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Abstract

The truncated Wigner approximation is an established approach that describes the dy-
namics of weakly interacting Bose gases beyond the mean-field level. Although it allows
a quantum field to be expressed by a stochastic c-number field, the simulation of the
time evolution is still very demanding for most applications. Here, we develop a numer-
ically inexpensive scheme by approximating the c-number field with a variational ansatz.
The dynamics of the ansatz function is described by a tractable set of coupled ordinary
stochastic differential equations for the respective variational parameters. We investi-
gate the non-equilibrium dynamics of a three-dimensional Bose gas in a one-dimensional
optical lattice with a transverse isotropic harmonic confinement. The accuracy and com-
putational inexpensiveness of our method are demonstrated by comparing its predic-
tions to experimental data.
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1 Introduction

In order to accurately describe the non-equilibrium dynamics of Bose condensates of atoms it
is often necessary to treat the weakly interacting gas beyond the mean-field level [1], in partic-
ular if modes with low occupation become relevant. Prime examples, where such modes play
an important role, are driven dissipative Bose gases with multi-stable stationary states or the
filling dynamics of coupled condensates [2–9]. An approach, widely used in quantum optics,
that takes both thermal and leading-order quantum fluctuations into account, is the truncated
Wigner approximation (TWA) [10–18]. It amounts to approximating the boson quantum field
by a classical field (c-field), which evolves in time according to the Gross-Pitaevskii equation.
Although quantum fluctuations cannot be included exactly, they can be well approximated by
sampling the initial value of the field over the Wigner quasi-distribution of the initial quantum
state. In the presence of reservoir couplings additional noise sources have to be included lead-
ing to stochastic equations of motion [15, 19–22]. Since, in the initial-value sampling of the
Wigner distribution, every unoccupied mode has fluctuations equivalent to one half of a par-
ticle, it is necessary to truncate the number of modes included, e.g. by appropriate projection
techniques [23,24]. For most applications the time evolution is, however, still intractable and
prone to sampling noise.

In the present paper we develop a variational approach to the dynamics of the functional
Wigner distribution, which we refer to as the variational truncated Wigner approximation
(VTWA) for bosonic fields. To this end we decompose the classical field into a variational
ansatz function and the remaining contribution, where we call the latter the residual field,
which we here assume to remain in the vacuum state. In this way the functional Fokker-Planck
equation obtained after performing the truncated Wigner approximation can be approximated
by a finite-dimensional Fokker-Planck equation for the variational parameters. This allows the
dynamics to be expressed by a tractable set of coupled stochastic differential equations. We
apply our method to the non-equilibrium dynamics of a three-dimensional Bose gas in a one-
dimensional optical lattice with a transversal isotropic harmonic confinement, where a single
site is initially emptied [4]. We compare our predictions to experimental data and thereby
demonstrate the accuracy and computational inexpensiveness of the VTWA.

In the paper we proceed as follows. In Sec. 2 we introduce the system of coupled con-
densates, which is a paradigmatic example of weakly interacting Bose fields, as its description
requires a beyond mean-field treatment. This is followed by Sec. 3, which provides a concise
general introduction to the TWA method. Subsequently, we develop in Sec. 4 a variational
approach to the TWA, which represents the main result of our paper. This formalism is then
applied to the dynamics of the coupled condensates and compared to experimental data in
Sec. 5. Finally, Sec. 6 summarizes the results and gives an outlook.
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Figure 1: Refilling dynamics of the particle number N0 of an initially emptied site in
a one-dimensional optical lattice at a lattice depth of 8Er obtained from the exper-
iment as well as predicted by different theoretical approaches. The system consists
of 31 sites with sites i 6= 0 starting with N∞ = 940 particles and has open boundary
conditions. For the Bose-Hubbard model J/U = 40 is chosen to fit the experiment,
whereas the GPE and VTWA assume the Hamiltonian of eq. (1) and parameters given
in Sec. 5.1, i.e. do not use any fitting parameters. Insert: Schematic representation
of the experiment. A particle current towards the central lattice site is induced by
the initial out-of-equilibrium configuration. The overlap of nearest-neighbor wave
functions leads to dynamical tunneling coefficients Ji j .

2 Coupled condensates

We start with illustrating the variational approach and consider as an example the dynamics of
weakly interacting Bose condensates in situations, where all except very few relevant modes
have a macroscopic occupation of particles. To this end we study a weakly interacting Bose
gas in an optical lattice with lattice period a along the z-direction and an isotropic harmonic
confinement of frequencyωr in the x , y-direction. The many-body Hamiltonian of this system
in units of length a and the recoil energy of the lattice Er = (~π)2/2ma2 reads

Ĥ =

∫

d3r ψ̂†(~r)
�

H0 +
U0

2
ψ̂†(~r)ψ̂(~r)

�

ψ̂(~r) , (1)

where the single-particle Hamiltonian is given by

H0 = −K∆+ Vz sin2(πz) + Vr(x
2 + y2) . (2)

Here ψ̂(~r), ψ̂†(~r) are bosonic field operators with the canonical commutation relation
[ψ̂(~r), ψ̂†(~s)] = δ(~r−~s) and∆= ~∇· ~∇ is the Laplace operator. Furthermore, Vz denotes the lat-
tice depth in units of the recoil energy and we have K ≡ π−2, Vr ≡ mω2

r a2/2Er , U0 ≡ g/a3Er ,
with m being the boson mass and g the interaction strength in s-wave scattering approxima-
tion.

The commonly applied Gross-Pitaevskii mean-field equation (GPE) is not sufficient to de-
scribe the dynamics of coupled BECs with a single initially empty site, a situation where the
quantum fluctuations become important. This can clearly be seen in Fig. 1, where the refilling
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dynamics of an initially emptied site is obtained with a variational ansatz for the GPE wave
function according to Appendix A. It shows strong oscillations of the particle number as well
as abrupt jumps. Both of these traits are not observed experimentally and are an artifact of the
lack of quantum fluctuations in the mean-field description. Thus, more accurate theoretical
predictions require taking leading-order quantum fluctuations into account. A full quantum
treatment is possible, on the other hand, by neglecting the three-dimensional character of the
Bose gas. Then one can approximate the coupled condensates by a one-dimensional Bose-
Hubbard model (BHM) given by the Hamiltonian

ĤBHM = ~ω
∑

j

â†
j â j +

~U
2

∑

j

â†
j â

†
j â j â j − ~J

∑

〈 jk〉

â†
j âk , (3)

where â j , â†
j are bosonic creation and annihilation operators at the jth lattice site, satisfying

[â j , â†
k] = δ jk, and 〈 jk〉 denotes summation over nearest neighbors. The reduction to a one-

dimensional model allows a full quantum mechanical description using e.g. tDMRG (time-
dependent Density Matrix Renormalization Group) or other numerical techniques based on
matrix-product expansions of the many-body state [25]. Ignoring the transverse degrees of
freedom in this effective model does, however, neglect that the tunneling between adjacent
sites depends on the number of atoms in these sites. Choosing adapted values for the effective
tunneling matrix element J and the interaction strength U the BHM predicts a smoother re-
filling process as compared to the GPE with overall smaller oscillations, which are still strong
in the initial phase. Since the refilling process is faster and the initial oscillations are not de-
tected experimentally, previous attempts of modeling the dynamics using the BHM and similar
effective-mode models postulated the presence of an additional dephasing process [26,27].

In contrast to both the mean-field GPE description and the reduction to an effective BHM,
our variational truncated Wigner method, which is worked out below, predicts negligible oscil-
lations without requiring any additional couplings to reservoirs. Furthermore, the small initial
transversal overlap of neighboring Bose gas wave functions suppresses the tunneling, yielding
an accurate match with the experiment without using any fitting parameters.

3 Truncated Wigner approximation for weakly interacting bosons

A common approach to describe weakly interacting bosons in the limit of large mode occu-
pation is the truncated Wigner approximation (TWA) [10, 13, 14, 17, 18]. In the following
we summarize the key ingredients of this approach, first for a single mode and then for a
continuum Bose field.

3.1 Wigner phase-space representation

The TWA is based on the Wigner distribution of a bosonic mode, â, â†, which is obtained by
expanding the density operator ρ̂ in the overcomplete set of coherent states |α〉 with α ∈ C
[28]:

W (α,α∗) =

∫

d2η

2π2
〈α−

η

2
|ρ̂|α+

η

2
〉e(η

∗α−ηα∗)/2 . (4)

The expectation value of symmetrically ordered operator products is then given by an average
over the Wigner distribution:

〈
�

â†mân
�

symm〉=
∫

d2αW (α,α∗) (α∗)mαn. (5)
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The effect of a ladder operator acting on the density operator can be equivalently expressed
as a differential identity for the Wigner distribution, where the extension to many modes is
straightforward [29]:

â jρ̂↔
�

α j +
1
2
∂
∂ α∗j

�

W, â†
j ρ̂↔

�

α∗j −
1
2
∂
∂ α j

�

W ,

ρ̂â j ↔
�

α j −
1
2
∂
∂ α∗j

�

W, ρ̂â†
j ↔

�

α∗j +
1
2
∂
∂ α j

�

W .
(6)

Here W
��

αi ,α
∗
i

	�

∈ R denotes the Wigner distribution that associates a quasi-probability
with every point ~p = (α1,α∗1,α2,α∗2, . . . )T in the coherent state phase space [30,31]. Note that
αi ,α

∗
i are treated as independent variables. Applying these mappings to the Von-Neumann

equation of the density operator ρ̂ yields a partial differential equation for the propagation of
the Wigner distribution. For the BHM of Eq. (3) the corresponding equation reads

∂

∂ t
W =− i

∑

j

∂

∂ α j

§�

−ω− U
�

|α j|2 −
1
2

��

α j + J(α j−1 +α j+1)
ª

W

+
iU
4

∑

j

∂ 3

∂ α2
j ∂ α

∗
j

α jW + c.c. , (7)

where the time t is measured in units of tr = ~/Er . This equation is in general difficult
to solve. One notices, however, that the terms with third derivatives scale with the inverse
occupation |α j|−2 ≈ 〈â†

j â j〉−1 of each mode. A powerful approximation, justified in the case of
weak interaction U and macroscopic occupation of all modes, consists of neglecting these third
order terms and is called the truncated Wigner approximation (TWA). The equation remaining
after truncating higher than second order derivatives is a multivariate Fokker-Planck equation
(FPE). Every FPE has an equivalent set of stochastic differential equations (SDEs) for complex-
valued stochastic functions α j(t). In many cases, such as the unitary BHM, the diffusion matrix
vanishes exactly and the SDEs are reduced further to nonlinear ordinary differential equations:

α̇ j = −i
�

ω̃+ U |α j|2
�

α j + iJ(α j−1 +α j+1) , (8)

where ω̃ = ω− U/2. The initial values of α j(t0) = α j0 are non-deterministic and are repre-
sented by a given initial Wigner distribution. If the Wigner distribution happens to be positive
semi-definite, one can sample initial values α j0 in the coherent state phase space and obtain
their subsequent time evolution by integrating the SDEs such as Eq. (8). Finally, expectation
values are calculated by evaluating operators in their symmetrical order:

〈
�

â†mân
�

symm〉= (α
∗)mαn . (9)

The bar indicates the average with respect to the many numerically time-evolved trajectories.
Since it can be rather tedious to calculate the symmetrical order of a given function f (â†, â) by
manually applying the commutation relationship, it is useful to introduce the Bopp operators
[32]:

â = α+
1
2
∂

∂ α∗
, â† = α∗ −

1
2
∂

∂ α
, (10)

which translates products of operators into their corresponding c-numbers by letting them act
on the scalar 1. Consider the particle number:

â†â =
�

α∗ −
1
2
∂

∂ α

��

α+
1
2
∂

∂ α∗

�

1= |α|2 −
1
2

. (11)
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Hence we obtain 〈(â†â)symm〉= |α|2−1/2. An important consequence of this symmetric aver-
aging is that the vacuum |0〉〈0| has a virtual occupation of half a particle, which is subtracted
after the averaging is performed. This yields the correct result of zero particles in the vacuum
mode.

At first glance, and apart from the irrelevant term U/2 which is absorbed into the definition
of ω̃, Eq. (8) is identical to the Gross-Pitaevskii-like mean-field equation of the Bose-Hubbard
model. However, in order to evaluate symmetrically ordered expectation values one still has
to average the solution of Eq. (8) over stochastic initial conditions. Therefore, the TWA goes in
fact beyond the mean-field approximation and also takes lowest-order quantum fluctuations
into account. As illustrated in Appendix B, it turns out to be equivalent to the Bogoliubov
approximation in case of the Bose-Hubbard model. Note that further quantum corrections
to the dynamics of interacting bosons beyond the truncated Wigner approximation have also
been worked out [14].

3.2 Wigner functional of quantum fields

Now consider the continuum description of a Bose gas in terms of bosonic field operators
ψ̂(~r), ψ̂†(~r). There are two different formulations of the Wigner representation for such a
field, which are relevant for our discussion.

First, for a given set of orthonormal functions V = {χn(~r) |n ∈ N}, e.g. plane waves or
harmonic oscillator eigenfunctions, a decomposition into discrete modes and corresponding
coherent amplitudes can be defined

ψ̂(~r) =
N
∑

n=0

χn(~r)ân←→ψ(~r) =
N
∑

n=0

χn(~r)αn , (12)

where for all practical purposes N <∞, i.e. a truncation to a finite amount of single-particle
low-energy eigenstates, must be chosen. By inserting this expansion into a given Hamilto-
nian or Lindbladian, we can derive equations of motion for the coherent amplitudes corre-
sponding to the discrete ladder operators. However, for sufficiently large N , modes with non-
macroscopic occupation occur and the TWA is typically not justified anymore. One possibility
of remedying this for the case of harmonic confinement is contained in the formalism of the
stochastic projected Gross-Pitaevskii Equation [24].

Secondly, when taking the limit N → ∞, it is possible to derive mappings between the
field operators and functional derivatives of a quasi-probability distribution as was shown, for
instance, in case of the Glauber-Sudarshan P-distribution [29]. For the Wigner representation
one obtains analogously

ψ̂(~r)ρ̂↔
�

ψ(~r) +
1
2

δ

δψ∗(~r)

�

W , (13a)

ψ̂†(~r)ρ̂↔
�

ψ∗(~r)−
1
2

δ

δψ(~r)

�

W , (13b)

ρ̂ψ̂(~r)↔
�

ψ(~r)−
1
2

δ

δψ∗(~r)

�

W , (13c)

ρ̂ψ̂†(~r)↔
�

ψ∗(~r) +
1
2

δ

δψ(~r)

�

W , (13d)

with the Wigner functional W [ψ(~r),ψ∗(~r)], where ψ(~r),ψ∗(~r) are treated as independent
fields. Similarly, we can also derive Bopp operators by composition of the single-mode expres-
sions of Eq. (10):

ψ̂(~r) =ψ(~r) +
1
2

δ

δψ∗(~r)
, ψ̂†(~r) =ψ(~r)−

1
2

δ

δψ(~r)
. (14)
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It is important to realize that the integral over the density |ψ(~r)|2 diverges since, according
to Eq. (12), even the vacuum has on average limN→∞ N/2 particles before subtracting the
symmetrical ordering correction. Combining the mappings in Eqs. (13) with the TWA, which
is now justified in regions ~r ∈ R where macroscopic occupation occurs, it is possible to obtain
a functional FPE.

4 Dynamical variational reduction of the functional Fokker-Planck
equation

While the complexity of the dynamics of the quantum field has already been reduced by in-
troducing a truncated Wigner phase space description, integrating the functional FPE or the
corresponding stochastic partial differential equation is still numerically challenging if not
unfeasible. Let us therefore aim for a natural stochastic extension of the variational approx-
imation of the deterministic GPE dynamics, which was pioneered in [33]. To this end we
consider the case where the region R ⊂ Rn of the field ψ(~r) can be approximated by a varia-
tional ansatz ψ(0)(~c,~r) with ~c ∈ RM denoting a suitable set of M variational parameters and
let ψ(1)(~c,~r)≡ψ(~r)−ψ(0)(~c,~r) be the residual field of low density. Our goal is then to trans-
form the functional FPE onto a multivariate FPE in ~c as outlined in detail in Appendix C. Since
explicit expressions for the functionals ~c[ψ,ψ∗] andψ(0)[ψ,ψ∗] are generally not obtainable,
the functional derivatives required (see Eqs. (50)) cannot be obtained from these. However,
since only the functional derivatives of the new variables are needed, we can calculate them
through implicit differentiation. To this end we define the functional

F =

∫

d~r |ψ(~r)−ψ(0)(~c,~r)−ψ(1)(~c,~r)|2 , (15)

which has the global minimum F = 0 when ψ=ψ(0) +ψ(1). The extremalization

Fci
=
∂ F
∂ ci
= 0 , (16a)

Fψ(~r) =
δF

δψ(1)(~r)
= 0 , (16b)

yields a set of equations that implicitly define the new variables. The functional derivatives of
these equations with respect to the original fieldψ,ψ∗ are connected to the desired derivatives
via the chain rule:

0=
δFci

δψ(~r)
=−

∂

∂ ci
(ψ(0) +ψ(1))∗ +

∑

j

Ri j
δc j

δψ(~r)
. (17)

The coefficients Ri j = ∂ 2F/∂ c j∂ ci define a M ×M matrix. At the global minimum F = 0 we
obtain:

Ri j =

∫

d~r

�

∂ (ψ(0) +ψ(1))∗

∂ ci

∂ (ψ(0) +ψ(1))
∂ c j

+ c.c.

�

. (18)

Assuming that R is invertible, we obtain from Eq. (17):

δci

δψ(~r)
=
∑

j

�

R−1
�

i j

∂

∂ c j
(ψ(0) +ψ(0))∗ . (19)
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Correspondingly, the second derivatives are obtained from functional derivatives of Fci
. For

example

δ2ci

δψ∗(~r)δψ(~s)
=
∑

j

�

R−1
�

i j

∫

d~r

�

∂ 2(ψ(0) +ψ(1))
∂ ci∂ c j

δc j

δψ∗(~r)
+ c.c.

�

−
∑

jkl

�

R−1
�

i j S jkl
δck

δψ∗(~r)
δcl

δψ(~s)
, (20)

where

S jkl =

∫

d~r
�

∂ (ψ(0) +ψ(1))∗

∂ c j

∂ 2(ψ(0) +ψ(1))
∂ c j∂ ck

+
∂ 2(ψ(0) +ψ(1))∗

∂ c j∂ cl

∂ (ψ(0) +ψ(1))
∂ ck

+
∂ (ψ(0) +ψ(1))∗

∂ cl

∂ 2(ψ(0) +ψ(1))
∂ c j∂ ck

+ c.c.
�

. (21)

The derivatives of ψ(1) are similarly accessible. In Sec. 5.2 we assume that the coupling be-
tween the coefficients ~c and the residual field ψ(1)(~r) is weak and can be neglected. In the
case of an initial factorization W (0) = W (~c, 0)W [(ψ(1))∗,ψ(1)](0), the Wigner function will
always remain factorized and the residual field can be ignored. This yields a multivariate FPE
in ~c

∂

∂ t
W (t,~c) = L(~c)W (t,~c) , (22)

whose coefficients are given by Eqs. (50). Note that (near-) vacuum fluctuations of the low-
density region are neglected and only fluctuations that can be parameterized by the variational
ansatz ψ(0)(~c,~r) remain. These are included in the dynamics by sampling the initial coeffi-
cients ~c(0) from the reduced Wigner distribution. The reduction to a finite set of variational
parameters without including effects induced byψ(1)(~r) turns out to be a suitable approxima-
tion for the example of coupled condensates near absolute zero temperature discussed here.

While this approach greatly reduces the complexity of the time evolution, it is still not
clear how initial states and expectation values in the functional limit can be obtained. We
demonstrate these remaining problems by working out a concrete model.

5 Non-equilibrium dynamics of a weakly interacting Bose gas in a
1d optical lattice

To illustrate the formalism derived in the previous section and validate its results, we apply it
to the optical lattice Hamiltonian of Eq. (1), describing tunnel-coupled Bose-Einstein conden-
sates, and compare it to the experimental results.

5.1 Experimental setup

In the experimental realization a weakly interacting BEC of about 1.9 · 105 87Rb atoms is
created in a single beam dipole trap with frequencies ωz/2π = 12 Hz along the z-axis and
ωr/2π= 227 Hz in the perpendicular directions. The cigar-shaped BEC is adiabatically loaded
into a 1d optical lattice generated by two blue detuned laser beams crossing at an angle of
90°. The resulting lattice has a period of a = 547 nm along the z-axis. At the center of the
trap each site contains a small, pancake-shaped BEC with about N∞ = 940 atoms and the
total number of lattice sites is about 200. Using a well-defined particle loss originating from a
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scanning electron microscopy technique (SEM) the central site of the lattice is emptied [34].
This is done within 5 ms at a lattice depth of Vz = 30 Er , where Er = (~π)2/2ma2 is the recoil
energy of the lattice. Thereafter the lattice depth is ramped down to the desired value for
the measurement run while keeping the dissipation process on. At the end of the preparation
phase the dissipation is switched off. After variable times the lattice depth is set to a value of
Vz = 30 Er again, effectively freezing out the motion between lattice sites. An image of the
density distribution in the optical lattice is then taken with the scanning electron microscope.
From these images the relative filling of the central site and the distribution of atoms within
this site is obtained. Inspired by the previous experimental results in [35], new experiments
were conducted for this paper to study the refilling dynamics quantitatively. In particular, the
goal of these new experiments was to carry out a systematic investigation how the refilling
behaviour depends on the lattice depth as well as to gain first insights into how fluctuation
effects vary as a function of time.

5.2 Variational TWA for coupled condensates

Where not otherwise noted, we will from now on assume the parameters given in Sec. 5.1. The
lattice Hamiltonian eq. (1) describes a system that is translationally invariant in the z-direction
and, thus, does not take into account the shallow harmonic trapping along the z-axis, present
in the experiment. We neglect this confinement in the z-direction, which is valid at the center
of the trap. Due to the low temperatures of the condensates, which are much smaller than
their critical temperature, it is justified to consider the residual modes ψ1(~r) to be vacuum
states. Thus, we will restrict ourselves in the following to the mode ψ0(~r). The functional
mappings produce only first and third derivatives of which the latter can be neglected in TWA.
Thus, we obtain a functional FPE with the drift coefficients:

Dψ(~r) = iK∆ψ− iVr(x
2 + y2)ψ− iU0|ψ|2ψ , (23a)

Dψ∗(~r) =
�

Dψ(~r)
�∗

, (23b)

and a vanishing diffusion matrix. We postulate that the relevant effects in this system are
breathing motions at each site and particle exchanges between nearest-neighbor sites. These
are represented by the ansatz:

ψ(0)(~r) =
∑

j

w j,0(z)ψ j(x , y), (24)

ψ j(x , y) =(πσ2
j )
−1/2

Æ

N je
−iφ j

· exp

��

−
1

2σ2
j

+ iA j

�

(x2 + y2)

�

, (25)

where w j,0(z) is the lowest-band Wannier function of the single-particle Schrödinger equation
at the jth potential minimum of the optical lattice. It satisfies the orthonormality relation:

δ jk =

∫

dz w∗j,0(z)wk,0(z) . (26)

The variational parameters occurring in Eq. (25) are referenced by a double index, where the
Latin character refers to the site:

c j,α = (N j ,φ j ,σ j , A j)α , α= 1, . . . , 4 . (27)

In the following steps we assume ∂c j,α
ψ(0)� ∂c j,α

ψ(1), thus completely decoupling the dynam-

ics ofψ(0) from the residual fieldψ(1). The matrix R of Eq. (18) is now a block diagonal matrix
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with Latin indices referring to the blocks. The inverse is given by inverting each diagonal block
individually:

(R−1) jα,kβ =
δ jk

2N j









4N2
j 0 0 0

0 2 0 σ−2
j

0 0 σ2
j 0

0 σ−2
j 0 σ−4

j









αβ

. (28)

Furthermore, in order to shorten our notation, we define the overlap coefficients

Ueff =U0

∫

dz |w j,0(z)|4 , (29a)

J =

∫

dz w∗j,0(z)

�

K
∂ 2

∂ z2
− Vz sin2(πz)

�

w j+1,0(z) , (29b)

η
(n)
jk =

∫

d xd y (x2 + y2)n/2ψ∗j (x , y)ψk(x , y) . (29c)

Finally we only keep diagonal interaction contributions and nearest-neighbor tunneling terms.
From the drift coefficients and vanishing diffusion coefficients we immediately obtain the fol-
lowing set of coupled ordinary differential equations for the variational parameters:

Ṅ j = −2J
∑

k= j±1

Im(η(0)jk ) , (30a)

φ̇ j =
�

2K +
3Ueff

4π
N j

�

σ−2
j − JN−1

j

∑

k= j±1

Re
�

η
(0)
jk −σ

−2
j η

(2)
jk

�

, (30b)

σ̇ j = 4KA jσ j + J(σ jN j)
−1

∑

k= j±1

Im
�

σ2
jη
(0)
jk −η

(2)
jk

�

, (30c)

Ȧ j = −Vr − 4KA2
j +
�

K +
Ueff

4π
N j

�

σ−4
j − J(σ2

j N j)
−1

∑

k= j±1

Re
�

η
(0)
jk −σ

−2
j η

(2)
jk

�

. (30d)

Note that in Appendix A the same differential equations are obtained from restricting the
deterministic GPE to the same variational ansatz. The change of the particle number Ṅ j is
proportional to

Æ

N jN j±1 which is reminiscent to Josephson tunneling. However, a striking

difference is the additional appearance of the transversal overlap in η(0)jk , see Eq. (29c), which
acts as a dynamical weight to the tunneling rate J . Since the system is point-symmetric with
respect to the initially empty site, we only integrate the positive lattice sites and mirror them to
obtain the dynamics of the negative lattice sites. In our simulations, we evolve 16 sites, i.e. the
central site and its 15 nearest-neighbors to the right. In conjunction with the point-symmetry
this results in a total of 31 time-evolved sites. Open boundary conditions after the ±15 sites
are chosen.

In order to generate an initial state of the coupled condensates we set both tunneling J = 0
and interaction Ueff = 0. The decoupled sites are 2d harmonic oscillators and we express their
initial states in terms of the mth oscillator eigenfunction χ j,m(x) of site j:

ψ j(x , y, t = 0) =
∞
∑

m,n=0

χ j,m(x)χ j,n(y)α j,mn , (31)

where α j,mn is a fluctuating coherent amplitude determined from the initial Wigner function.
Furthermore, we identify the initial macroscopic region as

ψ
(0)
j (x , y, t = 0) = χ j,0(x)χ j,0(y)

Æ

N je
−iφ j , (32)
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which can be expressed in terms of our variational ansatz with σ j being equal to
the harmonic oscillator length σni = (K/Vr)1/4 in optical lattice units and A j = 0.
The Wigner fluctuations therefore enter the dynamics via the non-deterministic initial
conditions of N j and φ j . The remaining terms are identified as the residual field

ψ
(1)
j (x , y, t = 0) =

∑∞
m,n=1χ j,m(x)χ j,n(y)αvac

j,mn where the complex normally distributed αvac
j,mn

represent the vacuum fluctuations of each mode. The ground state is obtained by assuming
a Fock state [36] with N∞ = 940 mean occupation in the ground state mode for the initially
full sites and ∼ 15% N∞ for the initially empty site depending on the lattice depth. The inter-
acting ground state is then generated by an adiabatic ramp up of the interaction strength Ueff
up to a desired value. Then the tunneling coefficient J is changed from 0 to the target value
corresponding to the lattice depth Vz thus initiating the refilling process of the central site.

For each lattice depth 3 · 104 trajectories are evolved. Using the DifferentialEquations.jl
package [37] for the Julia Programming Language [38] the calculation of a single trajectory
to 100 ms takes ∼ 1 ms per thread on an Intel Xeon Gold 6126 processor with a base clock
frequency of 2.60 GHz.

5.2.1 Refilling dynamics

We first discuss the dynamics of the particle number at each potential minimum of the optical
lattice. To obtain the mean occupation of a given site we average the trajectories according
to:

〈N̂ j〉=
∫

d~r
§

|ψ j(~r)|2 −
1
2
δ(~0)

ª

=

∫

d x d y |ψ(0)j (x , y)|2 −
1
2
= N j −

1
2

. (33)

The diverging Dirac delta function δ(~0) is a consequence of the symmetrical ordering of the
field operators. Since we assumeψ(1)j (~r) to be the vacuum in all modes orthogonal toψ(0)j (~r),
it cancels with the delta function, leaving only a single 1/2 to account for the fluctuations in
the mode ψ(0)j (~r). The radial width of the condensate and its fluctuations are given by:

〈σ̂2
j 〉=〈N̂ j〉−1

∫

d x d y (x2 + y2) |ψ(0)j (x , y)|2 = 〈N̂ j〉−1N jσ
2
j , (34a)

(∆σ2
j )

2 =〈N̂ j〉−2
�

N2
j σ

4
j − N jσ2

2�

. (34b)

The mean occupation numbers and radial widths of the central site and its two-nearest
neighbors, obtained from VTWA simulations, are depicted in Fig. 2. The radial width σ0(t)
converges much faster to the value of its neighbors than the occupation N0(t). Furthermore, a
breathing motion with frequencyω= 2ωr is induced [39]. The fluctuations of the transversal
width ∆σ0 =

q

∆σ2
0 are strongest while the width rapidly increases and then slowly decay.

The mean occupation shows weak initial oscillations that decay during the refilling process.
In Fig. 3a) the time evolution of the number of atoms in the central site is shown for

increasing lattice depths Vz and compared to experimental data. While for small values Vz the
refilling curve has an exponential shape, an initial slowing down occurs in deeper lattices and
a pronounced s-shape arises, which can be approximated by a logistic function

N(t) =
N∞N0

N∞e−t/τ + N0(1− e−t/τ)
. (35)

One recognizes a rather good quantitative agreement between our theoretical model and the
experimental data for the smaller lattice depths of Vz = 6 Er and Vz = 8 Er . However, at

11

https://scipost.org
https://scipost.org/SciPostPhys.12.2.051


SciPost Phys. 12, 051 (2022)

Figure 2: Dynamics of a) fillings and b) transversal widths of the central atomic
cloud and its two nearest-neighbors at Vz = 8Er . The ribbons indicate the standard
deviations ∆N0/2 and ∆σ0/2 of the central cloud.

Figure 3: Refilling dynamics of the initially empty site. a) Comparison of the re-
filling dynamics of the simulation (solid lines) and the experiment. The additional
dashed green line is equivalent to the solid green line but with the effective time
teff = 0.54 t chosen to fit the experiment. b) Characteristic filling times τ of the sim-
ulation (squares) and experiment (circles) obtained by fitting the logistic function
Eq. (35) to the data.

larger depths the simulations predict a refilling slower than the experiment. To quantify this,
we have compared in Fig. 3b) the experimental and theoretical filling times τ in the logistic
function, given above. One recognizes a good agreement for lattice depths on the order of
Vz ¯ 10 Er . A possible reason for the increasing discrepancy between the VTWA predictions
and the experiment in deeper lattices is the simplistic Gaussian ansatz of the modeψ0, j , which
is expected to break down at larger lattice depths.

In Fig. 4 we schematically present the refilling process in the picture of the harmonic os-
cillator eigenfunctions. The macroscopic occupation of the ground state induces an energy
shift∆E = Ueff〈N̂(N̂−1)〉 which causes particles to preferably tunnel into higher radial modes
of the empty lattice site, leading to non-Gaussian wave function tails. Due to thermalization,
the non-Gaussian transverse distribution condenses into the single-particle ground state but
also causes the system to heat up. This intermediate step, which is ignored by our variational
ansatz, becomes more pronounced as Ueff/J or equivalently Vz increases. At even larger Vz the
increasing effective interaction Ueff further diminishes the quality of our theory as the validity
of the TWA itself diminishes.
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Figure 4: Schematic representation of the tunneling process between a full and an
empty lattice site in terms of a) the single-particle eigenstates as well as b) the corre-
sponding transversal wave functions. Due to the interaction shift a resonant transport
between the single-particle ground states in neighboring sites with different occupa-
tion numbers is blocked and particles dominantly tunnel into higher radial modes
of the initially empty site, which cannot accurately be expressed by our variational
ansatz.

5.2.2 Number fluctuations

In contrast to the mean-field GPE approximation, the VTWA approach also allows us to cal-
culate fluctuations of the occupation number. If one only considers the centralized second
moments, diverging delta-function contributions from unoccupied modes cancel out:

(∆N j)
2 = 〈N̂ j

2〉 − 〈N̂ j〉2

=

∫

d x d y

∫

d x̃ d ỹ
§

|ψ(0)j (x , y)ψ(0)j ( x̃ , ỹ)|2 − |ψ(0)j (x , y)|2 |ψ(0)j ( x̃ , ỹ)|2
ª

= N2
j − N j

2
. (36)

The correlation function g(2)(0) of the central lattice site at different lattice depths is com-
pared to experimental results in Fig. 5. The variational approach correctly predicts an initial
rise of the number fluctuations. However, the amplitude of this peak deviates from the exper-
imental data. At larger lattice depths, the positions of the maxima are also not correctly pre-
dicted. While the origin of the latter is the same as discussed above, the overestimation of the

Figure 5: Correlation function g(2)(0) of the central atomic cloud for different lattice
depths. Circles represent the experimental results and solid lines the simulations.
Note the different scales of the correlation functions for simulation and experiment.
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amplitudes of the g(2) correlations that are present at all lattice depths, is likely due to the effec-
tive few-mode description of the variational ansatz. The g(2) function of a system consisting of
M modes can be expressed in terms of number-correlations 〈〈n̂k n̂l〉〉= 〈(n̂k−〈n̂k〉)(n̂l −〈n̂l〉)〉
between the modes

g(2) =




N̂(N̂ − 1)
�

〈N̂〉2
=

M
∑

l,m=1

〈n̂l n̂m〉

〈N̂〉2
−

1

〈N̂〉
= 1−

1

〈N̂〉
+

M
∑

l,m=1

〈〈n̂k n̂l〉〉

〈N̂〉2
. (37)

Typically every mode is correlated only with a finite number d of other modes and thus the
numerator of the last term scales with dM , while the denominator scales with M2. As a
consequence g(2) will be overestimated in simulations that do not take a sufficiently large
number of effective modes into account. Increasing the number of effective modes, which
corresponds to a larger number of stochastic variational parameter, does however increase the
computational cost of the simulation and one has to find an optimal compromise.

5.2.3 Incoherent gains and losses

In the previous sections, only unitary dynamics have been considered. As a consequence of
the choice of Hamiltonian, the diffusion matrix vanishes exactly. To demonstrate the inclusion
of diffusion in the VTWA, we discuss additional incoherent driving and losses described by the
Lindblad master equation on top of the previous Hamiltonian and variational ansatz:

d
d t
ρ̂ = −

i
~
[Ĥ, ρ̂] +

1
2

∑

µ

∫

d~r (2 L̂µρ̂ L̂†
µ − L̂†

µ L̂µρ̂ − ρ̂ L̂†
µ L̂µ) , (38)

with incoherent gain rate Γ+ and loss rate Γ−

L̂+(~r) =
p

Γ+ψ̂
†(~r), L̂−(~r) =

p

Γ−ψ̂(~r) . (39)

These produce additional Wigner terms given by:

∂

∂ t
W |Γ± =−

�

δ

δψ(~r)
(±Γ±)

2
ψ(~r) +

δ

δψ∗(~r)
(±Γ±)

2
ψ∗(~r)

�

W

+

�

δ2

δψ∗(~r)δψ(~s)
Γ±
4
+

δ2

δψ(~r)δψ∗(~s)
Γ±
4

�

W . (40)

Using the change of variables given by eqs. (50) and calculating the second functional deriva-
tives according to eq. (20), we can determine the corresponding diffusion matrix for the 4
variational parameters

D =
Γ±
N









N2

2 0 0 0
0 1

4 0 1
8σ2

0 0 σ2

8 0
0 1

8σ2 0 1
8σ4









, (41)
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which is positive. By also considering the drift term contributions, we find that the set of
differential equations (30) receives additional (stochastic) terms:

dN j|Γ± = Γ±
�

1
2
± N j

�

d t +
Æ

Γ±N jdWN j
, (42a)

dφ j|Γ± =

√

√

√

Γ±
2N j

dWφ j
, (42b)

dσ j|Γ± =
3Γ±σ j

8N j
d t +

√

√

√

Γ±
N j

σ j

2
dWσ j

, (42c)

dA j|Γ± =

√

√

√

Γ±
8N j

dWφ j
+ dWA j

σ2
j

, (42d)

i.e. are now SDEs with non-diagonal noise. The inclusion of noise is computationally slightly
more taxing. More importantly, more trajectories are needed to obtain a good statistical con-
vergence, i.e. have sufficiently smooth observables. Overall, the numerical integration of the
set of SDEs is still efficient and feasible. Due to the specific choice of the variational ansatz,
several terms contain N−1

j and the equations become unstable when N j ≈ 0.
To demonstrate the inclusion of dissipative effects, we consider a chain of 5 coupled con-

densates with incoherent gains and losses at each end respectively. As shown in the graphs 1a)

Figure 6: Condensate dynamics with incoherent gains and losses. 1a) Occupation
numbers of 5 coupled condensates on a 1D lattice. The leftmost condensate is sub-
jected to a loss rate of Γ−/Jz = 0.1 and the rightmost to an incoherent gain of
Γ+/Jz = 0.05. All other parameters are taken from Sec. 5.1. 2a) Depletion of the
occupation number of a single condensate with Γ−/Vr = 0.1 and Γ+ = 0. 1b) and 2b)
show the respective transversal widths.
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and 1b) of Fig. 6, the incoherent driving induces a particle difference between the two ends
of the chain and thus a particle current. The radial widths follow the particle numbers of their
respective site. In the graphs 2a) and 2b) the dynamics of a single condensate with incoherent
losses are shown. As expected, the particle number decays exponentially with the rate Γ−. The
radial width decays as well, as it follows the particle number. When the condensate is almost
depleted the overall width increases and the numerical noise in the radial width increases,
eventually leading to a break-down of the method.

6 Summary and outlook

We derived a variational approach for the efficient simulation of weakly interacting Bose fields
beyond the mean-field level using the truncated Wigner approximation and applied it to the
filling dynamics of coupled Bose condensates in an optical lattice. This system is a paradig-
matic example, where quantum fluctuations cannot be completely neglected, as the dynamics
are strongly affected by modes with non-macroscopic occupation numbers. As a consequence,
mean-field treatments such as the Gross-Pitaevskii equation give inaccurate results. At the
same time, transverse degrees of freedom play an important role, as they affect the effec-
tive tunneling rates between neighboring lattice sites. This renders effective one-dimensional
models inappropriate, which could in turn be treated fully quantum mechanically. The varia-
tional truncated Wigner approach is computationally inexpensive and gives access to dynam-
ical properties such as average occupation numbers, transverse spatial profiles of the indi-
vidual condensates in the lattice traps, as well as their respective fluctuations. We apply our
findings to experimental observations of the out-of-equilibrium dynamics of a Bose gas in a
one-dimensional optical lattice. We find quite good agreement with the experimental data,
which is only limited by the adequacy of TWA and the quality of the variational ansatz. There-
fore, we expect that the VTWA with an improved variational ansatz would yield results, which
agree even better with the experimental data. Finally, the variational formulation can straight-
forwardly be extended to include, for instance, dissipation or thermal effects, which will be
the subject of future studies.
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A Mean-field model for the optical lattice

A classical approximation to the Hamiltonian (1) is given by the Lagrange function:

Lcl =

∫

d~rψ∗(~r)
�

i
∂

∂ t
+ K∆− Vz sin2(πz)− Vr(x

2 + y2)−
U0

2
|ψ(~r)|2

�

ψ(~r) . (43)

By inserting the variational ansatz Eq. (24) into the Lagrange function and applying the Euler-
Lagrange equation [33]

∂ Lcl

∂ c
−

d
d t
∂ Lcl

∂ ċ
= 0 , (44)
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for each variational parameter c ∈ {N j ,φ j ,σ j , A j | j ∈ Z}, we obtain the same equations of
motion as in Eqs. (30). However, in this classical case the initial conditions are deterministic.
These equations have been used to generate the dashed curve in Fig. 1.

B TWA and Bogoliubov approximation

In the following we will illustrate that the truncated Wigner approximation goes beyond a
mean-field description of weakly interacting Bose gases and like Bogoliubov theory incorpo-
rates lowest-order quantum fluctuations [15]. To this end we consider the Bose-Hubbard
model (3) as a generic example. Expanding the quantum "fields" â j = α j + b̂ j around the
mean-field solution α j of

d
d t
α j = −iωα j − iU |α j|2α j + iJ(α j−1 +α j+1) , (45)

and neglecting higher than second order terms in the quantum fluctuations yields the Bogoli-
ubov approximation to the Bose-Hubbard Hamiltonian

ĤBH ≈ HMF
BH + ~ω

∑

j

(α∗j b̂ j + h.a.) + ~ω
∑

j

b̂†
j b̂ j + ~U

∑

j

|α j|2(α∗j b̂ j +α j b̂
†
j ) (46)

+ ~U
∑

j

�

2|α j|2 b̂†
j b̂ j +

1
2

�

α2
j b̂†2

j +α
∗2
j b̂2

j

�

�

− ~J
∑

〈 jk〉

�

α∗j b̂k + h.a.
�

− ~J
∑

〈 jk〉

b̂†
j b̂k ,

where HMF
BH denotes the mean-field Hamiltonian which is a c-number. The equation of motion

of the Wigner distribution W (β j ,β
∗
j ) of quantum fluctuations b̂ j and b̂†

j can straightforwardly

be obtained from the transformation rules (6). Despite the presence of quadratic terms ∼ b̂2
j

and b̂†2
j this yields a FPE with first-order derivatives only and truncated and full Wigner dis-

tributions are identical. Thus, the TWA provides exact results for the dynamics under the
Bogoliubov Hamiltonian (46).

C Fokker-Planck equations and change of variables

The Fokker-Planck equation is a partial differential equation governing the time evolution of
a (quasi-) probability distribution W :

∂

∂ t
W = LW , (47)

where the choice of the operator L determines the type of the FPE. The multivariate FPE is
given by:

L(~x) = −
∑

i

∂

∂ x i
Dx i
+
∑

i j

∂ 2

∂ x i∂ x j
Dx i ,x j

, (48)

where ~x is a finite set of continuous variables. In the continuum limit, where there is a complex
field ψ(~r),ψ∗(~r) for every ~r ∈ Rn, one obtains a functional FPE:

L[ψ,ψ∗] =−
∫

d~r
δ

δψ(~r)
Dψ(~r)

+

∫

d~rd~s
�

δ2

δψ(~r)δψ(~s)
Dψ(~r),ψ(~s) +

δ2

δψ∗(~r)δψ(~s)
Dψ∗(~r),ψ(~s)

�

+ c.c. . (49)
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The coefficients D. form the so called drift vector and the coefficients D.,. with two indices the
diffusion matrix. Only a PDE with a positive-semidefinite diffusion matrix is considered a FPE
and has an equivalent stochastic differential equation [40,41].

Assume a multivariate FPE in ~x ∈ Rn and let ~y = ~y(~x) ∈ Rn be a new set of variables
which is expressed as a function of the old ones. Then an equivalent FPE in the new variables
exists [41]. Similarly, if we assume a functional FPE for W [ψ,ψ∗], a new set of variables
~c ∈ C can be expressed as functionals of the field ψ(~r),ψ∗(~r). The new drift and diffusion
coefficients are obtained from taking the continuum limit of the multivariate transform:

Dci
=

∫

d~r
δci

δψ(~r)
Dψ(~r) +

∫

d~rd~s
δ2ci

δψ(~r)δψ(~s)
Dψ(~r)ψ(~s)

+

∫

d~rd~s
δ2ci

δψ∗(~r)δψ(~s)
Dψ∗(~r)ψ(~s) + c.c. , (50a)

Dci ,c j
=

∫

d~rd~s
�

δci

δψ(~r)

δc j

δψ(~s)
Dψ(~r),ψ(~s) +

δci

δψ∗(~r)

δc j

δψ(~s)
Dψ∗(~r),ψ(~s)

�

+ c.c. . (50b)
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