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Abstract

We study several simplified dark matter (DM) models and their signatures at the LHC
using neural networks. We focus on the usual monojet plus missing transverse energy
channel, but to train the algorithms we organize the data in 2D histograms instead of
event-by-event arrays. This results in a large performance boost to distinguish between
standard model (SM) only and SM plus new physics signals. We use the kinematic mono-
jet features as input data which allow us to describe families of models with a single data
sample. We found that the neural network performance does not depend on the simu-
lated number of background events if they are presented as a function of S/+/B, for
reasonably large B, where S and B are the number of signal and background events per
histogram, respectively. This provides flexibility to the method, since testing a particular
model in that case only requires knowing the new physics monojet cross section. Fur-
thermore, we also discuss the network performance under incorrect assumptions about
the true DM nature. Finally, we propose multimodel classifiers to search and identify
new signals in a more general way, for the next LHC run.
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1 Introduction

The standard model of particles (SM) provides a remarkably successful description of the el-
ementary particle phenomena explored so far without precedent. After the Higgs boson dis-
covery at the Large Hadron Collider (LHC) [1, 2], the last particle predicted by the theory
undetected until then, the SM is complete. However, there are observations that point to-
wards physics beyond the SM. One of the most intriguing enigmas in modern science is the
presence of dark matter (DM) in the Universe revealed by cosmological observations [3-5].
The SM provides no viable DM candidate, and despite vast efforts in both experimental and
theoretical aspects, its nature remains elusive.

In this work we focus on the usual monojet plus missing transverse energy channel to dis-
criminate DM signatures at the LHC. To be as general as possible, we consider some simplified
models to represent several possible DM frameworks. Some examples of DM collider searches
with simplified models, including monojet analysis, can be found in Refs. [6-19]. We study


https://scipost.org
https://scipost.org/SciPostPhys.12.2.063

Scil SciPost Phys. 12, 063 (2022)

Axion-Like Particles (ALP) as DM, and three theoretical models with a mediator (with spin-0,
1 and 2) and a DM candidate.

In this context, the rise of machine learning (ML) techniques applied to high energy physics
in recent years [20-22] provides a powerful tool to analyze an ever increasing amount of
data’. Even more, new algorithms developed recently, like deep neural networks (DNN), can
handle subtle signals that would be very hard to disentangle from the SM background with
conventional methods [24]. These new techniques are increasingly being applied to hunt DM
signatures in collider searches [25, 26], direct detection experiments [27], and cosmological
probes [28-30].

We employ DNN with a supervised approach that would allow us to obtain good perfor-
mances, but implies the construction of labeled data samples for every scenario considered.
To tackle this issue, we use the kinematic monojet features as input data and study the distri-
butions of our models. Since the coupling values and the type of DM candidate do not modify
the kinematic distributions, a family of models can be described with the same data sample.
Furthermore, the frameworks with a mediator have two other free parameters, the mediator
and DM masses. We will see that only one of the dark sector masses modifies the kinematic
variables, if we divide the parameter space according to the mediator status (on-shell or off-
shell). These facts decrease the number of data samples needed to accurately represent a DM
scenario in a general way.

To train the algorithms we organize the data in 2D histograms instead of event-by-event
arrays. The joint distribution of both monojet transverse momentum and pseudorapidity pro-
vides additional information, and results in a large performance boost to distinguish between
SM-only and SM plus new physics signals. The histogram representation has been proposed
and used in a recent work [26] to discriminate among DM models in colliders with a signal-
only hypothesis, and in Ref. [31] to distinguishing W’ signals. In this work, we include the SM
background when new physics samples are prepared. Furthermore, we show important DNN
properties that simplify and generalize even more the search for DM. The DNN results do not
depend on the simulated number of SM events within the explored range when we present the
performance as a function of S/+/B, where S and B are the number of signal and background
events per histogram, respectively. Additionally, we will see that the DNN is flexible enough
to handle small variations in S/+/B, in the masses of the dark sector, and even if an incorrect
framework is applied as long as the kinematic distributions remain similar.

To ease the blind DM identification and discrimination from the SM background, we ex-
plore multiclass classifiers, i.e. DNN trained with more than one DM scenario. This approach
shows good efficiencies, and even slightly outperforms some individually trained DNNs. Two
methods are explored, a binary classifier prepared to distinguish SM-only histograms from
samples with SM plus new physic events generated from several benchmark models, and a
multiclass classifier to identify the most likely DM scenario among those considered. In the
latter, crucial information about the kinematic distributions and therefore hints of the true
underlying model can be extracted.

It is important to notice that the histogram approach tries to determine if there is new
physics within a set of events. Unlike the event-by-event method, it does not classify each
individual event. Therefore, we propose that the DNNs with histograms could be used as an
initial analysis. Their performance turns out to be independent of the simulated number of
background events, thus we can check if a set of events contains new physics with a relatively
fast and general approach. If the network points towards a positive result, other analysis
guided by the information provided by the histogram method should be applied to establish

For a recent repository-review of ML techniques applied to particle physics with the latest works and develop-
ments regularly updated see [23].
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the significance of the candidate signal?.

We organize the paper as follows. In Section 2, we present the characteristics of the sim-
plified DM models we are testing, and the sample generation employed. Since the kinematic
distributions are the input data in our ML algorithms, their relevant features are analyzed, and
we define benchmark models to work with. Then, we describe the structure of our ML tech-
niques in Section 3, compare DNN with convolutional neural networks (CNN) results, and also
implement two data organizations: event-by-event analysis and 2D-histogram representation.
In Section 4, we explore the flexibility of the method, showing that the DNN performance does
not change significantly with the simulated number of background events. We also show the
discrimination power among different DM frameworks, and study the impact on the results
when incorrect assumptions are considered, i.e. discrepancies in S/+/B and in new physics
models between train and test data samples. Finally, in Section 5 we propose multimodel clas-
sifiers to search and identify new signals in a more general way, compare their performances,
and explore their responses testing new models for which they were not trained. A discussion
about the results, strength and weakness of the different methods and approaches analyzed
can be found in Section 6. The conclusions are left for Section 7.

2 Models and sample generation

In this section we describe four DM theoretical frameworks chosen in this work. We consider
the dark sector couplings and masses as free parameters, hence each framework represents a
family of DM models. We will see that for our collider study, the masses of the dark sector
determine the signal kinematic distribution. On the other hand the coupling values, along
with the type of DM, are only involved in the cross section of the relevant processes.

To be as general as possible, we discuss the kinematic features which are going to be used
as input data for the ML algorithms to disentangle DM scenarios from the SM-only hypothesis.
Finally, we select a few benchmark models to be used in next sections.

2.1 Simplified models

We study ML techniques applied to the supervised classification of samples from the following
four DM theoretical frameworks:

* DM with a spin-0 mediator,
* DM with a spin-1 mediator,
* DM with a spin-2 mediator,

¢ Axion-Like Particle as DM.

DM with a spin-0 mediator

We consider a simplified model where the interaction of a DM candidate with the SM is medi-
ated by a spin-0 field, Y, dubbed mediator. Three types of DM candidates, X, are taken into
account: a Dirac fermion Xp,, a real scalar Xy, and a complex scalar X .. The renormalizable in-
teractions of the mediator with the DM can be described by the following Lagrangian [32-34]

20ur main focus is to asses the viability of the histogram approach. In that sense, determining signal signifi-
cances of this histogram method is not straightforward and requires a more in-depth study that is beyond the scope
of this work.
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where quadratic terms in the mediator field have been omitted (the Majorana case can be
easily obtained from the Dirac scenario). In order to take dimensionless couplings we include
DM masses as natural scales in dimension-3 operators. These factors can be readjusted mod-
ifying the coupling strengths if a different normalization scale is needed. The renormalizable
interactions of the mediator field with SM quarks can be written as

u

d

_ i Yii

Y Ur.S . P - “Y,.S P

LSO = E (d- (g7 +igs ys)d; + u;,—=(g> +ig v )u-)Y 2)
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where d and u denote down- and up-type quarks, respectively, i, j = 1, 2, 3 are flavor indices,
and g%/P are the scalar/pseudo-scalar couplings of DM and quarks, which we take diagonal
to avoid large flavor-changing neutral current interactions. These couplings are normalized

to the SM Yukawa couplings, y.f.

= V2m £ /v, assuming an ultraviolet complete description of

the theory with the couplings of the messenger to the SM particles proportional to the particle

masses. This implies that interactions with light quarks are strongly suppressed, hence the
main channels for DM production in this model involve top-quark loops.

Higgs portal models are included in this framework. Also, the possibility that the SM Higgs

itself takes the role of the spin-O mediator Y,. However, as we will see in the following sec-

tions, the latter scenario can not be discriminated from the SM background with the methods

proposed in this work if the SM Higgs is produced on-shell (see Appendix C).

DM with a spin-1 mediator

In this case, we consider a simplified model with a DM candidate and a spin-1 mediator, Y;. The
DM-messenger interactions can be described by the following renormalizable Lagrangian [ 32—
34] _
Y, l _
Loy =5 gy [X6(8,X0) = (B, XH)Xc ] Yy + Xpyu(gy + 83, vs)XpY{". 3)

Then, interactions between the mediator and SM quarks can be expressed as

Loy = 2 (divu(ey, + 8 vo)d; + airu(e), +gh yohu;) v, 4)
]
where g"/4 are the vector/axial-vector couplings of DM and quarks, and, as in the spin-0 case,
are also considered diagonal to avoid large flavor-changing neutral current interactions.

This framework includes the usual supersymmetric (SUSY) neutralino, with the rest of
the SUSY spectrum sufficiently heavy to be decoupled. A weakly-interacting massive particle
(WIMP) like benchmark model will be considered during the rest of this work, however notice
that the couplings are not specified. The goal is to include not only SUSY models but to keep
a broad approach.

DM with a spin-2 mediator

We consider DM particles which interact with SM particles via a spin-2 mediator, Y,. The
DM-messenger interaction Lagrangian of this framework is given by [35]

Y, _ 1 T X MUY
LDZM__XgXT;wYZ > (5)
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where A is the scale at which new physics enters, g}; a dimensionless coupling parameter, and
Tiv the energy-momentum tensor of the DM field that can be expressed as

1
Tos = =5 8un(8,Xp0P Xp — iy X7) + 0, Xp0\ X, (6)

3 1 _
TXD = — gu»(Xpiy,d°Xp — mXDXDXD) + —gwa (XDlYpXD)

1. .
+ EXDI(Yuav+YvaM)XD a (XDleXD) V(XDlYuXD) (7)

1 1
Y = _gw(—zrppappa + Emivxvpxg) + FyoFP + m} Xy, Xy, (8)

with F,, the field strength tensor.
Interactions between the mediator and SM particles are obtained by

ZgTT;sz“”, ©)

where i denotes the SM fields (Higgs doublets, quarks, leptons, and gauge bosons). The cor-
responding energy-momentum tensors can be found in Ref. [36]. When a universal coupling
between the spin-2 mediator and the SM particles is assumed, we get the original Randall-
Sundrum (RS) model of localized gravity [37].

Axion-Like Particle as DM

In this model, the SM is extended with the inclusion of a CP-odd scalar field, singlet under the
SM gauge symmetries. This new field is assumed to be the (pseudo) Nambu-Goldstone boson
of a spontaneously broken U(1) symmetry, associated with a heavy scale f,, i.e. an ALB a. Its
couplings are purely derivative and weighted by inverse powers of f,, then we consider that
the ALP mass is much lighter than this scale. The effective Lagrangian involving ALP in linear
realization can be written as [38]

1
L, ==(0,a)(0"%a) — gW—Wa wawr — gB—B BHY —Ga G
¢ o2t fa fa 86 T

. a , - ~ - _
+ [lga_(QLyuHuR_QLdedR_LLyeHeR) +h-C-] ) (10)

where X#” = 1/2e#P9X oo are the field strength duals. For the monojet channel, the most
important ALP coupling is to gluons.

2.2 Sample generation

We use MadGraph5_aMC@NLO v2.7.3 [39] to generate events with monojets plus missing
energy at parton level. Then, parton shower and hadronization are performed with Pythia
8.2.44[40], and the detector-level data is simulated using Delphes 3.4.2[41] with the de-
fault ATLAS card. The processes are generated using the FeynRules [42,43] model database.
For our analysis on DM collider searches, we focus on the monojet and missing transverse
energy channel®. We generate the following processes for the theoretical frameworks with a
mediator

pp — DMDMJ, (11)

3In Ref. [26] it is shown that the inclusion of an additional hard jet in the analysis does not result in a significant
change, with a study of similar characteristics to the one used in this work and the same basic cuts.

6
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and for the ALP model

pp—aj. (12)

A simulated center-of-mass energy of /s = 14 TeV is used, and generation level cuts of
p]T > 130 GeV and |n/| < 5 are imposed for the leading jet. For each model analyzed, 0.5M
events are produced.

We would like to mention that frameworks involving a messenger have two key free pa-
rameters: the mediator mass, my, and the DM mass, mp,,;. Although the type of DM candidate
and coupling values are involved in the total number of new physics events, we have checked
that for a given framework these variables do not modify the monojet kinematic distributions.
In particular, we use a Dirac fermion and couplings equal to 1 in our simulation. As we will
see in the next section, each choice of (my, mp,,) determines a model with distinctive charac-
teristics that could lead to different collider signals. Therefore, several sets of 0.5M events are
generated per framework. On the other hand, in ALP models we consider a very light a, which
behaves as a massless particle for typical LHC energies. We have checked that variations in
m, (ALP mass) and f, produce the same collider signatures. Then, only one set of events is
generated for this framework, with a very light ALP mass, m, = 10~ GeV and f, = 10* GeV,
Monojet processes for every framework can be found in Appendix A.

Finally, for the monojet background we consider the following process

pp — Zj(Z — vv). 13

An extended discussion about the dominant SM-background channel, and the role of other
subdominant contributions to the monojet signal can be found in Appendix B. For the SM
model, 1.5M events are generated with the same center-of-mass energy and generation cuts
used in the new physics cases.

2.3 Kinematic distributions

In Fig. 1 we show the monojet kinematic distributions for some examples of the frameworks
considered in this work, at parton level. For this particular choice of (my, mp;;), the simplified
frameworks with a mediator are called on-shell for all spin values. This notation refers to the
mediator status in the monojet channel which is produced resonantly. Considering different
choices of (my, mp;,) distinct data sets have to be simulated and we obtain various kinematic
distributions. On the other hand, for the ALP and SM background cases only one data sample
was generated since just one scenario describes the model behavior, as we discussed in the
previous section. We would like to highlight that we present the fraction of events, the total
number of events that would be produced at the LHC depends on the luminosity and the
couplings of each model, but those variables do not modify the kinematic distributions.

We can see that the examples with a mediator present a harder pJT distribution than the
ALP. Even more, the latter model and the SM describe very similar distributions, especially
at low pJT where the higher fraction of events is found. Therefore, ALP should be harder to
discriminate from the background only hypothesis.

All the models present a pseudorapidity distribution similar to the SM, except for the spin-
1 mediator case. This feature provides complementary information, as can be seen comparing
the examples with spin-1 and spin-2 mediators. The latter model presents a harder pJT distri-
bution, but a 1’/ distribution similar to the SM, unlike the spin-1 case.

Finally, the flat jet azimuthal angle distribution does not show any useful structure to dis-
tinguish any model from the SM background or each other, as expected by the symmetry of
the processes. This will allow us to dismiss ¢/, and to arrange pJT and 7/ information into 2D
histograms for the ML algorithms proposed.
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Figure 1: Kinematic distribution for the frameworks considered in this work at
parton-level. For models with a mediator, these examples belong to the on-shell
regime.

Next, we describe the impact of different (my, mp,,) values in frameworks with a mediator.
For simplicity, we only show the péq kinematic distributions for the spin-1 case. Spin-0 and spin-

2 frameworks present a similar behavior. In Fig. 2, we study the pJT kinematic distribution of
three regimes, defined according to the status of the mediator: off-shell (top-left panel), on-
shell (top-right panel), and off-shell by phase space or off-shell PS (bottom panel), where the
latter regime refers to a scenario with my > 2mp,,, but the mediator can not be produced
on-shell due to the energy of the collision. We can see that in each regime, the kinematic
distribution does not depend on one of the dark sector masses. Since the coupling values only
determine the total number of events but do not modify the kinematic distributions, every
model is defined by a single parameter, mp,; or my.

Hence, in Fig. 3 we show, for the spin-1 case, the hardest and softest distributions that can
be found in each regime. On the top-left panel, the off-shell case, the distribution tends to the
SM one for mp,; — my /2 and the hardest one is obtained for mp,; ~ 2000 GeV (higher values
result in a softer distribution). On the top-right panel, the on-shell regime, the distribution is
similar to the SM background for my < m, and reaches its maximum for my ~ 3000 GeV.
On the bottom panel, off-shell PS case, the distribution is only slightly modified with mpy,
between ~ 100-1000 GeV, and never tends to the SM one. The distributions for the spin-0 and
spin-2 frameworks can be seen in Appendix C, for the same three regimes. Notice there that
the only framework where there is no (my, mp;,;) value whose distribution is similar to the SM
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Figure 2: Spin-1 mediator framework, parton-level data. The top-left, top-right, and
bottom panels show that the pJT distribution for the off-shell, on-shell, and off-shell PS
regime does not depend on my, mpy;, and my, respectively.

background is the spin-2 case.

Notice that some curves within the same frameworks but with different values of (my,
mpy) overlap, or are extremely similar. This is the case for the examples shown in Fig. 2.
Also, some cases shown in Fig. 3 from different regimes are very similar to each other, e.g.
(my, mpy) = (m5,2000 GeV), (3 TeV, 10 GeV), and (10 TeV, 1000 GeV), the corresponding
blue curves on the top-left (off-shell), top-right (on-shell), and bottom (off-shell PS) panels.
Even more, as can be seen in Appendix C, curves between different frameworks can overlap.

Since we use the kinematic information as input data for our algorithms, this degeneracy
can not be disentangle by the ML methods in many cases. Instead of discriminating between
particular models, the algorithm classifies families of models with similar kinematic distribu-
tions.
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Figure 3: p]% distributions of the spin-1 mediator framework, off-shell (top-left panel),
on-shell (top-right panel), and off-shell PS (bottom panel) regimes, at parton level.

2.3.1 Benchmark models

To study the performance of the ML algorithms used in this work, we define ten benchmark
models shown in Table 1. We consider ALPs and for each framework with a mediator we select
three models, one per regime: off-shell, on-shell, and off-shell PS. In Section 3 we will test the
benchmark models against SM-only samples individually. On the other hand, in Section 5 we
will study methods trained with several benchmark models, called multimodel. To evaluate
their performance under new unexpected data, three benchmark models are not used in the
training set and therefore do not have a label assigned.

In Fig. 4, we show the pJT and 7/ distributions corresponding to the mentioned benchmark
models, for the off-shell (top row), on-shell (middle), and off-shell PS (bottom row) regimes.
We include the SM background and ALP distributions in each panel as reference to guide the
eye. Unlike in the previous section, we employ detector-level data. Notice that no significant
differences can be seen and the overall behavior is the same between parton and detector-
level representations. Nonetheless, we will use detector-level simulations to evaluate the ML
algorithms performance.

10
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Table 1: Benchmark models and labels used in individual binary, and in multimodel
binary and multiclass classifiers. Models without a label are not used to train the
corresponding classifier.

Label
Benchmark Model Individual Multimodel
Binary | Binary | Multiclass

SM 0 0 5

ALPs 1 1 1

Spin-0 myfz =mj , mpy =300 GeV 1 1 2

mediator My = 1000 GeV, mpy =10 GeV 1 1 3
m5=0 =10 TeV, mpy = 10 GeV 1

Spin-1 méfj =my , mpy = 300 GeV 1 1 4
mediator my =1000 GeV, mpy =10 GeV 1

m5~ =10 TeV, mpy = 10 GeV 1 1 5
Spin-2 mY:z =my , Mpy =300 GeV 1

mediator my =1000 GeV , mpy =10 GeV 1 1 6

m;~2 =10 TeV, mpy, = 10 GeV 1 1 7

3 Machine Learning algorithms

In this section we describe the structure of our supervised ML techniques. All the algorithms are
constructed in Python 3.7.6[44] using the library Keras [45] along with TensorFlow [46]
for backend implementation. We will compare several ML methods, and also two different data
organizations. Although we study multiple benchmark models, below we will test each new
physics model versus SM background individually, with a binary classifier.

3.1 Neural networks with event-by-event data

To compare the performance of different techniques, as a first step we use deep neural networks
(DNNs) as individual binary classifiers for the monojet data at detector level in the form of
arrays, i.e. the networks take as input data event-by-event information. In this setup the input
parameters are the three kinematic features of the monojet, p]T, 1’, ¢’. We consider a sample
size of 0.5M events for every benchmark model, as well as for the SM background. Data
samples are divided with a 0.64:0.16:0.20 train-validation-test ratio. To avoid over-training
we include dropout in every hidden layer and call for an early stopping if the validation loss
has not improved for over 100 epochs. More details of the DNN structure can be found in
Table 2.

We apply this algorithm to the ten benchmark models defined in Section 2.3.1 (see Table 1).
We would like to highlight that in individual binary classifiers, each new physics benchmark
model (events labeled as ‘1’) is tested against the SM background (events labeled as ‘0’) inde-
pendently. Hence we analyze ten DNN algorithms whose results are presented in Fig. 5, and
we include the ALP benchmark in every panel for reference. We show the Receiver Operating
Characteristic (ROC) curves, and as a measure of the DNN performance we calculate the areas
under the ROC curves (AUCs), a conventional metric to test binary classifiers (AUC=1 is a
perfect classifier, and AUC=0.5 a random classifier).
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Figure 4: pJ% and 7’ distribution for the benchmark models shown in Table 1. Off-shell
(top row), on-shell (middle row), and off-shell PS (bottom row) regimes, at detector
level.

As expected, the discrimination power depends strongly on the model*. With this tech-
nique we obtain AUC ~ 0.57 for the ALP framework, which means that it would not be pos-
sible to identify a DM signal. With respect to the benchmark models with a mediator we get
AUC ~ 0.70 — 0.78, hence they can be discriminated from the SM background with a rather
low efficiency. In the next section we will study a better performing method.

The general behavior of the previous result can be seen from the input features kinematic

“We have found that increasing the jet transverse momentum lower bound, pj;mi“, decreases the network
performance for all benchmark models, except in the ALP case for which a small improvement is observed (< 5% for
j—min

py ™" within 130—400 GeV). We have also checked that modifying the pseudorapidity upper bound, |n/| € [2,5],
do not change our results.
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Table 2: ML algorithms specifications. For the CNN case, we denote (n x m, 1), or
(n x m), a layer with a n x m kernel dimension, and [ nodes in each convolutional

layer.
| DNN CNN

Input data

Format event-by-event 2D histogram
Features (p]%, 7, ¢9) p]% vs n/
Sample size 0.5M per model 20k histograms per model
Train:Validation:Test 0.64:0.16:0.20
Neural network
Layers 3 dense layers Convolutional 2D layer (3x3, 32)
Hidden layers nodes = 20 Max pooling 2D layer (2x2)

Dropout in every hidden layer: 0.2 | Convolutional 2D layer (3x3, 64)
Max pooling 2D layer (2x2)
Flatten layer
Hidden dense layer (20 nodes)

Hidden layers: relu

Activation function o
Output layer: sigmoid

Compilation
Loss function binary_crossentropy
Optimizer adam (initial learning rate = 0.0001)
Metric accuracy
Batch size 128
Max epochs 1500-2500
Patience 100-300 epochs

distributions shown in Fig. 4. The new physics models present a higher fraction of events than
the Z+jet SM background for higher values of pJT and values of 1/ closer to zero. Further-
more, models with higher discrepancies with respect to the SM result in higher AUCs when
are applied to ML classification algorithms. This trend will be present throughout the rest of
our work.

3.2 Neural networks with data as histograms

As discussed previously, the jet azimuthal angle ¢/ does not provide any information to dis-
tinguish new physics signals from SM processes. Therefore, we can construct 2D histograms
made from the pair (p]T, n’), which can provide additional information on the joint distribu-
tion for both kinematic observables. This method has been proposed and used in Ref. [26] to
discriminate among monojet DM signatures in colliders with a signal-only hypothesis, and in
Ref. [31] to distinguishing W’ signals. In this work, we include the SM background when new
physics samples are prepared in the DM search. '

We impose the following selection cuts: 130 < p]T < 2000 GeV, and |n/| < 4. The pa-
rameter space is arranged into 30x30 bins, dividing each range linearly. Then, we construct
two sets of 20k 2D-histogram samples per hypothesis®. The first contains a combination of

SFor our simulated events, we have checked that the network performance saturates for data sets with more
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Figure 5: ROC curves for new physics benchmark models vs SM background, using
DNN and event-by-event data.

S simulated new physics events and B simulated SM events, the other set is generated only
with SM events. Notice that the DNN considers each histogram as one sample, not individual
events. Therefore, to avoid including bias during the training process we use the same amount
of histograms labeled ‘1’ (signal, i.e. generated with SM plus new physics events) and ‘0’ (no
signal, i.e. with SM-only events). To build each histogram we choose the events at random
over the total number of simulated processes. In this way, an event can be in more than one
histogram, but obviously a histogram does not contain the same event more than once®.

To use a DNN, we normalize the events per bin. Each 2D histogram, i.e. a 30x30 matrix
with the number of events per bin as elements, is divided by the value of the bin with maximum
amount of events. For CNN, the matrices are used as input data. But to be used as DNN input
data, each matrix is unrolled into a 1D array. We would like to remark here that each 2D
histogram (or array), generated with multiple individual events, is a single training example.

In Fig. 6 we show several 2D-histogram examples considering the simulated events at
detector level. Each row presents figures generated with only SM data or with one benchmark
model plus SM events. Every plot mixing signal and background was constructed with B = 50k
SM-background events, and S new physics events with the ratio S/B = 0.1,0.01,0.001 as

than 5k histograms. To be conservative, we have considered sets with 20k histograms.
5We employ this data augmentation technique to generate the needed sample size.

14


https://scipost.org
https://scipost.org/SciPostPhys.12.2.063

Scil SciPost Phys. 12, 063 (2022)

S$/B=0.1 $/B=0.01 S/B=0.001

SM
(S=0)

ALP
+ SM

25

(]
o

m;=%=1000 GeV

mpm = 10 GeV
+ SM

G -
Events per bin

[
o

mi=t=mz
mpm = 300 GeV
+ SM

m§=2=10 TeV
mpm = 10 GeV
+SM

Figure 6: 2D histograms of pJT vs 1) with 30x30 bins for the monojet final state
considering only SM events, and several benchmark models plus SM background.
Each plot mixing signal and background was constructed with B = 50k SM events
and S new physics events, at detector level. SM-only histograms have the same total
number of events as their corresponding mixing plots. As an example, three S/B
ratios are shown. The color coding represents the number of events per bin, however
the color scheme saturates at 30 events, to ease visualization.

indicated at the top of each column. SM-only histograms have the same total number of
events as their counterparts mixing signal and background, to be able to compare both sets.
The color coding represents the number of events per bin (not normalized to 1). However, the
color scheme saturates at 30 events to ease visualization in regions with high pJT. We can see
that if a histogram is constructed with decreasing values of new physics events S (or decreasing
values of S/B), it is increasingly difficult to distinguish between a new physics plus SM image
and the corresponding SM-only image, as expected.

Asin Section 3.1, with event-by-event data organization, the discrimination power depends
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on the kinematic features of the models. Models with pJT and 7/ kinematic distributions similar
to the SM ones, like ALPs, are harder to disentangle by eye, even for high S/B. On the other
hand, models with similar but harder distribution with respect to the SM, like spin-0 and spin-1
mediators with this particular choice of (my, mp,,), are easier to discriminate for high signal-
to-background ratio. Finally, the model with spin-2 mediator presents more number of events
with higher p; that could be identify, with significant error, by naked eye. We will see that ML
results with data as histograms show the overall trend mentioned, but allow a more efficient
discrimination, even for very low S/B ratios.

3.2.1 DNNs with data as histograms

In this case we consider DNNs as individual binary classifiers, and use the 2D histograms con-
structed with monojet kinematic data unrolled as 1D arrays as inputs. With this representation,
binary classifiers compare histograms generated with only SM-background data (labeled as ‘0°)
against histograms with new physics plus SM events (labeled as ‘1’). We highlight again that
individual events are no longer input examples, but each histogram is a single sample.

Data sets are divided with a 0.64:0.16:0.20 train-validation-test ratio’. We consider a
sample size of 20k histograms for every benchmark model plus SM, and 20k histograms with
only SM background. To avoid over-training we include dropout in every hidden layer and
call for an early stopping if the validation loss has not improved for over 100 epochs. For some
cases with low S/B, early stopping is raised to 300 epochs, and max epochs to 2500 if needed,
with no signals of over-fitting. More details of the DNN structure can be found in Table 2.

In Fig. 7, we show the results of the benchmark models (see Table 1). For each DNN we
repeat the training procedure 10 times and remove the largest and smallest AUC values, then
we calculate the AUC mean with its standard deviation as a performance metric®. We include
the standard deviation as error bars for all points in the figure, but in most cases the error
bars are small. Notice that the models with spin-2 mediator present the largest variations. We
would like to remark that

* each model is tested independently, i.e. we assume one new physics scenario at a time,

* each point represents a new DNN (all with the same structure), trained and tested with
a data set generated with a specific model, S, and B values,

* the value of B (SM events per histogram) depends on the collider luminosity.

* the value of S (signal events per histogram) is given by the collider luminosity, the choice
of a new physics framework, and the process cross section. The latter is fixed by the
election of the coupling values.

For example on the top-left panel, the blue point at S/+/B =~ 10 represents the result of a
DNN whose histograms are constructed with B = 50k and S = 2236 (m§,=2 =my, mpy = 300
GeV) events; and the blue point at S/ vB~0.1 represents the result of a different DNN trained
and tested separately, whose histograms have B = 50k and S = 22 (m‘§,:2 =my, mpy = 300
GeV) events. Therefore, each curve shown in Fig. 7 can be interpreted as a particular model
for which different coupling values are being tested with a new independent DNN, for a fixed
LHC luminosity.

7We obtain the same results for different train-validation-test ratios.

8Unless it is stated explicitly, we do not perform this procedure throughout the rest of this work because the
standard deviation is significant only for points where the method begins to be inefficient (0.5 < AUC < 0.7). In
these regions with low, but not null, discrimination power it is more computationally expensive to obtain a stable
value.
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Figure 7: AUC results for several benchmark models, using DNN and 2D histograms
as input data. Each model is tested independently in a binary classifier to distinguish
new physics plus SM vs SM-only histograms. The training procedure was repeated
10 times and the largest and smallest AUC values where removed from each DNN to
calculate the AUC mean with its standard deviation. Error bars are included for all
points.

We can see that the AUC value monotonically increases for the S/+/B entire range, except
for a few points around AUC = 0.5. Furthermore, the DNN algorithm could be a good classi-
fication tool for DM scenarios with very low signal-to-background ratios. For example, on the
top-left panel we get AUCs > 0.9 for S/+/B 2 0.5,1.2,1.3,4 for spin-2, spin-0, spin-1 media-
tors, and ALP frameworks, respectively. Moreover, for S/+/B 2 1,3,4, 10 respectively, we get
AUCs ~ 1, i.e. almost a perfect classifier. It is important to notice that some of these values
are smaller than the usual significance discovery threshold 2 5, however in this case S/+/B
is a histogram parameter and we can not interpret it straightforwardly as a significance in an
usual counting experiment. This kind of algorithm tries to determine whether or not there
may be new physics in a histogram (constructed with S new physics events and B background
events). Unlike in the event-by-event representation, the histogram method classifies sets of
events, i.e. the DNN labels histograms as a whole, not each individual event.

To illustrate the results that would be obtained if data were analyzed with a DNN, we show
in Fig. 8 the network outputs for three S/+/B choices, considering the benchmark model with
mSY:2 = 1000 GeV, mpy; = 10 GeV (corresponding to the blue curve on the top-right panel
of Fig. 7). The black curves represent the results when test samples of SM-only histograms
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Figure 8: Network outputs for S/+/B = 1.12 (top-right), 0.45 (top-left) and
0.17 (bottom-left), considering the benchmark model with m§,:2 = 1000 GeV and
mpy = 10 GeV, whose performance and AUC values can be seen on the bottom-right
panel. The outputs black (blue) curves represent the results when test samples of
SM-only (new physics plus SM) histograms are applied.

are applied, and the blue curves show the network outputs for test samples of histograms
containing new physics plus SM events (recall that we expect ‘0’ and ‘1’ for the former and latter
classes of histograms respectively, as stated in the first column of Table 1). As anticipated by the
AUC results, the output distributions are more separated, and therefore easier to discriminate,
for higher values of S/+/B. To assign a label and classify each histogram, one has to define an
output threshold considering the signal acceptance or background rejection efficiency to work
with. Then, histograms with outputs below (above) this threshold are labeled as ‘0’ (‘1°), i.e.
the network predicts that the histograms were constructed without (with) one or more new
physics events.

When dealing with experimental data, the usage of DNNs with histograms is best suited as
a fast initial analysis. The SM background for the working luminosity with our very simple cuts
could be estimated, then the maximum number of DM events compatible with the data could
be found. The experimental events could be arranged into a single histogram which would
be tested by a DNN, corresponding to a particular benchmark model with the compatible
S/+/B. Naturally, other scenarios with smaller S, or different couplings and masses, could
also be compatible and tested. As explained before, an output threshold has to be establish
to determine if the experimental data is labeled as ‘0’ or ‘1’. If the network returns a positive
result, i.e. the DNN points towards the presence of new physics within the data set, a specific
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Figure 9: CNN AUCs divided by the DNN AUC for the benchmark models considered,
using 2D histograms as input data. Each model is tested independently in a binary
classifier to distinguish new physics plus SM vs SM-only histograms.

counting analysis should be applied to establish the significance of the candidate signal.

Finally, we would like to highlight that some points in Fig 7 are likely already excluded
by current monojet searches, especially for high S/+/B values. Our main focus is to assess the
network performance and behavior in a general way, hence determining the constraints for
each particular model is out of the scope of this work.

3.2.2 CNNs with data as histograms

In this subsection we consider convolutional neural networks (CNN) as individual binary clas-
sifiers using the 2D histograms, constructed with monojet kinematic data as input images.
The AUC obtained with CNNs is compared with the DNN results to contrast the performance
of each algorithm. As before, data samples are divided with a 0.64:0.16:0.20 train-validation-
test ratio. More details of the CNN structure can be found in Table 2.

In Fig. 9 we show the CNN AUCs divided by the DNN AUC obtained in the last section.
Notice that the differences are within ~ 5% for all the models considered, meaning no im-
provement with respect to the DNN is found. Due to the characteristics of our data this is
expected, since the method can not use one of the CNNs most important features: shift or
space invariance, i.e. if we translate the inputs (‘moving’ the image) the CNN will still be able
to detect the class to which the input belongs. This property is useful when the exact location
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of the object is not required. However, our data set (the histograms) does not undergo trans-
lations by construction. As CNNs also demand significantly more computing time, we focus
on DNN implementation for the rest of this work.

4 Flexibility of the method

In this section we will study how flexible and robust the method involving histograms is. First,
we show that the DNN performance does not depend on the simulated number of background
events. AUC curves turn out to be stable if we choose S/+/B as variable. Then, we analyze the
DNN performance when incorrect assumptions are considered. We apply to an already trained
DNN, a test data sample generated with a different model than the one it was trained. Two
key features are tested: i. discrepancies in S/+/B, equivalent to consider different coupling
values, and ii. different benchmark models (dark sector masses and mediator spin), which
allow us to see if new physics can be discriminated from the SM background even when the
underlying theory is not the one we are assuming. Finally, we study the discrimination power
among different DM models.

In Appendix D we discuss other neural network details with 2D histograms: no significant
difference in performance with parton and detector-level simulated data, the impact of bin
size, linear vs logarithmic representation to define those bins, and different pJT selection cut
values.

4.1 Performance stability with the simulated number of background events

In previous sections, for every example shown we considered 2D histograms constructed with
B = 50k, a value that depends on the collider luminosity as the SM monojet cross section
process is well defined by the cuts considered. However, we will see that the DNN performance
is not modified significantly for different values of B, if the results are presented as a function
of S/+/B.

In Fig. 10 we show the AUCs results for 2D histograms constructed with B = 20, 100, 1k,
5k, 10k and 100k, as indicated on the figures, divided by the AUC considering B = 50k. Notice
that differences are within ~ 5% for the benchmark models considered, unless the value of B
is not large enough to represent the underlying distribution, characteristic that is analyzed by
the algorithm. In our examples, we have found that for B ~ 100 the differences begin to be
2 10%, however these values are much smaller than the typical number of expected monojet
events. Therefore, for sufficiently large values of B (% 1k) the performance is very similar to
the corresponding cases with B = 50k presented in Fig. 7.

This crucial property provides flexibility and robustness to the method, allowing us to
evaluate the algorithm performance in a general way, regardless the size of the initial data, or
even if a sub-set is selected. For example, if we would like to know if a DNN or CNN with 2D
histograms could distinguish a particular new physics model from the SM background, first
we must make sure that we have a good classifier, and for that we only need to

* identify the curve of the corresponding framework in Fig. 7,

* calculate the model cross section for the chosen couplings,

* calculate the SM-background cross section,

e calculate S/+/B for any luminosity, and check the corresponding AUC.

Throughout the rest of this work, we are not going to specify the value of B in the figures.

We note here that we use histograms with B = 50k to obtain the results in all cases.
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Figure 10: AUCs for histograms constructed with B = 20, 100, 1k, 5k, 10k and 100k,
as indicated on the figures, divided by the AUC considering B = 50k, for several
benchmark models. Results for the case with B = 50k can be found in Fig. 7. Each
model is tested independently in a binary classifier to distinguish new physics plus
SM vs SM-only histograms.

4.2 Testing under incorrect training hypothesis: coupling values

To continue with the analysis of the DNN robustness in the search of DM, in this and the next
subsection we study the DNN performance when incorrect assumptions are considered.

It is important to highlight that, as explained before, we divide our simulated events or
histograms in two data sets: train and test samples (to simplify the explanation, we consider
the validation sample as part of the training data set throughout the rest of this work). As
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Figure 11: Ratio of the AUCs for histograms constructed with S/+/B = 2.23 (left
panel), and S/+/B = 0.223 (right panel), applied on DNNs trained with S/+/B as
pointed out on the horizontal axis. AUCyy,g corresponds to the result of DNNs with
non-matching test and train data sets, and AUC,,,. with matching samples.

expected, a DNN is prepared to handle the same kind of data that it has been trained with.
To find out its performance, we apply to an already trained DNN, a matching test sample,
i.e. generated with the same underlying model as the train one, and calculate the AUC. For
example, if we train a network with ALP and SM histograms with S/+/B = 2.23, the DNN is
prepared to test or classify new ALP and SM samples with S/+/B = 2.23. DNN results with
matching data samples are denoted AUC,., and were shown in Fig. 7 for the benchmark
models.

The next question arises, what is the performance when we try to classify a test data set
with a DNN prepared to handle another kind of data, i.e. trained with a data set generated
with a different underlying hypothesis than the test sample? DNN results with non-matching
data samples are called AUC -

In this case, train and test data samples are generated with the same benchmark model,
but with different S/B ratios, i.e. a same model with different coupling values. Two examples
are shown in Fig. 11, on the left panel the test data set consist of 2D histograms with fixed
S/+/B = 2.23, and on the right panel to S/+/B = 0.223. To summarize, each point shows
AUC\yrong/AUCy,e Wwhen we apply the test data set with a fixed S/ VB value, to a DNN trained
with a sample whose S/+/B value is shown in the horizontal axis. Four benchmark models are
shown as an example, but the same conclusions can be found for the other ones.

We can see that around the matching S/+/B the performance of the DNN evaluated with
an incorrect signal-to-background ratio is close to the properly evaluated DNN. Although each
DNN is trained for a particular model, the algorithm is flexible enough to handle some error
or variations in S/+/B, i.e. in the coupling values. Naturally, if train and test data samples that
are constructed with very different ratios, the DNN predictions are not reliable.

We would like to remark that for S/+/B = 2.23, and 0.223, each model has a AUCe
different to 0.5 and 1, at least in one benchmark model (see Fig. 7). For the former S/ vB
value, we get AUC,,,. ~ 1 for the benchmark models with a mediator, and ~ 0.75 for ALPs. In
this high signal-to-background scenarios the test sample histograms applied to a DNN trained
with a different S/+/B ratio, have enough signal events to keep the original performance in
the entire range. As can be seen on the left panel of Fig. 11, the AUC,y;ng/AUC, Tatio is
within ~ 10%.

On the other hand, for the ALP case with S/+/B = 0.223 we get AUC,. ~ 0.5 (see Fig. 7).
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Figure 12: Ratio of the AUCs for non-matching train and test data samples, generated
with different benchmark models. Test samples generated with several models, as
indicated on each label, are applied to a DNN trained with a particular benchmark:
ALP (top-left), spin-0 mediator (top-right), spin-1 mediator (bottom-left), and spin-2
mediator (bottom-right), as indicated on top of each panel.

Therefore, we are using a test sample without enough signal events to be easily handle by
the DNN. When we test this kind of low signal histograms with a DNN that was trained with
larger values of S/+/B, significant differences can appear, as can be seen on the right panel
of Fig. 11. However, if we test with a DNN trained with even larger values of S/+/B the
performance improves. In this scenario, the DNN has enough training data to determine more
accurately the underlying distributions, and starts to distinguish better the test data with low
signal histograms.

4.3 Testing under incorrect training hypothesis: benchmark model

Next, we study the DNN performance when an incorrect benchmark model is used to gener-
ate the train data samples. We employ the same four benchmark models from the previous
subsection, whose AUC,. can be seen in Fig. 7. Results are shown in Fig. 12. Each DNN is
trained with a particular benchmark model and tested with histograms constructed with a dif-
ferent benchmark, but with matching S/+/B values. On top of each panel the training model
is indicated, and each curve is labeled with the test model. We can see that, for high S/vB
values we get good discrimination power and the performance is similar to the original one,
since AUC,yyong/AUCye is within 10%. This is expected, because for histograms with large
signal-to-background ratios there are plenty new physics events, and an easy discrimination
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Figure 13: AUC for several binary DM classifiers. Each panel shows the efficiency
when discriminating between a benchmark model 1 plus SM, versus a benchmark
model 2 plus SM, as indicated on top and in the label of each figure correspondingly.

from the SM can be done regardless the true underlying model.

However, for intermediate S/+/B values, discrepancies can be significant, up to 25%, and
the DNN predictions are not reliable. Notice that this is the same region for which the DNN
results for matching test and train samples (see Fig. 7) lie between 0.5 and 1, i.e. when its
intermediate signal-to-background ratios results in a harder, but still possible, discrimination.
In that sense, to obtain a good performance it is important to test a DNN with the correct
model, or at least a model whose kinematic distributions are similar to the trained one.

Finally, for low S/+/B values the performance of the incorrect models is similar to the
correct one, but recall that in this region AUC,c ~ 0.5.

4.4 Discerning between DM models

If a monojet signal analysis indicates the presence of non-SM processes, for example, with the
method proposed in previous sections, we would like to identify the underlying new physics
framework. Therefore, we explore the DNN performance to distinguish among different DM
benchmark models. We consider DNNs with the same structure as before (see Table 2 for more
details), and use the 2D histograms constructed with monojet kinematic data, unrolled as 1D
arrays as inputs.

We employ binary classifiers, but instead of trying to discriminate between a benchmark
model plus SM versus SM-only histograms, in this subsection we use the DNNs to distinguish
between a benchmark model 1 plus SM, versus a benchmark model 2 plus SM histograms. We
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analyze several new physics models whose performances are shown in Fig. 13. Each panel
presents the AUC when discriminating between one benchmark model, as indicated on top of
each figure, versus a different one, as can be seen on the labels. In all cases an individual DNN
was trained for each pair of benchmarks, with matching train-test data samples.

On the top-left panel, we show the performance distinguishing ALP versus the other mod-
els, individually. We can see that the results are very similar to the ones shown in Fig. 7, where
each model is tested against the SM background. In this case, the ALP model takes the role of
the SM monojet, because the kinematic distributions of both frameworks are similar.

On the top-right and bottom-left panels, we show the performance for spin-0 mediator
and spin-1 mediator respectively, versus the rest of the models, individually. Spin-0 and spin-1
mediator models have similar kinematic features, and therefore, present similar results when
are contrasted against other models. Also, notice that the lowest efficiency is achieved when
we try to discriminate between spin-0 and spin-1 mediators themselves. Nonetheless, the DNN
can handle these similarities and we get AUC 2 0.9 for S/vB 2 2.5.

On the bottom-right panel, we show the AUC from DNNs trained with the spin-2 mediator
vs the other models, individually. The spin-2 model has the hardest kinematic distribution
of all the benchmark models probed, hence the highest efficiency is achieve when we try to
disentangle between the spin-2 model and the model with the softer distribution, ALP

To conclude this subsection, we would like to mention that good performances are found
with the 2D-histogram approach and discrimination between different DM benchmarks is pos-
sible in a large range of S/+/B. As we have seen when trying to discern between new physics
and SM, these performances could not be achieved with the event-by-event approach.

5 Multimodel classifiers

In previous sections we discussed the identification of different new physics monojet signatures
with respect to the SM background or another DM model, training each DNN with one or two
DM benchmarks. Therefore, we end up with several DNNs per signal-to-background ratio
(one per benchmark model), with good performance, but each one needs computer time for
training and in principle only can test similar models to the one with which they have been
trained.

Given the power and flexibility of DNNs so far, we would like to have a single DNN per
S/+/B value, able to discriminate between SM background and non-SM processes, regardless
the underlying model. Hence, we study the performance of a single DNN trained with several
new physics models.

We study two multimodel ML methods, binary and multiclass classifiers. In the former, we
train a DNN to distinguish between SM background and several new physics processes. In the
latter, we take one more step, and train a DNN to identify the underlying DM model among
those considered. For both methods, we analyze the efficiency when tested with trained and
non-trained models.

5.1 Binary classifier

We consider DNNs with the same architecture as shown in Table 2. We use the 2D histograms
constructed with monojet kinematic data, unrolled as 1D arrays as inputs, with SM background
and seven benchmark models, as can be seen in the second column of Table 1. To evaluate the
DNN performance under new unexpected data, three benchmark models are not used in the
training set and therefore do not have a label assigned. Then, as training data we have two
examples of each spin, and two examples of each regime (on-shell, off-shell, off-shell PS).
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Figure 14: AUCs obtained by applying a test sample of a single model to a DNN
trained with 7 different models, AUC;_;,,,4e15, divided by the AUCs obtained by apply-
ing the previous test sample to a DNN trained with a matching data set, AUC;, g;vidual-
Each model is tested independently in a binary classifier to distinguish new physics
plus SM vs SM-only histograms.

Each 2D histogram constructed with only SM-background events is labeled with a ‘0’, while
every other histogram containing non-SM events is labeled with a ‘1’. Therefore, we want to
discriminate between SM-only and any kind of new physics plus SM histograms. Notice that,
as before, the samples are constructed with only one new physics model at a time, i.e. we do
not mix different DM models in a single histogram. The DNN is trained with 10k histograms
per model and per S/+/B value (and 10k histograms with only SM monojet processes).

To determine the efficiency of the DNN trained with multiple models, we apply a test data
sample generated with only one benchmark model. We call this performance AUC;_,,delss
and the results are shown in Fig. 14. The performance of each model tested is divided by
AUC; gividual, i-€- the performance of the DNN trained and tested with matching data samples,
i.e. both generated with a single benchmark model (the individual DNN performances shown
in Fig. 7). We would like to remark again that the multimodel DNN is trained with 7 benchmark
models, and the individual DNN with only one.

We find that some improvement, up to 15%, is achieved when we test each benchmark
model with the 7-model trained DNN. As we are only training the network to distinguish
between all new physics and SM-only background, the variety of models during the training
stage helps the overall performance. However, the performance improvement (2 5%) occurs
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Figure 15: Same as in Fig. 14, but in this case test samples are generated with dif-
ferent models from those the network was trained with.

for AUC;gividual S 0.75—0.8, i.e. when the DNN efficiency starts to be poor. It is important to
notice that in this figure we test data samples generated with the same 7 benchmark models
with which the DNN has been trained.

We can also analyze the 7-model trained DNN performance when we apply a test data
sample generated with a model that was not used to generate the training sample. This is
similar to the analysis done in Section 4.3, but with a multimodel binary classifier performing
better than the single model binary classifiers. On the left panel of Fig. 15 we show the results
for the three benchmark models that have not been included into the 7-model train data set,
and on the right panel two extra on-shell models and two extra off-shell model are shown. The
AUCs of each model has been divided by the performance of individual DNN classifiers with
matching train and test data samples. As before, the difference among the AUCs is < 15%, out-
performing the previous method analyzed, and the performance improvement (2 5%) occurs
when the individual DNN efficiency starts to be poor (AUC;,gividual S 0.75).

In summary, training a single DNN with data samples from a set of models provides a very
useful way to test the DM hypothesis. Not only the 7-model DNNs reproduces the performance
of individual DNN classifiers with matching train and test data samples for the 7 benchmark
models selected, but also of several new models for which it was not prepared.

5.2 Multiclass classifier

To study the performance of a multiclass classifier, we use the same 7 benchmark models as
in Section 5.1. However, each 2D histogram containing new physics events is assigned with a
label from ‘1’ to “7’, to distinguish between the different benchmarks considered. Histogram
constructed with SM background only are labeled ‘0’, and take the role of an extra class. The
labels are specified in the third column of Table 1. As before, three benchmark models are not
used in the training set and do not have a label assigned to evaluate the DNN performance
under new unexpected data.

The DNNs have the same structure as in previous sections (see Table 2 for more details),
but use softmax as activation function in the output layer. In this way, the network output is an
array containing eight elements (1 per model plus an extra one corresponding to the SM-only
case) stating the probability that each histogram belongs to each class or model.

To start the performance analysis, we test the DNNs eight times, using the data set gen-
erated with the eight training models, individually. To determine the ROC curves and its
corresponding AUCs, first we must convert the output array in a binary result: we only con-
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Figure 16: AUCs obtained by applying a test sample of a single model to the multiclass
DNN trained with 7 different models and SM-only samples. The multiclass output
array is converted into a binary result: we consider the element corresponding to the
model we are testing as positive class, while the other elements are taken as negative
classes. Error bars are included for all points.

sider as positive class, or signal, the element corresponding to the model we are testing, while
the other elements are taken as negative classes. In Fig. 16 we show the results, with the
standard deviation for every point, for B = 50k. As in Section 4.1, we have checked that the
performance is not modified significantly for other values of B when presented as a function of
S/+/B. We can see that the AUC value monotonically increases with the signal-to-background
ratio, and that the algorithm can predict the correct benchmark model even for low S/vB
values. We would like to remark that in this section, the discrimination power is between a
particular model and the rest of the 7 selected models (recall that in Fig. 7 the discrimination
is between a particular model and SM-only hypothesis, so both figures can not be compared
directly).

Furthermore, we can define another way to represent the DNN results to analyze which
of the training models is predicted. One count is assigned to the output array element if its
probability fulfills the following two conditions: it is the element with the highest value, and
its value is above a threshold equal to 0.25, defined as two times the probability that would be
obtained for a completely random classifier, i.e. 2/#qjements (recall that the number of elements
is 8, the 7 selected models plus the SM one). Otherwise, the element is assigned zero counts.
Then, a histogram of the frequency of occurrence can be constructed. This representation is
useful to check if, for a particular test data sample, two or more models are being predicted
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Figure 17: Models predicted by the multiclass DNN applying test samples generated
with the eight selected training models (see Table 1). Results for histogram samples

with three signal-to-background values are shown, S/+/B = 6.7,1.7 and 0.45

with similar probabilities, or which model is being chosen incorrectly if the DNN is performing
poorly. However, ROC curves can not be constructed.
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In Fig. 17 we show the results for three signal-to-background values S/+/B = 6.7,1.7 and
0.45, in blue, green, and red, respectively. We can see that for high S/+/B almost all the his-
tograms are identified correctly. For intermediate S/+/B the most predicted model is still the
correct one, but in some cases a significant fraction of events are labeled as a different model.
This happens when two or more kinematic distributions are similar, for example SM and ALPs,
then the DNN is not able to discriminate among those models efficiently with the mentioned
S/+/B ratio. Finally, for low S/+/B only a small fraction of events fulfills the conditions men-
tioned before regarding the probability predicted, meaning that the DNN is not able to identify
any model, and in the end an almost equal probability ~ 1/8 is predicted for each class.

Using the previous representation, test samples generated with non-trained models can
also be analyzed. In the first and second row of Fig. 18 we show the results for the three
benchmark models not used in the DNN training. Notice that, for this particular choice of train
and test samples, the DNN predicts models with the correct mediator spin, but with an incorrect
regime, i.e. wrong mediator status, on-shell, off-shell, or off-shell PS. On the other hand, this
does not happen in the third and fourth rows of Fig. 18. We show there the results for test data
samples generated with spin-1 mediator models: the first two are on-shell cases with different
mediator masses, and the last two cases present an off-shell mediator with different DM masses.
For example, the multiclass DNN predicts ALPs (label 1) for m}zl =my and mp;; = 100 GeV
test samples (fourth row left panel). However, the DNN provides a better solution when we
test m§,=1 = m, and mp;; = 200 GeV data (fourth row right panel), predicting a similar model
but with mp,; = 300 GeV (label 4).

After all, the DNN is working with 2D histograms that represent the underlying kinematic
distributions of each model. If we compare the test and predicted models in Fig 18, with the
pJT distributions of the corresponding models shown in Section 2.3, we can see that the DNN
is assigning the label that better matches these features.

In summary, multimodel multiclass classifiers can be very useful when we need to discrimi-
nate a possible signal among a subset of specific new physics models. We have shown that if we
test different models from those the network was trained with, the results can be misleading
if we want to extract information about the parameters of the models, for example the medi-
ator spin, or the DM mass. Nonetheless, in those cases the DNN provides crucial information,
identifying the compatible kinetic distribution of the underlying model.

6 Discussion

In this work we make use of machine learning techniques in the search for new physics. In
particular, we focus on the search for dark matter signatures at the LHC using deep neural
networks. We employ supervised algorithms which allow us to obtain large performances but
implies that specific models have to be considered and big labeled data samples have to be
constructed.

To be as general as possible, we study the monojet plus missing transverse energy chan-
nel of four simplified dark matter frameworks, ALP and spin-0, spin-1, and spin-2 mediator
models, described in Section 2.1. One important characteristic of our approach is the use of
kinematic features as DNN input data. We have seen that the kinematic signatures do not
depend on framework coupling values and type of DM candidate. This allows us to overcome
one usual drawback of supervised techniques, the need of a specific data set per model, by
describing a family of models with a single data sample.

Nonetheless, in the case of frameworks with a mediator we still have two free parameters,
the masses of the dark sector particles. This results in different kinematic signatures and
therefore each one has to be probed separately. We found out that if we consider the status
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Figure 18: Same as in Fig. 17, but test samples are generated with different models
from those the network was trained.
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of the dark mediator (off-shell, on-shell, and off-shell by phase space), only one parameter
describes the overall shape of the kinematic distributions, either the mediator or the dark
matter mass. Taking this into consideration, we can define a reduced number of benchmark
models describing the most general characteristics of each framework to be tested with LHC
data.

Regarding the data analysis with DNN, we have seen that the data representation has a
strong impact on the performance of the algorithms. First we train and test our DNNs with
event-by-event simulated data and found mediocre performances discerning new physics sig-
natures from SM background (see Fig. 5). Later, we organize the kinematic features in 2D
histograms considering the jet transverse momentum and pseudorapidity, and found a large
boost in the discrimination efficiency, up to 1 for high enough signal-to-background ratios (see
Fig. 7). We could also use the 2D histograms as images for a convolutional network. However,
a key CNN characteristic is not used, the space invariance, as our data set does not undergo
translations. Hence, no improvement with respect to DNN is found.

One potential drawback of the histogram representation may lie in the construction of the
histograms themselves, given that each one is generated with S new physics events and B
SM-background events. Therefore, several data sets per model have to be generated to take
into account that different coupling values can generate different amount of events for a given
collider luminosity. Although at first glance it seems that we reintroduce the coupling values as
parameters, the only important quantity is the number of new physics events, S, since different
coupling values, as well as the dark sector masses under certain conditions, do not change the
underlying kinematic distributions (see Section. 2.3). Then, each histogram with S/B ratio
describes a family of models.

A crucial feature of the method is that the DNN performance turns out to be independent of
the simulated number of background events, for B 2 1k (value much smaller than the expected
number of monojet events). The AUC, a conventional metric of the DNN performance, is stable
when we choose S/+/B as variable (see Fig. 10). Therefore, to find out if a DNN with 2D
histograms would be a good classifier to distinguish new physics from the SM background, the
reader has to follow four simple steps:

* identify its model with one of the benchmark models used, taking into account that the
kinematic distributions have to be similar,

* calculate the SM-background cross section, o gy,

* calculate the model cross section with the particular coupling values that the reader
wants to test, Oyp,

e calculate S/+/B for the luminosity available, and check the corresponding AUC in Fig. 7.

Moreover, we established that the method is quite robust. As said before, one drawback of
the supervised algorithms is that, in principle, they are only prepared to handle the same kind
of data with which they were trained. However, when we use non-matching test and train
samples, we found out that the performance is not modified significantly in two scenarios:

* if train and test histograms are generated with the same model, but different coupling
values are considered, i.e. variations in S/+/B, as long as those signal-to-background
ratios are not very different (see Fig. 11),

* if train and test histograms are generated with different benchmark models, as long as
their kinematic distributions are similar (see Fig. 12). In this category we include small
variations in the dark sector masses.
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This kind of DNN can also be used to disentangle among different DM models, if a new
physic signal is found. The 2D-histogram representation presents good performances, and can
even classify benchmark models with similar kinematic distributions using DNNs trained to
discriminate between a specific pair of models as discussed in Section 4.4.

At this point we would like to highlight that we can describe a large number of DM scenarios
with a handful of benchmark models. Focusing on the monojet kinematic features allow us
to describe a family of models with a single data sample. The 2D-histogram representation
is key to obtain good performances, however we still need to train one DNN per benchmark
model and per S/+/B value. Although the DNN is flexible enough to handle some variations
in coupling values and dark sector masses, we still need to apply our data to a DNN trained
with similar characteristics. However, this can be very challenging if we do not know anything
about the true underlying framework present in nature.

To overcome this issue we use multimodel classifiers, supervised algorithms but instead
of training one benchmark model per DNN, several ones are used. In Fig. 14 we employ a
multimodel binary classifier prepared to discriminate between SM-only histograms and data
with SM background plus several models of new physics events. It is remarkable that we get
a small improvement of performance with respect to DNN trained with one benchmark model
at a time, even for models not included in the training list.

In Section 5.2 we described a multiclass DNN prepared to identify between SM-only and
several benchmark models, pointing out the most likely underlying model. Even though this
turns out to be a more challenging task, a good performance is achieved. If trained bench-
mark models are tested, we get correct model identification for high and intermediate S/+/B
ratios (see Figs. 16 and 17). However, for models not included in the training benchmark
list, incorrect model properties (e.g. dark sector masses or mediator spin) are predicted as a
consequence of not being in the database (see Fig. 18). Despite that, in those cases the DNN
can still discriminate new physics from the SM-only hypothesis, and provides crucial informa-
tion about the true underlying model. The multiclass DNN result points towards a compatible
kinetic distribution, a key tool to guide further analysis.

Finally, it is important to emphasize that the information provided by each representa-
tion discussed is different. The event-by-event method tries to determine whether each event
comes from a SM or new physics process. On the other hand, the algorithms that classify his-
tograms try to determine if there is new physics in a set of events (recall that each histogram is
constructed with S new physics events and B background events). However, the latter method
does not classify each individual event.

Given that we have used very simple cuts and the high performances that can be achieved,
the usage of DNNs with histograms is best suited as an initial analysis. The DNNs performance
turns out to be independent of the simulated number of background events, thus we can
anticipate if a set of events contains new physics with a relatively fast and general approach.
If the network shows a positive result, specific counting analysis guided by the information
extracted with the histogram method should be applied to establish the significance of the
candidate signal.

6.1 Event-by-event combination and the histogram method

Throughout this work we have classified sets of events by constructing histograms and train-
ing dedicated networks. As pointed out in Refs. [47,48], from a statistical point of view, the
optimal histogram classifier could be built from an optimal event-by-event classifier. We have
checked that combining the event-by-event result of each benchmark model studied in Sec-
tion 3.1, we can obtain the same AUC curves shown in Fig. 7 using the histogram method.
See Ref. [48] for more details about the procedure. In Fig. 19 we present one example consid-
ering the off-shell spin 1 benchmark point, and we can see that both methods yield the same
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Figure 19: AUC results for the off-shell spin 1 benchmark point using the histogram
method (same as in Fig. 7), and combining the outputs of the corresponding event-
by-event DNN found in Section 3.1 (see Ref. [48] for more details).

results, except for low AUC values (< 0.65) where the performance of both methods is poor
and classification is not possible.

This verifies that we have obtained the optimal histogram classifiers with the DNN ar-
chitecture, parameters, and data samples that we have described. Although combining the
event-by-event output is a priori a simpler procedure, we have found some issues to consider.
First, small variations in the event-by-event training can produce significant variations in the
deduced per-histogram performance, even decreasing the AUC by a few per cent. This dis-
crepancy can be found for event-by-event networks with almost identical outputs, ROC curves
and no overfitting signals that we can appreciate. Second, even though manageable this case,
special care has to be considered when combining event-by-event outputs, specially for large
number of events per histogram, as numerical problems can occur and produce misleading
poor performances. In that sense, although the histogram method is computationally more
expensive, in our particular case it seems to be more stable than the procedure described in
Ref. [48], and therefore the optimal classifier can be obtained in a more straightforward way.

As expected, the aforementioned issues are even more relevant for increasingly complex
scenarios, such as multimodel classifiers. As far as we know, combining the result of event-
by-event classifiers is not trivial for those cases, but it is relatively simple with the histogram
method shown in Section 5.

To conclude, we want to mention that an interesting alternative to tackle the problems
found and to benefit from the simpler per-event training would be to train an event-by-event
classifier but to monitor its performance by designing a specific per-histogram validation loss
that considers sets of events. Then, the outputs of the resulting algorithm could be combined
to obtain an optimal histogram classifier. We leave that analysis for future work.

7 Conclusions
In this work we have analyzed the performance of DNN to disentangle dark matter signatures

from SM background at the LHC. We focused on the usual monojet plus missing transverse
energy channel and explored different data representations. First we studied several simplified
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DM models and found key parameters that allowed us to represent a family of models with a
few data sets.

We saw that using the monojet kinematic features organized as 2D histograms improves
significantly the DNN efficiency, but introduces extra parameters, namely the ratio between
signal and background events, S and B, respectively. Remarkably, the DNN results turns out
to be independent of the simulated number of background events if they are represented as a
function of S/+/B, for reasonably large B (2 1k). Furthermore, the method is flexible enough
to handle small variations in coupling values and in other parameters, like the dark sector
masses. All these properties make the DNN with histograms approach a good initial analysis
to check in a fast and general way if new physics lie within a data set.

Finally, we explored two multiclass classifiers to ease the blind DM identification. The first
one is a binary classifier prepared to distinguish SM-only histograms from samples with SM
plus new physic events from several models. With the second method, a multiclass classifier,
we took an extra step and is prepared to inform which one of the training benchmark mod-
els is more likely to represent the test sample, or if it only contains SM-background events.
Both methods show good performances with high and intermediate signal-to-background ra-
tios even when we test models for which the DNN has not been trained. Although the specific
underlying model can not be reliably identified, crucial information about the kinematic dis-
tributions and therefore hints of the true model can be extracted.

Acknowledgments

The authors would like to thank Ignacio Arganda-Carreras and Gonzalo Uribarri for helpful
advises and insights on neural networks methods. We also thank Francisco Alonso, Fernando
Monticelli, and Hernan Wahlberg for useful discussions about collider analysis and the method
implementation. Last but not least, we would also like to express our gratitude to Benjamin
Nachman and Jesse Thaler for very enriching and fruitful discussions and exchanges about
event-by-event combination, the histogram approach and statistical interpretation. The work
of EA is partially supported by the “Atraccién de Talento” program (Modalidad 1) of the Co-
munidad de Madrid (Spain) under the grant number 2019-T1/TIC-14019 and by the Spanish
Research Agency (Agencia Estatal de Investigacién) through the grant IFT Centro de Excelen-
cia Severo Ochoa SEV-2016-0597. This work has been also partially supported by CONICET
and ANPCyT under projects PICT 2016-0164, PICT 2017-0802, PICT 2017-2751, PICT 2017-
2765, and PICT 2018-03682.

A DM production channels

In Fig. 20, Fig. 21, Fig. 22, and Fig. 23 we show the monojet processes considered in this work
for the ALE spin-0, spin-1, and spin-2 mediator, respectively. For frameworks with a mediator,
we find that the kinematic features are independent on the nature of the DM particle (real
scalar, complex scalar, or Dirac fermion), therefore, the latter has not been specified on the
figures.

For the spin-0 mediator framework the quark loop is dominated by heavy top-quark con-
tributions due to the presence of SM Yukawa couplings.

For the spin-1 mediator framework, the diagrams are the same as in the usual SUSY Bino-
like neutralino DM, X?: replacing DM — x? andY; — Z.

Finally, notice that spin-1 mediator channels shown in Fig. 22, and the first row of the
spin-2 mediator channels in Fig. 23, have the same topology as the dominant SM-background
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process pp — Zj(Z — v¥), replacing DM — v and Y; , — Z. This particular diagrams are not
present in the ALP and spin-0 mediator cases.

B SM-background processes

The primary SM-background contribution to monojet event signatures with missing transverse
momentum in pp collisions at the LHC is

pp — Zj(Z — vv). (14)

The Feynman diagrams corresponding to the dominant process can be seen from Fig. 22,
replacing DM — vand Y] — Z.
There are also significant monojet contributions from [49]

pp = Wji(W — 1v), (15)

with non-identified leptons in the final state. Among these channels, the most significant
contribution comes from tau leptons in the final state, pp —» Wj(W — ).

Other small contributions are also expected, such as pp — Zj(Z — 1), with (I = e, u, 7),
multijet, pp — tt, single-top, and diboson (WW, WZ, ZZ) processes. Finally, among the chan-
nels with negligible contribution we can find top-quark production associated with additional
vector bosons pp — ttW, ttZ,tZq/b.

To analyze how different channels contribute to the monojet signal, and their impact on
our results using only the main SM background, we define the process relative contribution,
R, as

N;
R=———, (16)
Npp—zjiz—vv)
where N; is the number of events coming from a particular process and Np,_,7jz— ) the
number of events produced by the main SM channel. Both quantities are defined as

Ni:LO-ieiﬁ (17)

with L and o; the usual collider luminosity and process cross section at parton level, respec-
tively, and e; the fraction of events that are identified as jets with missing transverse momen-
tum at detector level, with respect to the total number of events simulated at parton level.
Notice that in Eq. 16 the luminosity is canceled out.

In Table 3 we show the relative contributions of several processes (the multijet process has
not been included as it has low R [49]). We use the same tools described in the main part
of this work, to generate events, to perform shower and hadronization, and to simulate the
detector response. Also, we apply the same cuts to simulate parton-level data (for example,
for pp = Wj (W — lv) we use plT > 130 GeV). For pp — tt, the fraction of events identified
as jets and missing transverse energy is shown for three cases: no condition imposed on the
final jets (first row), one b-jet or less (second row), and bmg = 0 (third row). The results
obtained are roughly compatible with the ones found by ATLAS Collaboration in Ref. [49],
although different cuts and beam energies are considered.

As stated before, the second most significant contribution comes from tau leptons in the
final state, pp — Wj(W — 7v), with R ~ 0.12. The other channels are at the percent level, or
less, due to the small value of € coming from the miss-identification of final state particles as
missing energy to obtain the required signal.

Finally, notice that pp — Wj(W — lv) and pp — Zj(Z — ll) processes are described
by the same Feynman diagrams as the dominant channel, pp — Zj(Z — v¥), replacing Z by
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Figure 20: Feynman diagrams for DM production with a monojet in the ALP frame-
work.
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Figure 21: Feynman diagrams for DM production with a monojet in the spin-0 medi-
ator framework. As mediator-SM quarks interactions are proportional to SM Yukawa
couplings, loops are dominated by top-quark contributions.
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Figure 22: Feynman diagrams for DM production with a monojet in the spin-1 me-
diator framework.
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Figure 23: Feynman diagrams for DM production with a monojet in the spin-2 me-
diator framework.

W, and v by l. Thus, these processes have the same kinematic distributions as the dominant
channel when the leptons are misidentified. This is important because in this work we use
jet kinematic features and distributions as input data for the ML algorithms. Even though to
simulate the SM background, we use the dominant channel, our overall conclusions are not
affected. The only effect that one has to keep in mind is that for a given luminosity, the total
SM background is increased by the contribution of the secondary channels.

C Spin-0 and spin-2 kinematic distributions

In Fig. 24 and 25 we show several p; distributions at parton level, for spin-0 and spin-2 medi-

ator frameworks, respectively. The hardest and softest p]T distributions that can be found are
presented. The relevant parameter in each panel is mp,, for the off-shell case (top-left panel),
my for the on-shell regime (top-right panel), and mp,, for the off-shell PS case (bottom panel).

Notice that the region covered by spin-2 mediator framework and shown in Fig. 25 is
smaller than spin-O and spin-1 cases. Also, for spin-2 there is no (my, mp,,) value whose
distribution is similar to the SM background.
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Table 3: Process relative contribution (R) of several SM monojet plus missing trans-
verse energy backgrounds, with respect to the dominant SM channel, Zj (Z — v¥).

| Process | o (pb) | € | R |
| Zi(Z — v¥) | 536 | 0.78 | 1|
Wji(W > 1v) 24.8 0.20 0.12
WiW —1v),l=e,pu 49.7 0.049 0.058
Zj(Z-1),l=¢e,u,t 19.1 0.013 0.006
tt 217 0.021 0.11

0.014 (b, <1) | 0.073
0.004 (b =0) | 0.021

diboson (WW,WZ, ZZ) 5.18

0.12 0.014
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Figure 24: Space described by the p; distribution of the spin-0 mediator framework,
off-shell (top-left panel), on-shell (top-right panel), and off-shell PS (bottom panel)

regime, at parton level.
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Figure 25: Space described by the p; distribution of the spin-2 mediator framework,
off-shell (top-left panel), on-shell (top-right panel), and off-shell PS (bottom panel)
regime, at parton level.

D Other neural network variables

In this appendix we present more details of the neural network used. We study the dependence
of the results taking parton and detector-level data as input samples. We consider two ways to
define the bins for 2D histograms: dividing the phase space linearly or logarithmically. Also,
we modify the total number of bins per image, and finally, we analyze the effects of different
pJT selection cut values.

D.1 Parton vs detector-level data

Given that the kinematic distributions at parton and detector level are very similar, we ex-
pect similar performances when we apply the simulated data to a DNN. On the left panel of
Fig. 26 we compare AUCs obtained with DNNs trained and tested with parton, AUC,,on, and
detector-level data AUCgeecior- 1N this and the following subsections, we employ the four mod-
els denoted on-shell in Section 2.3.1 as an example, but the same conclusions can be found
studying the other benchmark models.
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Figure 26: Left panel: DNN performance of parton versus detector-level data. Right
panel: DNN performance of linear versus logarithmic representations of pJT. In both
panels, the benchmark models dubbed on-shell are used.

D.2 Linear vs logarithmic histograms

Throughout the main part of this work, we divided the (/, pJT) phase space linearly to define
the 2D-histogram bins. However, in Fig. 6 for example, we can notice that events (both from
new physics and SM) are grouped at low pJT. Then, we can ask if a different representation
with greater detail in the area of interest would result in a better performance.

On the right panel of Fig. 26 we compare the results for linear and logarithmic representa-
tions of pJT, for the benchmark models dubbed on-shell. No significant performance variation
is found, hence we conclude that neither representation provides more information than the
other.

In the next section we analyze the impact of changing the bin size, a topic related to
the representation of the phase space. Increasing the overall resolution, decreasing bin size,
provides more detail in pJT. Nonetheless, the DNN is sensible enough to extract sufficient
information with a reasonable bin size.

D.3 Bin size

To study the effects on the resolution, we generate 2D histograms, slicing the phase space into
Npins X Npips bins, with Ny;,o = 5,10,20,30,40. We consider the benchmark models called
on-shell. For each model, we train a DNN, whose details can be found in Table 2. The only
difference between the DNNs is the number of units in the input layer, equal to the total input
features, to take into account the variations in the total number of bins per histogram.

In Fig. 27 we show some examples of the constructed histograms, with different number of
bins, for the SM-only sample and the spin-0 mediator model (for Ny;,; = 30 see Fig. 6). Natu-
rally, we expect an increase in performance for higher resolution, but at the same time, a more
complex network is needed with more parameters to train. DNN results can be seen in Fig. 28,
for two examples with S/+/B = 2.23 (left panel), and S/+/B = 0.223 (right panel). In almost
every example shown, the AUC value increases with Ny, as expected. The most significant
drop in performance is located for few number of bins, at Ni,;,; = 5, where the histograms still
can represent some of the underlying characteristics but the details are lost. Considering the
behavior of all models, around Ny;,; ~ 20 — 30 the AUC values reach their maximum, and in-
creasing its value at the expense of DNN complexity and computational resources for training
does not seems to be justified.
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Figure 27: 2D histograms with different number of bins for the monojet final state
considering SM and a spin-O mediator model. Each figure was constructed with
B = 50k SM events and S/+/B = 2.23 new physics events, at detector level. The
color coding represents the number of events per bin, however the color scheme
saturates at 30 events, to ease visualization.
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Figure 28: AUCs for histograms constructed with different number of bins, Np;p,.
The benchmark models dubbed on-shell are used, with S/+/B = 2.23 (left panel),
and S/+vB = 0.223 (right panel).

D.4 Minimum jet transverse momentum

In this section we analyze how the performance of DNN with histograms as input data is
affected when different pJT selection cut values are chosen. We employ the four models denoted
on-shell as an example. .

In Fig. 29 we show our results for different pJT cuts: 130,200, 250,300, 350, and 400 GeV.
We study two signal-to-background ratios, S/+/B = 1.12 and 0.223 (left and right columns cor-
respondingly). It is important to remark that the selected S/+/B ratios correspond to pJT =130
GeV, for other p;, cuts the number of signal and background events should change correspond-
ingly. The performance as a function of p””" is presented in the first row. To emulate a real
situation, we assume that the collider luminosity and the couplings of each model are fixed,
therefore for increasing pJT cuts we get a decreasing amount of events. This is taken into ac-
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Figure 29: AUC, S, and S/+/B per histogram, as a function of the selection cut p
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T

(first, second, and third row respectively), for two examples of S/+B = 1.12 and

0.223, at p™in

7 =130 GeV (see text for details). We assume fixed collider luminosity

and coupling values of each model, therefore for increasing pgq cuts we get a decreas-

ing amount of events.

count for the generation of the histograms to train and test the DNNs. Every set has 30x30
bins, and the number of events per histogram is shown in the second-row of the figure (to
improve visualization, SM events per histogram are divided by a factor as indicated on the la-
bel). Notice that SM-background events are more suppressed than new physics ones (see also
the corresponding kinematic distributions shown in the middle row of Fig. 4), therefore the

min

S/B ratio increases with p?i”. Finally, the corresponding S/+/B values for our pp'" analysis
are shown in the third row of Fig. 29.
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In Section 4.1, with a fixed p?i”, we showed that S/+/B is a useful parameter. From that

section we expect a better (worse) DNN performance for models with increasing (decreasing)
S/+/B. However, comparing the first and third rows of Fig. 29 its clear that our previous
conclusions do not apply when p7'" is not fixed. For example, the spin-1 mediator case shows

for increasing pT"}i“ an increasing S/+/B ratio, however the AUC decreases. In any case, AUC

variations are within a few percent for the benchmark models explored.
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