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Abstract

We study correlation functions of D-branes and a supergravity mode in AdS, which are
dual to structure constants of two sub-determinant operators with large charge and a BPS
single-trace operator. Our approach is inspired by the large charge expansion of CFT
and resolves puzzles and confusions in the literature on the holographic computation
of correlation functions of heavy operators. In particular, we point out two important
effects which are often missed in the literature; the first one is an average over classical
configurations of the heavy state, which physically amounts to projecting the state to an
eigenstate of quantum numbers. The second one is the contribution from wave functions
of the heavy state. To demonstrate the power of the method, we first analyze the three-
point functions in N = 4 super Yang-Mills and reproduce the results in field theory from
holography, including the cases for which the previous holographic computation gives
incorrect answers. We then apply it to ABJM theory and make solid predictions at strong
coupling. Finally we comment on possible applications to states dual to black holes and
fuzzballs.
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1 Introduction

In the top-down construction of AdS/CFT based on string theory, operators with different
conformal dimensions admit different holographic descriptions. For instance in the matrix-
like large N limit, operators with O(1) conformal dimension1 are dual to perturbative string
states while operators with O(N) and O(N2) conformal dimensions correspond to D-branes
and backreacted geometries including black holes. The best studied among them are operators

1More precisely what we mean here are operators whose dimensions do not scale with N .
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dual to string states since they can be analyzed by various approaches such as supergravity,
integrability, conformal bootstrap and perturbation theory. On the other hand, operators dual
to black holes are least studied, yet most interesting since studying their correlation functions
would allow us to address various important questions on quantum black holes. Eventually, we
would like to understand operators dual to black holes but in this paper we set our goal more
modest: We will study the correlation functions of operators, which are “in-between" string
states and black-hole states—namely operators dual to D-branes. Only in the conclusion do
we discuss applications to black holes.

This paper also serves as the second installment of our series of studies [1,2] on the struc-
ture constants of two determinant operators and a single-trace operator in ABJM theory. The
main goal of this second paper is to analyze them at strong coupling using a dual description
in terms of D-branes in AdS. However, the content of this paper is independent of the other
two and it can be read separately.

To be concrete, we consider correlation functions of two (sub-)determinant operators,
which are dual to D-branes called (non-)maximal giant gravitons, and a single-trace BPS op-
erator. The holographic computation of such correlation functions was already performed in
the literature both for N = 4 super Yang-Mills (SYM) [3–6] and ABJM theory [7,8]. Unfortu-
nately, there have been many puzzles and confusions and our main aim is to resolve them by
presenting a streamlined analysis.

Let us first summarize what have been done in the literature.

1. The first attempts to compute these correlation functions were made in [3,4] for N = 4
SYM. In particular in [4], they analyzed the extremal three-point functions and found
that the results in the gauge theory and the holography look similar but do not quite
match. This was rather puzzling since the structure constants of 1/2 BPS operators are
known to be protected [9,10] and one would naively expect the two results to match per-
fectly. They then speculated that the mismatch is due to the inability of sub-determinant
operators (also known as anti-symmetric Schur polynomial operators) to interpolate be-
tween a point-like graviton and a giant graviton. One basis that achieves the interpola-
tion is the single-particle basis introduced originally by de Mello Koch and Gwyn in [11]
and further studied in [12,13]2.

2. Subsequently, it was pointed out in [5] that the non-extremal three-point functions in
N = 4 SYM match perfectly between the gauge theory and the holography, for a special
choice of a single-trace operator.

3. Analyses similar to the points 1 and 2 were made for ABJM theory in [7]. Here no
definite conclusion was made since the three-point functions of BPS operators in ABJM
theory are not protected and one cannot directly compare the results in the gauge theory
and in the holography.

4. Later, it was realized in [6,8] that the holographic computation for the extremal three-
point functions involves a (zero prefactor)× (divergent integral) structure. If one regu-
larizes this quantity and takes a careful limit, it produces a finite correction which makes
the final result match with the gauge theory answer. This regularization prescription was
generalized and applied to ABJM theory in [8].

From this summary, one might get an impression that the problem was solved as long as
one chooses a correct regularization prescription. However the “resolution" proposed in the
literature is not satisfactory for several reasons:

2The name “single-particle basis" was used first in [13], which clarified various important properties of the basis
including the vanishing of near extremal correlation functions.
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• Their regularization cannot be justified physically: The three-point function studied
in [8] is 〈χJ−k(Z)χJ (Z̄)tr(Zk)〉 where χJ is an anti-symmetric Schur polynomial of size
J . To compute them, they first replaced the single-trace operator with tr(ZkY l)+ · · · and
then took the limit l → 0. However once one modifies the operator to tr(ZkY l)+ · · · , the
structure constant will vanish owing to the charge conservation. It is then rather puz-
zling that they got a finite answer and one could even suspect that this signals internal
inconsistency of the computation (rather than providing a resolution of the mismatch).
At a technical level, they obtained a non-zero answer because they performed the re-
placement only for the divergent integral and then added it back to other contributions
which were computed using the un-modified operator. This is rather ad-hoc and hard
to justify. Of course, one could possibly dismiss this as a minor concern which is unim-
portant as long as one gets the correct answer. However, as we see below,小洞不補大
洞吃苦3.

• It does not resolve all the mismatches: The paper [5] studied a specific non-extremal
three-point function and showed a match between the gauge theory and the holography.
However, as we will show in this paper, for general non-extremal three-point functions of
BPS operators (for which the regularization is not necessary), the holographic computa-
tion does not reproduce the result in the gauge theory if one simply follows the approach
in [4]. This poses a sharper puzzle and cast doubt on the results for ABJM theory given
in [7,8].

In this paper, we present a simple and streamlined analysis which resolves these puzzles and
confusions. Our conclusion is simple to state:

The holographic computations performed in the literature are incomplete since they missed
two important effects.

Once these effects are taken into account, the holographic results for N = 4 SYM match per-
fectly with the ones in the gauge theory, including the cases for which the previous approach
fails to give the correct answers. The final results are given by highly nontrivial expressions
involving the Legendre polynomials or the hypergeometric functions, and the precise match
between field theory and holography gives us enough confidence on the validity of our ap-
proach. We then apply it to ABJM theory and make predictions for the structure constants at
strong coupling. As a byproduct, we also draw the following conclusion:

As far as the CFT dual of giant gravitons is concerned, we did not find any evidence at strong
coupling which favors the single-particle basis [11–13] over the more conventional Schur
polynomial basis [14].

Note that this is in contrast to point-like gravitons, for which there is a reason to prefer the
single-particle basis as it has a direct connection to bulk vertices in supergravity [13]. For
details, see section 4.4.

Let us now explain what these two effects are. The first and the most important effect
is the orbit average, which was initially introduced for the structure constants of single-trace
operators in [15]. Normally when one evaluates the three-point functions of two heavy oper-
ators and one light operator at strong coupling, one starts from a classical solution describing
the two-point function of the heavy operators and perturbs it by the light operator. However
the classical solution often comes with a moduli, namely there can be a family of solutions
describing the same heavy operators. In such a case, one needs to perform an average over
such classical solutions as was pointed out in [15]. Physically the average over the classical

3A Chinese saying meaning that if one does not fix a small hole, one will suffer from a big hole later.
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solution converts a coherent state, which is a direct quantum analogue of a classical solution,
to an eigenstate of quantum numbers such as the energy and the angular momenta. In this
paper, we generalize the result of [15] to D-branes and show that the orbit average is crucial
for reproducing the correct gauge theory answer. The second effect, which is important when
the two heavy operators are not identical (we call such three-point functions off-diagonal in
this paper), is the boundary term coming from the wave functions4. To see this, let us recall
a typical extremal three-point function studied in the literature, 〈χJ−k(Z)χJ (Z̄)tr(Zk)〉. As is
clear from this expression, the two heavy operators χJ−k and χJ are similar but not quite the
same. In such cases, there is a nontrivial boundary contribution coming from a mismatch of
the wave functions on the two ends of the classical solution. This gives a finite contribution
which is needed to obtain the correct answer.

We should note that both of these effects are rather well-known in the context of the large
charge expansion of CFTs [16] (see for instance the work by Monin, Pirtskhalava, Rattazzi and
Seibold [17]). However, surprisingly the same analysis was never carried out in the current
context. Obviously, the large charge expansion of CFTs shares much in common, both in
philosophy and in techniques, with various concepts discussed in the integrability literature.
We hope our work will help to bridge the knowledge gap in these two fields.

The rest of the paper is organized as follows: Before discussing the holographic compu-
tation of giant gravitons, we explain the basic idea in a simple quantum mechanical setup in
section 2. After that we revisit the holographic computation of three-point functions of two
non-maximal giant gravitons and a single-trace BPS operator in N = 4 SYM. In section 3, we
first focus on the diagonal three-point functions, namely the three-point functions for which
two giant gravitons are identical up to complex conjugation, and discuss the necessity of per-
forming the orbit average. We show that the result after the orbit average matches precisely
with the result at weak coupling including the cases for which the previous approaches give
wrong answers. We then proceed to discuss the off-diagonal three-point functions in N = 4
SYM, namely the three-point functions for which the charges of two giant gravitons are not
equal, in section 4. In this case, we show that there is an additional contribution coming from
the wave functions. Once these effects are taken into account, the result coincides with the
structure constant of two sub-determinant operators and a single-trace BPS operator in N = 4
SYM. In section 5, we apply these new methods to compute the structure constants of two
non-maximal giant gravitons and a single-trace BPS operator in ABJM theory and discuss the
properties of the result. We then conclude and discuss future directions in section 6, including
possible applications of our method to black holes, fuzzballs and superstrata. A few appendices
are included to explain technical details.

2 A Toy Model

Let us first explain the two effects—the orbit average and the boundary terms from wave
functions—in a simple quantum mechanical setup. This is essentially a review of the work by
Monin, Pirtskhalava, Rattazzi and Seibold [17] (and partly [15]) but we highlight the impor-
tance of the two effects in the simplest possible setup and make some comments on how it
applies to the holographic computation of giant gravitons.

4Similar effects were discussed in [15], but their analysis seems incomplete. In particular, their formulae do
not reproduce the charge conservation, which we discuss in section 2.2.
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2.1 Orbit average

Consider a quantum mechanical system with a U(1) global symmetry, in which the degree of
freedom lives on a circle θ ∈ [0, 2π] and the action S[θ] is invariant under the global U(1)
shift

θ → θ + c . (2.1)

We are interested in the expectation value of a light operator O for a state with a large
U(1) charge |J〉, namely 〈J |O(t = 0)|J〉, and evaluate it in the semi-classical (WKB) limit

J →∞ , ħh→ 0 , ħhJ : fixed . (2.2)

In this limit, the wave function is given by the “WKB"-form,

〈θ |J〉= eiJθ , 〈J |θ 〉= e−iJθ , (2.3)

and the path integral5

〈J |O(t = 0)|J〉=
∫

Dθ (t) e−iJθ (t=+ε)O[θ (t = 0)]eiJθ (t=−ε)e
i
ħh S[θ] , (2.4)

can be evaluated by the stationary-phase, or equivalently saddle-point approximation. Here we
shifted the insertion times of the wave functions e±Jθ by±ε, but this is just for the convenience
of explanation and the limit ε→ 0 is usually non-singular.

The saddle-point in the WKB limit is given by

δS[θ]
δθ (t)

+ħhJ (δ(t + ε)−δ(t − ε)) = 0 . (2.5)

Note that the operator O does not affect the saddle-point equation since we assumed that its
quantum numbers are small (i.e. O is a light operator). Now, suppose we found one solution
satisfying the equation (2.5), θ ∗0 (t). Then, it immediately follows from the U(1) invariance
(2.1) that there should be a family of solutions, or equivalently a moduli of solutions, given by

θ ∗c (t)≡ θ
∗
0 (t) + c , c ∈ [0,2π] . (2.6)

Therefore, the correct saddle-point formula is given by

〈J |O(t = 0)|J〉 WKB
=

∫ 2π

0

dc
2π

e−iJθ ∗c (+ε)O[θ ∗c (0)]e
iJθ ∗c (−ε)e

i
ħh S[θ ∗c ] . (2.7)

In the limit ε → 0, the contributions from the two wave functions cancel. In addition, the
action S[θ] is invariant under the shift by c by assumption,

S[θ ∗c ] = S[θ ∗0 ] . (2.8)

Therefore we obtain a simpler expression

〈J |O(t = 0)|J〉 WKB
= e

i
ħh S[θ ∗0 ]

∫ 2π

0

dc
2π

O[θ ∗c (0)] . (2.9)

As we can see, the final result is given by an average over the parameter c and this is precisely
the orbit average discussed in [15].

Note that the integral of c is needed precisely because we wanted to evaluate the expecta-
tion value for the eigenstate of the U(1) charge |J〉, which is invariant (up to a phase) under
the U(1) shift (2.1). If we instead used the coherent state, which is a direct quantum analogue
of θ ∗0 , we would not need such averaging. To put it in another way, the orbit average is pre-
cisely what converts the expectation value for the coherent state into the expectation value for
the U(1) eigenstate.

5O[θ] is given by 〈θ |O|θ 〉. We have assumed that 〈θ1|O|θ2〉 is proportional to δ(θ1 − θ2).
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2.2 Boundary term

Let us now generalize the computation slightly and consider the situation in which the bra and
ket states are not identical: 〈J + q|O|J〉. We assume J is again large (J ∼ 1/ħh� 1) while q is
taken to be O(1).

Following the aformentioned argument, we arrive at

〈J + q|O(t = 0)|J〉 WKB
=

∫ 2π

0

dc
2π

e−i(J+q)θ ∗c (+ε)O[θ ∗c (0)]e
iJθ ∗c (−ε)e

i
ħh S[θ ∗c ] . (2.10)

The main difference from (2.7) is that now the contributions from wave functions do not cancel
completely. Collecting the c-dependence, we arrive at the following formula:

〈J + q|O(t = 0)|J〉 WKB
= e

i
ħh S[θ ∗0 ]

∫ 2π

0

dc
2π

e−iqθ ∗c (0)O[θ ∗c (0)] . (2.11)

We can see that, as compared to (2.9), there is an extra factor e−iqc coming from the mismatch
of the wave functions.

To see the physical significance of this extra factor, let us choose O to be the following
simple operator with U(1) charge p:

Op = eipθ . (2.12)

Substituting this expression into (2.11), we obtain

〈J + q|Op(t = 0)|J〉 WKB
= e

i
ħh S[θ ∗0 ]ei(p−q)θ ∗0 (0)

∫ 2π

0

dc
2π

ei(p−q)c . (2.13)

Performing the integration over c, we then obtain

〈J + q|Op(t = 0)|J〉 WKB
= e

i
ħh S[θ ∗0 ]δp,q . (2.14)

Most notably, the final result contains a Kronecker delta δp,q, which is a manifestation of the
U(1) charge conservation. This clearly demonstrates the necessity of the orbit average and
the boundary term; if we did not take them into account, the final result would not obey the
charge conservation—one of the fundamental properties of systems with global symmetry!

To summarize, the lessons that we can learn from this computation are

• First, when the bra and ket states are different, there is a nontrivial (boundary-term)
contribution from the wave functions.

• Second, such contributions, together with the orbit average, are essential for reproduc-
ing a correct charge conservation δp,q.

2.3 Orbit average and “symmetry breaking"

To apply the analyses in the previous subsections to giant gravitons, it is useful to restate the
orbit average in terms of “symmetry breaking".
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Dimension of the moduli. In the quantum mechanical toy model discussed above, the mod-
uli of solutions was one dimensional since there was a single U(1) symmetry. In general, if
there are multiple commuting symmetries and the heavy states are eigenstates of all such
symmetries, we would need to integrate over a multi-dimensional moduli space. This is par-
ticularly important if the system under consideration is integrable, as integrable theories have
infinitely many commuting charges. However, it does not mean that we always need to inte-
grate over an infinite dimensional moduli space for integrable theories. This is because the
saddle-point solution (θ ∗0 ) would be invariant under most of those infinite dimensional sym-
metries. So, more precisely, the dimensions of the moduli space dmod is given by the following
formula:

dmod = (The number of commuting symmetries broken by the classical solution) . (2.15)

Furthermore, in most cases, the right hand side of (2.15) is equal to

(RHS of (2.15)) = (The number of nonzero charges of the heavy state) . (2.16)

Therefore in practice the dimension of the moduli space is given by the number of non-
vanishing (commuting) charges of the heavy state. We can see this also in the analysis of
semi-classical string in [15,18].

Moduli average from orbit of broken symmetries. Using this relation between the moduli
and the broken symmetries, we can generate a family of classical solutions over which we
perform averaging by simply acting broken symmetry generators to the original solution. In
other words, the moduli of solutions can be identified with the orbit of the broken symmetry
generators.

For the quantum mechanical setup discussed above, this is simply a change of viewpoints
and does not affect the actual computation. However, this latter point of view is more advan-
tageous when computing three-point functions of giant gravitons, and we will adopt it in the
rest of this paper.

Comments on the large charge expansion of CFT. The discussions above might be remi-
niscent of the large charge effective field theory (EFT) of CFT [16, 17]. So let us clarify the
precise relation between the two.

In the large charge EFT, we also count the number of symmetries broken by the classical
solution. That gives the number of “Goldtstone bosons" which we use to write down the low-
energy effective theory. However, we should keep in mind that the word “Goldstone bosons"
is slightly abused here. Normally the Goldstone bosons are associated with a spontaneous
symmetry breaking, which takes place only in the infinite volume limit. However, in the large
charge expansion of CFT, we always consider a CFT defined on Rt × Sd−1, which has a finite
volume. As a consequence, the symmetry should never be spontaneously broken6. Neverthe-
less, as we said above, an individual semi-classical solution breaks some of the symmetries.
What recovers the symmetries is precisely the integral over the moduli of solutions [16, 17],
which is a space of zero modes of the “Goldstone bosons". Obviously the logic also applies to
the quantum mechanical toy model discussed above.

This provides another argument for the necessity of the integration over the moduli; it is
not a choice but something that is forced upon us in order to realize the symmetry structure
of the problem correctly.

6Note that this is the case only for the internal symmetry. The spacetime symmetry such as translation and
boost can be broken even in the finite volume. See [19] for discussions on the consequences of the boost symmetry
breaking in conformal field theory.
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2.4 Application to giant gravitons

Let us now briefly outline how the method applies to the three-point function of giant gravi-
tons.

Basic setup. As already mentioned before, the main subject of this paper is the three-point
functions of two sub-determinant operators and one single-trace BPS operator. In what follows
the sub-determinant operator with charge M will be denoted by DM while the single-trace BPS
operator with charge L will be denoted by OL . In order to apply the argument in the previous
subsections, we use the radial quantization and express the structure constant by the following
matrix element;

CFT : CDM+kDMOL
= 〈DM+k|OL(t = 0)|DM 〉 . (2.17)

Here we consider CFT defined on7 Rt ×Sd−1, and 〈DM+k| and |DM 〉 are the bra and ket states
corresponding to the operators DM+k and DM respectively. In particular, we are interested
in the “heavy-heavy-light" three-point function satisfying M ∼ N � L, k. As indicated, the
operator OL is inserted at t = 0.

To analyze (2.17) using holography, we simply need to replace each element on the right
hand side with its holographic counterpart; or more precisely with quantities defined on
the world-volume theory of the D-brane describing the giant gravitons. The counterparts of
〈DM+k| and |DM 〉 are quantum states of a giant graviton with angular momenta M + k and M
defined on global AdS. On the other hand, OL(t = 0) is replaced by an operator defined on the
world volume of the D-brane which describes a back reaction from the operator insertion O◦L
inserted at the boundary of AdS. As shown in [4–8], an explicit form of such an operator can
be determined by perturbing the target space metric of the DBI action of the D-brane and it is
given by a product of the bulk-to-boundary propagator and a spherical harmonics, integrated
over the t = 0 slice of the D-brane worldvolume. For details, see sections 3 and 5. In summary,
the expression for the structure constant is given by

Holography : CDM+kDMOL
= 〈D̂M+k|ÔL(t = 0)|D̂M 〉 , (2.18)

where we put hats to denote a holographic counterpart of each quantity. Here we choose a
gauge in which the worldvolume time is identified with the time in global AdS, and denoted
both by t.

Semiclassical approximation. The next step is to evaluate the right hand side of (2.18) by
using the semiclassical approximation of the path integral of the worldvolume theory of the
D-brane,

〈D̂M+k|ÔL(t = 0)|D̂M 〉=
∫

DX Ψ∗M+k[X ]ÔL[X (t = 0)]ΨM [X ]e
−SDBI+WZ[X ] , (2.19)

where we denoted the fields on the worldvolume by X . In the semi-classical limit, this path
integral is dominated by a classical solution satisfying the saddle-point equation. Let us denote
one such solution by X ∗0. (The relevant solutions for N = 4 SYM and ABJM theory were
given in [4] and [7] respectively.) The giant gravitons discussed in this paper carry two non-
vanishing charges, the conformal dimension ∆ and the U(1) R-charge J , and the classical
solution X ∗0 breaks the corresponding two symmetries, the dilatation D and the U(1) R-charge
rotation Ĵ . Applying the arguments in the previous section, we can construct a two-parameter

7S3 for N = 4 SYM and S2 for ABJM theory.
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Figure 1: Comparison of our approach and the approach of [3, 4]. Left: In our
approach, we use a radial-quantization picture and compute a matrix element of a
light operator OL between two D-brane states. This translates to a matrix element
of a dual operator ÔL defined on the D-brane worldvolume. Right: The approach of
[3,4]. They considered a trajectory of a D-brane emitted and absorbed from the AdS
boundary. They then attached a supergravity mode to the D-brane and integrated
over its position.

family of solutions X ∗
τ0,φ0

by acting these broken symmetry generators e−Dτ0 and eiĴφ0 to X ∗0.
In practice, these generators shift the corresponding target space coordinates. So we get

X ∗τ0,φ0
= X ∗0

�

�

t→t−iτ0,φ→φ+φ0
. (2.20)

Here φ is the target space coordinate conjugate to the U(1) rotation Ĵ while t is the global
AdS time, which is conjugate to the dilatation8. Since the wave functions depend on these
coordinates as Ψ ∼ e−i∆t+iJφ (Ψ∗ ∼ ei∆t−iJφ), these shifts result in the multiplication of the
following factors to Ψ and Ψ∗

Ψ 7→ e−∆τ0 eiJφ0Ψ , Ψ∗ 7→ e+∆τ0 e−iJφ0Ψ∗ . (2.21)

Generalizing the argument for the quantum mechanical toy model, we then get the fol-
lowing semiclassical expression for 〈D̂M+k|ÔL(t = 0)|D̂M 〉;

〈D̂M+k|ÔL(t = 0)|D̂M 〉
WKB
=

∫

dτ0

∫

dφ0

2π
︸ ︷︷ ︸

orbit average

ÔL[X
∗
τ0,φ0

(t = 0)] e(∆M+k−∆M )τ0 e−i(JM+k−JM )φ0
︸ ︷︷ ︸

wave function

.

(2.22)

Here ∆M and JM are the conformal dimension and the R-charge of the giant graviton with
charge M . This is the master formula that we are going to use in the rest of this paper.

Comparison with previous approaches. Our master formula (2.22) differs in several ways
from the expressions in [3–8], which are generalizations of the expression for the heavy-heavy-
light three-point functions of string states proposed in [20,21].

First, the papers [3–8] use a D-brane solution defined in the Poincaré AdS, which describes
emission and absorption of a giant graviton from the AdS boundary (See Figure 1). This
picture is more directly connected to the three-point function of CFT in Rd . On the other
hand, we employed the radial quantization picture, which is more naturally related to global
AdS, and considered a matrix element 〈DM+k|OL|DM 〉 instead of the three-point function.

8The time evolution in global AdS is given by e−iDt . As compared to the action of the symmetry generator e−Dτ0 ,
it has an extra factor of i and this is the reason for the imaginary shift −iτ0 in (2.20).

10

https://scipost.org
https://scipost.org/SciPostPhys.12.2.055


SciPost Phys. 12, 055 (2022)

This latter picture makes the symmetries broken by the solution more manifest and therefore
is advantageous for discussing the orbit average. It also makes it easier to write down the
contributions from the wave functions.

Second, both (2.22) and the expressions in [3–8] contain an integral over the time variable
t or τ0, but the interpretations are quite different. In our formula, the τ0 integral comes from
the orbit average, namely the average over classical solutions. Combined with the integration
over the spatial worldvolume hidden in ÔL , it reproduces an expression similar to the one in
the papers [3–8]. On the other hand, the papers [3–8] consider a single classical solution. The
integration over the time variable (and the spatial worldvolume) arises since the supergravity
mode dual to the single-trace operator can hit any point on the worldvolume and one needs
to integrate over all such possibilities.

Third, the integration over φ0 is completely lacking in the expressions in [3–8]. As dis-
cussed in the quantum mechanical toy model, this is necessary for realizing the correct charge
conservation.

Finally, the papers [3–8] did not include the contributions from wave functions. Because
of this, their results are insensitive to the details of the giant graviton states (namely whether
the charges of the two giant gravitons are identical or not). Needless to say, the gauge theory
answers do depend on such details and it is necessary to include such factors in order to
reproduce the correct results.

3 Diagonal Three-Point Functions in N = 4 SYM

In this section, we apply the method outlined in the previous section to compute the three-
point function of two giant gravitons and a BPS single-trace operator in N = 4 SYM. For
simplicity, in this section we focus on the diagonal three-point function, for which the two giant
gravitons have identical R charges. The generalization to off-diagonal three-point functions
will be discussed in the next section.

Before explaining the computation at strong coupling, let us clarify the setup in the gauge
theory. We consider the anti-symmetric Schur polynomial operator χM (Z), which can be de-
fined by a sub-determinant

DM = χM (Z)≡
1

M !
δ
[b1 b2···bM ]
[a1a2···aM ]

Za1
b1
· · · ZaM

bM
, δ

[b1···bM ]
[a1···aM ]

≡
∑

σ∈SM

(−1)|σ|δb1
aσ1
· · ·δbM

bσM
. (3.1)

Here Z is a complex scalar field of N = 4 SYM. (For details of the notations and conventions
used in this section, see [22].) To compute the structure constants of two such operators and
a single-trace BPS operator, we consider the following matrix element

CDMDMOL
= 〈DM |OL|DM 〉 , (3.2)

where OL is defined by

OL ≡ trZ̃ L , Z̃ =
Z + Z̄ + Y − Ȳ

2
, (3.3)

while 〈DM | corresponds to χM (Z̄) inserted at infinity of R4 and |DM 〉 corresponds to χM (Z)
inserted at the origin.

Thanks to supersymmetry, the structure constant (3.2) is independent of the coupling con-
stant. Therefore the setup provides an ideal testing ground for our approach. In what follows,
we perform the computation at strong coupling using a dual description of the D-brane, and
show that the orbit average is necessary to reproduce the weak coupling result.
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3.1 Structure constant from D3 brane

The anti-symmetric Schur polynomial operators are known to be dual to a D3-brane which is
point-like in AdS5 and extended in the S2 subspace of S5.

D3 brane solution. To describe the solution, it is useful to express the metric of AdS5 × S5

in terms of the global coordinates,

ds2 = ds2
AdS + ds2

S5 , (3.4)

where

ds2
AdS = − cosh2ρ dt2 + dρ2 + sinh2ρ deΩ2

3 , (3.5)

ds2
S5 =dθ2 + sin2 θdφ2 + cos2 θ dΩ2

3 ,

where deΩ2
3 and dΩ2

3 are the metric on S3 which we parametrize as

dΩ̃2
3 = dχ̃2

1 + sin2 χ̃1 dχ̃2
2 + cos2 χ̃1dχ̃2

3 ,

dΩ2
3 = dχ2

1 + sin2χ1 dχ2
2 + cos2χ1dχ2

3 .
(3.6)

In terms of these coordinates, it is simple to write down a classical solution for the D3
brane: The solution is localized at θ = θ0 and extended along χ1,2,3 directions. It is rotating
along the φ direction at the speed of light. The worldvolume coordinates of the D3 brane σµ

(µ= 0,1, 2,3) are identified with the target space coordinates as follows:

ρ = 0, σ0 = t , φ = t , σi = χi , i = 1, 2,3 . (3.7)

The value of θ0 is related to the charge of the giant graviton as;

cos2 θ0 =
M
N

, (3.8)

where θ0 = 0 corresponds to the maximal giant graviton. Note that the classical D3-brane
equations of motion lead to φ = t.

In order to compute the structure constant using our master formula (2.22), we need to
know ÔL , which describes a small perturbation of the D3-brane action due to the backreaction
from the supergravity mode. The D3-brane action consists of two terms, which are the DBI
and the Wess-Zumino (WZ) actions. We will discuss them separately. Schematically, we have

ÔL = δSDBI +δSWZ . (3.9)

A few remarks are in order: First, although the analysis of a small perturbation is basically
the same as what has been done in [4], there is one crucial difference. The paper [4] considered
a perturbation on the whole Euclidean time domain tE ∈ [−∞,∞] while here we consider
a perturbation localized at t = 0 slice since we are interested in the operator insertion ÔL at
t = 0. Second, the right hand side of (3.9) is defined in terms of the D3-brane action in the
Lorentzian signature. However, since we are interested in the t = 0 slice, which is shared with
the Euclidean counterpart (namely the tE = 0 slice), we can also use the Euclidean D3-brane
action to read off the operator insertion. In this way we can recycle the results in [4].
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The DBI action. The contribution from the DBI part is

δSDBI = −
N

2π2

∫

d3σ δ
p

h
�

�

�

tE=0
, (3.10)

where h is the determinant of the induced metric on the worldvolume of the D3 brane. More
explicitly, we have

δ
p

h=
1
2

p

hhabδhab =
1
2

p

hhab

�

∂ Xµ

∂ σa

∂ X ν

∂ σb
δgµν +

∂ Xα

∂ σa

∂ X β

∂ σb
δgαβ

�

, (3.11)

where δgµν and δgαβ are the fluctuation of metrics on AdS and S5 given by

δgµν =
�

−
5L
6

gµν +
4

L + 1
∇(µ∇ν)

�

sL(X )YL(Ω) , (3.12)

δgαβ =2Lgαβ sL(X )YL(Ω) .

To proceed, we plug the proper spherical harmonics YL(Ω) and the bulk-to-boundary prop-
agator sL(X ) into (3.12). To write down the spherical harmonics YL(Ω) corresponding to trZ̃ L ,
it is useful to use the embedding coordinates of S5,

X X̄ + Y Ȳ + Z Z̄ = 1 , (3.13)

which are related to our coordinates as

X = cosθ sinχ1eiχ2 , Y = cosθ cosχ1eiχ3 , Z = sinθ eiφ . (3.14)

Identifying these coordinates with scalar fields in N = 4 SYM (X , Y, Z) we find

YL(Ω) = (sinθ cosφ + i cosθ cosχ1 sinχ3)
L . (3.15)

The embedding coordinates are also useful for writing down the bulk-to-boundary propagator
sJ (X ) in the global AdS coordinates. The relation between the AdS embedding coordinates

−(X 0)2 + (X 1)2 + · · ·+ (X 4)2 + (X 5)2 = −1 , (3.16)

and the global coordinates are given by

X 0 = cosh tE coshρ , Xµ = nµ sinhρ , X 5 = sinh tE coshρ , (3.17)

where nµ is a unit vector. There is also a boundary version of the embedding coordinates9

given by

P0 = cosh t̄E , Pµ = n̄µ , P5 = sinh t̄E , (3.18)

and the bulk-to-boundary propagator is given by

sL(X )∝
1

(−2 P| t̄E=0 · X )L
. (3.19)

Here we set the time coordinate for P to be zero since the boundary operator is inserted at
t̄E = 0.

9Here we took the boundary of AdS to be R× S3.
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As a result, we find

δSDBI = −
N
2π

cos2 θ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 FDBI|tE=0 , (3.20)

where

FDBI = cosχ1 sinχ1 YL(Ω)
�

4
L + 1

∂ 2
tE
−

2L(L − 1)
L + 1

− 8L sin2 θ0 + 6L
�

sL(tE) . (3.21)

Evaluating the bulk-to-boundary propagator (3.19) on the worldvolume of the D3-brane
(namely setting ρ = 0) and including the normalization factor needed to unit-normalize the
two-point function, we obtian

sL(X ) =
1
N

L + 1

4
p

L
︸ ︷︷ ︸

normalization

�

1
cosh tE

�L

. (3.22)

The WZ action. The contribution from the Wess-Zumino action is given by

δSWZ = i
N

2π2

∫

d3σ P[δCE]|tE=0 =
4N
2π2

∫

d3σ
p

gS5sL(t)∂θYL(Ω)
�

�

tE=0 . (3.23)

Plugging in the spherical harmonics and the bulk-to-boundary propagator, we arrive at

δSWZ =
N
2π

cos2 θ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 FWZ|tE=0 , (3.24)

with

FWZ = 8cosθ0 sinθ0 cosχ1 sinχ1 sL(t)∂θYL(Ω) . (3.25)

Operator insertion. Combining the two contributions, we find that the operator ÔL evalu-
ated on the (unshifted) solution X ∗0 is given by

Ô[X ∗0] = −
N
2π

cos2 θ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 (FDBI − FWZ)|tE=0 . (3.26)

The expression for the shifted solution X ∗
τ0,φ0

can be obtained by the replacements tE → tE+τ0

and φ→ φ +φ0.10 As a result, we find

Ô[X ∗τ0,φ0
] = −

N
2π

cos2 θ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 [FDBI(τ0,φ0)− FWZ(τ0,φ0)] , (3.27)

with

FDBI(τ0,φ0) =
p

L(L + 1)
2N

�

cosφ0 sinθ0 + i cosθ0 cosχ1 sinχ3

coshτ0

�L

× sin(2χ1)
�

cos(2θ0) + tanh2τ0

�

,

FWZ(τ0,φ0) =
p

L(L + 1)
2N

�

cosφ0 sinθ0 + i cosθ0 cosχ1 sinχ3

coshτ0

�L

× sin(2θ0) sin(2χ1)
cosφ0 cosθ0 − i sinθ0 cosχ1 sinχ3

cosφ0 sinθ0 + i cosθ0 cosχ1 sinχ3
.

(3.28)

10With the following orbit average in mind, we set φ = 0 after this shifting. Precisely speaking, setting tE = 0
in (3.20) and (3.23) should be done at this stage.
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Final result. We can now plug (3.27) into our master formula (2.22),

CDMDMOL
=

∫ ∞

−∞
dτ0

∫ 2π

0

dφ0

2π
ÔL[X

∗
τ0,φ0

] . (3.29)

Note that the boundary terms from the wave functions cancel for the diagonal three-point func-
tions. Evaluating the right hand side explicitly, we obtain the following closed-form expression
(see Appendix B for the derivation):

CDMDMOL
= −

iL + (−i)L

2
p

L

�

P L
2
(cos2θ0) + P L

2−1(cos 2θ0)
�

. (3.30)

Here Pn is the n-th Legendre polynomial. As we will see below, this expression is in perfect
agreement with the gauge theory results. Given the complexity of the final result (which
contains Legendre polynomials), this match provides strong evidence for the validity of our
approach.

Comparison with previous approaches. Let us perform a quick comparison with the previ-
ous approach. Precisely speaking, the three-point function that we analyzed was never studied
in the literature but the results in [4] can be easily generalized to our case by replacing the
spherical harmonics. The result of such a computation is given by the following integral, which
takes a somewhat similar form to our final result:

C [4]DMDMOL
=

∫ ∞

−∞
dτ0 IL , (3.31)

where the integrand IL is given by

IL = −
N
2π

cos2 θ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 (F
[4]

DBI − F [4]WZ ) , (3.32)

with

F [4]DBI =
p

L(L + 1)
2N

�

coshτ0 sinθ0 + i cosθ0 cosχ1 sinχ3

coshτ0

�L

× sin(2χ1)
�

cos(2θ0) + tanh2τ0

�

,

F [4]WZ =
p

L(L + 1)
2N

�

coshτ0 sinθ0 + i cosθ0 cosχ1 sinχ3

coshτ0

�L

× sin(2θ0) sin(2χ1)
coshτ0 cosθ0 − i sinθ0 cosχ1 sinχ3

coshτ0 sinθ0 + i cosθ0 cosχ1 sinχ3
.

(3.33)

Comparing (3.29) and (3.31), there are several important differences. First, the result ob-
tained via the previous approach (3.31) does not contain integrals of φ0. Second, in the
expressions of F [4]DBI,WZ, φ0 is replaced by iτ0. This is because we integrate over the whole
Euclidean time domain in the approach of (3.31).

Due to these differences, the final results computed by (3.29) and (3.31) are different11

for θ0 6= 0. For comparison, we show the results for small values of L:

• L = 2

CDMDMOL
=
p

2(cosθ0)
2 , C [4]DMDMOL

=
p

2(cosθ0)
2[2− cos(2θ0)] . (3.34)

11The results happen to agree for θ0 = 0, but this seems like a coincidence.
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• L = 4

CDMDMOL
=

1
2
(cosθ0)

2 [1− 3 cos(2θ0)] , (3.35)

C [4]DMDMOL
=

1
2
(cosθ0)

2 [8− 11 cos(2θ0) + cos(4θ0)] .

• L = 6

CDMDMOL
=

1

2
p

6
(cosθ0)

2 [3− 4cos(2θ0) + 5 cos(4θ0)] , (3.36)

C [4]DMDMOL
=

1

8
p

6
(cosθ0)

2 [96− 157cos(2θ0) + 80cos(4θ0)− 3cos(6θ0)] .

Since it is our result that agrees with the gauge theory answer, this shows the incompleteness
of the previous approach.

3.2 Structure constant from gauge theory

We now compute the diagonal structure constant of two non-maximal giant gravitons and a
single-trace BPS operator in N = 4 SYM at weak coupling. As we will see below, the results
match precisely with the holographic computations (3.30).

The computation in this subsection can be readily generalized to the dual giant gravitons
as we show in Appendix A.

Review of derivation of matrix product representation. We use the effective field theory
approach developed in [22–25] and derive a matrix product representation. The discussion
below is mostly a review of those works and we refer to [22,24] for more details.

We consider the generating function of giant gravitons,

G j ≡ det
�

1+ t j(Yj ·Φ)
�

(x j) , (3.37)

where Yj ( j = 1, 2) is a six-dimensional null vector and Φ≡ (Φ1, . . . ,Φ6) are the six real scalar
fields in N = 4 SYM. The giant graviton with a fixed charge M can be obtained from the
generating function by performing the integral over t j:

∮

dt j

2πi t1+M
j

G j . (3.38)

We then evaluate the correlation function of two generating functions and a BPS single-trace
operator

OL(x3)≡ tr
�

(Y3 ·Φ)L
�

(x3) , (3.39)

at tree level. For a special choice of Y3, this reduces to the operator (3.3) that we used in the
holographic computation.

As the first step, we express the three-point function as a path integral

〈G1G2OL〉=
1
ZΦ

∫

DΦ

� 2
∏

k=1

Gk

�

OL exp

�

−
1

g2
YM

∫

d4 x tr
�

∂µΦ
I∂ µΦI

�

�

. (3.40)

Next we express the generating function in terms of integrals over fermions

G j =

∫

dχ̄ jdχ j exp
�

χ̄ j(1+ t jYj ·Φ)χ j

�

. (3.41)
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We then integrate out scalar fields ΦI to get an effective action for the fermions. As a result,
we obtain the following expression

〈G1G2OL〉=
∫

� 2
∏

k=1

dχ̄kdχk

�

OS
L exp





2
∑

k=1

χ̄kχk −
g2

N

∑

i 6= j

t i t jdi j(χ̄iχ j)(χ̄ jχi)



 , (3.42)

where g2 ≡ g2
YMN/(16π2) and di j ≡ Yi · Yj/|x i j|2, while OS

L is given by

OS
L(x3)≡ tr

�

(Y3 · S)L
�

, (3.43)

with

S I ≡
g2

YM

8π2

∑

k=1,2

tkY I
k χkχ̄k

|xk3|2
. (3.44)

After that, we perform the Hubbard-Stratonovich transformation to rewrite the integral
(3.42) into

〈G1G2OL〉=
1
Z

∫

dρdχ̄dχOS
L exp





2N
g2
ρ12ρ21 + 2

∑

i 6= j

ρ̂i j(χ̄ jχi) +
2
∑

k=1

(χ̄kχk)



 , (3.45)

with ρ̂i j ≡
Æ

t i t jdi jρi j . Finally, We integrate out fermions and get

〈G1G2OL〉=
1
Z

∫

dρ



OS
L

�

χ
exp









2N
g2
ρ12ρ21 + N log (1− 4t1 t2d12ρ12ρ21)

︸ ︷︷ ︸

≡Seff









. (3.46)

Here



OS
L

�

χ
can be computed by performing the Wick contractions of fermions12




χ̄a
i χ j,b

�

= δa
b(Σ

−1)i j , (3.47)

with

Σ=

�

1 2ρ̂12
2ρ̂21 1

�

. (3.48)

In the large N limit, the integral of ρ in (3.46) can be approximated by the saddle point

ρ∗12ρ
∗
21 =

1
4t1 t2d12

−
g2

2
, (3.49)

and the saddle-point action is given by

Seff = N
�

−1+
1

2g2 t1 t2d12
+ log(2g2 t1 t2d12)

�

. (3.50)

Now, to compute the correlation functions of giant gravitons with fixed charges, we also need
to perform integrals of t1,2 (3.38). When the charge M is of order N (which is the case for

12Here a and b are indices for the U(N) gauge group.
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operators dual to D-branes), these integrals can also be evaluated at the saddle point. The
saddle-point equation of these integrals is given by

t∗1 t∗2 =
1

2g2 sin2 θ0d12
, (3.51)

where θ0 parametrizes the “non-maximality", namely

M
N
≡ cos2 θ0 . (3.52)

Note that this is the same parametrization as the holographic description of giant gravitons in
(3.8).

At this point, let us make an important remark. As one can see from (3.51), the saddle
point equation determines the product t1 t2 but not the ratio t1/t2. Therefore, when writing
the expression for the three-point function, we still need to perform an integral over this ratio

y ≡
√

√ t1

t2
. (3.53)

Below we see how this modifies the matrix product representation.
As discussed in [22], the large N limit also simplifies the computation of 〈OS

L〉χ since the
only contractions that survive in this limit are the ones that contract neighboring fermions. As
a result, we obtain the following representation




OS
L

�

χ
= −

∮

|y|=1

dy
2πi y

Tr
�

T L
�

, (3.54)

with

T ≡ g

√

√ 2
d12

diag
�

d13 y, d23 y−1
�

·
�

sinθ0 i cosθ0
i cosθ0 sinθ0

�

. (3.55)

Note that the integral
∮

|y|=1
dy

2πi y comes from the integral over the ratio (3.53). The integral
can be further simplified to




OS
L

�

χ
= −(2g2)

L
2

�

d13d23

d12

�
L
2
∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

, (3.56)

with

T̂ ≡ diag
�

y, y−1
�

·
�

sinθ0 i cosθ0
i cosθ0 sinθ0

�

. (3.57)

Evaluation of the matrix product. Now, to evaluate (3.56), we first re-express it as
∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

=

∮

|s|=ε�1

ds
2πis1+L

∮

|y|=1

dy
2πi y

Tr
�

1

1− sT̂

�

. (3.58)

The “generating function" 1
1−sT̂ is expected to have a finite radius of convergence when ex-

panded in powers of s. Therefore, we need to set |s| sufficiently small to use the formula (3.58)
and this is why the integration of s is performed in a region |s| � 1. We then compute the
right hand side of (3.58) by diagonalizing the matrix 1/(1− sT̂ ). As a result, we get

∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

= 2

∮

|s|=ε�1

ds
2πis1+L

∮

|y|=1

dy
2πi y

1− s
2(y +

1
y ) sinθ0

1− s(y + 1
y ) sinθ0 + s2

. (3.59)
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Figure 2: Positions of poles of the y-integral in (3.59). The integrand has two poles:
for s� 1, one of them is inside the integration contour while the other is outside.

The next step is to perform the integration of y by closing the contour and computing the
residues of poles. Taking into account that |s| � 1, we find that there is one pole inside the
contour

ypole =
1+ s2 −

p

1+ s4 + 2s2 cos2θ0

2s sinθ0
. (3.60)

It is straightforward to check that |ypole| < 1 when s is sufficiently small (see also Figure 2).
Computing the residue, we obtain

∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

=

∮

|s|=ε�1

ds
2πis1+L

�

1+
1− s2

p

1+ 2s2 cos 2θ0 + s4

�

. (3.61)

Finally, the integral of s can be performed using the formula for the Legendre polynomial Pn,

1
p

1− 2x t + t2
=
∞
∑

n=0

Pn(x)t
n . (3.62)

Combining everything, we arrive at the final result




OS
L

�

χ
= −(2g2)

L
2

�

d13d23

d12

�
L
2 iL + (−i)L

2

�

P L
2
(cos 2θ0) + P L

2−1(cos2θ0)
�

, (3.63)

which leads to the following result for the structure constant

CDMDMOL
= −

iL + (−i)L

2
p

L

�

P L
2
(cos2θ0) + P L

2−1(cos 2θ0)
�

. (3.64)

This matches precisely with the result computed from holography (3.30).

4 Off-Diagonal Three-Point Functions in N = 4 SYM

We now generalize the computations in the previous section to off-diagonal three-point func-
tions, namely the three-point functions with two different giant gravitons.

4.1 Structure constant from D3 brane

Since we already determined the operator ÔL dual to the single-trace operator on the bound-
ary, we simply need to use our master formula and include the contributions from the wave
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functions. The result reads

CDM+kDMOL
=

∫ ∞

−∞
dτ0

∫ 2π

0

dφ0

2π
ÔL[X

∗
τ0,φ0

]ekτ0 e−ikφ0 , (4.1)

where ÔL[X ∗τ0,φ0
] is given by the same expression as (3.27). Unlike the diagonal structure

constant discussed in the previous section, we did not manage to derive a closed-form expres-
sion for general k, M and L analytically. However for given k, M and L, the integral (4.1) can
always be performed straightforwardly and we find that the results coincide with the following
expression as long as L is strictly larger than k:

CDM+kDMOL
=

−
1
2

p
L
�

iL−k + (−i)L−k
� Γ ( L+k

2 ) cos2 θ0 sink θ0

Γ (1+ k)Γ (1+ L−k
2 )

2F1

�

1+ k−L
2 , 1+ k+L

2 , 1+ k; sin2 θ0

�

.
(4.2)

For L < k, the integral (4.1) simply vanishes, which is consistent with the SO(6) selection
rule. The only subtle case is L = k, which corresponds to the extremal three-point functions.
In that case, the integral involves (zero prefactor)× (divergent integral) structure, much like
what was observed in [6,8]. We will discuss this case in more detail in section 4.3.

We make a few comments before ending this subsection. First, let us emphasize that it
is impossible to obtain a result like (4.2) with the approach of [4], since it is agnostic of the
details of the giant gravitons. There is simply no room for including the k-dependence. Second,
our result (4.2) is a highly nontrivial function of θ and k, which involves a hypergeometric
function. In the next subsection, we will show that the same result can be obtained from N = 4
SYM. This provides another strong evidence supporting the validity of our method.

4.2 Structure constant from gauge theory

Let us now compute the off-diagonal structure constant from N = 4 SYM. In section 3.2,
we computed the three-point functions of generating functions G1,2. Here we simply need
to extract the off-diagonal structure constants by performing appropriate t1,2 integrals. More
precisely, we replace the t1,2 integrals in (3.38) by

∮

dt1

2πi

∮

dt2

2πi
1

(t1 t2)1+M
7→

∮

dt1

2πi

∮

dt2

2πi
1

(t1 t2)1+M+ k
2

�√

√ t2

t1

�k

. (4.3)

Since M ∼ N � k, we can approximate (t1 t2)1+M+ k
2 with (t1 t2)1+M at the leading order in

the large N expansion. This means that the saddle-point of the product t1 t2 (3.51) remains
intact. The only modification is that we need to include a factor of

y−k =

�√

√ t2

t1

�k

, (4.4)

when performing the integral (3.56). Namely we replace (3.56) with




OS
L

�

χ
= −(2g2)

L
2

�

d13d23

d12

�
L
2
∮

|y|=1

dy
2πi y1+k

Tr
�

T̂ L
�

. (4.5)

By performing the integral for various values of L and k, we found that the result for the
structure constant is given by

CDM+kDMOL
=

−
1
2

p
L
�

iL−k + (−i)L−k
� Γ ( L+k

2 ) cos2 θ0 sink θ0

Γ (1+ k)Γ (1+ L−k
2 )

2F1

�

1+ k−L
2 , 1+ k+L

2 , 1+ k; sin2 θ0

�

,
(4.6)
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which is in perfect agreement with the holographic result (4.2). One important difference from
the holographic computation is that the integral (4.5) is well-defined even for the extremal
case L = k and gives (4.6).

For reader’s convenience, let us also display the results for near-extremal three-point func-
tions explicitly13:

k = L : CDM+kDMOk
= −

sink θ0p
k

, (4.7)

k+ 2= L : CDM+kDMOk+2
=
p

k+ 2 cos2 θ0 sink θ0 , (4.8)

k+ 4= L : CDM+kDMOk+4
=
p

k+ 4
2

cos2 θ0 sink θ0

�

(3+ k) sin2 θ0 − (1+ k)
�

. (4.9)

A couple of comments are in order: First, the result for the extremal structure constant (4.7)
coincides with the gauge theory result in [4] computed by solving combinatorics of Wick con-
tractions. This is of course as expected since both computed exactly the same three-point
function.

Second, the results for the next to extremal case (4.8) and next-to-next extremal case (4.9)
agree with the results in [13] obtained by the single-particle basis. This agreement is less trivial
since the single-particle basis is different from sub-determinant operators (or equivalently the
Schur polynomial basis), which we used here. More generally, the two bases seem to give the
same answers in the large N limit as long as the three-point function is non-extremal. Since
these results are in agreement with the holographic results (4.2), this implies that, as long as
non-extremal three-point functions are concerned, both the single-particle basis and the Schur
polynomial basis are equally viable candidates for the holographic dual of the giant gravitons.

However, their results differ for the extremal three-point functions. As is shown in (4.7),
the Schur polynomial basis gives− sink θ0/

p
k while the single-particle basis gives 0 (see [13]).

This is simply because these two bases differ at the non-planar level and the extremal three-
point function is sensitive to such difference. Now the question is which of these two bases is
more naturally related to the holographic result. Our answer to this might be slightly disap-
pointing since we will conclude that this question is ill-posed and we cannot provide a definite
answer. See the following subsection for discussions on this point.

4.3 Extremal limit

We now discuss the extremal limit k = L in more detail.

Strong coupling. As we mentioned in section 4.1, our integrand at strong coupling (4.1)
contains a term of the form (zero prefactor) × (divergent integral) in the extremal limit. To
see this, let us write down the integrand more explicitly:

CDM+kDMOL
=

∫ ∞

−∞
dτ0 ekτ0

∫ 2π

0

dφ0

2π
e−ikφ0

∫ 2π

0

dχ3

∫
π
2

0

dχ1

�

Ifinite + Idivergent

�

, (4.10)

where we split the integrand into a finite part and a divergent part (in the extremal limit):

Ifinite =
4

L + 1
cosχ1 sinχ1YL(Ω)(∂

2
tE
− L2)sL(tE) ,

Idivergent = 8 cosχ1 sinχ1sL(tE) (L cos2 θ0 − cosθ0 sinθ0∂θ0
)

︸ ︷︷ ︸

prefactor

YL(Ω) .
(4.11)

13The first, second and third lines correspond to the extremal, next extremal and next-to-next extremal three-
point functions respectively.
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Ifinite is well-defined and finite even in the extremal limit and gives

C finite
DM+LDMOL

= −
p

L(cosθ0)
2(sinθ0)

L . (4.12)

On the other hand, the integral of Idivergent is divergent in the extremal limit while it contains a
prefactor which vanishes in the limit. This signals a potential ambiguity in the final result com-
ing from 0×∞. One way to properly address this term is to regulate the divergence and take
a careful limit. The paper [8] proposed one such regularization (for a similar integral) which
amounts to replacing the single-trace operator tr(Zk) with tr(ZkY l) and take the limit l → 0.
Unfortunately, as discussed in the introduction, their regularization is physically inconsistent.

A better way to deal with this problem is to first consider a non-extremal three-point func-
tion L − k > 0 and perform the analytic continuation to read off the result for the extremal
limit L − k = 0. Our holographic result for the non-extremal three-point function is given by
the analytic expression (4.2), which coincides with the gauge-theory result (4.6) even in the
extremal limit. Therefore one might be tempted to conclude that our holographic computation
correctly reproduces the gauge-theory result even in the extremal limit.

Ambiguity in analytic continuation. However there is one important caveat here: The pro-
cedure above requires us to analytically continue L − k from positive integers. However the
analytic continuation is not unique. For instance, we can add a term proportional to

sinπ(L − k)
L − k

, (4.13)

which vanishes for positive integer L − k but changes the value at L − k = 0.
There are other situations in physics in which the analytic continuation from positive in-

tegers is required. However in most of such cases, there is some physical requirement which
guarantees the uniqueness of the analytic continuation. For instance, in the computation of the
entanglement entropy using the replica trick, one needs to analytically continue n in Tr[ρn],
where ρ is the density matrix. Since the eigenvalues of ρ are all in the range [0,1], it satisfies
the bound |Tr[ρn]| ≤ Tr[ρ] = 1 for Re n> 1. We can then apply Carlson’s theorem to prove the
uniqueness of the analytic continuation. Another situation in which the analytic continuation
is required is the Regge theory of S-matrix [26] or CFT [27]. In those cases, we analytically
continue spin which is originally taken to be positive integer. The uniqueness of the analytic
continuation is guanrateed by the boundedness in the Regge limit and is manifested in the
form of the Froissart-Gribov formula [26,28].

Unfortunately, we do not know any such requirements in the present context and therefore
cannot eliminate the ambiguity. This is perhaps not too surprising since similar ambiguities
exist also in the target space analysis and in the gauge theory, as we see below.

Boundary action in target space. Similar puzzles and ambiguities surrounding the extremal
limit are known also for the three-point functions of single-trace operators. Already in the early
days of AdS/CFT, it was realized that the cubic coupling in type IIB supergravity in AdS5 × S5

vanishes for the extremal configuration while the corresponding three-point function of single-
trace operators is nonzero on the gauge-theory side. More generally, the bulk contact vertices
are expected to vanish [29] for near-extremal configurations,

〈sk1
sk2
· · · skn

〉
�

�

bulk = 0 , for 0≤ −k1 +
n
∑

j=2

k j ≤ 2(n− 3) , (4.14)

where sk is a supergravity field dual to a chiral primary of charge k, while the corresponding
correlation functions of single-trace operators on the gauge theory side do not vanish.
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Figure 3: Relation between the vanishing of near-extremal correlation functions and
the consistent truncation of supergravity. For k2 = · · ·= kn = 2, the condition (4.14)
becomes equivalent to a physical requirement that the modes in the truncated super-
gravity do not source a higher Kaluza-Klein mode [29]. This is a necessary condition
for the existence of the consistent truncation of type IIB supergravity on AdS5 × S5.

For the special case of k2 = · · · = kn = 2, this vanishing of the bulk vertices is required
by the existence of the consistent truncation14 of type-IIB supergravity in AdS5 × S5 down to
N = 8 gauged supergravity in AdS5 [29]. This is because s2 corresponds to a field in the
truncated supergravity and the equation (4.14) translates to the condition that the fields in
the truncated supergravity (s2) do not source sk1

, which is in general a higher Kaluza-Klein
mode (i.e. a mode excluded in the truncated theory). See also Figure 3. Thus in summary,
non-zero answers for these near-extremal correlation functions on the gauge-theory side seem
to be in conflict with the consistent truncation of supergravity which we know to exist.

For three-point functions, a resolution of this puzzle was found in [30]. They pointed out
that the bulk integral for the Witten diagram diverges while the overall prefactor tends to zero
as we take the extremal limit. Therefore, one again faces the “0 ×∞ problem". In order
to remedy this, they introduced a cut-off in the radial direction and carefully analyzed the
boundary term in the supergravity action. This leads to a finite result which matches precisely
the gauge theory answer for single-trace operators.

Such boundary interactions15 in the target space would be important also for the Giant
Graviton. However it is hard to take them into account in the current analysis since they cor-
respond to emission and absorption of supergravity modes that only take place at the boundary
of AdS and cannot be seen in the standard DBI and WZ actions of the D-branes.

To make things worse, the boundary terms of the supergravity action may not be unique. In
some cases such as AdS4×S7 discussed in [31], the boundary term is determined uniquely by
the requirement of supersymmetry. However, this does not seem to be the case in the current
context. For instance, a recent paper [13] proposed a different basis (single-particle basis) on
the gauge-theory side which is a mixture of single-trace and multi-trace operators. With this
new basis, they showed that all the near extremal correlation functions vanish being consistent
with the structure of the supergravity vertices (4.14). However as shown in [30], there is a
way to perform the computation in supergravity so that it leads to finite answer. This does not
mean that there is a conflict between [30] and [13]. It simply means that the basis defined
in [13]would correspond to a different choice of the boundary term in the supergravity action.
Such extra boundary terms are known to arise from field definitions in the bulk as was shown

14SK thanks Alexandre Belin and Nikolay Bobev for discussions on related topics.
15We should not confuse this with the boundary term coming from wave functions discussed in this paper. The

latter is a boundary term on the worldvolume of the giant graviton while here we are talking about the boundary
term in the target space effective field theory.
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by Arutyunov and Frolov [32]16. So, without specifying the boundary terms (or equivalently
without giving a detailed definition of the fields in the bulk), even a question of which operator
is dual to a given mode in supergravity becomes ill-posed. Needless to say, only after settling
that question can we compare the results in the gauge theory and the supergravity.

Multi-trace mixing in N = 4 SYM. Let us also point out that the ambiguity related to the
extremal three-point function is present also on the gauge theory side. As discussed in [30],
the (near-)extremal correlation functions are sensitive to how the operators are defined at the
non-planar level. Normally adding the multi-trace terms to the single-trace operator does not
modify the large N three-point function as long as the coefficients of the multi-trace terms are
1/N suppressed17. However, as discussed in [30], the contributions from the multi-trace terms
get enhanced for the extremal three-point functions. Therefore, such an addition of multi-
trace operators allows us to modify the extremal three-point functions without modifying the
non-extremal correlation functions. This ambiguity is the gauge theory counterpart of the
ambiguity related to the boundary term of the supergravity action discussed above.

Summary. Given all these ambiguities, we feel that comparing the extremal three-point func-
tions between the gauge theory and the supergravity is an ill-posed question. This may be
a somewhat disappointing conclusion but we want to emphasize the following two points:
First, all these ambiguities are absent in non-extremal three-point functions. Therefore, non-
extremal three-point functions provide an ideal testing ground for the holographic computa-
tion and our results pass that test in a highly nontrivial manner. Second, the paper [4], which
computed the extremal three-point functions of giant gravitons, speculated that the mismatch
they found may be due to inability of Schur polynomials to interpolate between a point-like
graviton and a giant graviton. This claim seems false since the Schur polynomial basis works
perfectly for the non-extremal three-point functions (including the three-point functions of
non-maximal giant gravitons18). Instead the “mismatch" is due to the ambiguities inherent in
the extremal three-point functions, which we discussed at length in this subsection.

4.4 Single-particle basis vs. Schur polynomial

With the discussions above in mind, we now compare the single-particle basis and the Schur-
polynomial basis as potential CFT duals of giant gravitons. For this purpose, let us first sum-
marize a couple of facts:

• For non-extremal three-point functions, the single-particle basis and the Schur polyno-
mial basis gives identical results and they agree with the holographic computations.

• For the extremal three-point functions, the Schur-polynomial basis predicts (4.6) while
the single-particle basis predicts 0.

• On the holographic side, the “simplest" way to compute the extremal three-point function
is to set the (0×∞) factor to zero. An analog of this for point-like supergravity modes
is to focus on the bulk vertices in supergravity and discard other contributions, which
gives a result that agrees with the single-particle basis. However, for giant gravitions,
this procedure gives (4.12), which does not match either with the single-particle basis
or with the Schur basis.

16We thank Francesco Aprile, James Drummond, Paul Heslop and Michele Santagata for pointing this out and
patiently explaining it to us.

17This suppression indeed happens when we diagonalize the two-point functions [30].
18Moreover, as we discussed below (4.7)–(4.9), the Schur polynomial basis gives the same non-extremal three-

point functions as the single-particle basis, which interpolates between a single-trace operator and a determinant
operator [13].
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• The “second simplest" way to compute it is to first consider the non-extremal three-
point function and then analytically continue. One natural analytic continuation gives
the result consistent with the Schur basis (but not with the single-particle basis).

• However, since the holographic computation is subject to various ambiguities discussed
above, one cannot draw a definite conclusion.

• It is likely that the two bases simply correspond to different choices of the boundary
terms in AdS and that they are related by the field redefinition in the bulk19 [32].

We therefore conclude that, as a CFT dual of the giant graviton, there is no reason to favor
one basis over the other. We emphasize that the logic that worked for point-like supergravity
modes and favored the single-particle basis does not work for giant gravitons since there is no
“simple" computation on the holographic side that reproduces the result in the single-particle
basis.

5 Application to ABJM Theory

In this section, we apply the prescriptions developed in the previous sections to the computa-
tion of three-point functions involving two giant gravitons and one single-trace BPS operator
in ABJM theory. For simplicity, we focus on the diagonal case and take two anti-symmetric
Schur polynomials with the same R-charge, but the generalization to off-diagonal three-point
functions is straightforward. The gravity dual of these operators are D4-branes which are point
like in AdS and extended in C P3 directions. Before we move to the strong coupling compu-
tation, let us first review our setup at weak coupling which has been discussed in the first
paper [1]. Notice that in ABJM theory, these three-point functions are no longer protected by
supersymmetry and we do not expect a match between gauge theory and holography.

Apart from not being protected, there is another important difference between the struc-
ture constants of BPS operators in ABJM theory and N = 4 SYM. The R-symmetry structure of
the BPS three-point functions is completely fixed in N = 4 SYM, while in ABJM theory we have
different structures. For the three-point function under consideration, we have the following
structure [1]

〈DM (x1; n1, n̄1)DM (x2; n2, n̄2)OL(x3; n3, n̄3)〉
NDM

Æ

NOL

= (d12d21)
M
�

d23d32d31d13

d12d21

�
L
2

L
2
∑

p=− L
2

D(p)M |L ξ
p ,

where D(p)M |L ’s are structure constants and ξ is the R-symmetry cross ratio defined by

ξ≡
(n1 · n̄2)(n2 · n̄3)(n3 · n̄1)
(n2 · n̄1)(n3 · n̄2)(n1 · n̄3)

, (5.1)

di j ’s are defined by

di j ≡
ni · n̄ j

|x i j|
, |x i j| ≡ |x i − x j| , (5.2)

and NDM
,NOL

are defined by

〈DM (x1, n1, n̄1)DM (x2, n2, n̄2)〉=NDM
(d12d21)

M , (5.3)

19We thank Francesco Aprile and Paul Heslop for emphasizing this point.
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and

〈OL1
OL2
〉= δL1,L2

NOL1
(d12d21)

L1 , (5.4)

respectively.
This implies for generic polarizations of the three operators, we need to compute L + 1

structure constants for the single trace operator of length L. We will focus on a special choice
of the polarization such that ξ= −1 in the main text while relegating the discussions on more
general kinematics to Appendix D. The choice ξ = −1 corresponds to considering the three
operators in the so-called twisted translated frame. See [1] for more details. What we are
actually computing in this case is the following structure constant

CDMDMOL
=

L
2
∑

p=− L
2

(−1)pD(p)M |L . (5.5)

More specifically, we consider the following sub-determinant operators

DM (x; n j , n̄ j)≡
1

M !
δ
[b1···bM ]
[a1···aM ]

�

(n j · Y )(n̄ j · Ȳ )
�a1

b1
· · ·
�

(n · Y )(n̄ · Ȳ )
�aM

bM
, j = 1,2 . (5.6)

The polarizations are

n1 = (1, 0,0, 0) , n̄1 = (0, 0,0, 1) , (5.7)

n2 = (0, 0,0, 1) , n̄2 = (1, 0,0, 0) .

As for the single-trace operator, we choose the polarization vectors to be

n3 =
1
p

2
(1, 0,0,−1) , n̄3 =

1
p

2
(1,0, 0,1) . (5.8)

Therefore, the single trace operator of length 2L reads

OL =
1
2L

tr
�

�

(Y 1 − Y 4)(Ȳ1 + Ȳ4)
�L�

. (5.9)

5.1 Structure constants from D-brane

We now compute the structure constants using D-branes. For this purpose, we follow the ap-
proach of [8] and consider first a classical solution of the M5-brane in AdS4×S7/Zk. Although
this is not the limit we are interested in (since we are studying the type IIA limit), we can still
perform the computation using this solution and later take the limit k → ∞ to dimension-
ally reduce the target space to AdS4 × C P3. After taking this limit, the M5-brane becomes a
D4-brane in type-IIA supergravity.

M5 brane solution. Let us write down the M5 brane solution that corresponds to the anti-
symmetric Schur polynomial. The metric reads

ds2 = R2
AdS ds2

AdS + R2
S7 ds2

S7/Zk
, (5.10)

where RS7 = 2RAdS and

RS7 = (32π2kN)
1
6 `P . (5.11)

Here `P is related to the M5-brane tension by T−1
M5 = (2π)

5`6
P .
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The AdS4 metric in the global coordinates reads

ds2
AdS = − cosh2µdt2 + dµ2 + sinh2µdΩ2

2 , (5.12)

where dΩ2
2 is the metric on the 2-sphere

dΩ2
2 = dθ̃2 + sin2 θ̃ dϕ̃2 . (5.13)

For the metric on S7/Zk, it is convenient to use the following parametrization20

Z1 = r exp[ρ + i(χ/2+φ + θ )] ,

Z2 = r̃ exp[iφ] ,

Z3 = exp[ρ3 + i(θ3 +φ)] ,

Z4 = r exp[−ρ + i(−χ/2+φ + θ )] ,

(5.14)

where r̃ is given by

r̃2 = 1− 2r2 cosh(2ρ)− e2ρ3 . (5.15)

These coordinates are in one-to-one correspondence to the four scalar fields Y I in ABJM theory,
namely ZI ↔ Y I , Z̄I ↔ ȲI , (I = 1,2, 3,4).

The coordinates (5.14) cover the unit S7. We have

|Z1|2 + |Z2|2 + |Z3|2 + |Z4|2 = 1 . (5.16)

The range of the ‘radial’ coordinates r,ρ3,ρ are

0≤ ρ3 ≤ ρmax
3 (r,ρ) , −ρmax(r)≤ ρ ≤ ρmax(r) , 0≤ r ≤ 1/

p
2 , (5.17)

where ρmax
3 (r,ρ) and ρmax(r) are given by the following equations

e2ρmax
3 (r,ρ) = 1− 2r2 cosh(2ρ) , cosh[2ρmax(r)] =

1
2r2

. (5.18)

The range of the angular coordinates are

0≤ θ ,θ3 ,χ ,φ ≤ 2π . (5.19)

Defining zi = Zi/Z4 (i = 1, 2,3), The S7 metric can be written as

ds2
S7 =

dzidz̄ j

(1+ zkz̄k)2
[δi j(1+ zkz̄k)− z̄iz j] + (dφ + A)2 , (5.20)

where A is the 1-form

A=
i

2(1+ zkz̄k)
(zidz̄i − z̄idzi) . (5.21)

Repeated indices are summed over. The quotient space S7/Zk is obtained by restricting the
range of the angle φ to 0≤ φ ≤ 2π/k.

A classical solution for the M5 brane is given by the curve

Z1 Z̄4 = α
2 ei t (5.22)

20We swapped the definition of Z2 and Z4 compared to [7] in accordance with our gauge theory convention.
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in S7/Zk. The parameter α determines the R-charge of the M5-brane solution and is related
to the charge of the sub-determinant operator in the following way [7,33]:

M
N
=
p

1− 4α4 − 4α4 log

�

1+
p

1− 4α4

2α2

�

. (5.23)

In terms of the coordinates introduced above (see for instance (5.14)), the curve (5.22)
corresponds to setting µ= 0, r = α and χ = t. The identification χ = t comes from the classi-
cal equations of motion of the M5-brane [7,33]. The rest of the coordinates (t,ρ,ρ3,θ ,θ3,φ)
are identified with the coordinates of the world volume of the M5-brane and they vary in the
ranges

−ρmax ≤ ρ ≤ ρmax , 0≤ e2ρ3 ≤ e2ρmax
3 (ρ) , 0≤ θ ,θ3 ,φ ≤ 2π , (5.24)

with

e2ρmax
3 (ρ) = 1− 2α2 cosh(2ρ) , cosh(2ρmax) =

1
2α2

. (5.25)

The DBI action. The operator insertion corresponding to the fluctuation of the M5-brane is
the sum of the DBI action and the WZ action. The DBI action takes the following form

δSDBI = −
R6

AdS

(2π)5`6
P

(2π)3

k

∫ +ρmax

−ρmax

dρ FDBI|tE=0 , (5.26)

where

FDBI =24α2 YL(Ω)
�

1− 2α2 cosh(2ρ)
� �

cosh(2ρ)− 2α2
�

(5.27)

×
�

4L +
cosh(2ρ)

cosh(2ρ)− 2α2

� 2
L + 1

∂ 2
tE
−

2L2

L + 1

�

�

sL(tE) .

The spherical harmonics corresponding to the single trace operator (5.9) is given by

OJ 7→ YL(Ω) = Y L , Y = 1
2
(Z1 − Z4)(Z̄1 + Z̄4) = r2[i sinχ + sinh(2ρ)] , (5.28)

where we have used (5.14). The bulk-to-boundary propagator reads

sL(tE) = cL

�

1
cosh tE

�L

, cL = `
9/2
P

2Lπ
p

k
2R9/2

L + 1
L

p
2L + 1 . (5.29)

The WZ action. The WZ action is given by

δSWZ =
R6

AdS

(2π)5`6
P

(2π)3

k

∫ +ρmax

−ρmax

dρ FWZ|tE=0 , (5.30)

where

FWZ = 28α3(1− 2α2 cosh(2ρ))g rβ∂βYL(Ω) s
L(tE) . (5.31)
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Operator insertion. Combining the two contributions, we find the operator ÔL evaluated
on the classical solution X ∗0 is given by

ÔL[X
∗
0] = −

R6
AdS

(2π)5`6
P

(2π)3

k

∫ +ρmax

−ρmax

dρ (FDBI − FWZ)|tE=0 . (5.32)

Plugging in the bulk-to-boundary propagator (5.29) and the spherical harmonics (5.28), we
find more explicitly

FDBI =32cL(−1)L/2 Lα2L+2 2α2 cosh(2ρ)− 1
(cosh tE)L

�

4α2 − cosh(2ρ)[1+ tanh2 t]
�

(5.33)

× (sinχ − i sinh(2ρ))L ,

FWZ =64cL(−1)L/2 Lα2L+2 2α2 cosh(2ρ)− 1
(cosh tE)L

�

[2α2 − cosh(2ρ)] sinχ − 2iα2 sinh(2ρ)
�

× (sinχ − i sinh(2ρ))L−1 .

To perform the orbit average, we shift tE → tE+τ0 and χ → χ+χ0 and integrate over τ0 and
χ0. The structure constant is given by

CDMDMOL
=[(n1 · n̄2)(n2 · n̄1)]

L
2−M

� 2
∏

i=1

(ni · n̄3)(n3 · n̄i)

�− L
2

×
∫ ∞

−∞
dτ0

∫ 2π

0

dχ0

2π
ÔL[X

∗
τ0,χ0
] , (5.34)

where ÔJ[X ∗τ0,χ0
] is obtained by replacing tE and χ by τ0 and χ +χ0 in ÔJ[X ∗0] respectively.

The details of the computations can be found in Appendix C , the final result is only non-
vanishing for even L and reads

CDMDMOL
=
�

λ

2π2

�1/4 p2L + 1
L

(1+ (−1)L)
(−1)

L
2+12LpπΓ ( L

2 + 1)

Γ ( L+3
2 )

(1− 4α4)
1
2 (L−1) (5.35)

×
�

(1− 4α4) 2F1

�

−1
2(L + 1),− L

2 ; 1; 4α4

4α4−1

�

+2α4(L + 1) 2F1

�

−1
2(L − 1),− L

2 + 1;2; 4α4

4α4−1

��

.

5.2 Comparison with gauge theory

Although we do not expect a match, it is interesting to compare the results we obtained with the
one from gauge theory. The structure constant for the BPS operators in the twisted translated
frame has been computed in our previous paper [1] and we quote here

C (gauge)
DMDMO◦L

=

L
2
∑

p=− L
2

(−1)p D(p)M |L =

(

− (−1)
L
2

p
L

�

P L
2

�

−1+ 4ω− 2ω2
�

+ P L
2−1

�

−1+ 4ω− 2ω2
�

�

L : even

0 L : odd
,

(5.36)

where P L
2

is the Legendre polynomial. The parameters of the strong and weak coupling are
related by

M
N
≡ω=

p

1− 4α4 − 4α4 log

�

1+
p

1− 4α4

2α2

�

,
N
k
≡ λ . (5.37)

The structure constant for fixed L can be written down straightforwardly, for example
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• L = 2

C (gauge)
DMDMO2

= −
p

2ω(ω− 2) , (5.38)

C (sugra)
DMDMO2

=
�

λ

2π2

�
1
4 16
p

5
3
(1− 4α4)

3
2 .

• L = 4

C (gauge)
DMDMO4

= −ω(ω− 2)(3ω2 − 6ω+ 2) , (5.39)

C (sugra)
DMDMO4

= −
�

λ

2π2

�
1
4 128

5
(1− 4α4)

3
2 (1− 14α4) .

• L = 6

C (gauge)
DMDMO6

= −

√

√2
3
ω(ω− 2)(10ω4 − 40ω3 + 52ω2 − 24ω+ 3) , (5.40)

C (sugra)
DMDMO6

=
�

λ

2π2

�
1
4 2048

p
13

105
(1− 4α4)

3
2 (1− 36α4 + 198α8) .

6 Conclusion and Discussion

6.1 Conclusion

In this paper, we revisited the holographic computation of two (non-maximal) giant gravitons
and one single-trace BPS operator. We pointed out the incompleteness of the analysis in the
literature. In particular we showed that the previous analyses missed two important effects;
the orbit average and the boundary contribution coming from wave functions. For the case
of N = 4 SYM, we demonstrated that these effects are essential in reproducing the results
computed in the gauge theory. We emphasize that this is a rather nontrivial match, since the
final result shows a complicated dependence on the charge of the giant gravitons and is given
by the Legendre polynomials or hypergeometric functions. For ABJM theory, our results make
solid predictions on the structure constants at strong coupling, which can be compared with
the integrability approach to be developed in the third paper [2].

If you are not aficionados of N = 4 SYM and integrability, you might feel that all we did
was to add yet another item to the already existing long list of precision tests of AdS/CFT
(which we do not doubt anyway!). This is of course true to some extent, but let us emphasize
that the fact that we succeeded in reproducing off-diagonal structure constants from the holo-
graphic computation is far from trivial: One might think that the semi-classical computation
using the D-branes is sensitive only to the charges of order N and cannot distinguish O(1)
differences. What we found in this paper is the contrary; the semi-classical computation does
know the details of the heavy states if the computation is performed correctly. This “unrea-
sonable effectiveness" of the semi-classical computation naturally brings us to the following
question:

Is the method developed in this paper applicable to operators dual to black hole microstates?
If so, how does the semiclassics distinguish different microstates?

This is perhaps the most important but challenging future direction, and we will discuss it
separately in the next subsection.
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Here we list other future directions which are more integrability oriented, more technical,
but perhaps more “low-hanging": In this paper, we focused on the giant gravitons, which are
dual to sub-determinant operators. It would be interesting to extend our analysis to dual giant
gravitons, which are dual to symmetric Schur polynomials. Another interesting future direction
is to apply our method to off-diagonal heavy-heavy-light three-point functions of single-trace
operators [20, 21]. Most of the works done for the heavy-heavy-light three-point functions
focused on the diagonal three-point functions for which two heavy single-trace operators are
identical up to conjugation. One of the few works which discussed the off-diagonal three-
point functions is [34]. They analyzed off-diagonal three-point functions at weak coupling and
pointed out that the results depend on the details of the two heavy operators and the semi-
classical approximation based on the coherent states breaks down in some cases. However
their analysis did not include the orbit average or the boundary terms from wave functions.
It is plausible that the inclusion of these effects21 resolve the discrepancy pointed out in [34].
If this is the case, that will open up a possibility to compute the off-diagonal form factor from
semi-classical strings at strong coupling: As was demonstrated in [18], by taking a suitable
limit of the diagonal heavy-heavy-light structure constants, one can read off the so-called di-
agonal form factors. Performing a similar analysis to the off-diagonal three-point function
would give the off-diagonal form factors and would provide useful data to compare with the
hexagon formalism for the three-point function [39]. In particular, the paper [40] computed
off-diagonal heavy-heavy-light three-point functions at strong coupling using hexagons, and it
would be interesting to reproduce their results from semi-classical strings. In [3], it was found
that the contribution to three point functions from the open string attaching on Z = 0 brane
is divergent. We now expect that the result will become finite after orbit average and taking
into account the contribution from wave functions.

6.2 Application to black holes

We now discuss (and speculate on) the extent to which our method of computing holographic
correlation functions of heavy operators applies to states dual to black holes. Before address-
ing this question, let us point out right away one important difference. The D-brane state
discussed in this paper is expected to correspond to one particular operator in CFT (which
in our case was a sub-determinant operator). By contrast a state dual to a black hole comes
with exponentially large degeneracy (∼ eN2

), as predicted by the Bekenstein-Hawking entropy.
Therefore a conservative viewpoint is that whatever is computed in the semi-classical black
hole background would correspond to an averaged result over such a large number of states.
A closely related idea is that typical states as heavy as black holes exhibit a universal behavior
dictated by the eigenstate thermalization [41] and the computation in the semi-classical black
hole background captures that universal piece. In particular, the eigenstate thermalization
predicts22 the following answer for the matrix element of a light operator O,

〈Em|O|En〉= Oth(Em)δmn + e−S(Ē)/2 fO(Ē,∆E) rmn , (6.1)

with

Ē ≡
Em + En

2
, ∆E ≡

Em − En

2
. (6.2)

21One technical complication for analyzing these three-point functions is that, since the system under considera-
tion is integrable, one needs to include the effects of higher conserved charges in the orbit average. In addition, the
wave function needs to include coordinates dual to higher conserved charges. This latter problem can be solved
by using Sklyanin’s separation of variables [35] as was demonstrated in the context of the heavy-heavy-heavy
three-point functions [36–38].

22Note, however, it is known that there are cases in which the formula gets modified. For instance, in 2d CFT,
when the two states are in the same Verma module, off-diagonal elements are not exponentially suppressed (e−S)
but are power-law suppressed [42]. We thank Shouvik Datta for explaining this point.
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Here Oth(E) is the thermal expectation value of O for an ensemble with a mean energy E
and fO(E,δ) is some smooth function of E and δ while rmn is a random variable with a unit
variance. As can be seen in the formula, the off-diagonal element comes with a factor e−S(Ē)/2

with S being the thermal entropy that scales as N2 for holographic states dual to black holes.
Now, if one considers an average of (6.1), we would only see the diagonal part23 and may
conclude that the semi-classical computation in the black hole background would be ignorant
of or insensitive to off-diagonal matrix elements.

However we have just seen in this paper that the semi-classical computation of D-brane
states can capture off-diagonal parts once the computation is performed correctly. Given this
success, it would be interesting to ask if there is a way to modify the naive semi-classical
computation so that it becomes sensitive to the details of off-diagonal matrix elements. This
is of course a difficult question both conceptually and technically. Therefore below we chart
one possible path towards answering this question.

Three-point functions of LLM backgrounds. Before studying black hole states, it would be
useful to build our intuition and techniques using states that are heavy enough to deform the
geometry but nevertheless are in the same “universality class" as the D-brane states discussed
in this paper. The best candidates for such states are half-BPS states dual to the backgrounds
constructed by Lin, Lunin and Maldacena [44]. Notable features of these geometries are that
they do not have a horizon and the CFT duals of those states are known exactly [45, 46].
Therefore we can focus on technical aspects of how our method generalizes to states dual to
nontrivial geometries without worrying about complications coming from conceptual aspects.
In addition, we can test the holographic computation against the results in field theory.

At a practical level, we would need to find canonically conjugate variables associated with
these backgrounds, in order to perform the orbit average and build the wave functions. For
this purpose, the Crnkovic-Witten-Zuckerman quantization approach developed in [47,48] is
likely to be useful.

Matrix elements for Virasoro descendants. A possible next step would be to consider a
black hole background but study a quantity with less conceptual difficulty. For instance, it
would be interesting to try to compute the following ratio involving matrix elements of a
light operator between a heavy primary state |primary〉 and its descendant |descandant〉 in
AdS3/CFT2:

r ≡
〈descendant|O|primary〉
〈primary|O|primary〉

. (6.3)

On the CFT side, this ratio is completely fixed by the Virasoro symmetry [42]. On the gravity
side, if |descendant〉 is obtained by the action of finitely many Virasoro generators on |primary〉,
we expect that both states are described semi-classically by the BTZ black hole. The only
difference between these two states is that the state |descendant〉 contains additional quanta
of boundary gravitons as compared to |primary〉. The relevant “broken symmetry group" for
performing the orbit average would be the asymptotic symmetry group (ASG), which acts on
the Hilbert space of the boundary gravitons. Extrapolating the discussion in section 2, we can
envisage a formula like

r
semi-classical∼

∫

d[ASG]Ψ′∗boundary graviton OΨboundary graviton . (6.4)

23If we instead considers an average of a square of the matrix element, we would see a nontrivial contribution
from the off-diagonal part since |rmn|2 = 1. Holographically, this is related to a configuration with Euclidean
wormholes. See [43] for a recent discussion in the context of AdS3/CFT2.
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Of course, this is just a speculation at the moment and the details need to be worked out.
Alternatively we can look at a matrix element between an eigenstate of the KdV charges

and its small deformation using the KdV black holes constructed in [49]. On the CFT side, such
a matrix element is also constrained by the Virasoro algebra. This is an interesting question
also from the point of view of integrability, since the KdV black holes can be described by the
classical spectral curve, much like semi-classical strings in AdS5 × S5. It would be interesting
to see whether one can extract quantum properties of these black holes from the semi-classical
quantization24 of the spectral curve [51].

Microstates and horizon soft hair? We now turn to the most interesting question. Can we
compute off-diagonal matrix elements of different black hole microstates using a semi-classical
description in the bulk? In the context of AdS3/CFT2, this would correspond to computing the
matrix elements of states in different Verma modules. Unlike the matrix elements of descen-
dants, they depend on the details of the microscopic theory and contain dynamical informa-
tion. A priori, it is not clear if the semi-classical description based on the BTZ black hole is
capable of doing that. However, there is an interesting proposal by Hawking, Perry and Stro-
minger [52, 53] which suggests that the soft hair at the horizon can distinguish microstates.
Application of this idea to BTZ black holes was also discussed in the literature. At the time of
writing this paper, it seems that no definitive conclusion has been made on the subject, but
several interesting results came out of such studies. For instance, the paper [54–56] found
the U(1) × U(1) Kac-Moody algebra as the asymptotic symmetry group at the horizon and
proposed a description of microstates based on that algebra while the paper [57] wrote down
a Schwarzian-like boundary action governing the reparametrization modes in the BTZ geom-
etry. It would be interesting to push these ideas further and test them against CFT if possible.
Ultimately, we would like to have a formula that generalizes (6.4) to the horizon symmetry
group (HSG):

〈Ψ1|O|Ψ2〉 ∼
∫

d[HSG]Ψ∗1OΨ2 . (6.5)

Of course, it is not guaranteed that such a formula would exist. In fact, if it exists, it would
predict some universal property of these off-diagonal matrix elements since the right hand
side of (6.5) does not seem to know the microscopic detail of the theory. In this paper we
remain agnostic about what the expectation is. However we want to emphasize that this is an
important direction for the future, whatever the outcome will be.

Superstrata and fuzzball. A related but slightly different direction is to compute the struc-
ture constants of two superstrata and a light supergravity mode in the D1-D5 system. The su-
perstrata are BPS horizonless solutions in six-dimensional supergravity discussed in the context
of the fuzzball program [58], which are conjectured to represent microstates of supersymmet-
ric D1-D5 black holes with three charges25 [60]. Unfortunately, the number of states given
by the superstrata is not enough to fully account for the Bekenstein-Hawking entropy of the
corresponding black holes [61], and it was argued in [62] that they can only describe atypical
microstates. For the purpose of understanding quantum properties of typical black holes, this
is certainly an undesired feature. However, the advantage is that one can perform a precision
check of the holography: The superstrata (and three-charge black holes) are dual to large-
charge 1/8-BPS operators in the dual CFT2. Thanks to the non-renormalization theorem [10],
the structure constants of two such operators and a chiral primary operator corresponding to

24There is also a possibility that we can express it using the separation of variables. See for instance [50].
25See [59] for a recent review.
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a supergravity mode are protected. Therefore, one can directly compare the prediction from
holography with the result from CFT2. Such computations were performed already in the lit-
erature [63–66], building on earlier works [67–70]. However so far the analysis was limited
to the diagonal three-point functions. It would be interesting to generalize such analyses to
off-diagonal three-point functions and understand in detail to what extent the superstrata are
atypical by making comparison with the eigenstate thermalization (6.1).

It is also worth mentioning that Skenderis and Taylor [67] pointed out that the fuzzball
geometries without averaging do not correspond to eigenstates of the R-symmetry in the dual
CFT; they instead correspond to superpositions of the eigenstates. This is more like the “con-
verse" of what we found in this paper; namely the eigenstates of the R-symmetry correspond
to superpositions—or more precisely an average—of classical (D-brane) solutions. It would
be interesting to apply the idea of the orbit average to fuzzball solutions and try to compute
correlation functions of R-symmetry eigenstates.
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A Diagonal Structure Constants of Dual Giant Gravitons in N = 4
SYM

In this appendix, we compute the diagonal structure constant of symmetric Schur polynomials
dual to Giant Gravitons and a single-trace BPS operator in N = 4 SYM at weak coupling. This
generalizes the computation performed in section 3.2.

The only difference is that, instead of using the determinant (3.37) as a generating func-
tion, we need to use an inverse of a determinant

G j ≡
1

det
�

1− t j(Yj ·Φ)
�(x j) . (A.1)

As is the case with the giant gravitons, the operator with a fixed charge M can be obtained by
an integral

∮

dt j

2πi t1+M
j

G j . (A.2)

To proceed, we express the generating function in terms of integrals of bosons

G j =

∫

dφ̄ jdφ j exp
�

−φ̄ j(1− t jYj ·Φ)φ j

�

. (A.3)
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Following the derivation explained in the main text, we arrive at the expression

〈G1G2OL〉=
1
Z

∫

dρ



OS
L

�

φ
exp









−
2N
g2
ρ12ρ21 − N log (1− 4t1 t2d12ρ12ρ21)

︸ ︷︷ ︸

≡Seff









. (A.4)

Here



OS
L

�

φ
is obtained by replacing OL with

OS
L(x3) = tr

�

(Y3 · S)L
�

, S I =
g2

YM

8π2

∑

k=1,2

tkY I
kφkφ̄k

|xk3|2
. (A.5)

The Wick contraction of bosons is given by



φ̄a
i φ j,b

�

= δa
b(Σ

−1)i j , (A.6)

where

Σ=

�

1 2ρ̂12
2ρ̂21 1

�

, (A.7)

and ρ̂i j =
Æ

t i t jdi jρi j .
The saddle point for ρ is given by

ρ∗12ρ
∗
21 =

1
4t1 t2d12

−
g2

2
, (A.8)

while the action at the saddle-point is given by

Seff = −N
�

−1+
1

2g2 t1 t2d12
+ log(2g2 t1 t2d12)

�

. (A.9)

Using this effective action, we can compute the saddle point of t1,2. As a result, we obtain

t∗1 t∗2 =
1

2g2 cosh2ηd12
, (A.10)

where η is given in terms of the charge of the dual giant graviton by

M
N
≡ sinh2η . (A.11)

We then get




OS
L

�

φ
= (2g2)

L
2

�

d13d23

d12

�
L
2
∮

|y|=1

d y
2πi y

Tr
�

T̂ L
�

, (A.12)

with

T̂ ≡ diag
�

y, y−1
�

·
�

coshη sinhη
sinhη coshη

�

. (A.13)

Here again, the integral of y comes from the integral of the ratio t1/t2, which is not fixed by
the saddle-point equation (A.10).
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Using the same rewriting as before, we obtain

∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

= 2

∮

|s|=ε�1

ds
2πis1+L

∮

|y|=1

dy
2πi y

1− s
2(y +

1
y ) coshη

1− s(y + 1
y ) coshη+ s2

. (A.14)

Performring the integral of y by computing the residue, we get
∮

|y|=1

dy
2πi y

Tr
�

T̂ L
�

=

∮

|s|=ε�1

ds
2πis1+L

�

1+
1− s2

p

1− 2s2 cosh2η+ s4

�

. (A.15)

Combining everything, we arrive at the final result




OS
L

�

φ
= (2g2)

L
2

�

d13d23

d12

�
L
2 1+ (−1)L

2

�

P L
2
(cosh2η)− P L

2−1(cos 2η)
�

, (A.16)

which leads to the following result for the structure constant

CDMDMOL
=

1+ (−1)L

2
p

L

�

P L
2
(cosh 2η)− P L

2−1(cosh2η)
�

. (A.17)

It is an interesting future problem to reproduce (A.17) from the holographic computation using
dual giant gravitons at strong coupling.

B Strong Coupling Computation in N = 4 SYM

In this appendix, we give more details for the strong coupling computation of N = 4 SYM
theory. We will derive (3.30) for the diagonal structure constant. For the non-diagonal case, we
give a simple expression which allows us to compute the structure constant straightforwardly.

B.1 Diagonal structure constant

Let us define

F̄DBI =
1

2π

∫ 2π

0

FDBI(τ0,φ0)dφ0 , F̄WZ =
1

2π

∫ 2π

0

FWZ(τ0,φ0)dφ0 . (B.1)

Using (3.28), we can compute the integral over φ0, χ3 and χ1. The results for the DBI and
WZ actions are given by

∫ π/2

0

dχ1

∫ 2π

0

dχ3 F̄DBI =
p

L(L + 1)
2N

cos(2θ0) + tanh2τ0

(coshτ0)L
AL(θ0) , (B.2)

∫ π/2

0

dχ1

∫ 2π

0

dχ3 F̄WZ =
p

L(L + 1)
2L N

sin(2θ0)∂θ0
AL(θ0)

(coshτ0)L
,

where AL(θ0) is given by

AL(θ0)
2π

=
1+ (−1)L

2
L!
2L

L/2
∑

n=0

(−1)
L
2−n

(n!)2[( L
2 − n)!]2

(sin2 θ0)n(cos2 θ0)
L
2−n

L
2 − n+ 1

. (B.3)

As a next step, we compute the τ0 integral. we find

CDMDMOL
= δSDBI +δSWZ , (B.4)
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where

δSDBI = −
p

L(L + 1)
2

cos2 θ0(2 cos2 θ0 tL − tL+2)
AL(θ0)

2π
, (B.5)

δSWZ =
L + 1

2
p

L
tL cos2 θ0 sin(2θ0)

∂θ0
AL(θ0)

2π
,

with

tL =
2L+1

L
[(L/2)!]2

L!
. (B.6)

Plugging (B.3) into (B.5) and after some algebra, we find

CDMDMOL
= −

1+ (−1)L
p

L
(−1)L/2(cosθ0)

L
2F1

�

1− L
2 ,− L

2 ; 1,− tan2 θ0

�

(B.7)

= −
1+ (−1)L
p

L
(−1)L/2 2F1

�

− L
2 , L

2 ; 1, sin2 θ0

�

.

Using the identity of the hypergeometric function

2F1

�

− L
2 , L

2 ; 1, sin2 θ0

�

=
1
2

�

2F1

�

1− L
2 , L

2 ; 1, sin2 θ0

�

+ 2F1

�

− L
2 , 1+ L

2 ; 1, sin2 θ0

��

, (B.8)

and the relation between hypergeometric function and the Legendre polynomial

2F1

�

1− L
2 , L

2 ; 1, sin2 θ0

�

= P L
2−1(cos(2θ0)) , (B.9)

2F1

�

− L
2 , 1+ L

2 ; 1, sin2 θ0

�

= P L
2
(cos(2θ0)) ,

we find

CDMDMOL
= −

1+ (−1)L

2
p

L
(−1)L/2

�

P L
2
(cos(2θ0)) + P L

2−1(cos(2θ0))
�

. (B.10)

B.2 Off-diagonal structure constant

As explained in the main text, for the off-diagonal structure constant, we need to take into
boundary terms coming from wave function that comes from the wave functions. For two
giant gravitons with charges M1 and M2 such that M1 − M2 = k, we define the following
quantities

F̄ (k)DBI =
1

2π

∫ 2π

0

FBDI(τ0,φ0)e
ikφ0 ekτ0dφ0 , (B.11)

F̄ (k)WZ =
1

2π

∫ 2π

0

FWZ(τ0,φ0)e
ikφ0 ekτ0dφ0 .

Notice that there are two phase factors in the asymmetric case, the red colored one comes from
the S5 part while the blue colored one comes from the AdS part.

The off-diagonal structure constant is given by

C (k)DM+kDMOL
= −

N
2π

cos2 θ0

∫ ∞

−∞
dτ0

∫ 2π

0

dχ3

∫ π/2

0

dχ1 F̄ (k)full , (B.12)
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where

F̄ (k)full = F̄ (k)DBI − F̄ (k)WZ . (B.13)

For integer L, the integrals overφ0 and τ0 can be computed separately. We therefore introduce
two integrals

AL,k(c) =
1

2π

∫ 2π

0

(cosφ − c)Leikφdφ , BL,k =

∫ ∞

−∞

ekτ0

(coshτ0)L
dτ0 . (B.14)

They can be computed analytically at any positive integer values of L, k with L > k:

AL,k(c) =
1
2L

C−L
L+k(c) , (B.15)

BL,k = 2L

�

2F1(L, L−k
2 , L−k

2 + 1,−1)

L − k
+ 2F1(L, L+k

2 , L+k
2 + 1,−1)

L + k

�

,

where Cαn (x) is the Gegenbauer polynomial. Let us define the variable

ζ= −i cotθ0 cosχ1 sinχ3 . (B.16)

We can write Ffull as

Ffull = −
p

L(L + 1)
2N

(sinθ0)L sin(2χ1)
(coshτ0)L

(cosφ − ζ)L−1
�

cosφ − ζ
(coshτ0)2

+ 2ζ
�

. (B.17)

Therefore we find that

F̄ (k)bulk = −
p

L(L + 1)
2N

(sinθ0)
L sin(2χ1)

�

AL,k(ζ)BL+2,k + 2ζAL−1,k(ζ)BL,k

�

. (B.18)

For fixed L and k, the above quantity can be computed straightforwardly. We consider two
examples.

Next-to-extremal Taking k = L − 2, we have

AL,L−2(ζ)BL+2,L−2 + 2ζAL−1,L−2(ζ)BL,L−2 = −
8

L + 1
ζ2 +

2
L + 1

, (B.19)

and we have

F̄ (k)full =
p

k+ 2
N

(sinθ )k+2 sin(2χ1)(4ζ
2 − 1) . (B.20)

Plugging in the explicit forms of ζ, the rest of the integrals over χ1 and χ3 can be computed
straightforwardly, yielding

CDM+kDMOk+2
=
p

k+ 2(cosθ0)
2 (sinθ0)

k . (B.21)

Next-to-next-to-extremal Taking k = L − 4, we have

F̄ (k)full =
p

k+ 4
N

(sinθ0)
k+4 sin(2χ1)

�

4(k+ 1)ζ4 − 2(k− 1)ζ2 − 1
�

. (B.22)

Again it is straightforward to evaluate the rest of the integrals and we find

CDM+kDMOk+4
= −
p

k+ 4
2

(cosθ0)
2(sinθ0)

k
�

(cosθ0)
2(k+ 3)− 2

�

, (B.23)

both cases are in perfect agreement with the result from weak coupling computation.
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C Strong Coupling Computation in ABJM

In this appendix, we present more details for the computation of the result (5.35). We first
compute the orbit averaging over χ0

F̄DBI =
1

2π

∫ 2π

0

FDBI(χ +χ0)dχ0 , F̄WZ =
1

2π

∫ 2π

0

FWZ(χ +χ0)dχ0 . (C.1)

This leads to

F̄DBI =32cL(−1)L/2 Lα2L+2 2α2 cosh(2ρ)− 1

coshL t

�

4α2 − cosh(2ρ)[1+ tanh2 t]
�

AL , (C.2)

F̄WZ =64cL(−1)L/2 Lα2L+2 2α2 cosh(2ρ)− 1

coshL t
eAL−1(ρ) ,

where

An =
1

2π

∫ 2π

0

(sin(χ +χ0)− i sinh(2ρ))ndχ0 , (C.3)

eAn =[2α
2 − cosh(2ρ)]Bn(ρ)− 2iα2 sinh(2ρ)An(ρ) ,

and

Bn(ρ) =
1

2π

∫ 2π

0

sin(χ +χ0)(sin(χ +χ0)− i sinh(2ρ))ndχ0 . (C.4)

These integrals can be computed analytically, leading to

An(ρ) =n!
[n/2]
∑

m=0

(−i)n−2m

4m(n− 2m)!(m!)2
[sinh(2ρ)]n−2m , (C.5)

Bn(ρ) =n!
[ n+1

2 ]
∑

m=1

(2m)(−i)n+1−2m

4m(n+ 1− 2m)!(m!)2
[sinh(2ρ)]n+1−2m .

After performing the orbit average of χ0, χ drops out and the orbit average over τ0 integrals
of F̄DBI and F̄WZ can be computed readily. Performing the integral over τ0, we find
∫ ∞

−∞
(F̄DBI − F̄WZ)dτ0 = − cL

16
p
π(−1)L/2 L Γ ( L

2 )

Γ ( L+3
2 )

α2L+2(1− 2α2 cosh(2ρ)) cosh(2ρ) (C.6)

× GL[sinh(2ρ)] ,

where

GL[sinh(2ρ)] = LBL−1(ρ) + i(L + 2) sinh(2ρ)AL−1(ρ) (C.7)

is a polynomial of sinh(2ρ) .
Finally we perform the integral over ρ, which is slightly involved, but we manage to find

a closed form expression

CDMDMOL
=(−1)

L
2+12L R6

(2π)5`6
P

(2π)3

k

∫ ρmax

−ρmax

dρ

∫ ∞

−∞
(F̄DBI − F̄WZ)dτ0 (C.8)

=(−1)
L
2+12L

R6
AdS

(2π)5`6
P

(2π)3

k
cL(1+ (−1)L)

8
p
πΓ ( L

2 + 1)

(L + 1)2LΓ ( L+3
2 )
(1− 4α4)

1
2 (L−1)

×
�

(1− 4α4) 2F1

�

− L+1
2 ,− L

2 ; 1; 4α4

4α4−1

�

+ 2α4(L + 1) 2F1

�

− L−1
2 ,− L

2 + 1; 2; 4α4

4α4−1

��

.
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The prefactor can be written as

R6
AdS

(2π)5`6
P

(2π)3

k
cL =

�

λ

2π2

�1/4 p2L + 1(L + 1)
8L

2L . (C.9)

Plugging this into (C.8), we obtain (5.35) in the main text.

D Beyond Twisted Translated Frame

The holographic computations in section 5 can be generalized beyond the twisted translated
frame. As an illustration, we take the polarization vectors of the single-trace operator to be

n3 =
1

p

2(η2 + 1)
(1,η,−1,η) , n̄3 =

1
p

2(η2 + 1)
(1,−η, 1,η) , (D.1)

with real η26. The polarization vectors of the giant gravitons are unchanged. With this choice,
the R-symmetry cross ratio becomes ξ= η2. Now we can obtain D(p)M |L from by reading off the
coefficients of different powers of η from the the structure constants CDMDMOL

. The spherical
harmonics now takes the following form

Yη =
1

2(η2 + 1)
(Z1 +ηZ2 − Z3 +ηZ4)(Z̄1 −ηZ̄2 + Z̄3 +ηZ̄4) . (D.2)

The holographic computation is similar to what we did in section 5. Therefore we only give
the final results for CDMDMOL

and D(p)M |L . As a consistency check, we also compute combination
∑

L
2

p=− L
2
(−1)pD(p)M |L and compare with the results in subsection 5.2.

• L = 1.

CDMDMO1
=
�

λ

2π2

�
1
4 p

3π
�

1
η
+η

�

�p

1− 4α4 − 4α4arcsech
�

2α2
�

�

, (D.3)

from which we can read off

D(−1/2)
M |1 = D(1/2)M |1 =

�

λ

2π2

�
1
4 p

3π
�p

1− 4α4 − 4α4arcsech
�

2α2
�

�

, (D.4)

and find that

1
2
∑

p=− 1
2

(−1)pD(p)M |1 = 0 . (D.5)

• L = 2.

CDMDMO2
=−

�

λ

2π2

�
1
4 8
p

5
3η2

�p

1− 4α4
�

4α4
�

5η4 + 12η2 + 5
�

+η4 + 1
�

(D.6)

− 24α4
�

η2 + 1
�2

arcsech
�

2α2
�

�

,

26Without loss of generality, we can take η to be positive.
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from which we can read off

D(−1)
M |2 =D(1)M |2

=−
�

λ

2π2

�
1
4
�

160
3

Æ

5(1− 4α4)α4 +
8
3

Æ

5(1− 4α4)− 64
p

5α4arcsech
�

2α2
�

�

,

(D.7)

D(0)M |2 =−
�

λ

2π2

�
1
4

128
p

5α4
�Æ

(1− 4α4)− arcsech
�

2α2
�

�

,

and check that

1
∑

p=−1

(−1)pD(p)M |2 =
�

λ

2π2

�
1
4 16
p

5
3
(1− 4α4)

3
2 . (D.8)

• L = 3.

CDMDMO3
=−

�

λ

2π2

�
1
4
p

7π
η3

�

η2 + 1
�

�

−
p

1− 4α4
�

2α4
�

52η4 + 137η2 + 52
�

(D.9)

+ η4 −η2 + 1
�

+ 72α4
�

α4
�

2η4 + 7η2 + 2
�

+
�

η2 + 1
�2�

arcsech
�

2α2
�

�

,

from which we can read off

D
(− 3

2 )
M |3 =D

( 3
2 )

M |3 (D.10)

=−
�

λ

2π2

�
1
4 p

7π
�

72α4
�

2α4 + 1
�

arcsech
�

2α2
�

−
p

1− 4α4
�

104α4 + 1
�

�

,

D
(− 1

2 )
M |3 =D

( 1
2 )

M |3 =
�

λ

2π2

�
1
4

54
p

7πα4
�

4
�

3α4 + 1
�

arcsech
�

2α2
�

− 7
p

1− 4α4
�

,

and check that
3
2
∑

p=− 3
2

(−1)pD(p)M |3 = 0 .

We can see that the combination
∑

L
2

p=− L
2
(−1)pD(p)M |L indeed reproduce exactly the results in the

twisted translated frame given in subsection 5.2 for L = 1, 2,3. Generalization to higher L is
straightforward.
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