Ωr(t
′, v′)]K . (9)

In Eq. (9) we denote Y (Φr ,Φ
†
r)≡ [Ωr(t, v)]K with et = η(|SR|2+ |SA|2) and v = (|SR|2−|SA|2),

and

L(t, v, v′) =
1

2π
et/2 cos

�

v′et/2 + ve−t/2
�

eiEv′ F̃(v′) , (10)

where F̃(v) is the Fourier-transform (characteristic function) of the bare distribution of on-site
energies.

The generating function Ωr(t, v) serves to compute various observables at a point r by in-
tegration over t, v in the corresponding integral forms. The physical meaning of two variables
t and v could be traced back to the imaginary and the real parts of the single-point Green’s
function [30]. The variable t is indispensable to describe the blowing up of the typical imag-
inary part of Green’s function in the delocalized phase as r increases. It is just undefined if
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the bare level width η is set zero. On the other hand, η should be smaller than the mean
level spacing ∼ K−R and should tend to zero before R→∞. The dependence of the generat-
ing function Ωr(t, v) on the second variable v describes details of the spectrum which encode
residual effects of ballistic motion.

A similar equation can be derived [23, 25, 31] for a NLSM on a Cayley tree which corre-
sponds to an infinite number of orbitals per site. However, in this case, the variables v, v′ do
not appear in all the equations due to the NLSM constraint Q2 = 1.

The next step is to consider the self-consistent solution Ω(sc)r (t, v) = Ωsc(t+ur, v) to Eq. (9)
which the function Ωr(t, v) tends to at r sufficiently far from the boundary. At the bound-
ary Ωr(t, v) ≡ 1 corresponds to the closed boundary conditions. In the delocalized phase it
describes a kink in the variable t running with a velocity u as r increases. In this kink, the
solution t plays a role of displacement, while r plays a role of time. Far from the kink center,
formally at t →−∞, the self-consistent variable takes the form:

Ωsc(t →−∞, v) = Ω0(v) + fβ(v) e
β t , (11)

where the second term is a small perturbation. The function Ω0(v) describes a non-trivial
profile in the variable v of the self-consistent solution at t = −∞. As we will show in Sec. 4,
physically, Ω0(v) corresponds to a Fourier transform of the distribution function for real local
Green’s functions. It should be found from the solution of a non-linear equation:

Ω0(v) =

∫ ∞

−∞
dv′Ξ0(v, v′) eiEv′ F̃(v′) [Ω0(v

′)]K , (12)

with the kernel:

Ξβ(v, v′) =
1
π

∫ +∞

0

dz
z2β

cos
�

v′z + vz−1
�

. (13)

Note that in the case of a granular Cayley tree described by a NLSM the profile of Ω0(v) = 1 is
trivial. This is a significant simplification which stems from the delta-function distribution of
the local Green’s functions at an infinite number of states (orbitals) per granule.

Then linearizing TM Eq. (9) for Ω(sc)r (t, v) and omitting the Liouvillian factor e−et
in the

t →−∞ asymptotic regime one obtains the spectral problem:

εβ fβ(v) =

∫ +∞

−∞
dv′Ξβ(v, v′) F̃(v′) eiEv′ [Ω0(v

′)]K−1 fβ(v
′) . (14)

The solution to this spectral problem determines the velocity uβ = β−1 ln(Kεβ) of the mov-
ing kink solution to the TM equation which minimization with respect to β yields the frac-
tal dimension of the wave function D = minβ[uβ]/ ln K determining its support set volume
∼ N D [25,28]. The localization transition corresponds to minβ[uβ] = 0. Due to the symmetry
εβ = ε1−β the Anderson transition corresponds to the condition ε1/2 = 1/K at the symmet-
ric point β = 1/2. The transition is controlled by the energy E and the disorder strength W
entering the characteristic function F̃(v) of the distribution of on-site energies and thereby in
εβ .

The form of Eq. (14) immediately suggests the physical meaning of the factor [Ω0(v)]K−1

as the factor that renormalizes the Fourier-transform of the on-site disorder distribution:

F̃(v) = F̃(v) [Ω0(v)]
K−1 . (15)

On the other hand, as F̃(v) is the generation function of the on-site disorder εp, this renormal-
ization must take into account the self-energy parts of all the K single-site Green’s functions
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linked to the current site, except the one which is on the considered TM path (see Abou-
Chacra, Thouless, and Anderson equation from Ref. [24]). This tells us that Ω0(v) should be
closely related with the local Green’s functions. Indeed, as it is shown in Sec. 4 it is the Fourier
transform of the distribution function for each of these local Green’s functions.

Eq. (15) shows that such a renormalization is absent in two special cases: (i) one-
dimensional system K = 1, and (ii) the NLSM on the Cayley tree Ω0(v) = 1. In the second
case the eigenvalue εβ does not depend on the branching number K of the tree.

It is instructive to show application of Eqs. (12), (15) to the exactly solvable case of the
Cauchy distribution F̃(v) = e−(W/2) |v|. At β = 0 Eq. (13) results in a singular kernel:

Ξ0(v, v′) = δ(v′)− θ (vv′)
s

�

�

�

v
v′

�

�

� J1(2
Æ

|vv′|) , (16)

where Jm(x) is the Bessel function of mth order and θ (x) is the Heaviside step function. One
can easily find a solution to Eq. (12) in a form Ω0 = e−κ |v|, with

κ=

p

(W/2)2 + 4K − (W/2)
2K

. (17)

Then Eq. (15) gives rise to F̃(v) = e−(WR/2) |v| of the same Cauchy form with the renormalized
"disorder strength":

WR =
1

2K

�

(K + 1)W + (K − 1)
p

W 2 + 16K
�

, (18)

which at K > 1 remains finite as the "physical disorder" W tends to zero.
The physical meaning of the renormalization, Eqs. (15), (18), is related to the remnant of

ballistic motion in the disordered system. Formally, it arises because of the presence of 16K
under the square root in Eq. (18). This effect is similar to the K-dependence of the spectral
bandwidth due to kinetic energy contribution which remains finite as the disorder contribution
to the bandwidth = W/2 tends to zero. Thus the “renormalization of disorder strength” is
similar to the renormalization of the spectral bandwidth by kinetic energy contribution with
respect to the width cased by pure on-site disorder. As it was mentioned above, this type of
renormalization (but without keeping the same the functional form of the distribution F̃(v))
happens for a generic F̃(v) by a replacement F̃(v)→ F̃(v) according to Eq. (15).

It is especially important at small disorder W ® 1. In particular this renormalization is re-
sponsible for a finite derivative ∂βεβ |β=0 = − ln K which results in a finite Lyapunov exponent
λt yp = −(1/2)∂βεβ |β=0 [28] at a vanishing disorder W → 0 in the case of a Cayley tree with
one orbital per node. The Lyapunov exponent describes the typical decrement of an exponen-
tially decreasing spike of a wave function amplitude in a typical wave function. On a Cayley
tree with one orbital per site the delocalized phase emerges as a proliferation of the number
of isolated spikes with a finite decrement rather than by vanishing the decrement (Lyapunov
exponent) of a one single spike. The Lyapunov exponent remains finite all the way down to
vanishing disorder where it hits the ergodic limit value λt yp = (1/2) ln K . In the case of NLSM
on a Cayley tree, where the renormalization is absent, the Lyapunov exponent tends to zero
in the limit of vanishing disorder, as well as in a one-dimensional system. The ergodic limit
in this case is reached at a finite disorder strength. This peculiarity of NLSM on a Cayley tree
leads to an existence of an ergodic phase at a finite disorder strength [25], while the states
are non-ergodic down to W = 0 on a disordered Cayley tree with one orbital per site [28,29].
This difference between NLSM and the Anderson model with one orbital per site on the Cayley
tree does not affect the scaling properties of transition between the non-ergodic extended and
the localized phases.
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3 Moments of real Green’s functions

The goal of this section is to prove the relation, Eq. (3), between the moments of real Green’s
functions Iβ and the maximal eigenvalue of the linearized TM equation. To achieve this goal
we make use of the Efetov’s super-symmetry approach [32] but without passing to the sigma-
model which is not justified for models with one orbital per site. This approach is essentially
similar to the one of Ref. [33]. However, the concrete application of the super-symmetry
technique to our problem is completely new in all its aspects and the results obtained.

By means of exact integration over the relevant variables of a super-vector Φ we obtain the
closed expression, Eq. (48), for the moments of a two-point Green’s function. It has a form of
a multiple integral over the variables vk in the sites k both along and beyond the path P con-
necting the two points in the Green’s function. Finally, this multiple integral is represented in
the iterative way similar to the TM equation (9). Importantly, integration over the variables vk
in the sites belonging to P is described by the same spectral problem as Eq. (14), which kernel
depends on the renormalized disorder distribution function. This renormalization appears to
be identical to the one given by the function Ω0(v) in Eq. (15), and the function Ω0(v) itself
emerges as the result of integration over the variables vk in the sites beyond the path P . So
we were able to proof a connection between two seemingly different problems: the spectral
problem of the linearized TM equation and the problem of calculating the moments of a real
two-point Green’s function.

Below we present the details of our proof step by step. The readers who are not interested
in the details of this calculation may go straight to Section 4 where we reveal the physical
meaning of the renormalization factor Ω0(v) in Eq. (15).

The focus of our interest in this paper is the moment Iβ the absolute value of a real Green’s
function Gnm(E):

Iβ =



|Gnm(E)|2β
�

, 0< β < 1/2 . (19)

In the absence of degeneracy of spectrum, Green’s functions have simple poles at any
E = En, where En is an eigenenergy in a finite system. Upon averaging over disorder at
a fixed E the random levels hit in some disorder realizations the energy E and cause very
large values of |Gnm(E)|. This gives rise to a power-law tail of the distribution function
P(x = |G|) ∼ 〈δ(x − |Gnm(E)|)〉 ≈

∫

dEk δ(x − |E − Ek|−1) ∼ 1/G2. Such a tail makes the
moments of real Green’s functions of order 2β ≥ 1 divergent, while this is not the case for
complex Green’s functions with η greater than the mean level spacing δ ∼ K−R. At the same
time the moments of real Green’s functions of order 2β < 1 are well-defined. In this case the
limits η → 0 and R → ∞ commute, and the moments of real Green’s functions at a finite
system size are given by the limit η → 0 of the corresponding moment of G+G− involving
complex Green’s functions G±nm(E):

Iβ = lim
η→0




|G+nm(E)G
−
nm(E)|

β
�

, 0< β < 1/2 . (20)

Now, using the functional representation Eq. (5) of retarded and advanced Green’s func-

tions, introducing average the product
�

G+nn(E)
�β �

G−nn(E)
�β

over the diagonal disorder and
a = 1, 2, . . . ,β copies of the system we express:

〈
�

G+nl(E)
�β �

G−nl(E)
�β〉=

∫

(
∏

ka

[dΦ(a)k dΦ(a)†k ])
∏

a

χ
(a)∗
R (l)χ(a)R (n)χ

(a)
A (n)χ

(a)∗
A (l) e−S[Φ,Φ†] , (21)

S[Φ,Φ†] = −
∑

m

ln F̃

�

∑

a

Φ(a)†m LΦ(a)m

�

− i
∑

mka

Φ(a)†m L (Eδmk − Tmk + iηΛδmk)Φ
(a)
k . (22)
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3.1 Integration over the phases

Let us first integrate over phases φ(a)R/A(k) of complex variables S(a)R/A(k). To accomplish that,
one can first notice that T is real and symmetric. Thus, one can rearrange the hopping term
in the action as
∑

mka

TmkΦ
(a)†
m LΦ(a)k =

∑

mka

Tmk Re{S(a)∗R (m)S(a)R (k)

− S(a)∗A (m)S(a)A (k)}+
∑

mka

Tmk

�

χ
(a)∗
R (m)χ(a)R (k) +χ

(a)∗
A (m)χ(a)A (k)

�

, (23)

which suggests to switch to the modulus and the phase of the complex variables

S(a)R/A(k) = |S
(a)
R/A(k)|e

iφ(a)R/A(k) . The non-Grassmann part of the hopping term can be written
as

∑

mka

Tmk Re{S(a)∗R (m)S(a)R (k)− S(a)∗A (m)S(a)A (k)}

=
∑

mka

Tmk

¦

|S(a)R (m)||S
(a)
R (k)| cos

�

φ
(a)
R (m)−φ

(a)
R (k)

�

− (R→ A)
©

. (24)

Then evaluating integrals over phases and introducing new variables:
�

�

�S(a)R (k)
�

�

�

2
≡ s(a)k ,

�

�

�S(a)A (k)
�

�

�

2
≡ s̃(a)k , (25)

we obtain:

〈
�

G+nl(E)
�β �

G−nl(E)
�β〉=

∫

�∏

ka

ds(a)k ds̃(a)k dχ(a)R (k)dχ
(a)∗
R (k)dχ(a)∗A (k)dχ(a)A (k)

�

e−S1[s,χ]×

×
∏

a

χ
(a)∗
R (l)χ(a)R (n)χ

(a)
A (n)χ

(a)∗
A (l) ×

×
∏

〈km〉

J0

�

2
r

s(a)k s(a)m

�

J0

�

2
r

s̃(a)k s̃(a)m

�

e−i
�

χ
(a)∗
R (m)χ(a)R (k)+χ

(a)∗
A (m)χ(a)A (k)+s ym.

�

, (26)

where the diagonal part of the action reads as

S1[s,χ] = −
∑

m

ln F̃

�

∑

a

�

s(a)m − s̃(a)m +χ
(a)∗
R (m)χ(a)R (m) +χ

(a)∗
A (m)χ(a)A (m)

�

�

−iE
∑

ma

�

s(a)m − s̃(a)m +χ
(a)∗
R (m)χ(a)R (m) +χ

(a)∗
A (m)χ(a)A (m)

�

+η
∑

ma

�

s(a)m + s̃(a)m

�

. (27)

We have dropped the Grassmann term with η in front of it.

3.2 Integration over anti-commuting variables

Next, we perform a shift of variables

s(a)m → s(a)m −χ
(a)∗
R (m)χ(a)R (m) ,

s̃(a)m → s̃(a)m +χ
(a)∗
A (m)χ(a)A (m) . (28)

The domain of integration is correctly captured if one writes down the transformed step func-
tions in the integration measure explicitly as

θ (s(a)m )→ θ (s
(a)
m )−δ(s

(a)
m )χ

(a)∗
R (m)χ(a)R (m) ,

θ (s̃(a)m )→ θ (s̃
(a)
m ) +δ(s̃

(a)
m )χ

(a)∗
A (m)χ(a)A (m) . (29)
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The advantage of this shift is that it removes the anti-commuting variables from the diagonal
part of the action in (27). The integration over anti-commuting variables in Eqs. (26), (27)
factorizes as M =

∏

a
MR

a MA
a , where

MR
a =

∫

∏

k

�

dχ(a)R (k)dχ
(a)∗
R (k)

�

χ
(a)∗
R (l)χ(a)R (n)

∏

m

�

θ (s(a)m )−δ(s
(a)
m )χ

(a)∗
R (m)χ(a)R (m)

�

×

×
∏

〈km〉

J0

�

2
r

(s(a)k −χ
(a)∗
R (k)χ(a)R (k))(s

(a)
m −χ

(a)∗
R (m)χ(a)R (m))

�

e−i
�

χ
(a)∗
R (m)χ(a)R (k)+s ym.

�

, (30)

and

MA
a =

∫

∏

k

�

dχ(a)∗A (k)dχ(a)A (k)
�

χ
(a)
A (n)χ

(a)∗
A (l)

∏

m

�

θ (s̃(a)m ) +δ(s̃
(a)
m )χ

(a)∗
A (m)χ(a)A (m)

�

×

×
∏

〈km〉

J0

�

2
r

(s̃(a)k +χ
(a)∗
A (k)χ(a)A (k))(s̃

(a)
m +χ

(a)∗
A (m)χ(a)A (m))

�

e−i
�

χ
(a)∗
A (m)χ(a)A (k)+s ym.

�

. (31)

Let us assume that the initial point n = 1 is a root of a tree. All the anti-commuting
variables in the integral Eq. (30) are divided in two parts: those which correspond to sites
on the (unique) path Pl from the root to the final point l and the remaining variables. Let
us first consider integration over the anti-commuting variables of the first part. The result is
given only by the saturated (i.e. that have exactly one pair of variables χχ∗ corresponding
to any copy (a) and any site p) set of variables in the expansion of exponent in Eq. (30) and
the “source” variables χ(a)∗R/A (l)χ

(a)
R/A(n). The integration over retarded variables gives i|Pl |, and

the advanced components produce the factor (−i)|Pl | (where |Pl | is the length of the path), so
they compensate each other (note the order of anti-commuting variables in the measure and
in the pre-factor!).

Notice that, since the integrals along the path Pl are already saturated, the hopping terms
in the exponent of Eqs. (30), (31) connecting the remaining branches of the tree and the path
Pl can be omitted. Therefore, our final step is to integrate over all possible anti-commuting
variables of “decoupled” branches. This task can be accomplished iteratively.

Let us start from the boundary. We are going to use the following short notation: χ∗ and χ
will denote the anti-commuting variables that we are currently integrating over, while ζ∗ and ζ
will stand for the variables belonging to the unique predecessor of the chosen site. Therefore,
we need to compute the following integral:

Ξ̃0(s, s′) =

∫

dχdχ∗
�

θ (s′) +δ(s′)χ∗χ
�

(32)

× J0

�

2
p

ss′ +

�√

√ s′

s
ζ∗ζ+

s

s
s′
χ∗χ

�

+
1

2
p

ss′
χ∗χζ∗ζ

�

e−iζ∗χ−iχ∗ζ , (33)

where e−iζ∗χ−iχ∗ζ = 1− i(ζ∗χ+χ∗ζ)+χ∗χζ∗ζ. The integral Eq. (32) is equal, up to an overall
opposite sign, to a single integral in MA

a . A remarkable fact is that this integral, in fact, does
not depend on ζ and ζ∗.

Indeed, expanding the Bessel functions in the anti-commuting variables, combining the
result with the expansion of the exponential term and using the identity for Bessel functions
J2(x)− J0(x)− 2 J1(x)

x = −2J0(x) one can easily see that the contribution proportional to ζ∗ζ
is canceled out, and the remaining integral leads to

Ξ̃0(s, s′) = δ(s′)− θ (s′)
s

s
s′

J1

�

2
p

ss′
�

. (34)
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The integral over retarded variables can be performed in a similar way. As a result, the total
contribution from the anti-commuting variables has the following form:

M =
∏

a

∏

〈mk〉
m,k∈Pl

�

J0

�

2
r

s(a)m s(a)k

�

J0

�

2
r

s̃(a)m s̃(a)k

��

∏

〈mk〉
m,k/∈Pl

�

Ξ̃0(s
(a)
m , s(a)k ) Ξ̃0(s̃

(a)
m , s̃(a)k )

�

. (35)

Note that Ξ̃0(sk, sm) is not symmetric, so we always assume that the site k (corresponding to the
first argument sk) is closer to the root than the site m corresponding to the second argument
sm.

Finally, one can represent the average of interest solely in terms of the conventional inte-
grals over s(a)k and s̃(a)k as:

〈
�

G+nl(E)
�β �

G−nl(E)
�β〉=

∫

�∏

ka

ds(a)k ds̃(a)k θ (s
(a)
k )θ (s̃

(a)
k )
�

e−S1[s,0]×

×
∏

a

∏

〈mk〉
m,k∈Pl

�

J0

�

2
r

s(a)m s(a)k

�

J0

�

2
r

s̃(a)m s̃(a)k

��

∏

〈mk〉
m,k/∈Pl

�

Ξ̃0(s
(a)
m , s(a)k ) Ξ̃0(s̃

(a)
m , s̃(a)k )

�

, (36)

where a = 1,2, . . . ,β . At this moment, we are left with 2β real variables at each node. The
goal of the next section is to reduce this set to a single variable, β appearing as a parameter in
the integrand. If this goal is accomplished, one can easily make an analytic continuation over
β .

3.3 Integration over sk and s̃k

Our next step is to integrate over sk and s̃k. This can be done by means of the following identity

1=
∏

m

+∞
∫

−∞

dvm δ
�

vm −
∑

a

�

s(a)m − s̃(a)m

��

=
∏

m

+∞
∫

−∞

dvmdzm

2π
e

izm

�

vm−
∑

a

�

s(a)m −s̃(a)m

��

. (37)

In terms of these new variables, the action reads as

S1[s, 0] = −
∑

m

ln F̃ (vm)− iE
∑

m

vm +η
∑

ma

�

s(a)m + s̃(a)m

�

. (38)

Now we are in a position to integrate over sk and s̃k because they are decoupled from each
other. The integration can again be performed iteratively, starting from the boundary (once
again, we assume that n≡ 1 is the root of the tree).

First of all, one can easily verify that:

+∞
∫

0

ds(a)k e−i(zk−iη)s(a)k Ξ̃0

�

s(a)m , s(a)k

�

= e
is(a)m

zk−iη . (39)

Thus, the complete integration over 2β initial real variables for a given node at the boundary
is given by

e
izk

z2
k+η

2

∑

a
[s(a)m −s̃(a)m ]−

η

z2
k+η

2

∑

a
[s(a)m +s̃(a)m ]

, (40)

where
∑

a

�

s(a)m − s̃(a)m

�

can be replaced by vm due to the presence of the delta function (37).

Moreover, as it will be explained later, one can safely set η= 0.
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Next, by combining this new term with eizk vk and integrating over zk, we obtain the effective
kernel operating on a given link which does not belong to the path Pl :

Ξ0(vm, vk) =
1

2π

+∞
∫

−∞

dz ei(vz−1+v′z) =
1
π

+∞
∫

0

dz cos
�

vz−1 + v′z
�

= δ(vk)− θ (vkvm)

√

√

√ |vm|
|vk|

J1

�

2
Æ

|vm||vk|
�

. (41)

Remarkably, it coincides with the kernel of the non-linear equation (16). This process can be
continued further, involving other links that do not belong to the path Pl . The integration
along the path Pl is only slightly different. We make use of the following integral

+∞
∫

0

ds(a)k e−i(zk−iη)s(a)k J0

�

2
r

s(a)m s(a)k

�

=
−i

zk − iη
e

is(a)m
zk−iη . (42)

Therefore, the integration over s(a)k leads to

1

(z2
k +η

2)β
e

izk
z2
k+η

2

∑

a
[s(a)m −s̃(a)m ]−

η

z2
k+η

2

∑

a
[s(a)m +s̃(a)m ]

, (43)

where
∑

a

�

s(a)m − s̃(a)m

�

can again be replaced by vm due to the presence of the delta function

(37). We also denote here lm =
∑

a

�

s(a)m + s̃(a)m

�

.

By combining the resulting expression with eizk vk , we obtain the following integral over zk

R(vm, lm| vk) =

+∞
∫

−∞

dzk

(z2
k +η

2)β
e

izk vm
z2
k+η

2 −
ηlm

z2
k+η

2 +izk vk
. (44)

Crucially, this expression is an analytic function of β , and thus, we are in a position to analyti-
cally continue it to the region β < 1/2. This procedure makes the integral over zk convergent
even at η= 0 and justifies the limit η= 0 in Eqs. (40), (43) which eliminates the dependence
on lm whatsoever. Indeed, in the course of the subsequent integration over sm and s̃m the
dominant region sm, s̃m ∼ z−1

m is finite in the limit η→ 0 due to the convergence of the integral
over zm.

One obtains the effective β-dependent kernel operating on a given link belonging to the
path Pl :

Ξβ(v, v′) =
1
π

+∞
∫

0

dz
|z|2β

cos
�

vz−1 + v′z
�

, (45)

which coincides with the kernel (13) in the linear eigenvalue problem Eq. (14).
This integral can be evaluated exactly as follows

Ξβ(v, v′) =
2
π

�

|v|
|v′|

�
1
2−β ¦

θ (−vv′) sin (πβ)K1−2β

�

2
Æ

|v′||v|
�

+

+
πθ (vv′)

4cos(πβ)

�

J2β−1

�

2
Æ

|v′||v|
�

− J1−2β

�

2
Æ

|v′||v|
��

ª

, (46)
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where Km(x) is the modified Bessel function of the second kind of mth order.
The last remaining integration over the root n= 1 can be performed in the same way as in

Eq. (42) by setting all s(a)m to zero (since the root has no predecessor). Thus, the integral over
z1 leads to

1
2π

+∞
∫

−∞

dz1

(z2
1 +η2)β

eiz1v1 =
|v1|2β−1

2cos(πβ)Γ (2β)
, η→ 0+ . (47)

The final expression reads as follows:

〈
�

G+nl(E)
�β �

G−nl(E)
�β〉=

1
2 cos(πβ)Γ (2β)

+∞
∫

−∞

�∏

k

dvk F̃(vk)e
iEvk

�

|v1|2β−1×

×
∏

〈mk〉
m,k∈Pl

Ξβ(vm, vk)
∏

〈mk〉
m,k/∈Pl

Ξ0(vm, vk) . (48)

3.4 Iterative representation of the result

The multiple integral Eq. (48) can be represented in a form of iterations, similar to the TM
equation. To this end we introduce two functions Ψ(r)0 (v) and Ψ(r)

β
(v) obeying the following

recursive equations:

Ψ
(r+1)
0 (v) =

+∞
∫

−∞

dv′ Ξ0(v, v′)F̃(v′)eiEv′[Ψ(r)0 (v
′)]K , (49)

with the initial condition Ψ(0)0 (v)≡ 1, and

Ψ
(r+1)
β

(v) =

+∞
∫

−∞

dv′ Ξβ(v, v′)F̃(v′)eiEv′Ψ
(r)
β
(v′)

�

Ψ
(R−|Pl |−1+r)
0 (v′)

�K−1
, (50)

with the initial condition Ψ(0)
β
(v) ≡ Ψ(R−|Pl |−1)

0 (v). Here R is the total number of generations
on the tree and |Pl | is the length of the path Pl .

The function Ψ(r)0 (v) describes the summation over the tree branch with r generations
which the path Pl does not belong to. One can immediately recognize in Eq. (49) the non-
linear equation, Eq. (12), for the zero-order approximation of the TM equation with the same
initial condition. Thus the self-consistent solution to Eq. (49) is Ψ0(v) ≡ Ω0(v). On the other
hand, the function Ψ(r)

β
(v) is related to the summation over the part of the path Pl of the length

r.
Then the result of the previous subsection Eq. (48) can be expressed through these func-

tions as:

〈|G1l(E)|2β〉=
1

2 cos(πβ)Γ (2β)

+∞
∫

−∞

dv |v|2β−1 F̃(v)eiEvΨ
(|Pl |)
β

(v)
�

Ψ
(R−1)
0 (v)

�K−1
. (51)

Let us now assume the separation of scales with the following order 1� |Pl | � R. Then,
after many consequent integrations, the generating function Ψ(R−|Pl |−1)

0 (v) can be replaced by
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Ω0(v) which is the self-consistent solution of Eq. (12). Moreover, in the integrations along Pl ,
only the right eigenfunction with the largest eigenvalue εβ =maxκ{ε

(κ)
β
} survives, which can

be found as usual from the equation:

ε
(κ)
β

f (κ)
β
(v) =

+∞
∫

−∞

dv′ Ξβ(v, v′)F̃(v′)eiEv′ f (κ)
β
(v′) , (52)

where F̃ is the renormalized Fourier-transform of the on-site disorder distribution obeying
Eq. (15). Therefore

Ψ
(|Pl |)
β

(v)≈ (εβ)|Pl |Cβ fβ(v) , (53)

where Cβ is the coefficient in the decomposition of the initial condition Ω0(v) in terms of the
left eigenfunctions

Cβ =

+∞
∫

−∞

dv gβ(v)Ω0(v) , (54)

and gβ(v) corresponds to the same largest eigenvalue

εβ gβ(v) = F̃(v)eiEv

+∞
∫

−∞

dv′ gβ(v
′)Ξβ(v

′, v) , (55)

and we assumed that the there is a finite gap between the largest eigenvalue εβ and the second
largest eigenvalue. Finally, we obtain

〈|G1l(E)|2β〉= (εβ)|Pl |cβ , |Pl |, R→∞, |Pl |/R→ 0 , (56)

where

cβ =
Cβ

2cos(πβ)Γ (2β)

+∞
∫

−∞

dv |v|2β−1F̃(v)eiEv fβ(v) . (57)

Eqs. (56), (57) is the main result of Section III and the main technical result of this paper.

4 Physical meaning of Ω0(v).

In this section we establish the physical meaning of the renormalization factor Ω0(v) in
Eq. (15). To this end we use Eq. (51) to compute the distribution function of G1,1 in the

root of a tree. In this particular case Ψ(|Pl |)
β

(v) and
�

Ψ
(R−1)
0 (v)

�K−1
combine together to give

[Ω0(v)]K .
Next we compute the distribution function of a real g ≡ G1,1 by a Mellin transform:

P(g) =
1
g

∫

B

dβ
πi

exp[−2β ln g]Mβ , (58)

where Mβ is the moment of G2
1,1 found from Eq. (51) and B is the standard Bromwich contour

[c− i∞, c+ i∞], with a real 0< c < 1/2. Thus on the initial Bromwich contour Reβ < 1/2,
and Eq. (51) holds true. The integral over β that emerges in P(g) is the following:

ϕ(z) =

∫

B

dβ
2πi

exp[2β z]
cos(πβ) Γ (2β)

, ez = |v|/g . (59)
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Note that the Γ (2β) function in the denominator at large |β | � 1 is larger than any exponent
at Reβ > 0 and it is smaller than any exponent at Reβ < 0. Therefore, at any z the Bromwich
contour can be deformed so to surround the poles of the analytically continued integrand,
located at β = 1/2 + k, k = 0, 1,2, .... Then the integral Eq. (59) is given by the sum of
residues in these poles:

ϕ(z) =
∞
∑

k=0

e(1+2k) z (−1)k

(2k)!
= ez cos(ez) = (|v|/g) cos(v/g) , (60)

and the distribution function P(g) is given by:

P(x = 1/g) = g2P(x = g) =

∫ +∞

−∞
dv eiv/g F̃(v) [Ω0(v)]

K . (61)

Here for simplicity we consider E = 0 and a symmetric distribution of on-site energies with
the symmetric Fourier transform F̃(v) = F̃(−v). In this case in Eq. (61) one can replace
cos(|v|/g)→ eiv/g .

Eq. (61) can be considered as the distribution of the sum of K i.i.d. quantities
gi , i = 1, 2, ...K with the identical distribution functions f (gi) given by the Fourier transform
of Ω0(v). Indeed, let us multiply the identity:

∫

δ

�

ζ−
K
∑

i=1

gi

� K
∏

i=1

f (gi) d gi =

∫

dv
2π

eiζ v

�∫

e−ivx f (x) d x

�K

, (62)

by F(ζ− g−1), set ζ= ε+ g−1 and integrate over the on-site energy ε. Then the on-site energy
distribution F(ε) will be Fourier-transformed F(ε)→ F̃(v) and the r.h.s. of Eq. (62) takes the
form of the r.h.s. of Eq. (61) with Ω0(v) being the Fourier transform of f (x). Equating the
l.h.s. of Eqs. (61), (62) we obtain:

P(x = 1/g) =

∫

δ

�

g−1 + ε −
K
∑

i=1

gi

� K
∏

i=1

f (gi) d gi . (63)

The argument of the δ-function gives us immediately the physical meaning of the quantities
gi as the one-point (cavity) Green’s functions at the K sites which the site 1 is the descendant
of, like in the Abou-Chacra-Thouless-Anderson equation, g−1 = −ε +

∑K
i=1 gi (cf. Eq. (82)).

Correspondingly, the function f (gi) is the distribution function of such Green’s functions. This
gives the physical meaning of Ω0(v)

Ω0(v) =

∫

e−ivgi f (gi) d gi , (64)

as the Fourier-transform of the distribution functions of a real one-point cavity Green’s function
gi .

This result explains why in the non-linear sigma-model on a Cayley tree Ω0(v) = 1, while
on the tree with one orbital per site it is a non-trivial function of v. One should remember that
the nonlinear sigma-model in the problem of localization was derived by Wegner [34] in the
limit of an infinite number of states (orbitals) per site. Physically, this corresponds to a model
in which a site is represented by a granule with a very large number of states in it. Thus the
“one-point Green’s function” in this model is given by a sum of one-point Green’s functions
in a granule divided by the number of states in it. In the limit of an infinite number of states
in a granule, the distribution of such a quantity is a delta-function, and its Fourier-transform,
Ω0(v) ≡ 1. At any finite number of orbitals per site the delta-function is broadened and for
just one orbital per site f (x) and its Fourier-transform Ω0(v) are non-trivial functions of x and
v.
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5 Strong-disorder approximations for εβ .

In this section we derive simple approximations for εβ and control their accuracy. The idea is
that at strong disorder the renormalization of the on-site energy distribution is weak and at
sufficiently large W can be neglected. In order to show this we note that the integral part of
Eq. (12) converges at |v′| ∼W−1� 1 due to the factor F̃(v′). The argument of function Ω0(v)
entering the spectral problem Eq. (14) is also effectively restricted by a similar factor in this
equation. This allows to expand the Bessel function in the kernel of Eq. (12) and represent the
kernel as a sum of the factorized ones which makes the equation solvable. Expansion of the
Bessel function in Eq. (12) to the lowest order in its argument then after linearization leads to
the solution:

Ω0(v)≈ 1− |v|

∫

dv′ F̃(v′)

1+ K
∫

dv′ |v′| F̃(v′)
= 1+O(1/W 2) . (65)

This solution shows that the renormalized distribution F(ε), Eq. (15), acquires a 1/ε2 tail
for any bare distribution (with the convergent mean value) which decreases at large ε faster
than or similar to 1/ε2. In this paper we consider three such distributions, the box-shaped
distribution, the Gauss distribution and the Cauchy distribution which Fourier transforms read
as follows:

Fb(ε) =
θ (|ε| −W/2)

W
, F̃b(v) =

2sin(W v/2)
(W v)

, (66)

FG(ε) =
1

p
πW 2

e−ε
2/W 2

, F̃G(v) = e−(W/4)
2 v2

, (67)

FC(ε) =
(W/2π)

ε2 + (W/2)2
, F̃C(v) = e−(W/2) |v| . (68)

As is said before, any of these bare distributions acquire a tail A/ε2; however, the prefactor A
is small, e.g. for the box distribution:

Abox =
π

W + 4K/W
. (69)

The simplest approximation at large disorder is to neglect this renormalization whatsoever:
Ω0 = 1.

With this assumption, expanding the Bessel functions in the kernel of Eq. (52), one obtains
a 2× 2 matrix eigenvalue problem:

εβ I1 =
sin(πβ)
π

Γ (1− 2β) I2

∫

dv′ F̃(v′) +
sin(πβ)
π

Γ (2β − 1) I1

∫

dv′ F̃(v′) |v′|1−2β ,

εβ I2 =
sin(πβ)
π

Γ (1− 2β) I2

∫

dv′ F̃(v′) |v′|2β−1 +
sin(πβ)
π

Γ (2β − 1) I1

∫

dv′ F̃(v′) ,

where

I1 =

∫

dv F̃(v) fβ(v), I2 =

∫

dv |v|2β−1 F̃(v) fβ(v) .

One can see that in this approximation there are two eigenvalues of which the largest is:
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• For the box distribution:

εβ =
1

W |1− 2β |

�

sign(1− 2β)

�

�

W
2

�1−2β

−
�

W
2

�2β−1
�

+

√

√

√

�

�

W
2

�1−2β

+
�

W
2

�2β−1
�2

− 2π (1− 2β) tan(πβ)







. (70)

• For the Gaussian distribution:

εβ =−
p
π

(1
2 − β) cos(πβ)W

(
�W

2

�1−2β

Γ
�

β − 1
2

� +

�W
2

�2β−1

Γ
�1

2 − β
�

−

√

√

√

√

√





�W
2

�1−2β

Γ
�

β − 1
2

� −

�W
2

�2β−1

Γ
�1

2 − β
�





2

−
1− 2β
π

sin(2πβ)











. (71)

• For the Cauchy distribution:

εβ =
1

W |cos (πβ)|

�

sign (1− 2β)

�

�

W
2

�1−2β

−
�

W
2

�2β−1
�

+

√

√

√

�

�

W
2

�1−2β

+
�

W
2

�2β−1
�2

−
4 sin(2πβ)
π (1− 2β)







. (72)

One can see that all those expressions for εβ respect the basic symmetry discovered in a
seminal work of Abou-Chacra, Thouless and Anderson (ACTA) [24]:

εβ = ε1−β . (73)

Furthermore, Eqs. (70)-(72) respect the exact property of εβ :

εβ=0 = 1 . (74)

Note that earlier in Refs. [25,28] there was proposed another approximation for εβ at large
disorder for the box distribution:

εβ ≈
(W/2)1−2β − (W/2)2β−1

(W/2− 2/W ) (1− 2β)
. (75)

The accuracy of this simple approximation is O(W ln W )−1, while the accuracy of Eqs. (70)
and (71) is much higher (see Fig. 3 and Fig. 4):

∆εβ=1/2 = O(W 2 ln W )−1 . (76)

Surprisingly, for the Cauchy distribution Eq. (72) gives incredibly high accuracy for the local-
ization transition point which is known exactly from Ref. [24]:

(4/π)K ln[Wc/2] + 4 K2/(3Wc) =Wc/2 . (77)

Numerical solution for this equation for K = 2 and K = 3 gives Wc/2 = 4.36223 and
Wc/2 = 9.09131, respectively. The localization transition point can be also found from the
equation [24]:

εβ=1/2(W ) = 1/K . (78)
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Δϵβ=1/2

W

5.17  W2
lnW 

  Box distribution 

of on-site energies

10 20 30 40 50

5.×10-4

0.001

0.005

0.010

Figure 3: The accuracy of approximation for εβ , Eq. (70), for the box distribu-
tion of on-site energies at large disorder W � 1. The difference ∆εβ between
the numerical solution for εβ=1/2 of the exact Eqs. (12), (14) and the approximate
solution for εβ=1/2, Eq. (70), as a function of disorder strength W for a K = 2 Cayley
tree. The dashed gray line is a fit to the function ∆εβ=1/2 = 5.17/(W 2 ln W ).

Eq.(75)

Eq.(70)

Δϵβ

β

K=2,W=40

0.0 0.1 0.2 0.3 0.4 0.5
-0.001

0.000

0.001

0.002

0.003

0.004

0.005

Figure 4: Comparison of the accuracy of approximation for εβ by Eq. (70) and
by Eq. (75). ∆εβ is the difference between the numerical solution for εβ of the
exact Eqs. (12), (14) and the approximate solutions for εβ , Eq. (70) and (75), as a
function of β at W = 40 for a K = 2 Cayley tree.

Solving Eq. (78) with εβ from Eq. (72) we found the following numbers: Wc/2= 4.36225 for
K = 2 and Wc/2 = 9.09129 for K = 3. This extra-ordinary accuracy seems to indicate on the
accuracy of the approximation, Eq. (72), as high as (W 4 ln W )−1.

For the box probability distribution Eq. (78) with the approximate εβ from Eq. (70) gives
Wc = 18.51 which is close to the value Wc = 18.17 found numerically from the exact εβ ( see
also [29, 35]). However, it is not so spectacularly close to the exact value as for the Cauchy
distribution.
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6 Statistics of Green’s functions G1,r at large r

Given the moments, Eq. (3), one may find at large r the distribution function P(y = ln |G|)
by evaluating the Mellin transform Eq. (58) in the saddle-point approximation [27]. The
distribution appears to have a very special form of the large deviation ansatz:

P(y = ln |G|)∼ er R
�

− 2y
r

�

, (79)

where the function R(g) is given by the Legendre transform of lnεβ :

R(g) = lnεβ(g) + gβ(g) , (80)

g = −∂β[lnεβ]|β=β(g) . (81)

Eqs. (79), (80), (81) are valid at large r at any disorder which is encoded into the form of β-
dependence of εβ . At small disorder W/2® 1 important is the K -dependent renormalization
of on-site energy distribution F(ε) in Eq. (52) which results in the K-dependence of εβ and
R(g). At strong disorder W/2�

p
K − 1 one can neglect the renormalization of F(ε), there-

fore εβ and R(g) are independent of the branching number K . In this limit Eqs. (70)- (72) and
Eqs. (79)- (81) are equally valid both for the Cayley tree and for the strictly one-dimensional
case K = 1. In both cases the deviation from FSA result, Eq. (2), is due to resonances along a
single shortest path which role is overestimated in FSA.

In Fig. 5 we compare: (i) P(y = ln |G|) for the large-W approximation Eq. (70) (which is
indistinguishable from the exact result at W = 50); (ii) for the Poisson distribution, Eq. (2),
resulting from FSA at the box distribution of on-site energies; and (iii) for the log-normal
(Gaussian in ln |G|) distribution which emerges from the Poisson distribution in the large r
limit. We consider modestly strong disorder W = 50 and r = 10,100.

Fig. 5 demonstrates the main physical result of this paper: FSA fails to describe large
deviations |G| � Gt yp from the typical value Gt yp, whereas the region |G| ® Gt yp it describes
quite well.

As a matter of fact, FSA overestimates the role of resonances which enhance |G1,r | at large
distances r. The reason is that FSA, Eq. (1), involves the on-site energies εp along the short-
est path rather than the exact eigenvalues Ep which emerge due to interference of the “de-
tour”/return paths of the length larger than r. Since those paths pass more than one time
through the same sites, their amplitudes and the true eigenvalues are not statistically inde-
pendent. To take account of this important point, one should have considered in Eq. (1) the
product of exact one-point Green’s functions which incorporates the real parts of the self-
energies Σp. The large-W approximations developed in this paper fix this drawback in an
efficient way. It takes into account the fact that if at some point p of the path the one-point
Green’s function Gp ≡ Gp,p is large due to resonance Ep = εp + Σp ≈ E, it results in a large
self energy Σp+1 for the Green’s function on the next point p+ 1 of the path according to the
Abou-Chacra-Thouless-Anderson equation [24]:

G−1
p+1 = E − εp+1 −Σp+1 , Σp+1 =

K
∑

i(p)=1

Gi(p) , (82)

where i(p) denotes K predecessors of p. Thus the next Green’s function Gp+1 must be small
which compensates the large value of the preceding Green’s function in the product over the
path. This mechanism of correlation [28] (which was emphasized by Anderson already in his
seminal paper [1]) effectively diminishes the role of resonances and leads to a smaller proba-
bility of having the large value of |G1,r |, as the Fig. 5 shows. This effect is more pronounced
for long paths, as the number nres ∼ r of “naive” resonances at εp = E is proportional to the
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Figure 5: Comparison of PDF of y = ln |G| on the K = 2 Cayley tree for the
large-W approximation (LDA), Eq. (70) (solid blue line); the Poisson distribution
in FSA, Eq. (2) (orange dashed line), and the log-normal (LN) (Gaussian in ln |G|)
distribution emerging from the Central Limit Theorem in FSA (gray dashed line) for
two distances r = 10 (Left panel) and r = 100 (Right panel) at W = 50. The re-
gion Gt yp < |G| < 1 of the solid blue curve corresponds to 0 < β < 1/2, while the
region |G| < Gt yp corresponds to the analytical continuation of εβ to β < 0. The
log-log derivative d ln P(y)/d y = −1 at |G| = 1 which smoothly matches the tail
P(x = |G|) ∼ G−2 at this point. The Poisson distribution emerging in FSA approxi-
mation at a finite r overestimates the probability of large deviations |G|> Gt yp from
the typical value Gt yp and the error increases with increasing the distance r. In con-
trast, in the region |G| < Gt yp the Poisson distribution becomes more accurate as r
increases. The log-normal distribution is valid at small and moderate deviations from
the typical value where all three distributions nearly coincide.

length r. With self-energy parts taken into account, at most one resonance (out of nres ∝ r)
may make uncompensated contribution to the product if it occurs at the last point of the path.
Therefore the error of FSA increases with increasing r, as one can easily see comparing right
and left panels of Fig. 5 and also in Fig. 1. This error depends only on the length of the path
r but not on the total length of a tree L� r.

Concluding this section, we would like to note that our “large-disorder” approximation for
εβ which is valid for W �

p
K − 1, neglects the renormalization of the on-site disorder dis-

tribution, Eq. (15), and εβ in this approximation does not depend on the branching number
K . Thus it is also valid for strongly disordered one-dimensional Anderson model which corre-
sponds to K = 1. This means that the distribution of the two-point Green’s functions in this
model is also described by Eqs. (79), (80), (81) with εβ given by Eqs. (70)-(72). To the best
of out knowledge this result for strongly disordered one-dimensional Anderson model is not
known in the literature.

7 Conclusion and Discussion

Our goal was to investigate the applicability of the forward scattering approximation (FSA)
and to evaluate the probability distribution function of the Green’s function for the Anderson
localization model on sparse graphs at large disorder. Such graphs represent the Hilbert space
of interacting quantum systems and FSA is often suggested as the simplest tool to approach
the problem of Many Body Localization (MBL). The Hilbert space of the realistic models of
MBL include graphs like a hypercube lattice of Quantum Ising model and Quantum Random
Energy model or its cross-section of XXZ Heisenberg chain. Such graphs have numerous loops
and thus many shortest-length trajectories with correlated amplitudes that interfere and make
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FSA rather complicated. However, even in the absence of such complication, on the Cayley
tree, the applicability of FSA has severe limitations.

In this paper we have shown that FSA on the Cayley tree is not applicable in the limit of
large distances r between points in the two-point Green’s function, however large (but fixed)
disorder strength is. It strongly overestimates the probability of large deviations |Gr | > Gt yp
from the typical value of Green’s functions due to ignoring the correlated character of reso-
nances along the path connecting the initial and the final points in a Green’s function. Tech-
nically, this happens because FSA neglects the real parts of self energies of the single-point
Green’s functions which are responsible for the difference between the bare on-site energies
εp and the true eigenvalues Ep. The corresponding error increases with increasing the length
of the path and in order to suppress it an unrealistically large disorder strength is required.

To arrive at this result, we computed the r-dependence of the moments of the real Green’s
function, relating them to the largest eigenvalue εβ of the linearized transfer-matrix equation
on a tree. This result, Eq. (3), is obtained by rigorous calculations in the framework of the
Efetov’s super-symmetry approach and it is valid at an arbitrary disorder strength. For strong
disorder we derived a very accurate large-disorder approximations, Eqs. (70), (71), (72), for
εβ and checked its accuracy against a high-precision numerical solutions of the Abou-Chacra-
Thouless-Anderson equations for the box distributed on-site disorder and by a comparison to
exact solution of the problem for the Cauchy distribution.

Note that in the Anderson model on a two-dimensional lattice the FSA works very well [7]
at strong disorder. Furthermore, the distribution function of ln(|G|/Gt yp) = L1/3χ is broad
with χ being well described by the Tracy-Widom distribution. It is neither of the form Eq. (79),
nor it is Gaussian in |G| in its central part, with non-Gaussian tails. This is only possible
if the contributions of the different paths are strongly and non-trivially correlated to inval-
idate the Central Limit Theorem at all |G|. We believe that this is a peculiar property of a
two-dimensional system which does not hold in other dimensions. Our results show that the
distribution of |G| is totally different in the one-dimensional Anderson model and there are
indications [36] that it is strongly dimensionality-dependent. We believe that it is due to the
strong dependence of the statistics of paths on dimensionality: 1D (as well as the Cayley tree)
is special because of existence of a unique path, while D = 2 differs from D = 3 by statistics of
loops. It is very important in the problem of weak localization that a random walker never re-
turns to the origin in dimensionality D > 2 and does return for sure for a sufficiently long time
in D = 2. It may be important for FSA too. Finally, the FSA may better work at higher dimen-
sions D > 1 because the contribution of multiple non-resonant paths may dominate over that of
a few resonant paths, thus making irrelevant the problem of a proper account for resonances.

We believe that our results, which emphasize the role of resonances, are encouraging to
push forward the research on the distribution of Green’s functions on the simplest realistic
graphs emerging in the most popular models of MBL. The solution of this problem (to begin
with the case of large disorder) would allow one to construct an equivalent random-matrix
model of the Rosenzweig-Porter type [26,27,37] which is amendable to a number of approx-
imate methods of the mean-field type.

In this respect we would like to mention a recent paper [38], where broad distributions
of matrix elements responsible for system-wide many-body resonances have been numerically
calculated in the many-body localized regimes of XXZ spin chains. These distributions are very
similar to the one described by Eqs. (79), (80), (81), including the scaling with the system size
r ∼ L/2. Although the Hilbert space of these spin chains is a hyper-cube of a high dimension
L and the number of paths between the points at a distance ∼ L is very large ∼ (L/2)!, the
distribution of the matrix elements have fat tails which signals of the failure of the Central
Limit Theorem. We attribute this to correlated contributions of the paths with different order
of flipping the spins s = 1/2 which mutually cancel each other when close to resonance (see
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e.g. [39]). This effect reduces the number of statistically-independent paths thus increasing the
weight in the non-Gaussian tails making it possible for the moments of Green’s functions of
low order to be determined by the fat non-Gaussian tails, like in our example of a Cayley tree.
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