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Abstract

We consider 1D integrable systems supporting ballistic propagation of excitations, per-
turbed by a localised defect that breaks most conservation laws and induces chaotic
dynamics. Focusing on classical systems, we study an out-of-equilibrium protocol engi-
neered activating the defect in an initially homogeneous and far from the equilibrium
state. We find that large enough defects induce full thermalisation at their center, but
nonetheless the outgoing flow of carriers emerging from the defect is non-thermal due to
a generalization of the celebrated Boundary Thermal Resistance effect, occurring at the
edges of the chaotic region. Our results are obtained combining ab-initio numerical sim-
ulations for relatively small-sized defects, with the solution of the Boltzmann equation,
which becomes exact in the scaling limit of large, but weak defects.
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1 Introduction

The problem of thermalisation is a paramount question for many facets of physics at the center
of hectic research. The advent of exquisitely precise experimental techniques [1–4] in engi-
neering and probing non-equilibrium quantum states of matter spurred a deep interest in an
apparently simple question: under which conditions a closed system thermalises?

It was believed for long-time that physical systems involving a large number of components
are generally doomed to thermal equilibrium. Nowadays, mechanisms to escape thermalisa-
tion have been identified, such as many-body localization [5], integrability [6], scarring [7,8]
and fragmentation [9]: in all these cases, the system does not fulfill the standard Eigenstate
thermalisation Hypothesis (ETH) [10]. However, beyond spectral properties which are directly
connected to homogeneous settings, it is natural to investigate thermalisation problems in in-
homogeneous scenarios. An ideal laboratory to investigate transport phenomena is offered by
the one dimensional world: here, efficient numerical algorithms [11] and powerful analyti-
cal methods have unveiled a plethora of exciting phenomena, as the suppression of transport
in disordered [12] and confined [13–15] systems, ballistic transport in exactly solvable mod-
els [16, 17] with the possibility of diffusion [18, 19] and superdiffusion [20–22]. In the 1d
world, the role of defects (or impurities) is enhanced since carriers move on a line and cannot
avoid scattering. This setup attracted a great deal of attention, starting from the celebrated
Kane-Fisher problem [23,24] and with a renewed interest in recent times, in particular in the
context of mobile impurities [25–33].

Another relevant aspect of impurities concerns their scrambling properties when embed-
ded in an otherwise non-thermalising environment [34–38]. For the sake of concreteness, let
us consider a bulk Hamiltonian Ĥbulk chosen to be integrable, thus supporting ballistic trans-
port and prepare the system in an homogeneous non-thermal stationary state of Ĥbulk. At
t ≥ 0, the Hamiltonian is locally perturbed and the system evolves in the presence of a de-
fect Ĥ = Ĥbulk + V̂ , with V̂ being constant in time and supported on a finite region around
x = 0. Previous studies focused on the case where the defect preserves some notion of inte-
grability [39–43], or the volume is finite [44–49]. In the latter case, the boundaries scatter
the carriers back to the defect, eventually leading to thermalisation. This is seen also in the
spectral properties of the finite dimensional matrix Ĥ, where chaotic behavior immediately
emerges for arbitrarily weak V̂ [50–53]. On the other hand, integrability-breaking defects in
extended systems remain widely unexplored.

As a consequence of the activation of V̂ , a perturbation spreads ballistically inside a light-
cone centered around the defect [39]. The phase-space distribution of the carriers flowing
out of the defect is of central interest: these excitations are scrambled when passing in the
defect region and it might seem natural to assume a thermal distribution. While this has been
contradicted for small impurities [35], the scenario is less clear at the mesoscopic scale, lying
between impurity physics and thermodynamics: a strongly-interacting extended defect is it-
self a macroscopic system obeying the laws of thermodynamics. Hence, if a stationary state is
reached, thermally distributed carriers should be emitted in the system’s bulk.

Despite the extensive research in quantum systems, the key-point behind this question is
the competing effects between integrability and its breaking within a finite, but extended, re-
gion. Importantly, the analogue scenario can also be engineered within a classical framework.
Reverting to classical physics has the main advantage of being able to efficiently simulate sys-
tem sizes and time scales that are far beyond the capability of present quantum numerical
methods [11], especially in the case of highly excited and interacting states. Indeed, clas-
sical models recently gave important insights and benchmarks in several transport scenarios
connected with integrability and originated first within the quantum context [54–57] and in
this work we will walk through this path as well. Hence, we look at classical systems as an
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Figure 1: A nonequilibrium distribution of carriers nin(k) is injected on the defect,
which at late times acts as a source of carriers spreading ballistically in the bulk
(bottom). The outgoing carrier’s distribution nout(k) is non-thermally distributed
due to the presence of non-thermal regions at the edges of the interacting defect
(BGR).

irreplaceable laboratory to guide our physical intuition, but we frame the very microscopic
mechanism behind our observations within a kinetic picture whose validity is expected to ex-
tend to quantum systems as well.

In this work, we focus on observable features appearing in transport phenomena. We
present a systematic study showing on general grounds that the emitted distribution of carriers
is not thermal.

This remains true even in the extreme situation where the defect is mascroscopically large
and regions deep within the defect are well described by thermal ensembles. This effect can
be interpreted as a generalization of the famous Boundary Thermal Resistance (BTR) [58] for
contact points between two separated phases, featuring a discontinuity in the temperature pro-
file [59–61]. Effects of interfaces have been recently addressed in the quantum case joining
together two different integrable spin chains [62]. In the case under scrutiny, far from the de-
fect the state is well described by a Generalized Gibbs Ensemble (GGE) [6,63] e−

∑

j β jQ j built
on the conserved charges Q j of the integrable Hamiltonian. On the contrary, in the case of ex-
tended defects, the center of the interacting region relaxes to a thermal ensemble e−β(H−µN).
We will show that between these two regimes there exists a finite-size interpolating region
which survives even when the defect is infinitely extended. We call this effect Boundary Gen-
eralized Resistance (BGR) (see Fig. 1). Our claim is based on extensive numerical simulations,
physical arguments and on Boltzmann-kinetic equations for weakly interacting, but extended
defects.

2 The model: classical interacting fields on a lattice

Let ψx be a classical complex field with Poisson brackets {ψx ,ψ∗x ′} = iδx ,x ′ . For the sake of
simplicity, we choose the bulk Hamiltonian to be noninteracting and hence diagonal in the
Fourier space ψ(k) =

∑

x eikxψx

Hbulk =
ˆ π

−π

dk
2π

E(k)ψ∗(k)ψ(k) , (1)

with E(k) the dispersion law, which will be specified later on. The defect is interacting and in
the form

V = λ
∑

x

D(x/L)|ψx |6 . (2)
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The function D(x) has compact support centered around x = 0 and encodes the spatial profile
of the defect, while λ and L parametrize its strength and extension respectively. The choice
of a |ψ|6−interaction is motivated to avoid integrability also in the continuum limit, while
in this case an interaction ∝ |ψ|4 would have been reduced to the integrable Non-Linear
Schroedinger equation. Far from the defect, the state evolves according to the bulk Hamil-
tonian and in the late-time regime it locally equilibrates to the GGE 〈O(t, x)〉 = 〈O〉GGE(t,x)
described by a space-time dependent mode density nt,x(k). The latter obeys a simple kinetic
equation

∂t nt,x(k) + v(k)∂x nt,x(k) = 0 , (3)

with v(k) = ∂kE(k) the group velocity. This equation can be derived from the time evolution
of the two-point correlation function [64], which is directly connected to the mode density
〈ψ∗xψx ′〉 =

´ π
−π

dk
2π eik(x−x ′)nt, x+x′

2
(k). If Hbulk is interacting, one can still write a kinetic equa-

tion within the framework of Generalized Hydrodynamics [16, 17], but its connection with
local observables is less straightforward [65]; we thus opt to work with free systems.

At late times, the solution to the kinetic equation becomes self-similar nt,x(k)→ nζ=x/t(k),
with ζ being called the ray. Note that in this scaling limit any defect covering a finite domain
ends up being shrunk to ζ= 0 and sets the boundary conditions at ζ= 0±: the mode density of
outgoing carriers is determined by ingoing carriers. Outgoing modes at ζ = 0± are identified
by the sign of the velocity v(k) ≶ 0, the ingoing one having opposite sign. In the (incorrect)
assumption of thermalising defect, the outgoing carriers are thermally distributed

n±out(k) =
1

β±(E(k)−µ±)
, (4)

with some effective inverse temperature and chemical potential (β±,µ±), yet to be determined.
Two constraints are found imposing the conservation of energy and density current across the
defect and two more parameters need to be fixed employing some kinetic approach [62]. How-
ever, if parity symmetry around the origin holds, one can probe the very hypothesis of ther-
malising defect without introducing further assumptions, as β+ = β− = β and µ+ = µ− = µ,
with β , µ determined by the incoming carriers (q(k) = {1, E(k)} for the particle and energy
current respectively)

ˆ
v(k)>0

dk q(k)v(k)
�

nin(k)− [β(E(k)−µ)]−1
	

= 0 . (5)

Preliminary numerical observations — Probing the expanding lightcone in the scaling
regime needs prohibitively long timescales and system sizes. These issues can be circumvented
i) focusing on large, but finite systems encompassing the defect and ii) mimicking the infinitely
long systems with suitable dissipative-driven boundaries. See Appendix A for further details.
For reasons due to the forthcoming kinetic analysis, we choose a parabolic energy E(k) = k2

for k ∈ [−π,π] and periodically continued beyond the Brillouin zone, but other choices do not
change the picture. In Fig. 2 a symmetric GGE is pumped into a box-shaped defect. Overall,
we experienced that it is quite hard to observe noticeable drifts from the injected mode density
for a wide choice of sizes and interactions. At fixed L the deviations from the injected density
are not monotonous in the interaction strength, since at λ→ +∞ carries are purely reflected
by an impenetrable barrier. On an intermediate scale of interactions, the outgoing carries
deviate from the injected distribution, but they are far from being thermally distributed. This
can be justified on the basis of kinetic considerations: for finite interactions, there is a non-zero
probability that the moving carrier injected into the defect is reflected back after only a small
number of scattering processes, not sufficient to make it to thermalise. This mechanism causes
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Figure 2: The defect is chosen in the form Eq. (2), having constant interaction λ on L
sites and zero otherwise. We focus on the left edge of the defect and on the outgoing
carrier k < 0. Left: the out distribution for different interactions is compared against
the injected mode density nin (dashed line). Right: maxk |nin(k)− nout(k)| vs λ, for
different sizes L.

carriers to be non-thermally distributed at the edges of the defect, and it is one of the possible
mechanisms at the origin of the Boundary Generalized Resistance, as we depict in Fig. 1.
The natural question we wish to address now is whether the BGR can be suppressed reducing
such an effective barrier, by means of suitable choices of interactions and initial states. For
finite interactions, low-energy carriers will be scattered back before than they can thermalise,
pointing at the case of weak and extended defects as the most interesting regime (see also Fig.
2). This limit is amenable of an analytical analysis via a Boltzmann-kinetic equation, which
nevertheless shows that the BGR still persists.

3 The Boltzmann scaling limit and the Boundary Generalized Resistance

In the limit of weak interactions, one locally describes the system with the mode density as
if it was non-interacting, while the interactions scramble the mode density. The Boltzmann
kinetic equation for weakly interacting systems is a textbook approach [66–69], nevertheless
we provide a detailed derivation for completeness in Appendix B. In the presence of the defect,
the Boltzmann kinetic equation is

∂t nt,x(k) + v(k)∂x nt,x(k)− ∂x[λD(x/L)Ux]∂knt,x(k) = λ
2D2(x/L)Ik[nt,x] . (6)

Above, in addition to the ballistic propagation of carriers, one gets an effective potential
U = 18(〈|ψ|2x〉)

2 and a collision term Ik, whose expression can be found in Appendix B, pre-
cisely in Eq. (B.11). We can finally motivate the choice for E(k): the lattice dispersion law
E(k) = 2(1− cos k) is responsible of well-known divergences in Ik which needs to be properly
regularized (see e.g. [68]), but can be avoided including more complicated hoppings [69].
Here, inspired by the continuum limit, we use the simplest choice E(k) = k2. In the follow-
ing, we are interested in the late-time physics, once the defect has reached a stationary state,
hence we pose ∂t n = 0. The effective potential U acts as a repulsive barrier, hence carriers
with energy smaller than ∼ λ will be reflected before they get the chance to interact, hence
we wish to take λ→ 0. In order to have a non-trivial defect, we rescale its size in such a way
Lλ2 is kept constant.
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3.1 The scaling limit

We now carefully discuss the scaling limit that allows to reduce the effective barrier and en-
hance the role of the interactions. We start by describing the corrections to Eq. (6): the Botz-
mann equation we wrote is an expansion for small values of the interactions and in the deriva-
tives of the mode density, hence it can feature corrections of the form O(λ3), O(λ2∂x nt,x)
and O(λ∂ 2

x nt,x), plus higher order corrections. So far, we have not imposed any relation be-
tween the interaction λ and the lengthscale L, hence each of the corrections enlisted above
can dominate the others with a suitable choice of parameters.

As anticipated, we are interested in the limit of weak interactions λ, but large defect size L:
below we give a more quantitiative discussion, showing the correct scaling indeed keeps λ2 L
finite. In this limit, the corrections mentioned above become negligible and the Boltzmann
equation further simplifies. We start by noticing that in the limit of small λ at L fixed, the
effective potential Ux is dominant over the collision integral. In this regime, Ux acts as a
potential barrier and low-energy carriers are immediately reflected, without having the time
to relax: it is thus clear that in this limit, the scrambling effects of the interactions are not
effective.

Hence, we require a limit where Ux becomes negligible and Ik dominant. This situation
can be achieved in the large L limit. Let us imagine this is the case and that Ux can be ne-
glected: we now impose this condition self-consistently. If this is the case, then nx ,t has a
spatial inhomogeneity dictated by the interaction strength, thus ∂x nx ,y ∼ λ2. The force term
associated with the effective potential has now two contributions

∂x(λD(x/L)Ux) = λL−1D′(x/L)Ux +λD(x/L)∂x Ux , (7)

with D′ being the derivative of D, which is assumed to be a smooth function. Since Ux depends
on the mode density and ∂x nx ,t ∼ λ2, one has λD(x/L)∂x Ux ∼ λ3, hence it is subleading
with respect to the collision term. Besides, all the corrections to Eq. (6) become explicitly
subleading with respect to the collision integral, hence they can be neglected. The first term in
Eq. (7) accounts for the explicit spatial inhomogeneity of D. One can neglect this contribution
with respect to the collision integral if

L−1λ� λ2 ⇒ L� λ−1 . (8)

If this condition holds, in the λ → 0 limit we reach the simplified stationary Boltzmann
equation

v(k)∂x nx(k) = λ
2D2(x/L)I[nx(k)] . (9)

In order to make the role of the interaction explicit, we perform a change of variable

X =

´ x
−∞ dy [D(y/L)]2´∞
−∞ dy [D(y/L)]2

(10)

and define the effective interaction

Λ≡ Lλ2
ˆ ∞
−∞

dx [D(x)]2 , (11)

where the scaling with Lλ2 is made explicit. In these new coordinates, the defect is supported
on the interval X = [0, 1] and the stationary Boltzmann equation reads

v(k)∂X nX (k) = ΛIk[nX ] , (12)

where the boundary conditions at X = {0,1} are set by the injected mode density.
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Figure 3: The Boltzmann scaling (12) is compared to microscopic simulations (mark-
ers) for the mode density on the left of the defect. D(x) is a smoothed step function
(see Appendix C); while changing L, the microscopic interaction λ is adjusted to keep
Λ= Lλ2 = 0.05. The injected mode density (dashed line) at k > 0 is fixed, while the
carriers leaving the interacting region approach the Boltzmann result as L→∞. V R

is obtained setting A= −7.84 (see main text).

If Λ is small, the collisions will essentially not affect the mode density and let it propagate
across the defect unchanged. In the opposite regime, the defect is strongly interacting and
mixes the momenta. We are of course interested in the second case. Notice that Λ can be
made large while fulfilling both the requirements of small interaction λ � 1 and Eq. (8).
Actually, keeping Λ constant and taking λ→ 0 implies Eq. (8).

The computation of the collision term is extremely demanding due to the presence of
multidimensional integrals; here, we devised a new numerical algorithm which significantly
reduces the computational cost (see Appendix C), allowing us to tackle Eq. (12). In Fig. 3, we
benchmark the Boltzmann kinetic equation against microscopic simulations, finding excellent
agreement. At infinite L, the effective potential becomes irrelevant and is indeed absent from
Eq. (12). However, the approach to the scaling limit is rather slow in practice ∼ L−1/4, as we
now discuss.

Let us fix the effective interaction Λ and use as scaling parameter the defect size L: we
now go back to Eq. (6) and analyze the effect of the effective potential U . The reasoning is
as follows: the effective potential acts as a barrier for the incoming carriers and those that
do not have enough energy to overcome it are reflected. These reflected excitations are re-
sponsible of a drift towards the Boltzmann prediction that goes as ∼ L−1/4. More precisely,
we expect a carrier of momentum k to be reflected if its energy is less than the energy barrier
E(k)< λmaxx Ux . Using that E(k) = k2 and assuming the normalization

´∞
−∞ dx [D(x)]2 = 1

for simplicity, we get that momenta such that

|k|< L−1/4Λ1/4
Ç

max
x

Ux (13)

are reflected and do not experience any scrambling. Hence, in order to help the slow
convergence in L, in Fig. 3 we reduced the effect of maxx Ux , while keeping the
same Ik. Indeed, as we show in Appendix B, a renormalization of the interaction (2)
V → V R = λ

∑

x D(x/L)
�

|ψx |6 + A|ψx |2
�

leaves Ik and the scaling to (12) unscathed, but
the effective potential in (6) gets renormalized as U → UR = 18(〈|ψ|2x〉)

2+A): an appropriate
choice of A quickens the convergence to the Boltzmann scaling.
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Figure 4: By numerically solving Eq. (12), we explore the defect in the scaling regime
for different interactions Λ with a constant injected mode density (central panel,
dashed line). Left: density plot of the phase-space density across the defect. As Λ is
increased, the injected peaks are merged into a single central peak that approaches
the thermal distribution. Center: mode density at X = 0.5. Inset: relative distance
from a thermal fit; forΛ= 2, n(k) is almost indistinguishable from a thermal distribu-
tion. Right: outgoing mode density at X = 0 compared with the injected distribution
(dashed) and the thermal prediction (continuous red line). The thermal prediction
fails even for large interactions, despite the center of the defect being essentially
thermal. Inset: density profile across the defect. For large interactions, the system
approaches a homogeneous state in the middle of the defect, with a manifest BGR at
the boundaries.

Once the validity of the method has been assessed, we explore sizes of the defect un-
reachable with microscopic numerical simulations. Intuitively, large values of Λ describe an
extended defect that will eventually behave as a thermodynamic system on its own, thus ther-
malising in its center. This is indeed shown in Fig. 4 where we explored the phase space across
the defect: for large Λ, the mode density becomes approximately homogeneous in the deep
bulk and is well-fitted by a thermal distribution. Nevertheless, the BGR takes place: carri-
ers around the edges remain out-of-equilibrium and the outgoing momentum distribution is
clearly non-thermal, despite thermal equilibrium has been attained at the center.

The linearized regime — It is natural to investigate the response of the defect to small
perturbations around homogeneous thermal states nt,x(k) = nth(k) + εδnt,x(k) with ε small.
In the scaling limit, the homogeneous thermal state nth(k) is obviously a stationary solution
of Eq. (12) and one can study weak deviations from it. In this regime, the collision integral in
Eq. (12) is linearized and is computed only once, so that one can access much larger defects
(see Appendix C), confirming the existence of the BGR. Taking advantage of the linearity of
the problem, in Fig. 5 we injected an asymmetric perturbation δn(k) = sin(k) for k > 0
and δn(k) = 0 for k < 0 over a thermal state with β = µ = 1. For large interactions, the
transmitted part vanishes (inset) proving that in the bulk of a large defect one relaxes to the
unperturbed thermal state. In this limit, all carriers are reflected back, but their distribution
remains non-thermal.
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Figure 5: Reflected mode density obtained with the linearized Boltzmann equation
(see main text for parameters). Inset: transmitted mode density. For large effective
interactions Λ, all the carriers are reflected back.

4 Conclusions

In this work, we investigated the scrambling effects of thermalising mesoscopic impurities em-
bedded in a non-thermalising environment. We show how carriers flowing out from the defect
are in general not thermally distributed even in the extreme case of extended defects which
thermalise in the center. This is due to a generalization of the Boundary Thermal Resistance,
taking place at the interface between the defect and the bulk of the system. In this work,
we focus on a classical model of interacting fields on a lattice: this allowed us to perform
large-scale numerical simulations far beyond the capability of the state-of-the-art numerical
quantum algorithms. However, the underlying mechanism can be framed within a Boltzmann-
kinetic equation whose applicability can be extended to quantum systems [68,69]. Hence, the
Boundary Generalized Resistance is envisaged to take place in quantum setups as well. Sev-
eral questions remain open for the future. First, it would be useful to formulate the BGR at
a junction, with a minimal set of phenomenological parameters (∼ generalised resistances)
which encode the transport properties of multiple conserved quantities, without the need to
fully solve the dynamics. Secondly, here, we focused on the case where the bulk Hamiltonian
is free and interacting-integrable bulk Hamiltonians are a natural next step to be addressed:
the study of collision terms in the framework of Generalized Hydrodynamics is still at its in-
fancy [70–72], but an analysis in the same spirit of our kinetic equation can be envisaged.
Beside integrability, there are several ways to hinder thermalisation while retaining non-trivial
transport, such as Hilbert space fragmentation [9,73] and it is natural to wonder about inter-
faces between fragmenting and non-fragmenting Hamiltonians.

Funding information AB acknowledges support from the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2111-
390814868.
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A The microscopic simulations: mimicking infinite systems with
dissipative-driven boundaries

As we anticipated in the main text, while focusing on classical systems allows us to explore
much longer times and sizes when compared with the quantum case, probing mesoscopic
defects appears rather challenging. Simulating large systems with open or periodic boundary
conditions sets a maximum timescale, after which carriers leaving the defect will hit the bound-
ary and then come back to the defect. In order to avoid this effect, we simulate the infinitely
large systems by means of suitable driven-dissipative boundaries. The physical picture behind
this method is the following: in the bulk and far from the defect, carriers at different momenta
are non-interacting and can be thus independently split into ingoing and outgoing carrier. By a
convenient choice of driving and dissipation one can i) remove the outgoing carriers from the
system in such a way they do not come back to the defect and ii) inject a tunable distribution
of carriers which remains constant in time. Enforcing these two points, we trustfully simulate
the action of an infinitely extended system on the defect region. Hereafter, we discuss the de-
tails of such an implementation and explain how, by tuning the driving, we can shape the GGE
distribution of the injected carriers at will. Let us consider the following equation of motion

i∂tψx =

�

∑

x ′
Ax−x ′ψx ′

�

+λD(x/L)|ψx |2ψx − γx

�

iψx + ξx(t)
�

, (A.1)

where Ax is such that E(k) =
∑

x eikxAx , while γx iψx is responsible for dissipative dynamics
(it makes the time evolution non-unitary) and ξx(t) is a gaussian random noise with zero
mean and variance

〈ξ∗t,xξt ′,x ′〉= δ(t − t ′)
ˆ

dk
2π

eik(x−x ′)s(k) . (A.2)

In the absence of dissipation and noise, this equation can be derived from the Hamiltonian
(1) (2). We choose γx to be weakly inhomogeneous, in such a way it is absent on the defect.
Carriers traveling across the dissipative region decay on a time scale ∼ 1/γx . We tune the
dissipation in such a way they decay before reaching the edges of the system, never coming
back to the defect. On the contrary, the external drive creates excitations in a controlled way,
allowing for a determination of the injected mode density. More specifically, we engineer the
following setup

1. The defect covers a region of size L centered around zero, namely [−L/2, L/2].

2. The whole system has length L̄ ≥ L and covers the region [− L̄/2, L̄/2]. We impose
periodic boundary conditions on the whole system, but other boundary conditions are
equivalent. L̄ must be larger than L, but it is not needed L̄ � L. The conditions on L̄
will be clear soon.

3. We choose γx to be a smooth positive function, acting non trivially in the regions
[− L̄/2,− L̄/2 + b] and [ L̄/2 − b, L̄/2] and zero otherwise. The size of the boundary
region b is large, but we keep the dissipative boundaries well separate from the defect.
In particular, we wish to keep an extended region evolving without dissipation neither
defect. This region is used to numerically compute the mode density distribution, as
clarified below.

4. In the limit of weak and smooth γx , one can describe the boundaries with a kinetic
equation

∂t nt,x(k) + ∂x(v(k)nt,x(k)) = −2γx nt,x(k) + γx s(k) , (A.3)
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Figure 6: Sketch of the setup used for the microscopic simulations.

which is valid far from the defect and whose derivation is postponed. The stationary
case ∂t nt,x(k) = 0 can be easily numerically found taking advantage of the diagonality
in the k space and the mode density injected on the defect determined as a function of
s(k). Tuning s(k), one can change the distribution of the carriers injected into the defect.

5. From a zero field configuration ψx = 0, we let the system evolve with the equation of
motions (A.1) and we follow the time evolution of several observables. We evolve for
very long times until we are sure a stationary state is reached. At this point, we start
sampling the observables of interest: we keep on time-evolving the field configuration
and consider the time average of the observables, taking advantage that the system
is self averaging once the steady state is attained. In particular, the mode density is
obtained locally computing 〈ψ∗x+yψx〉 with x far from both the dissipative boundaries
and the defect. Then, the Fourier transform of the correlator is taken, obtaining the
mode density.

In Fig. 6, we provide a sketch of the setup. We finally discuss a quick derivation of Eq. (A.3).
For the sake of simplicity, we derive the effect of the dissipation in the homogeneous case: the
(weak)inhomogeneous case is then recovered promoting γ to be inhomogeneous and adding
the gradient term in (A.3). The microscopic equation of motion is diagonal in the momentum
space i∂tψ(k) = E(k)ψ(k)−iγψ(k)+γξ(t, k)withψ(k) and ξ(t, k) be the Fourier transform of
ψx and ξx(t) respectively. Then, the mode density is defined from the correlation of the fields
〈ψ∗(k)ψ(q)〉 = δ(k − q)n(k): computing its time derivative from the microscopic equations
one easily gets ∂t n(k) = −2γn(k) + γs(k), which is promoted to Eq. (A.3) once γ is made
weakly inhomogeneous.

B Derivation of the Boltzmann equation

The derivation of the Boltzmann kinetic equation for weakly interacting models recurs in sev-
eral instances in the literature, see e.g. Refs. [66–69]. Here, we wish to provide the expression
for the collision intergral and a quick derivation. Besides, for the sake of simplicity, since we fo-
cus on the collision integral we can work in the homogeneous case. Then, the kinetic equation
can be promoted to be inhomogeneous adding the proper gradient terms. For the derivation,
we follow [69] and the strategy is summarized here below:

1. We write the equation of motion for the two point correlator in Fourier space, from which
we can extract the mode density. Since the equations are non linear, the time derivative
of the two point correlator couples to higher order correlators. Nevertheless, in the weak
interacting limit these objects are small O(λ).

2. We write the equation of motion for higher point correlators and we truncate them to
the first order in λ. As we will see, this truncation amounts to consider only two-point
correlators in the equation of motion. Hence, these equations can be solved and fed into
the equations of the previous point, resulting in a Boltzmann equation which is closed
for the two point correlator (or equivalently mode density).
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We consider Hamiltonians in the following form

H =
∑

x x ′
Ax−x ′ψ

∗
xψx ′ +λ

∑

x

V(|ψx |2) , (B.1)

where we recall Ax is real and E(k) =
∑

x eikxAx and the interaction is a power-expandable
function

V(x) =
∑

`

c`
`!

x` , (B.2)

with proper coefficients c`. In the main text, we focus on the case where c` is non zero for
` = 3 and vanishes otherwise, but we wish to address the more general case. We now write
the equations of motion for 〈ψ∗xψx ′〉

i∂t〈ψ∗xψx ′〉= −λ〈V ′(|ψx |2)ψ∗xψxψx ′〉+λ〈ψ∗xV
′(|ψx ′ |2)ψ∗x ′ψx ′〉 . (B.3)

We explicitly use translational invariance which cancels terms in the form
∑′

x ′ Ax ′−x ′′〈ψ∗xψx ′′〉
on the right hand side. Above, V ′(x) = ∂xV(x). On the right hand side, multipoint correlators
appear, hence we now consider the equation of motion for these objects

i∂t〈
∏

i

ψ∗x i

∏

i

ψyi
〉=

∑

i′

∑

z

Ax i′−z〈ψ∗z
∏

i 6=i′
ψ∗x i

∏

i

ψyi
〉 −

∑

i′

∑

z

Ayi′−z〈
∏

i

ψ∗x i
ψz

∏

i 6=i′
ψyi
〉

λ
∑

`

c`+1

`!

�

∑

i′
〈
∏

i

ψ∗x i
|ψyi′

|2`ψyi′

∏

i 6=i′
ψyi
〉 −

∑

i′
〈|ψx i′

|2`ψ∗x i′

∏

i 6=i′
ψ∗x i

∏

i

ψyi
〉
�

. (B.4)

So far, no approximation has been made. As a next step, we divide the cor-
relator in its connected parts and it is immediate to notice the general structure
∂t〈...〉c = λ[gaussian part] +O(λ2). Hence, at the price of neglecting O(λ2) terms we trun-
cate at the gaussian level. Afterwards, once the multipoint connected correlator is plug in Eq.
(B.3) we will get a∝ λ2 term plus O(λ3) neglected corrections, due to the already present λ
prefactor in Eq. (B.3). Focusing on the connected part of Eq. (B.4) and using the mentioned
truncation, one gets

i∂t〈
∏

i

ψ∗x i

∏

i

ψyi
〉c =

∑

i′

∑

z

Ax i′−z〈ψ∗z
∏

i 6=i′
ψ∗x i

∏

i

ψyi
〉c −

∑

i′

∑

z

Ayi′−z〈
∏

i

ψ∗x i
ψz

∏

i 6=i′
ψyi
〉c

+λ
∑

`

c`+1
(`+ 1)!〈|ψ|2〉`−n+1

(`− n+ 1)!

�

∑

i′

∏

i

〈ψ∗yi
ψx i′
〉
∏

i 6=i′
〈ψ∗x i′

ψx i
〉−

∑

i′

∏

i

〈ψ∗yi′
ψx i
〉
∏

i 6=i′
〈ψ∗yi

ψyi′
〉
�

. (B.5)

Above, 〈|ψ|2〉 ≡ 〈|ψx |2〉 for any point due to translational invariance and acts as a renor-
malization of the interaction. This equation is better expressed in the Fourier space, where the
two point correlator becomes the mode density 〈ψ∗xψy〉 =

´ dk
2π eik(x−y)n(k). We define the

multipoint connected correlator in the momentum space as

〈
n
∏

i=1

ψ∗x i

n
∏

i=1

ψyi
〉c =
ˆ

dnk
(2π)n

dnq
(2π)n

ei
∑

i ki x i−i
∑

i qi yi C({ki}|{qi})2πδ

�

∑

i

ki −
∑

i

qi

�

. (B.6)
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The Dirac delta in the momentum space ensures the translational invariance and must be
interpreted modulus 2π, since we have a finite Brillouin zone. Eq. (B.5) is then rewritten in
the momentum space as

i∂t C({ki}|{qi}) =

�

∑

i

(E(qi)− E(ki))

�

C({ki}|{qi})

+
∑

`

c`+1
(`+ 1)!〈|ψ|2〉`−n+1

(`− n+ 1)!

∏

i

n(ki)n(qi)
∑

i

�

1
n(qi)

−
1

n(ki)

�

. (B.7)

We now time-integrate these equations in the following approximation. The mode density n
evolves on a ∼ λ−1 time scale, as it is clear from (B.3). This time scale is much larger than
the dephasing time scale set by the energy E(k), hence in the limit of weak interaction we can
time integrate the above equation as if n(k) was constant in time, which results in

C({ki}|{qi}) =

−λ

�

∑

`

c`+1
(`+ 1)!〈|ψ|2〉`−n+1

(`− n+ 1)!

�∏

i n(ki)n(qi)
∑

i

�

[n(qi)]−1 − [n(ki)]−1
�

∑

i E(qi)−
∑

i E(ki)− i0+
. (B.8)

As a final step, this expression is plug into Eq. (B.3) and everything is expressed in the mo-
mentum space, where the Boltzmann equation is most clearly written. In doing so, one should
pay attention that in Eq. (B.3) there are multipoint correlators, while C({ki}|{qi}) is only the
connected part. Building on the fact that connected correlator are order λ, we can use the
truncation

〈(|ψx |2`)ψxψx ′〉= (gaussian part)+
∑

a

�

`+ 1
a

��

`

a

�

a!〈|ψ|2〉a〈(ψ†
x)
`+1−aψ`−a

x ψx ′〉c + ... .

(B.9)
The gaussian part in the above does not contribute to Eq. (B.3) and after a rearrangement of
the terms one finally gets

∂t n(k) = λ
2Ik[n] , (B.10)

with

Ik[n] = λ
2
∑

`

C`(|ψ|2)
ˆ

d`−1k
(2π)`−1

d`q
(2π)`

2πδ

�

∑

i

ki −
∑

i

qi

�

2πδ

�

∑

i

E(qi)−
∑

i

E(ki)

�

×

∏̀

i=1

n(ki)n(qi)
∑̀

i=1

�

1
n(ki)

−
1

n(qi)

�

�

�

�

�

k1=k

, (B.11)

where the coefficients C` are (we recall that ci are the Taylor coefficient of the interaction
(B.2))

C`(|ψ|2) =
∑

a,s

c`+acs
(`+ a)!

a!`!
s!

(`− 1)!(s− `)!
(〈|ψ|2〉)s−`+a . (B.12)

This concludes the derivation of the collision integral Ik[n]. We notice that it can be easily
checked that the total number of particles and energy,

´ dk
2πn(k) and

´ dk
2π E(k)n(k) respectively,

are conserved by Eq. (B.10). Moreover, thermal states n(k) = [β(E(k)−µ)]−1 are stationary
solutions for any temperature and chemical potential, as it should be.

It should be stressed that the presence of multidimensional integrals in Eq. (B.11) is a
mayor bottleneck in its numerical evaluation, especially for high dimensionality. The integral
can be performed by means of Metropolis methods (see eg. Ref. [71]), but this approach is
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very costly already in the homogeneous case, hence the inhomogeneous Boltzmann equation
(where the collision integral must be computed at each point on the space grid) seems out of
reach. In order to tackle these technical difficulties, we devised a new algorithm presented in
the next section, which can efficiently compute Ik. Most importantly, its complexity remains
constant increasing the dimensionality of the integrals appearing in Eq. (B.11), making it very
suited also to access many-body interactions.

C The numerical solution of the Boltzmann equation

Our main interest resides in finding the stationary solution of the inhomogeneous Boltzmann
equation in the scaling limit (12). In order to do so, we see Eq. (12) as the stationary state of

∂t nX (k) + v(k)∂X nX (k) = ΛIk[nX ] . (C.1)

Hence, we numerically solve the above equation until a stationary solution is reached. We
discretize the space in Eq. (C.1) in an uniform grid {X i = dX (i − 1/2)}Ni=1 with spacing
dX = 1/(N + 1) and the derivative is Eq. (C.1) is discretized with left or right increments
depending on the sign of the velocity

∂t nX i
(k) + v(k)

�

θ (v(k))
nX i
(k)− nX i−1

(k)

dX
+ θ (−v(k))

nX i+1
(k)− nX i

(k)

dX

�

= ΛIk[nX i
] . (C.2)

Above, θ (x) is the Heaviside Theta function and the mode density in X0 and XN+1 is fixed by
the injected mode density nX0

(k) = nXN+1
(k) = nin(k). Notice that the velocity-dependent dis-

cretization of the derivatives ensures the correct coupling with the boundary conditions. This
spatial discretization is then also further discretized in the momentum space on an uniform
grid, then the time evolution is Trotterized with a finite dt and the mode density is alternatively
evolved with the kinetic term and with the collision integral

n′X i
(t, k) = nX i

(t, k)− dt v(k)

�

θ (v(k))
nX i
(t, k)− nX i−1

(t, k)

dX

+θ (−v(k))
nX i+1

(t, k)− nX i
(t, k)

dX

�

, (C.3)

nX i
(t + dt, k) = n′X i

(t, k) + dtΛ Ik [n
′
X i
(t)] . (C.4)

The stability of the algorithm requires dt < dX/maxk |v(k)|. With the choice E(k) = k2 one
of course has maxk |v(k)| = 2π. We are now left out with the challenging task of computing
Ik. This can be greatly simplified looking at Ik in the Fourier space. We define

Ĩ j =
ˆ π

−π

dk
2π

eik jIk . (C.5)

In the same spirit, we define the auxiliary functions

F j(τ) =
ˆ

dp
2π

ei jp+iτE(p)n(p) G j(τ) =
ˆ

dk
2π

ei jp+iτE(k) , (C.6)

where τ plays the role of an auxiliary time. Then, it is a simple exercise to see that Eq.(B.11)
can be rewritten as

Ĩ j =
ˆ ∞
−∞

dτ
∞
∑

j′=−∞

∞
∑

`=1

C`(|ψ|2)|F j′(τ)|2(`−1) ×

�

(`− 1)
F∗j′(τ)G j′(τ)

F j′(τ)
F j′− j(τ) + F∗j′(τ)G j′− j(τ)− `F j′− j(τ)G

∗
j′(τ)

�

. (C.7)
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Figure 7: We provide the data for different spatial discretizations in one of the cases
analyzed in Fig. 4, focusing on the example Λ = 1. Left: we plot the mode density
on the first site of the discretization. Right: we focus on the central site. Symbols
are the numerical solution of the stationary state for different number of sites N in
the spatial discretization and the extrapolated data. The dashed line is the injected
mode density, the red continuum line on the right panel is the thermal fit based on
the extrapolated data. See the text for further discussion.

Hence, the multidimensional integral has been converted in a sort of auxiliary quantum me-
chanical problem, where the wavefunctions F j and G j live on an infinite lattice and the collision
integral is obtained by the time integration of a non-linear observable. Hence, this amounts to
a two-dimensional integration, regardless the dimensionality of the integrals in the momentum
space, with a large boost in efficiency. In practice, we proceed as it follows. We pick two large
integers M � M̃ , the auxiliary system lives on a lattice [−M/2, M/2] and periodic boundary
conditions are assumed. For τ = 0, G j(0) = δ j,0, while F j(0) is numerically computed from
the mode density n(k), then F j is truncated in such a way F| j|>M̃/2 = 0. This procedure keeps
n(k) smooth during the real time evolution. Then, the wavefunctions F j and G j are evolved
in the auxiliary time τ in steps dτ and the value of Ĩ j is updated. The auxiliary time evolu-
tion proceeds until a maximum cutoff T , which is set by the system’s size. In practice, one
needs M > M̃ + 2maxk |v(k)|T . Overall, the computational cost of computing I j scales as
∝ (dτ)−1T M log M : the ∼ M log M scaling is due to the fact we use a fast Fourier transform
to go back and forth from p to j space to compute the time evolution of F j and G j , as well as
the convolution in Eq. (C.7).

The values of the discretizations and truncations are adjusted until convergence is attained.
The algorithm conserves the particle density up to machine precision, while the energy con-
servation depends on the choice of the parameters. For the simulations, we used M̃ = 28,
M = 212, T = 130 and dτ = 0.03 and the momenta are discretized on a grid of 28 points.
With this choice the energy is conserved up to 5 × 10−4. For what concerns the spatial dis-
cretization in Eq. (C.2), this largely depends whether we are tackling the full Boltzmann equa-
tion or the linearized version. Indeed, in the second case the linearized collision integral is
computed once for all with the same methods, the large matrix is stored and then used for the
time evolution. This allows us to consider very fine spatial discretizations (up to 200 points)
and easily attain convergence. In the non-linear case, the collision integral must be computed
at each time step and for each spatial point: this is the most costly part. Hence, in this case
we consider {X i}Ni=1 with N = {11, 21,41} and then extrapolate. In Fig. 7 we focus on one
example among the cases provided in Fig. 4, namely the one with interaction Λ = 1. On the
left panel we provide the profile of the mode density on the first site of the discretization X1 for
the case N = {11,21, 41} and then the extrapolated value. We used a quadratic extrapolation
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1/N up to the quadratic order. For k < 0, the carriers are leaving the defect and are of central
interest for Fig. 4. For k > 0 the carriers have been just injected on the defect and, by con-
tinuity, they should be described by the injected mode density (dashed line). We experience
slow convergence in particular for small positive momenta. This is expected, since we are very
far from equilibrium, hence the collision term gives important contributions. Looking at the
kinetic equation v(k)∂x n= Ik[n], one immediately see that small momenta s.t. v(k)∼ 0 have
bigger gradients in the mode density, hence a slower convergence in the spatial discretization
is expected. However, the quadratic extrapolation well captures the k > 0 behavior, which
supports the correctness of the extrapolation also in the k < 0 case. In the right panel we
provide the mode density in the center of the defect. Here, the interactions had time to bring
the mode density closer to the thermal state (albeit there is still a clear distinction), hence
the collision integral has a smaller contribution. As a consequence, the gradient in the mode
density is reduced and the convergence in the spatial discretization enhanced.
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ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018),
doi:10.1038/s41567-018-0137-5.

[9] P. Sala, T. Rakovszky, R. Verresen, M. Knap and F. Pollmann, Ergodicity breaking aris-
ing from Hilbert space fragmentation in dipole-conserving Hamiltonians, Phys. Rev. X 10,
011047 (2020), doi:10.1103/PhysRevX.10.011047.

[10] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018),
doi:10.1088/1361-6633/aac9f1.

16

https://scipost.org
https://scipost.org/SciPostPhys.12.2.060
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys2205
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1088/1742-5468/2016/06/064001
https://doi.org/10.1088/1742-5468/2016/06/064001
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevX.10.011047
https://doi.org/10.1088/1361-6633/aac9f1


SciPost Phys. 12, 060 (2022)

[11] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[12] S. Gopalakrishnan and S. A. Parameswaran, Dynamics and transport at the threshold of
many-body localization, Phys. Rep. 862, 1 (2020), doi:10.1016/j.physrep.2020.03.003.

[13] M. Kormos, M. Collura, G. Takács and P. Calabrese, Real-time confinement fol-
lowing a quantum quench to a non-integrable model, Nat. Phys. 13, 246 (2016),
doi:10.1038/nphys3934.

[14] P. P. Mazza, G. Perfetto, A. Lerose, M. Collura and A. Gambassi, Suppression of transport
in nondisordered quantum spin chains due to confined excitations, Phys. Rev. B 99, 180302
(2019), doi:10.1103/PhysRevB.99.180302.

[15] A. Lerose, F. M. Surace, P. P. Mazza, G. Perfetto, M. Collura and A. Gambassi, Quasilocal-
ized dynamics from confinement of quantum excitations, Phys. Rev. B 102, 041118 (2020),
doi:10.1103/PhysRevB.102.041118.

[16] O. A. Castro-Alvaredo, B. Doyon and T. Yoshimura, Emergent hydrodynamics in
integrable quantum systems out of equilibrium, Phys. Rev. X 6, 041065 (2016),
doi:10.1103/PhysRevX.6.041065.

[17] B. Bertini, M. Collura, J. De Nardis and M. Fagotti, Transport in out-of-equilibrium X X Z
chains: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016),
doi:10.1103/PhysRevLett.117.207201.

[18] J. De Nardis, D. Bernard and B. Doyon, Hydrodynamic diffusion in integrable systems,
Phys. Rev. Lett. 121, 160603 (2018), doi:10.1103/PhysRevLett.121.160603.

[19] J. De Nardis, D. Bernard and B. Doyon, Diffusion in generalized hydrodynamics and quasi-
particle scattering, SciPost Phys. 6, 049 (2019), doi:10.21468/SciPostPhys.6.4.049.

[20] J. De Nardis, S. Gopalakrishnan, E. Ilievski and R. Vasseur, Superdiffusion from emer-
gent classical solitons in quantum spin chains, Phys. Rev. Lett. 125, 070601 (2020),
doi:10.1103/PhysRevLett.125.070601.

[21] E. Ilievski, J. De Nardis, M. Medenjak and T. Prosen, Superdiffusion in one-
dimensional quantum lattice models, Phys. Rev. Lett. 121, 230602 (2018),
doi:10.1103/PhysRevLett.121.230602.

[22] E. Ilievski, J. De Nardis, S. Gopalakrishnan, R. Vasseur and B. Ware, Superuniversality of
superdiffusion, Phys. Rev. X 11, 031023 (2021), doi:10.1103/PhysRevX.11.031023.

[23] C. L. Kane and M. P. A. Fisher, Transport in a one-channel Luttinger liquid, Phys. Rev. Lett.
68, 1220 (1992), doi:10.1103/PhysRevLett.68.1220.

[24] C. L. Kane and M. P. A. Fisher, Transmission through barriers and resonant tunnel-
ing in an interacting one-dimensional electron gas, Phys. Rev. B 46, 15233 (1992),
doi:10.1103/PhysRevB.46.15233.

[25] M. Schecter, D. M. Gangardt and A. Kamenev, Dynamics and Bloch oscillations of
mobile impurities in one-dimensional quantum liquids, Ann. Phys. 327, 639 (2012),
doi:10.1016/j.aop.2011.10.001.

[26] M. Schecter, A. Kamenev, D. M. Gangardt and A. Lamacraft, Critical velocity of a mo-
bile impurity in one-dimensional quantum liquids, Phys. Rev. Lett. 108, 207001 (2012),
doi:10.1103/PhysRevLett.108.207001.

17

https://scipost.org
https://scipost.org/SciPostPhys.12.2.060
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.physrep.2020.03.003
https://doi.org/10.1038/nphys3934
https://doi.org/10.1103/PhysRevB.99.180302
https://doi.org/10.1103/PhysRevB.102.041118
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1103/PhysRevLett.125.070601
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevX.11.031023
https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1103/PhysRevB.46.15233
https://doi.org/10.1016/j.aop.2011.10.001
https://doi.org/10.1103/PhysRevLett.108.207001


SciPost Phys. 12, 060 (2022)

[27] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina and E. Demler, Universal many-
body response of heavy impurities coupled to a Fermi sea: A review of recent progress, Rep.
Prog. Phys. 81, 024401 (2018), doi:10.1088/1361-6633/aa9593.

[28] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B. Zvonarev, E. Demler and H.-
C. Nägerl, Bloch oscillations in the absence of a lattice, Science 356, 945 (2017),
doi:10.1126/science.aah6616.

[29] A. Bastianello and A. De Luca, Nonequilibrium steady state generated by a mov-
ing defect: The supersonic threshold, Phys. Rev. Lett. 120, 060602 (2018),
doi:10.1103/PhysRevLett.120.060602.

[30] A. Bastianello and A. De Luca, Superluminal moving defects in the Ising spin chain, Phys.
Rev. B 98, 064304 (2018), doi:10.1103/PhysRevB.98.064304.

[31] A. De Luca and A. Bastianello, Entanglement front generated by an impurity trav-
eling in an isolated many-body quantum system, Phys. Rev. B 101, 085139 (2020),
doi:10.1103/PhysRevB.101.085139.

[32] M. Knap, C. J. M. Mathy, M. Ganahl, M. B. Zvonarev and E. Demler, Quan-
tum flutter: Signatures and robustness, Phys. Rev. Lett. 112, 015302 (2014),
doi:10.1103/PhysRevLett.112.015302.

[33] O. Lychkovskiy, Perpetual motion and driven dynamics of a mobile impurity in a quantum
fluid, Phys. Rev. A 91, 040101 (2015), doi:10.1103/PhysRevA.91.040101.

[34] M. Brenes, E. Mascarenhas, M. Rigol and J. Goold, High-temperature coherent trans-
port in the X X Z chain in the presence of an impurity, Phys. Rev. B 98, 235128 (2018),
doi:10.1103/PhysRevB.98.235128.

[35] A. Bastianello, Lack of thermalization for integrability-breaking impurities, Europhys. Lett.
125, 20001 (2019), doi:10.1209/0295-5075/125/20001.

[36] M. Brenes, T. LeBlond, J. Goold and M. Rigol, Eigenstate thermalization in
a locally perturbed integrable system, Phys. Rev. Lett. 125, 070605 (2020),
doi:10.1103/PhysRevLett.125.070605.

[37] L. F. Santos and A. Mitra, Domain wall dynamics in integrable and chaotic spin-1/2 chains,
Phys. Rev. E 84, 016206 (2011), doi:10.1103/PhysRevE.84.016206.

[38] C. Schönle, D. Jansen, F. Heidrich-Meisner and L. Vidmar, Eigenstate thermalization hy-
pothesis through the lens of autocorrelation functions, Phys. Rev. B 103, 235137 (2021),
doi:10.1103/PhysRevB.103.235137.

[39] B. Bertini and M. Fagotti, Determination of the nonequilibrium steady state emerging from
a defect, Phys. Rev. Lett. 117, 130402 (2016), doi:10.1103/PhysRevLett.117.130402.

[40] M. Ljubotina, S. Sotiriadis and T. Prosen, Non-equilibrium quantum transport in
presence of a defect: The non-interacting case, SciPost Phys. 6, 004 (2019),
doi:10.21468/SciPostPhys.6.1.004.

[41] D. Bernard, B. Doyon and J. Viti, Non-equilibrium conformal field theories with impurities,
J. Phys. A: Math. Theor. 48, 05FT01 (2015), doi:10.1088/1751-8113/48/5/05ft01.

[42] O. Gamayun, O. Lychkovskiy and J.-S. Caux, Fredholm determinants, full counting statis-
tics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains,
SciPost Phys. 8, 036 (2020), doi:10.21468/SciPostPhys.8.3.036.

18

https://scipost.org
https://scipost.org/SciPostPhys.12.2.060
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.1126/science.aah6616
https://doi.org/10.1103/PhysRevLett.120.060602
https://doi.org/10.1103/PhysRevB.98.064304
https://doi.org/10.1103/PhysRevB.101.085139
https://doi.org/10.1103/PhysRevLett.112.015302
https://doi.org/10.1103/PhysRevA.91.040101
https://doi.org/10.1103/PhysRevB.98.235128
https://doi.org/10.1209/0295-5075/125/20001
https://doi.org/10.1103/PhysRevLett.125.070605
https://doi.org/10.1103/PhysRevE.84.016206
https://doi.org/10.1103/PhysRevB.103.235137
https://doi.org/10.1103/PhysRevLett.117.130402
https://doi.org/10.21468/SciPostPhys.6.1.004
https://doi.org/10.1088/1751-8113/48/5/05ft01
https://doi.org/10.21468/SciPostPhys.8.3.036


SciPost Phys. 12, 060 (2022)

[43] L. Rossi, F. Dolcini, F. Cavaliere, N. Traverso Ziani, M. Sassetti and F. Rossi, Signature of
generalized Gibbs ensemble deviation from equilibrium: Negative absorption induced by a
local quench, Entropy 23, 220 (2021), doi:10.3390/e23020220.

[44] L. F. Santos, Integrability of a disordered Heisenberg spin-1/2 chain, J. Phys. A: Math. Gen.
37, 4723 (2004), doi:10.1088/0305-4470/37/17/004.

[45] M. Brenes, J. Goold and M. Rigol, Low-frequency behavior of off-diagonal matrix elements
in the integrable X X Z chain and in a locally perturbed quantum-chaotic X X Z chain, Phys.
Rev. B 102, 075127 (2020), doi:10.1103/PhysRevB.102.075127.

[46] E. J. Torres-Herrera and L. F. Santos, Local quenches with global effects in interacting quan-
tum systems, Phys. Rev. E 89, 062110 (2014), doi:10.1103/PhysRevE.89.062110.

[47] E. J. Torres-Herrera, D. Kollmar and L. F. Santos, Relaxation and thermalization of iso-
lated many-body quantum systems, Phys. Scr. T165, 014018 (2015), doi:10.1088/0031-
8949/2015/t165/014018.
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