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Abstract

The simplest non-trivial 5d superconformal field theories (SCFT) are the famous rank-
one theories with En flavour symmetry. We study their U-plane, which is the one-
dimensional Coulomb branch of the theory on R4 × S1. The total space of the Seiberg-
Witten (SW) geometry – the En SW curve fibered over the U-plane – is described as a
rational elliptic surface with a singular fiber of type I9−n at infinity. A classification of all
possible Coulomb branch configurations, for the En theories and their 4d descendants,
is given by Persson’s classification of rational elliptic surfaces. We show that the global
form of the flavour symmetry group is encoded in the Mordell-Weil group of the SW ellip-
tic fibration. We study in detail many special points in parameters space, such as points
where the flavour symmetry enhances, and/or where Argyres-Douglas and Minahan-
Nemeschansky theories appear. In a number of important instances, including in the
massless limit, the U-plane is a modular curve, and we use modularity to investigate
aspects of the low-energy physics, such as the spectrum of light particles at strong cou-
pling and the associated BPS quivers. We also study the gravitational couplings on the
U-plane, matching the infrared expectation for the couplings A(U) and B(U) to the UV
computation using the Nekrasov partition function.
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1 Introduction

Supersymmetric quantum field theories (SQFT) with a least eight supercharges are particu-
larly amenable to exact, non-perturbative methods. The infrared (IR) physics on the Coulomb
branch (CB) of 4d N = 2 supersymmetric field theories, in particular, is famously encoded in
a Seiberg-Witten (SW) geometry [1,2]. For 4d N = 2 field theories of rank one – that is, when
the Coulomb branch is one dimensional – the SW geometry consists of an elliptic fibration
over the Coulomb branch, and the effective gauge coupling for the low-energy U(1) vector
multiplet is identified with the modular parameter of the elliptic fiber.

The original SW geometries for SU(2) gauge theories were derived based on the semi-
classical analysis and on deep physical intuition. Once the SW geometry of a 4d N = 2 theory
is given to us, on the other hand, we can gain further insights into strong-coupling phenomena
by analysing the SW geometry throughout its full parameter space. The Argyres-Douglas (AD)
superconformal field theories (SCFTs) were discovered in that way on the Coulomb branch of
4d gauge theories [3,4]. Postulating the existence of other SW geometries with more compli-
cated singularities also led to the discovery of 4d SCFTs with En global symmetry, the Minahan-
Nemeschansky (MN) theories [5,6].

All these ‘classic’ rank-one 4d N = 2 field theories can be understood within the frame-
work of geometric engineering1 in Type-IIA string theory on local Calabi-Yau threefold singu-
larities [9,10], with an interesting plot twist: from that particular string-theory point of view,
the ‘most natural’ rank-one theories are not these ‘ordinary’ 4d N = 2 SQFTs. Instead, they
are five-dimensional field theories compactified on a circle. This fact is true for IIA geometric
engineering of N = 2 SQFTs of any rank, since it is a simple consequence of the Type-IIA/M-

1Of course, there are also methods for ‘engineering’ these theories on D-branes or M5-branes – see e.g. [7, 8].
We will focus on the ‘purely geometric’ string-theory engineering.
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theory duality [11, 12]. At rank one, one can obtain in this way a small family of 5d SCFTs
with En symmetry [13,14], which we will often call ‘the En theories’. Their circle compactifica-
tion gives us 4d N = 2 supersymmetric field theories ‘of Kaluza-Klein (KK) type’ – intuitively
speaking, with an infinite number of ‘fields’ organised in KK towers –, which we denote by
DS1 En. The 5d En theories are all related by mass deformations, starting from the E8 theory
and mass-deforming to smaller En subgroups. The 5d E8 theory itself can be obtained as a
deformation of the so-called E-string theory [15], which is a 6d N = (1,0) SCFT with E8 sym-
metry, compactified on a circle. Similarly, the 4d MN theories naturally arise as subsectors of
the DS1 En theories for n= 6, 7,8. By taking the so-called geometric-engineering limit [10] on
the Type-IIA complexified Kähler parameters, one obtains the ordinary 4d N = 2 SU(2) gauge
theories with N f ≤ 4 flavours as a limit of the DS1 En theories with n= N f + 1.

In this work, we revisit the Seiberg-Witten geometries of all these ‘classic’ rank-one theories,
with our main focus being on DS1 En, the circle compactifications of the 5d En SCFTs. Their SW
curves are best understood in terms of local mirror symmetry in string theory [11,12,16–24].
We provide a detailed analysis of their Coulomb branches by a variety of methods, including:
by a direct analysis of the electromagnetic periods a, aD using Picard-Fuchs equations; by a
global analysis using the mathematical language of rational elliptic surfaces; by taking advan-
tage of the beautiful modular properties that exist in many special cases. The main upshot of
our analysis is threefold:

• We reach a systematic understanding of the possible CB configurations in all cases, in-
cluding a classification of the Argyres-Douglas points that can arise. Part of the orig-
inal motivation for this endeavour was to understand some RG flows between the 5d
En theories and Argyres-Douglas theories, whose existence was implied by the recent
work of Bonelli, Del Monte and Tanzini [25] relating some 5d BPS quivers [26] to the
gauge/Painlevé correspondence [27–29]. The most striking of such RG flows may be:

DS1 E3→ H2 , (1)

where H2 is the AD theory with flavour symmetry algebra su(3). The reason why this
flow may look surprising is that H2 appears on the CB of 4d SU(2) with N f = 3 flavours
[4] while the E3 theory is related to 5d SU(2) with N f = 2. In hindsight, this is not
too disturbing, since the AD points arise in the strong-coupling region of the Coulomb
branch. In this example, the su(3) flavour symmetry of H2 in inherited from the symme-
try E3 = su(3)⊕ su(2) of the larger theory, which arises due to ‘infinite-coupling effects’
from the 5d gauge theory point of view and is related to the condensation of instan-
ton particles – see e.g. [30]. As we will see explicitly, the AD points are ubiquitous on
the extended Coulomb branch of the DS1 En theories as we tune the mass parameters.
For instance, one can show that there are exactly 35 distinct CB configurations of the
DS1 E8 theory with at least one H2 AD point (33 configurations have one such point, 2
configurations have 2 distinct H2 points).

• We explain how to determine the global symmetry of the rank-one SQFTs directly from
the SW geometry itself. The SW geometry is an elliptic fibration with a distinguished
section (the zero section), and it can have a non-trivial Mordell-Weil (MW) group. Firstly,
we show that the free generators of the MW group correspond to abelian factors of the
flavour symmetry group GF . Secondly, we argue that the precise form of the flavour
symmetry group (as opposed to its Lie algebra) is determined by the torsion part of the
MW group. Thirdly and relatedly, we conjecture that the one-form symmetry of the
theory [31] is also encoded in the MW torsion in a specific way.2 For the 5d and 4d En

2Our precise findings differ from the discussion of one-form symmetries in appendix A of [32].

4

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

theories, our derivation of the flavour symmetry group from the 4d infrared confirms
the recent results in [33] and [34], respectively. Interestingly, our analysis also implies
that the flavour symmetry group for the AD theories H1 and H2 is SO(3) = SU(2)/Z2
and PSU(3) = SU(3)/Z3, respectively – for H1, this was recently argued in [35], while
for H2 this seems to be a new observation.

• Throughout our analysis, we emphasise the key role played by modularity, especially in
the case of the massless En theories on a circle. For all the massless DS1 En theories with
n < 8 and a semi-simple flavour symmetry algebra, the Coulomb branch is actually a
modular curve H/Γ for a finite-index subgroup Γ ⊂ PSL(2,Z) – see table 2 below. This is
similar to the role played by the congruence subgroup Γ 0(4) for the pure SU(2) gauge
theory [2], for instance. Somewhat relatedly, we also discuss the gravitational couplings
A(U) and B(U) on the Coulomb branch of the DS1 En theories (in the so-called toric case),
which gives a 5d generalisation of the same computation for the 4d SU(2) gauge theories
in [36]. These considerations are very important for the computation of supersymmetric
partition functions as in e.g. [37–39], as we will discuss elsewhere [40].

In the rest of this introduction, we explain in more detail our general picture and our new
results. We also discuss how our approach relates to the vast previous literature, and we
emphasise unresolved issues and challenges for future work.

The U-plane, CB configurations and rational elliptic surfaces

The one-dimensional Coulomb branch of the DS1 En theory is parameterised by a single complex
parameter:

U = 〈W 〉 , (2)

which is the expectation value of a five-dimensional N = 1 supersymmetric ‘Wilson loop’
operator wrapping the circle. (More precisely, when the 5d En theory is mass-deformed to a 5d
SU(2) gauge theory with N f = n−1 flavours, the operator W flows to the fundamental Wilson
loop.) Our main object, in this paper, is to understand the U-plane physics as thoroughly as
we can – we would like to explore the Coulomb branch ‘as pedestrians’ [41], as it were.

When studying 4d N = 2 and 5d N = 1 supersymmetric quantum field theories, one can
gain invaluable insight by embedding these field theories within string theory. In fact, in the
five-dimensional case, a definition of the 5d field theory via string theory is so-far unavoidable.
In string-theory approaches to SQFT, many features of the field theory become ‘geometrised’.
In the case at hand, the Seiberg-Witten geometry of 4d N = 2 field theories can be understood
in terms of local mirror symmetry [21]:

Type IIA on R4 × eX ←→ Type IIB on R4 × bY . (3)

Here, eX will be the local dPn (or F0) geometry, i.e. the total space of the canonical line bundle
over a del Pezzo surface of degree 9 − n – see e.g. [12, 14, 20, 42–44]. This geometrically
engineers the DS1 En theories for n ≤ 8. (For n = 9, this engineers the E-string theory on T2.)
The local mirror threefold in Type IIB, bY, can be viewed as the suspension of an elliptic curve,
which is precisely the SW curve of the DS1 En theory.

Any rank-one SW geometry is given by a family of elliptic curves over the U-plane. (For
strictly 4d theories, we should call it ‘the u-plane’ instead, following standard terminology.)
This can always be written in Weierstrass normal form:

y2 = 4x3 − g2(U; MF )x − g3(U; MF ) , (4)
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Table 1: Correspondence between the singular fiber at infinity and the 5d and 4d
theories. The field theories are denoted by their flavour symmetry algebra, except
for the SU(2) gauge theory with N f = 1 and N f = 0 flavours (denoted by N f = 1
and N f = 0, respectively). Thus, DN f

denotes the SU(2) theory with N f flavours.
The bottom line corresponds to the 3 AD theories HN f −1, which can be found on the
CB of the SU(2), N f > 0 gauge theory for N f = 1,2, 3. We also give the number of
distinct CB configurations, #S, in each case.

F∞ I1 I2 I3 I4 I5 I6 I7 I8 I9

DS1T5d E8 E7 E6 E5 E4 E3 E2 E1 or eE1 E0

#S 227 140 77 51 26 16 6 2+ 2 1

F∞ I I I I I IV I∗0 I∗1 I∗2 I∗3 I∗4

T4d E8 E7 E6 D4 D3 D2 N f = 1 N f = 0

#S 137 93 49 19 13 6 2 1

F∞ IV ∗ I I I∗ I I∗

T4d A2 (H2) A1 (H1) − (H0)

#S 8 4 2

where MF denotes all the mass parameters. At fixed MF , the total space of the elliptic fibration
over the U-plane can be viewed as a rational elliptic surface, S, by compactifying the point at
infinity:

E→ S → P1 ∼= {U} . (5)

For all the 5d and 4d theories, the SW fibration is singular at U =∞, while the point at infinity
is regular for the E-string compactified on T2.

Rational elliptic surfaces (RES) have been very thoroughly studied by mathematicians –
see [45] for a beautiful and detailed introduction. In particular, they were fully classified by
Persson and Miranda over 30 years ago [46–48]. A RES S is partially characterised by its set
of singular fibers, {Fv}.3 The possible singular fibers are given by the Kodaira classification,
which is closely related to the ADE classification of simply-laced Lie algebras. In our physical
setup, the singularity type of the fiber at infinity, F∞, essentially determines the field theory.
All the theories studied in this work appear in table 1. In particular, the DS1 En theories are
characterised by F∞ = I9−n, which is equivalent to having a prescribed monodromy at infinity
M∞ = T9−n. This follows from general considerations similar to the weak-coupling analysis
for 4d SU(2) gauge theories [1,2]; here, the monodromy is determined by the 5d gauge theory
one-loop β-function coefficient [13,19], as we will show.

Let us then denote by TF∞ the corresponding field theory. Any CB configuration of TF∞
corresponds to a RES with a fixed set of singular fibers:

U-plane of TF∞ at fixed MF ↔ S with {F∞ , F1 , · · · , Fk} . (6)

The Kodaira singularities in the interior of the U plane have a well-understood low-energy
physics interpretation – see e.g. [11]. For instance, the AD fixed points H0, H1 and H2 arise from
Kodaira singularities of type I I , I I I and IV , respectively. We can then use the classification of

3It is fully characterised by {Fv} and Φ, its Mordell-Weil group, to be discussed below.
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rational elliptic surfaces to map out all possible CB configurations of a given rank-one 4dN = 2
field theory, simply by fixing F∞.4 The number of distinct configuration in each case is given
in table 1 for all the 4d and 5d theories. The remaining possibility is for the fiber at infinity to
be smooth, F∞ = I0, which corresponds to a CB configuration of DT2 E(6d)

8 , the E-string theory
on a torus; since the total number of distinct rational elliptic surfaces is 289 [47, 48], this is
also the number of distinct CB configuration for DT2 E(6d)

8 . We shall focus on the 4d and 5d
theories (the ‘rational’ and ‘trigonometric’ cases) in this work, which are special limits of the
E-string theory (the ‘elliptic’ case).

The relation between rank-one SW geometries and rational elliptic surfaces has appeared
repeatedly in the string-theory literature – see in particular [24,49–57]. More recently, Caorsi
and Cecotti used the RES formalism to explore the physics of strictly four-dimensional N = 2
field theories [58], in relation to the Argyres-Lotito-Lü-Martone classification of rank-one 4d
N = 2 SCFT [59–62]. See also [63] for a closely related approach. The present work builds
on the approach of [58] by noting that all rational elliptic surfaces with a fixed F∞ have a nice
CB interpretation, once we consider the 5d En theories and the E-string theory. In addition, we
provide an improved understanding of the flavour symmetry group of the 4d N = 2 theories
in that language, as we will discuss next. On the other hand, we focus exclusively on the 5d
En theories and on their 4d descendants. The latter are the 4d SU(2) gauge theories with
0 ≤ N f ≤ 4 flavours and the 6 ‘classic’ 4d SCFTs without marginal couplings – the 3 AD
theories [4] and the 3 Minahan-Nemeschansky theories [6]. We believe that our analysis can
be (and should be) generalised to include the remaining rank-one 4d SCFTs [59, 60, 64] by
building on the insights from [58, 63] and on the S-fold approach [65–67]. This is left for
future work.

Mordell-Weil group and global symmetries

The flavour symmetries of the rank-one theories can be deduced directly from the structure
of the associated SW fibration. This can be understood by using the particular structure of
the Type IIB mirror geometry, which can be equivalently described in terms of a single D3-
brane probing a collection of 7-branes in an F-theory construction [23, 49, 50, 68]. In the
F-theory language, the Kodaira singularities on the U-plane are non-compact 7-branes, which
therefore give rise to flavour symmetry algebras of ADE type. We are particularly interested in
determining the actual flavour symmetry group which, by definition, acts faithfully on gauge-
invariant states.

In that respect, an important role is played by the Mordell-Weil (MW) group of rational
sections of the SW geometry S, which is an abelian group of the general form:

Φ=MW(S)∼= Zrk(Φ) ⊕Φtor , Φtor
∼= Zk1

⊕ · · · ⊕Zkt
, (7)

where rk(Φ) ∈ Z≥0 is the rank of the MW group. The rk(Φ) generators of the free part of Φ
correspond to abelian symmetries. On the other hand, the torsion sections constrain the non-
abelian part of the flavour symmetry group, similarly to the way the gauge group is determined
in F-theory compactifications [52, 69–73]. In our setup, a key role is played by the Kodaira
singularity at infinity, F∞, which does not contribute to the IR flavour symmetry. It then turns
out to be important to compute precisely how the sections P ∈ Φ intersect the reducible fibers
in the interior and at infinity. We will define Z[1] ⊂ Φtor to be the maximal subgroup of torsion
sections that intersect ‘trivially’ (i.e. like the zero section) all the fibers in the interior of the
U-plane, and we will define the abelian group F to be the cokernel of the inclusion map:

0→ Z[1]→ Φtor→F → 0 . (8)

4From table 1, one can see that the F∞ = I8 is either the E1 or the eE1 theory. The distinction between the two
will be explained momentarily.
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Table 2: Modular groups for the massless DS1 En theories, and their index in PSL(2,Z).
They are all congruence subgroups. The massless CB for E8, E2 and eE1 are not mod-
ular.

DS1T5d E7 E6 E5 E4 E3 E1 E0

Γ Γ 0(2) Γ 0(3) Γ 0(4) Γ 1(5) Γ 0(6) Γ 0(8) Γ 0(9)

(Γ : Γ (1)) 3 4 6 12 12 12 12

Then, we claim that:

• Z[1] gives the one-form symmetry of the 4d field theory. In particular, it does not change
as we vary the mass parameters. Incidentally, this distinguishes between the E1 and eE1
configurations for F∞ = I8, in which case Z[1] ∼= Z2 for E1 while it is trivial for eE1.

• The IR flavour symmetry group GF , for any given CB configuration S of TF∞ , takes the
schematic form:

GF
∼=
�

U(1)rk(Φ) ×
∏

v 6=∞

eGv

�À

F , (9)

where eGv is the simply-connected group with Lie algebra gv , associated to each non-
reducible Kodaira fiber Fv in the interior of the U-plane. It follows from the general
mathematical theory of RES that F injects into the center of

∏

v
eGv , so that the quotient

in (9) is well-defined. The expression (9) is slightly imprecise when rk(Φ)> 0, because
we should specify the normalisations of the abelian charges, which are determined by
the way the non-torsion sections intersect the reducible fibers.

We will explain all these statements in section 3, after reviewing the necessary mathematical
background. Our identification of the one-form symmetry agrees with known results for all
the theories under consideration. A complete ‘physics proof’ of the identification of Z[1] with
the one-form symmetry, which would relate our approach to [74–79], is left for future work.
On the other hand, we provide a detailed explanation, and much direct evidence, for the
determination of the flavour symmetry group using the MW torsion. This confirms the recent
results in [33,34], which were derived by different (albeit related) methods. It is also tempting
to identify Φtor itself as a 2-group [80–83], which can be non-trivial for 5d SCFTs [33]; that is
another interesting point that we leave for future work.

Modularity on the U-plane

It is well-known that the Coulomb branch of the pure SU(2) gauge theory is a modular curve for
the congruence subgroup Γ 0(4) of PSL(2,Z) [2]. Similarly, the massless u-plane of 4d SU(2)
with N f = 2 and N f = 3 is modular with respect to Γ (2) and Γ0(4), respectively [37,84].5 By
definition, a CB configuration is modular if the U-plane is a modular curve of genus zero:

{U} ∼=H/Γ , τ 7→ U(τ) , ∀τ ∈H , (10)

for some modular group Γ ⊂ PSL(2,Z). In that case, the U-plane is isomorphic to a funda-
mental domain for Γ on the upper half-plane. The function U(τ) is called the Hauptmodul, or

5Note that the Γ (2) curve also appeared in the original SW paper to describe the pure SU(2) CB [1]. Our
perspective here is that the ‘correct’ pure SU(2) CB is the Γ 0(4) curve – see e.g. the discussion in [41] – which is
the one that arises naturally from local mirror symmetry.
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principal modular function, for Γ . Modularity often simplifies the analysis of the low-energy
physics, as we will see in many examples. For instance, it allows us to easily identify the dyons
that become massless at cusps, once we have chosen a fundamental domain. The latter can
often be used to visualize how other configurations can be obtained by merging singularities,
such as in the traditional case of the AD theories arising on the u-planes of the SU(2) gauge
theories [4]. This also allows us to easily derive BPS quivers [85–87] directly from the U-plane
in many cases. This last point certainly deserves further study. Other recent discussions of BPS
quivers in the present context include e.g. [88–94].

The modular groups for the massless ‘semi-simple’ En theories on a circle are shown in
table 2. Most of these modular groups appeared in one guise or another in the string-theory
literature when discussing local mirror symmetry – see e.g. [95–102]. On the gauge theory
side, the recent work by Aspman, Furrer, and Manschot on the SU(3) Coulomb branch [103]
was a source of inspiration to us.6 Incidentally, it would be important, but probably challeng-
ing, to generalise our systematic approach to rank-two (and higher-rank) theories, in order to
make contact with the recent renewed efforts in mapping out rank-two 4d SCFTs [105–107].

Gravitational couplings on the U-plane

In the last section of this paper, section 9, which can be read in combination with section 2 and
independently of the rest of the paper, we study the effective gravitational couplings A(U) and
B(U) on the U-plane, focussing on the simpler ‘toric’ cases. These are the additional effective
couplings that arise in addition to the prepotential in the low-energy effective field theory
on a non-trivial four-manifold, and are necessary for S-duality [108]. Our objective, there,
is to verify explicitly the infrared prediction for these couplings, which is given in terms of
the SW curve [37,38,108], by matching it to the microscopic prediction that follows from the
asymptotic expansion of the Nekrasov partition function [109,110] – see also [111–113]. This
amounts to a 5d generalisation of some of the computations in a recent work by Manschot,
Moore and Zhang [36].

This paper is organised as follows. In section 2, we review the geometric engineering of the
En 5d SCFTs in M-theory and their circle reduction in Type IIA, and we discuss the SW curves
for the DS1 En theories using local mirror symmetry. In section 3, we discuss the rank-one
SW geometries in terms of rational elliptic surfaces, and we explain how to find the flavour
symmetry group in that context. In section 4, we illustrate our general approach to the U-
plane by revisiting the ‘classic’ four-dimensional N = 2 theories. In sections 5, 6, 7 and 8,
we study the Coulomb branch of the DS1 En theories in full detail. In section 9, we discuss the
gravitational couplings on the U-plane. Some useful additional material is relegated to various
appendices.

2 En SCFT from M-theory, local mirror and Seiberg-Witten geome-
try

In this section, we review the geometric engineering of the En 5d SCFTs from M-theory on
del Pezzo (dP) singularities. These are of course the simplest 5d SCFTs we could consider –
the geometric engineering of general 5d SCFTs has attracted a lot of interest in recent years,
see e.g. [76, 77, 114–145]. The circle compactification of the En theory is described by Type

6One day after the first version of this paper appeared on the arXiv, another paper by Aspman, Furrer and
Manschot appeared [104] which studies 4d SU(2) gauge theories. Their results partially overlap with section 4 of
this paper.
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Table 3: Correspondence between En SCFTs and del Pezzo surfaces. Here, Blk(B4)
denotes the blow-up of the complex surface B4 at k generic points. Note that dP1
can also be viewed as the Hirzebruch surface F1.

En E0 E1 eE1 En (n= 2, · · · , 8)

B4 P2 F0
∼= P1 × P1 F1

∼= dP1 = Bl1(P2) dPn = Bln(P2)∼= Bln−1(F0)

IIA string theory on the same dPn singularity, and the local mirror description in Type IIB
gives us the Seiberg-Witten geometry we are interested in. After reviewing some standard
facts about families of elliptic curves and Seiberg-Witten geometry, we discuss the En Seiberg-
Witten curves and derive the Picard-Fuchs (PF) equations satisfied by their periods. We also
review the relation between the 5d En theories and the 4d MN theories.

2.1 Geometric engineering at del Pezzo singularities

We are interested in the small family of 10 distinct rank-one 5d SCFTs with flavour symmetry
algebra En [13,14], namely:

E0 =∅ , E2 = su(2)⊕ u(1) , E5 = so(10) ,
eE1 = u(1) , E3 = su(3)⊕ su(2) , En = en (n= 6, 7,8) .

E1 = su(2) , E4 = su(5) ,

(11)

These 5d fixed points are all related to each other by five-dimensional RG flows, starting from
the E8 model and breaking down the flavour symmetry to En<8 by appropriate real-mass de-
formations [13,14,146]. In this section, we will only discuss the flavour symmetry algebra of
the En theories. The global form of the flavour symmetry was recently derived in [33]. Those
results also follow from the Coulomb-branch analysis of the KK theory, as we will explain in
section 3.

These rank-1 5d SCFTs can be ‘geometrically engineered’ as the low-energy limit of M-
theory on R5 × XEn

, where the XEn
is a canonical singularity that admits a crepant resolution

with a single exceptional divisor [14, 43]. Let B4 denote a Fano surface – that is, either a
del Pezzo surface or the Hirzebruch surface F0

∼= P1 × P1. We consider the local Calabi-Yau
threefold obtained as the total space of the canonical line bundle over B4:

eXEn
∼= Tot

�

K→ B4

�

. (12)

By blowing down the zero section, one obtains the canonical singularity XEn
. The correspon-

dence between del Pezzo surfaces and En theories is summarized in table 3.
The smooth threefold (12) provides a crepant resolution of XEn

, which corresponds physi-
cally to going onto the extended Coulomb branch (ECB) of the 5d SCFT, by turning on the real
Coulomb branch VEV, 〈ϕ〉 6= 0, as well as n real mass parameters mi (i = 1, · · · , n). The n real
masses should be understood as VEVs for real scalars in vector multiplets valued in the Cartan
subalgebra ⊕n

i=1u(1) of En. In the M-theory geometric point of view, the full ECB is identified
with the extended Kähler cone of eXEn

[43]. The En symmetry at the fixed point arises because
of M2-branes wrapping vanishing curves. Indeed, it is a beautiful mathematical fact that the
second homology lattice of dPn can be decomposed as:

H2(B4,Z)∼= Λ−K ⊕ E−n , (13)

with ΛK ∼= Z generated by a choice of anticanonical divisor, −K, of B4. Here, E−n denotes
‘minus’ the En root lattice,7 which is generated by the curves orthogonal to −K. As reviewed

7That is, with an intersection pairing that is minus the Cartan matrix of En, in some appropriate basis.
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in appendix A, one can pick a basis of curves, denoted by Cαi
, which are in one-to-one cor-

respondence with the simple roots αi of the flavour algebra En and intersect according to its
Dynkin diagram.

The En fixed point is also the UV completion of a non-normalizable 5d gauge theory with
N = 1 supersymmetry, consisting of an SU(2) vector multiplet coupled to N f = n− 1 hyper-
multiplets8 with inverse gauge coupling m0 = 8π2 g−2

5d [13]. This gauge theory description is
obtained by a mass deformation of the SCFT that breaks En down to so(2n− 2)⊕ u(1):

α1 α2 α4 α5

· · ·
αn

α3

−→
u(1) α2 α4 α5

· · ·
αn

α3

.

(14)

In the geometry, this corresponds to a partial resolution of the singularity. To describe the
SU(2), N f = n − 1 gauge theory geometrically, one should pick a ruling of the exceptional
divisor B4. For our purposes, this consists of a choice of ‘fiber’ and ‘base’ rational curves,
C f
∼= P1 and Cb

∼= P1 respectively. For n= 1, we have the Hirzebruch surfaces:

C f → Fp→ Cb , p = 0, 1 . (15)

The trivial (p = 0) or non-trivial (p = 1) fibration of C f over Cb gives us the SU(2)0 or SU(2)π
gauge theory in the limit where the fiber curve collapses to a point; the M2-brane wrapping
C f gives the SU(2) W -boson, and the M2-brane wrapping Cb gives the 5d instanton particle.
For n > 1, we view B4 = dPn as the blow-up of F0 at N f = n− 1 generic points. By a slight
abuse of notation, we then denote by C f , Cb the same curves pulled back through the blow-
down map dPn → F0. The N f exceptional curves are denoted by Ei , i = 1, · · · , n− 1, and the
corresponding wrapped M2-branes give us the hypermultiplets.

In this work, we are interested in the 5d SCFT compactified on a finite-size circle with
radius β . This gives us a 4d N = 2 supersymmetric theory ‘of Kaluza-Klein (KK) type’, which
we denote by DS1 En. By the M-theory/Type IIA duality, we can engineer the theory as the
low-energy limit of Type IIA string theory on R4 ×XEn

:

DS1 En ≡ En 5d SCFT on R4 × S1 ←→ M-theory on R4 × S1 ×XEn

←→ IIA on R4 ×XEn
.

(16)

The Coulomb-branch physics of DS1 En is rather more subtle and interesting. This is due to
quantum corrections, which kick in as soon as we compactify on a circle. In the geometric-
engineering picture, we have worldsheet instanton corrections in Type IIA. Equivalently, in
M-theory, we have to account for M2-branes wrapping C × S1, with C some curve inside eXEn

.
Note that the 4d N = 2 theory DS1 En is a massive theory, since we introduced the KK-scale

mKK = 1/β . For generic values of the parameters, this is an ‘abstract’ strongly coupled quantum
field theory defined by the IIA geometry. In some particular limit on the Kähler parameters,
called the geometric engineering limit [10, 21], we recover the 4d N = 2 SU(2) theory with
N f flavours, at least when N f ≤ 4, and the Coulomb branch physics is then governed by
the celebrated Seiberg-Witten solution [1, 2]. (We will review what happens for N f > 4 at
the end of this section.) More generally, the 5d gauge theory description remains useful for
m0� mKK [12,19].

85d N = 1 SU(2) with Nf = n− 1, for short. For n = 1, we have SU(2) with θ angle 0 or π, corresponding
to E1 or eE1, respectively. The E0 fixed point does not have a gauge theory interpretation but can be obtained as a
deformation of the eE1 theory [14].
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2.2 Introducing the U-plane: a gauge theory perspective

One can gain some useful intuition about the Coulomb-branch physics of DS1 En from the 5d
gauge-theory description [19]. Firstly and most importantly, the Coulomb branch is a one-
complex dimensional variety because the 5d real scalar σ in the abelian vector multiplet for
U(1) ⊂ SU(2) is paired with the U(1) holonomy along the circle. Let us then define the
dimensionless scalar:

a = i (βσ+ iA5) , A5 ≡
1

2π

∫

S1

AM d x M . (17)

The classical SU(2) Coulomb branch is then of the form (R × S1)/Z2, which is spanned by
a ∈ C modulo a → −a (the SU(2) Weyl group action) and a → a + 1 (the five-dimensional
large gauge tranformations along S1). It will be useful to parameterize the Coulomb branch
in a gauge invariant way, as:

U = e2πia + e−2πia . (18)

This corresponds to the classical expectation value of a five-dimensional supersymmetric Wil-
son line in the fundamental representation of SU(2), wrapping the circle:

U ≡ 〈W 〉 , W ≡ Tr P exp

�

i

∫

S1

(A− iσdψ)

�

. (19)

For each U(1)i ⊂ En symmetry on the ECB, we similarly introduce the complexified flavour
parameters:

νi = i
�

βm(F)i + iA(F)i,5

�

, MF i ≡ e2πiνi , (20)

which include flavour Wilson lines along the circle.
Secondly, the classical relation (18) will be modified by quantum corrections. Let us con-

sider (19) as the intrinsic definition of U , valid in the full quantum theory. Recall that the 4d
N = 2 low-energy description on the CB is fully determined, in flat space, by some holomor-
phic prepotential F(a). In particular, we have the effective gauge coupling:

τ=
∂ 2F(a)
∂ a2

, (21)

at any given point on the Coulomb branch. The challenge is then to write down the low-energy
parameter a in terms of the VEV U in (19). More generally, we will have:

a = a(U , MF ) , (22)

including a dependence on the flavour parameters MF i . Then, (21) gives us the effective gauge
coupling on the CB as a function of U and MF i .

At large distance on the CB, namely for U →∞, one can compute the prepotential at the
one-loop order similarly to the 4d gauge-theory case, by resumming the KK towers [19]. For
SU(2) with N f flavours, one finds:

F = F0 +
2

(2πi)3
Li3
�

e4πia
�

−
1

(2πi)3

n−1
∑

i=1

∑

±
Li3
�

e2πi(±a+µi)
�

≈ F0 +
2

(2πi)3
Li3

�

1
U2

�

−
1

(2πi)3

n−1
∑

i=1

Li3

�

1
U

�

,

(23)

with F0 =
1
2µ0a2 a classical contribution, and the trilogarithms arise at one-loop. Here, the

µi ’s are the complexified masses of the n− 1 fundamental hypermultiplets, and we assumed
|a| � |µi| on the second line. The mass parameters µ0, µi are related to the parameters νi in
(20) in a specific way, as explained below and in appendix A.

12

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

U0

U∗1 U∗k

U∞

. . .

Figure 1: Paths γv generating the fundamental group of the U-plane. The path
around infinity is equal to minus the sum of all the other paths, γ∞ = −(γ1+· · ·+γk).

2.3 Monodromies, periods and Seiberg-Witten geometry

The low-energy scalar field a is not a single-valued function of the parameter U . This is already
true, in a somewhat trivial way, in the large distance approximation, where we have:

a =
1

2πi
log

�

1
U

�

+O
�

1
U

�

. (24)

The presence of a logarithmic branch cut is equivalent to the statement that a and a + 1 are
gauge equivalent. More importantly, the effective gauge coupling itself is not single-valued.
As we go around the point at infinity, U−1 = 0, we have:

U−1→ e2πiU−1 : τ→ τ+ 9− n , (25)

which follows from (23). This gives us a shift of the effective 4d θ -angle by 2πb0, with b0 the
β-function coefficient of the 5d gauge theory [13]:

b0 = 8− N f = 9− n . (26)

In the interior of the U-plane, one should then have more singularities, around which the
effective gauge coupling τ transforms by some non-trivial elements of PSL(2,Z), exactly like
in the case of purely four-dimensional SU(2) theories [1,2]. Such singularities are physically
allowed because of the electric-magnetic duality of the 4d N = 2 abelian vector multiplet.
Let aD denote the scalar field magnetic dual to a. It can be obtained in terms of the effective
prepotential by:

aD =
∂F
∂ a

. (27)

Semi-classically, at large distance on the U-plane, the field aD describes a BPS monopole. The
low-energy effective theory is fully determined by the data of a section (aD, a) of a rank-two
holomorphic affine bundle9 over the U-plane, with structure group C2 o SL(2,Z), such that
the effective gauge coupling is given by:

τ=
∂ aD

∂ a
. (28)

9This is an affine bundle instead of a vector bundle because of the presence of masses, as we will discuss
momentarily. For now, let us focus on the SL(2,Z) part of the structure group.
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The low-energy scalars a and aD are called the electric and magnetic ‘periods’, respectively.
As we go around any singularity U = U∗ on the U-plane (including the point at infinity) in a
clockwise fashion, the periods transform as:

�

aD
a

�

→M∗

�

aD
a

�

, M∗ ∈ SL(2,Z) . (29)

The SL(2,Z) matrix M∗ is the so-called monodromy around that point. Let us denote
the k + 1 singularites on the U plane (including the point at infinity, U∞ = ∞) by
Ò∆= {U∗1, · · · , U∗k, U∞}, and let:

MC = {U} −Ò∆ (30)

be the Coulomb branch with its singular points removed. Given one of our rank-one theories
with fixed mass parameters MF i , the quantum Coulomb branch data is an affine bundle E with
C2 fibers:

C2 ,−→ E
π
−→MC . (31)

By definition, the monodromy group at some base point U0 is a representation of the funda-
mental group π1(MC , U0) on the fiber C2 ∼= π−1(U0). It is generated by the matricesM∗l , for
some convenient choice of base point and of paths γv , where each ‘vanishing path’ goes once
along a single singularity as shown in figure 1. We then have the obvious constraint:

M∞
k
∏

l=1

M∗l = 1 . (32)

A good part of paper is dedicated to a thorough study of this elementary structure for the
DS1 En theories. In particular, we would like to give a detailed account of the Coulomb branch
singularities, and of the corresponding low-energy physics.

The modular group SL(2,Z) is generated by the two matrices:

S =

�

0 −1
1 0

�

, T =

�

1 1
0 1

�

. (33)

Let us also denote by P = S2 = −1 the generator of the Z2 center of SL(2,Z). The monodromy
at U =∞ can be computed from (23) and (24), which gives:

aD→ aD + (9− n)a+µ0 −
n−1
∑

i=1

µi , a→ a+ 1 . (34)

We then have the following SL(2,Z) monodromy at infinity:

M∞ = T9−n =

�

1 9−n
0 1

�

. (35)

Note that this is tied to the Witten effect [147]: a shift of the 4d θ -angle as in (25) induces an
electric charge for the monopole, turning it into a dyon.

2.3.1 Central charge, massless BPS particles and T k monodromies

Half-BPS massive particle excitations on the Coulomb branch of DS1 En have a mass determined
by their electromagnetic and flavour charges:

γ ∈ Γ ∼= Zn+3 , γ∼= (m, q, qi
F , nKK) , (36)
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according to the central-charge formula, mγ = |Zγ|. The integer-quantized charges consist of
the magnetic and electric charges, (m, q), the En flavour charges qi

F , and the KK momentum
nKK [26]. Using the KK scale as the unit of mass, let us define the dimensionless central charge
Z ≡ βZ . At any given point on the extended Coulomb branch, the central charge is a map
Z : Γ → C, which is given explicitly by:

Zγ(U , M) = qΠ= maD + qa+ qi
Fµi + nKK , (37)

in terms of the electromagnetic periods. The parameters µi and µKK=1 are ‘exact periods’, as
we will review below. Around any singularity on the U-plane, we have an enlarged monodromy
of the form:

Π→M∗Π , Π≡







aD
a
µi
1






, M∗ =







m11 m12 ni
1 n0

1
m21 m22 ni

2 n0
2

0 0 1 0
0 0 0 1






, (38)

with m11m22−m12m21 = 1, the upper-left corner of M∗ being the electromagnetic monodromy
(29). Note that the monodromy can be equivalently understood as acting on the electromag-
netic and flavour charges as:

q→ qM∗ , q≡ (m, q, qi
F , nKK) . (39)

In general, we keep to the ‘electric’ duality frame dictated by the non-abelian gauge theory
limit (or, more precisely, the large volume limit, as we will see below). The local infrared
physics is invariant under electric-magnetic duality, however. When analysing the physics at a
given point on the U-plane, it can be convenient to change the duality frame. This change of
basis leaves the central charge invariant and therefore acts on the charges and periods as:

q→ qB−1 , Π→ BΠ , (40)

with B the basis-change matrix.
The simplest type of singularity that can occur in the interior of the U-plane is when a single

charged particle becomes massless. In the appropriate duality frame, the low-energy physics
at that point is then governed by SQED, namely a U(1) gauge field coupled to a single massless
hypermultiplet of charge 1, denoted by ea. Let us assume that a dyon of electromagnetic charge
(m, q) becomes massless at U∗, with m and q mutually prime, so that ea = maD+qa. Due to the
β-function of SQED, the local monodromy is given by T , in the variables (eaD, ea)T = B(aD, a)T ,
and it thus follows that a massless dyon at U∗ induces a monodromy:

M(m,q)
∗ = B−1T B =

�

1+mq q2

−m2 1−mq

�

. (41)

Any such singularity with a monodromy conjugate to T is called an I1 singularity. Similarly, we
could have SQED with k electrons (or some hypermultiplets of charges q j such that

∑

j q2
j = k),

with a monodromy conjugate to T k [1, 2]. That is called an Ik singularity. Other types of
singularities are possible, as we will review momentarily.

For the DS1 En theory at generic values of the mass parameters MF , there are k = n + 3
singularities of type I1 in the interior of the U-plane, at each of which a single BPS particle
becomes massless. This number of Seiberg-Witten points can be understood in various ways.
From the perspective of local mirror symmetry, which we take below, n + 3 is the number
of generators of the third homology of the Type IIB mirror threefold, which equals the total
number of generators of the even homology of eX. From the point of view of the 5d gauge theory,
if we admit that the pure 5d SU(2) gauge theory on a circle has 4 CB singularities [19], then
adding N f = n − 1 massive flavours adds N f singularities, which are semi-classical in some
particular large-mass regime.
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2.3.2 Seiberg-Witten geometry, Kodaira singularities and low-energy physics

For any rank-one 4d N = 2 field theory, the physical problem is to find exact expressions for
the electromagnetic periods (aD, a) such that the CB metric is positive definite, namely:

Imτ= Im
∂ aD

da
> 0 , ds2(MC) = Imτ dadā , (42)

and which otherwise match the known asymptotics. The original Seiberg-Witten solution for
4d N = 2 SU(2) gauge theories was obtained by realising that, given some physical ansatz for
the singularities and monodromies on the Coulomb branch, a positive-definite metric can be
elegantly obtained by viewing the low-energy fields (aD, a) as the periods of a meromorphic
one-form, λSW, on a family of elliptic curves [1,2].

Let us review some useful facts about families of elliptic curves, and their relationship to
4d physics. At fixed mass parameters, we wish to consider a one parameter-family of elliptic
curves, which we generally call ‘the Seiberg-Witten geometry’:

Σ→ SCB→MC
∼= {U} . (43)

Here, SCB denotes a one-parameter family of elliptic curve over the U-plane, including the
singularities. At each smooth point U ∈ MC on the Coulomb branch, we have an elliptic
curve ΣU

∼= E. One then identifies τ(U) with the modular parameter of that curve. The latter
is computed as τ = ωD

ωa
, where ωD and ωa are the periods of the holomorphic one-form ω

along the A- and B-cycles in ΣU :

ωD =

∫

γB

ω , ωa =

∫

γA

ω . (44)

We call these periods the ‘geometric periods’. The holomorphic one-form of an elliptic curve is
unique up to rescaling. The Seiberg-Witten differential λSW is a meromorphic one-form such
that:

dλSW

dU
=ω , (45)

modulo an exact 1-form. The ‘physical periods’ are then defined as:

aD =

∫

γB

λSW , a =

∫

γA

λSW . (46)

We then indeed have:

ωD =
daD

dU
, ωa =

da
dU

, τ=
ωD

ωa
=
∂ aD

∂ a
. (47)

The SW curve of DS1 En, similarly to the case of the massive 4d SU(2) gauge theories [2], can
be viewed, perhaps more precisely, as a genus-one Riemann surface with (generically) n+ 1
punctures, where the SW differential has simple poles with residues given by the masses (or
‘flavour periods’) µi and µKK. For our purpose in this work, however, we can mainly bypass
an explicit determination of the SW differential. It will often be enough to determine the
geometric periods before using (47) to determine the electromagnetic periods up to integration
constants. The latter will be fixed by matchings to known asymptotics.
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Table 4: Kodaira classification of singular fibers and associated 4d low-energy
physics. The Ik fibers are also called ‘multiplicative’ or ‘semi-stable’ fibers. (I0 is
the ‘stable’ generic smooth fiber.) All the other types of fibers are called ‘additive’ or
‘unstable’.

fiber τ ord(g2) ord(g3) ord(∆) M∗ 4d physics g flavour

Ik i∞ 0 0 k T k SQED su(k)
I∗k i∞ 2 3 k+ 6 PT k SU(2), N f = 4+ k > 4 so(2k+ 8)
I∗0 τ0 ≥ 2 ≥ 3 6 P SU(2), N f = 4 so(8)

I I e
2πi
3 ≥ 1 1 2 (ST )−1 AD[A1, A2] = H0 -

I I∗ e
2πi
3 ≥ 4 5 10 ST MN E8 e8

I I I i 1 ≥ 2 3 S−1 AD[A1, A3] = H1 su(2)
I I I∗ i 3 ≥ 5 9 S MN E7 e7

IV e
2πi
3 ≥ 2 2 4 (ST )−2 AD[A1, D4] = H2 su(3)

IV ∗ e
2πi
3 ≥ 3 4 8 (ST )2 MN E6 e6

Weierstrass model and J -invariant. All the SW curves considered in this work can be
brought to the standard Weierstrass form:

y2 = 4x3 − g2(u)x − g3(u) , (48)

by a change of coordinates.10 Here, u = (U , M , · · · ) denotes local coordinates on the base of
the elliptic fibration. The discriminant of the curve is the function:

∆(u)≡ g2(u)
3 − 27g3(u)

2 . (49)

At fixed mass parameters, the roots of the polynomial∆(U) give us the locations of the U-plane
singularities. It is also very useful to consider the J -invariant:

J(u) =
1

1728
j(u) =

g2(u)3

∆(u)
, (50)

which is an absolute invariant of the curve (while g2 and∆ depend on the choice of variables).
Importantly, J is a modular function when written in terms of the modular parameter τ. It
takes the following universal form:

J(τ) =
E4(τ)3

E4(τ)3 − E6(τ)2
, (51)

in terms of Eisenstein series. We refer to appendix B for a review of useful facts about modular
groups and modular forms. Let us note that the zeroes of the Eisenstein series on the canonical
fundamental domain of the upper half-plane are at τ= ζ3 and τ= i for E4 and E6, respectively,
with ζ3 = e

2πi
3 . These are elliptic points for the SL(2,Z) group. We have J(ζ3) = 0 and

J(i) = 1.

10When viewing the SW curve as a compact curve, the Weierstrass equation can be read as the cubic
Y 2 = 4X 3 − g2X Z4 − g3Z6 with [X , Y, Z] = P2

[2,3,1]. Here we are working on the patch Z = 1. In fact, even
though we call ΣU ‘an elliptic curve’, we will remain somewhat agnostic about the precise mathematical definition.
In some string-theory geometric engineering scenarios, it appears more natural to view the SW curve as an affine
curve in (C∗)2 instead of a curve in projective space. These subtle differences of perspective will not affect our
physical discussion. We used SAGE [148] to find the explicit Weierstrass form of various curves (for instance for
the ‘toric’ mirror curves reviewed below or for various 4d curves from the literature).
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Kodaira classification and infrared physics. The possible singularities of our Seiberg-Witten
geometry are captured by the Kodaira classification of singular fibers. The singularity type can
be read off from the Weierstrass form of the curve by looking at the order of vanishing at
U = U∗ of g2, g3 and of the discriminant:

g2 ∼ (U − U∗)
ord(g2) , g3 ∼ (U − U∗)

ord(g3) , ∆∼ (U − U∗)
ord(∆) . (52)

The different types of fibers, in Kodaira’s notation, are listed in table 4. This gives us a crucial
tool to identify the types of singularities in the low-energy physical description, given the
Seiberg-Witten geometry [11].11

We already discussed the Ik fibers. In the context of the 5d En SW curves, we have an I9−n
singularity at U =∞, as shown in (35). We can also have an Ik singularity in the interior of
the U-plane, which is interpreted as k BPS particles of the same charge becoming massless.
The local physics at the singularity is then that of massless SQED with k electrons, which is
an IR-free theory. This is consistent with the fact that the effective inverse gauge coupling is
τ= i∞ at that point. This theory has a Higgs branch which is isomorphic to the moduli space
of one SU(k) instanton.12 Therefore, there is a ‘quantum Higgs branch’ emanating from such
a point on the U-plane and, in particular, there is an su(k) flavour symmetry associated to this
type of singularity.

The second and third type of singularity in table 4, called I∗k , has a monodromy conjugate
to PT k. The low-energy physics is that of a 4d N = 2 SU(2) gauge theory with N f = 4+ k
flavours, which is IR-free for k > 0, and conformal for k = 0. Its Higgs branch is the moduli
space of one SO(8+ 2k) instanton, and the flavour symmetry algebra is so(8+ 2k).

The Kodaira singularities of type I I , I I I and IV realise the three ‘classic’ rank-one Argyres-
Douglas theories [3, 4]. These are non-trivial 4d N = 2 SCFTs with fractional scaling dimen-
sions for the Coulomb branch operator (6

5 , 4
3 and 3

2 , respectively). The flavour symmetry of
the H0 theory (Kodaira fiber I I) is trivial, while the flavour symmetry of the H1 and H2 theory
is su(2) and su(3), respectively. The latter two have a Higgs branch which is the moduli space
of one SU(2) or SU(3) instanton, respectively.

Finally, the Kodaira singularities of type I I∗, I I I∗ and IV ∗ correspond to the En Minahan-
Nemeschansky theories for n= 6, 7,8 [5,6], as indicated in the table. These 4d SCFTs have a
Higgs branch isomorphic to the moduli space of one En instanton.

Picard-Fuchs equations. Consider a one-parameter families of curves, ΣU , by setting the
various mass parameters to definite values. We consider the Weierstrass form (48), with g2(U)
and g3(U) some polynomials in U , and we would like to determine the geometric periods:

ω=

∫

γ

ω , ω=
d x
y

, (53)

with γ any one-cycle γ ∈ H1(ΣU). These periods satisfy a second-order linear differential
equation, the Picard-Fuchs equation, which reads:

∆(U)
d2ω

dU2
+ P(U)

dω
dU
+Q(U)ω= 0 , (54)

11In this work, we will only consider fibers that are ‘split’ in the sense of [9] – see also [149].
12This follows, for instance, from compactification to 3d together with 3d N = 4 mirror symmetry [150].
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with P(U) and Q(U) determined in terms of g2 and g3:

P(U) =
27g3J2

g4
2 J ′

�

−7g2
3 g ′2 g ′3 + 9g2

2 g ′2
2 g3 + 108g2 g3 g ′3

2 − 135g ′2 g3
2 g ′3

+2g2
4 g ′′3 − 3g2

3 g ′′2 g3 − 54g2 g3
2 g ′′3 + 81g ′′2 g3

3
�

,

Q(U) =
27g3J2

16g4
2 J ′

�

−8g2
3 g ′′2 g ′3 + 8g2

3 g ′2 g ′′3 + 216g ′′2 g3
2 g ′3 − 216g ′2 g3

2 g ′′3

−18g2
2 g ′2

2 g ′3 + 21g2 g ′2
3 g3 + 120g2 g ′3

3 − 108g ′2 g3 g ′3
2
�

.

(55)

Here, J = J(U) is defined as in (50), and f ′ ≡ d f
dU for any f (U). By direct computation, one

can check that (54) is equivalent to the following universal PF equation for Ω(J), a function
of the J -invariant itself [151,152]:

d2Ω

dJ2
+

1
J

dΩ
dJ
+

31J − 4
144J2(1− J)2

Ω= 0 . (56)

This Ω is related to the geometric period ω by:

ω(U) =

√

√ g2(U)
g3(U)

Ω(J(U)) . (57)

The solutions to this universal equation are known. In particular, we then have the following
expression for the geometric periods ωa:

ωa =
da
dU
= C0

√

√ g2(U)
g3(U)

√

√

√ E6(τ)
E4(τ)

, (58)

with C0 some normalization constant to be determined. In practice, one can then obtain a
useful expression for ωa(U) by writing down τ(U) around τ= i∞, at any given order. To do
this, consider the series expansion of the J -invariant:

j(τ) = 1728J(q) =
1
q
+ 744+ 196884 q+ 21493760 q2 +O

�

q3
�

, (59)

with q ≡ e2πiτ, and its inverse:

τ( j) =
1

2πi

�

− log( j(U)) +
744
j(U)

+
473652

j(U)2
+

451734080
j(U)3

+O
�

1
j(U)4

��

. (60)

The dual period, aD, can then be written as an expansion in that large-U limit by using (47), at
least in principle. Note also that the expression (59) can be re-expanded at large U to obtain
an explicit expression for U(τ). That is often quite useful, as we will see in examples.

2.4 Large-volume limit and mirror Calabi-Yau threefold

In the type-IIA description of the DS1 En Coulomb branch, the BPS particles are D-branes wrap-
ping holomorphic cycles inside the local del Pezzo geometry, at least semi-classically. (More
generally, they are Π-stable objects in the derived category of coherent sheaves of eXEn

[153].)
The associated ‘exact periods’ are the ‘quantum volumes’ of the D0-, D2- and D4-branes. In
the large volume limit, we have:

ΠD4 =

∫

B4

e(B+iJ)ch(Lε)

√

√

√Td(TB4)
Td(NB4)

+O(α′) , (61)
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for the wrapped D4-brane. Here J is the Kähler form, which is complexified by the B-field, and
Lε is a (spinc) line bundle, which must often be non-trivial [154]. The period of a D2-brane
wrapped on any 2-cycle Ck ⊂ B4 is given by the corresponding complexified Kähler parameter:

ΠD2Ck
= tk ≡

∫

Ck

(B + iJ) . (62)

We also have ΠD0 = 1, the D0-brane being stable at any point on the Kähler moduli space. For
n > 0, we view dPn as the blow up of F0

∼= C f × Cb at n− 1 points, with exceptional curves
Ei (i = 1, · · · , n− 1) as mentioned above – see appendix A. We then choose a basis of Kähler
parameters:

t f =

∫

C f

(B + iJ) , tb =

∫

Cb

(B + iJ) , tEi
=

∫

Ei

(B + iJ) , i = 1, · · · , n− 1 . (63)

Note that these parameters are only defined up to shifts by integers, due to large gauge trans-
formations of the B-field. For any curve C, we also define the single-valued parameter:

QC ≡ e2πi tC . (64)

Thus, the large Kähler volume limit for any effective curve C is equivalent to QC → 0.

Let {Ck} be some basis of H2(B4,Z), with the intersection pairing:

Ck · C l = Ikl . (65)

We also choose the worldvolume flux on the D4-brane to be:

1
2π

∫

Ck

F = εk . (66)

These fluxes must generally be non-zero and half-integer, due to the Freed-Witten anomaly
cancellation condition [154]:

c1(Lε) +
1
2

c1(K) ∈ H2(B4,Z) . (67)

On the other hand, any integer-quantized flux on the D4-brane could be set to zero by a large
gauge transformation of the B-field. The latter transformation corresponds to a large-volume
monodromy. We then have:

ΠD4 =
1
2

∑

k,l

(tk + εk)Ikl(t l + εl) +
χ(B4)

24
+O(α′) . (68)

Note that the parameters εk just amount to shifting tk by some half-integers.
For the IIA geometries that are obtained by blowing up F0,13 it will be convenient to choose

another basis of Kähler parameters, denoted by a, µ0 and µi (i = 1, · · · , n− 1), with:

t f = 2a , tb = 2a+µ0 , tEi
= a+µi . (69)

The parameter a is the low-energy photon in the ‘electric’ frame. In the SU(2) gauge-theory
limit, the D2-brane wrapped on C f is identified with the W -boson, and the factor of 2 in
(69) corresponds to the ‘SU(2)’ normalisation of the electric charge such that it has charge
2; similarly, the other identifications in (69) corresponds to the electric and flavour charges

13Thus, in all cases except for E0 and eE1, which we can treat separately.
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of the other D2 particles, i.e. five-dimensional instanton particles and flavour hypermulti-
plets. Note that the parameters µ0, µi are pure flavour parameters, in that the corresponding
(non-effective) curves Cµ have vanishing intersection with the compact four-cycle B4 ⊂ eX.
Consequently, they lie along the E−n lattice in (A.1). From (68), we then find:

ΠD4 = 2a(2a+µ0)−
1
2

n−1
∑

i=1

(a+µi + εi)
2 +

n+ 3
24

+O(Q) , (70)

where we chose ε f = εb = 0. Once we identify the W -boson as coming from a D2-brane
wrapping C f (and, more generally, the ‘electric’ particles as being the wrapped D2-branes),
then the wrapped D4-brane is identified with the magnetic monopole. We then have:

aD =
∂F
∂ a
= ΠD4 , (71)

and the large volume result (70) then corresponds to a prepotential:

F =
�

µ0 −
1
2

n−1
∑

i=1

eµi

�

a2 +
9− n

6
a3 +

�

n+ 3
24
−

1
2

n−1
∑

i=1

eµ2
i

�

a+O(Q) , (72)

where we defined the shifted masses eµi ≡ µi + εi . This should be compared to the 5d prepo-
tential for SU(2) with N f = n− 1, which reads [43]:

F5d = m0σ
2 +

4
3
σ3 −

1
6

n−1
∑

i=1

∑

±
Θ(±σ+mi)(±σ+mi)

3 , (73)

in the conventions of [121]. We indeed recover the 5d prepotential from (72), in the appro-
priate limit and in a specific Kähler chamber:

F5d = lim
β→∞

i
β3

F , σ > |m j| , j = 0, · · · , n− 1 , (74)

using the fact that Im(a) = βσ and Im(µ j) = βm j .

2.4.1 Local mirror symmetry for the toric models

For n≤ 3, the En singularity in Type IIA is also a toric Calabi-Yau threefold. The corresponding
toric diagrams are:

c1

c2 c3

c4

c5c6

c0

E3

c1

c3

c4

c5c6

c0

E2

c1

c3

c4

c6

c0

E1

c1

c3

c5c6

c0

eE1

c1

c3

c5

c0

E0

(75)
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Here, the arrows denote the possible partial resolutions of the singularities, which correspond
to massive deformations of the 5d SCFTs. Let us then consider the E3 singularity first, since
the other toric singularities can be obtained from it by this partial resolution process. The
internal point in the toric diagram, indicated by c0 in (75), corresponds to the compact divisor
D0
∼= B4 = dP3. Associated to each external point, indicated by ci , i = 1, · · · , 6, we have

a non-compact toric divisor Di of the threefold, which intersects the compact divisor along
curves Ci inside the resolved singularity, Ci

∼= D0 · Di , The intersection numbers between toric
divisors and curves are captured by the following table, which is equivalent to the data of a
GLSM [155]:

D1

D2
D3

D4

D5

D6

D0

D1 D2 D3 D4 D5 D6 D0 FI
C1 −1 1 0 0 0 1 −1 ξ1
C2 1 −1 1 0 0 0 −1 ξ2
C3 0 1 −1 1 0 0 −1 ξ3
C5 0 0 0 1 −1 1 −1 ξ5

C4 0 0 1 −1 1 0 −1 ξ4
C6 1 0 0 0 1 −1 −1 ξ6

(76)

Note the linear equivalences C4
∼= C1 + C2 − C5 and C6

∼= C2 + C3 − C5. The triangulated toric
diagram shown in (76) corresponds to the smooth local dP3 geometry. The real parameters ξi
are the Kähler volumes of the curves Ci in the local threefold – they are the ‘FI parameters’ in
the GLSM language. The Kähler cone is spanned by (ξ1,ξ2,ξ3,ξ5) ∈ R4 satisfying:

ξ1 ≥ 0 , ξ2 ≥ 0 , ξ3 ≥ 0 , ξ5 ≥ 0 , ξ1 + ξ2 − ξ5 ≥ 0 , ξ2 + ξ3 − ξ5 ≥ 0 . (77)

Other phases can be obtained by successive flops, therefore moving onto the extended Kähler
cone of the singularity, which maps out the full extended Coulomb branch of the 5d SCFT
E3 [121]. Viewing dP3 as the blow-up of F0 at two points, we have the natural basis of curves
discussed in subsection 2.1: C f and Cb are the ‘fiber’ and ‘base’ curves, respectively, and E1
and E2 are the two exceptional curves. This basis is related to the curves shown in (76) by:

C f = C1 + C2 , Cb = C2 + C3 , E1 = C5 , E2 = C2 . (78)

In the 5d SU(2), N f = 2 gauge-theory description, the M2-branes wrapped over C f and Cb
give us the W-boson and the instanton particle, respectively, while the M2-branes wrapped
over E1 or E2 give rise to hypermultiplets.14 The E1 fixed point inself has an enhanced
E3 = SU(3) × SU(2) symmetry. The simple roots of E3 are in one-to-one correspondence
with the curves:

Cα1
= Cb − C f , Cα2

= C f − E1 − E2 , Cα3
= E1 − E2 , (79)

which intersect inside dP3 according to the E3 Cartan matrix. :

Cαi
· Cα j

= −Ai j =

 

−2 1 0
1 −2 0
0 0 −2

!

. (80)

Note that, using the 5d gauge-theory parameters (69), the Kähler parameters associated to the
roots are:

tα1
= µ0 , tα2

= −µ1 −µ2 , tα3
= µ1 −µ2 . (81)

See appendix A for more details on the 5d gauge-theory parameterisation.

14We are following the analysis of [121], where the gauge theory description is read off from a ‘vertical reduction’
of the toric diagram.
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Local mirror description. Let us now consider the mirror description of the extended
Coulomb branch, as the complex structure deformations of the mirror threefold in IIB:

DS1 En ←→ IIA on R4 × eX ←→ IIB on R4 × bY . (82)

For any toric singularity, the local mirror threefold, bY, is given by a hypersurface in C2×(C∗)2,
with equation [22]:

bY=
�

v1v2 + F(t, w) = 0
�

� (v1, v2) ∈ C2 , (t, w) ∈ (C∗)2
	

. (83)

Here, F(t, w) is the Newton polynomial associated with the toric diagram, which takes the
general form:

F(t, w) =
∑

m∈Γ0

cm t xm wym , (84)

where the sum runs over all the points in the toric diagram Γ0 ⊂ Z2, with coordinates (xm, ym).
The coefficients cm are the complex structure parameters of the mirror, modulo the gauge
equivalences:

F(t, w)∼ s0F(s1 t, s2w) , (s0, s1, s2) ∈ (C∗)3 . (85)

Let us associate to each effective curve C ⊂ eX a complexified Kähler parameter QC = e2πi tC as
in (64). Given a GLSM description of eX, as in (76), the mirror parameter zC is given by:

zC =
∏

m∈Γ0

(cm)
qm

, qm ≡ C · Dm . (86)

Here, Dm is the toric divisor associated to the point m ∈ Γ0. This is normalized such that we
have zC ≈Q f in the large volume limit, or equivalently:

t f =
1

2πi
log(z f ) +O(z) . (87)

The hypersurface (83) is a so-called suspension of the affine curve:

Σ= {F(t, w) = 0} ⊂ (C∗)2 , (88)

and we may focus on the latter. One may view the threefold bY as a double fibration of Σ and
C∗ over some complex plane {W} ∼= C, as we will review in section 3.1.2. The BPS particles
arise from D3-branes wrapping supersymmetric 3-cycles which can be constructed explicitly
in a standard way [17, 23]. The exact periods are then given by the classical periods of the
holomorphic 3-form on bY, which can be reduced to a line integral along a one-cycle γ= S3

γ∩Σ
on the curve Σ:

Πγ =

∫

S3
γ

Ω=

∫

γ

λSW . (89)

From these considerations, one finds the following Seiberg-Witten differential:

λSW = log t
dw
w

, (90)

up to an overall numerical constant.
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The E3 curve. The mirror curve for the local dP3 geometry is given by:

FdP3
(w, t) =

1
t

�

c1 +
c2

w

�

+
c3

w
+ c6w+ c0 + t

�

c4 + c5w
�

. (91)

We denote by:

z f =
c3c6

c2
0

, zb =
c1c4

c2
0

, zE1
=

c4c6

c5c0
, zE2

=
c1c3

c2c0
, (92)

the complex-structure parameters mirror to the Kähler volume of the curves (78). We find it
useful to introduce the parameters U , λ, M1 and M2 such that:

z f =
1

U2
, zb =

λ

U2
, zE1

= −
1

U M1
, zE2

= −
1

U M2
. (93)

Using the gauge freedom (85), we may set c3 = c6 = 1, c1 = c4, and choose c0 = −U , so that
the E3 Seiberg-Witten curve reads:

E3 :

p
λ

t

�

1+
M2

w

�

+
1
w
+w− U + t

p

λ (1+M1w) = 0 . (94)

The CB parameter U is chosen such that:

U ≈
1

Æ

Q f
= e−2πia , (95)

at large volume, while the mass parameters λ, M1, M2 are related to the 5d gauge parameters
as by the mirror map:

λ=
Qb

Q f
= e2πim0 , Mi = −

Æ

Q f

QEi

= e−2πieµi = −e−2πiµi , i = 1,2 , (96)

setting εi =
1
2 (mod 1) for the exceptional 2-cycles Ei in B4

∼= Bln−1(F0). Here, λ corresponds
to the 5d gauge coupling, and M1, M2 correspond to the two hypermultiplet masses. These
‘flavour’ complex-structure parameters, which we will often call ‘the masses’ by a slight abuse
of terminology, are such that the massless limit corresponds to λ= Mi = 1. Unlike the relation
(95) between U and a, which is corrected by worldsheet instantons from the IIA point of view,
the large-volume relations (96) are exact in α′, as is the case for any Kähler parameter tC in eX
Poincaré dual to a non-compact divisor.

The E2 curve. Let us consider the successive 5d mass deformations shown in (75), to obtain
the curves for the other toric En singularities. To obtain the E2 geometry, we need to flop the
curve C2 ⊂ dP3 and take it to large negative volume. This corresponds to the limit of large
negative 5d mass, m2→−∞, which is the limit M2→ 0. This is equivalent to setting c2 = 0
in (91). We then obtain the curve:

E2 :

p
λ

t
+

1
w
+w− U + t

p

λ (1+M1w) = 0 . (97)

The 5d gauge-theory phase is SU(2) with N f = 1. The GLSM description of the E2 toric
geometry reads as follows:

D1

D3

D4

D5

D6

D0

D1 D3 D4 D5 D6 D0 FI
C f = C1 0 1 0 0 1 −2 ξ1
Cb = C3 1 0 1 0 0 −2 ξ3
E1 = C5 0 0 1 −1 1 −1 ξ5

C4
∼= C1 − C5 0 1 −1 1 0 −1 ξ4

C6
∼= C3 − C5 1 0 0 1 −1 −1 ξ6

(98)
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The E1 curve. Starting from the E2 theory in its gauge-theory phase, we can integrate out
the hypermultiplet with either m1 → −∞ or m1 →∞ in 5d, which gives us the SU(2)0 or
the SU(2)π 5d gauge theory, respectively. In the first limit, we have M1→ 0 and therefore we
find the E1 curve:

E1 :
p

λ

�

1
t
+ t
�

+
1
w
+w− U = 0 . (99)

For completeness, let us recall the GLSM description of the resolved E1 singularity:

D1

D3

D4

D6

D0

D1 D3 D4 D6 D0 FI
C f = C1

∼= C4 0 1 0 1 −2 ξ1
Cb = C3

∼= C6 1 0 1 0 −2 ξ3

(100)

The eE1 curve. This case is distinct from the all other En with n > 0, since dP1
∼= F1 is not a

blow-up of F0. Instead, we have the non-trivial fibration:

C f → F1→ Cb . (101)

The GLSM description reads:

D1

D3

D5

D6

D0

D1 D3 D5 D6 D0 FI
C f = C1

∼= C5 0 1 0 1 −2 ξ1
Cb = C3 1 1 1 0 −3 ξ3

C6
∼= C3 − C5 1 0 1 −1 −1 ξ5

(102)

Let us note that the instanton particle, which is the D2-brane wrapping Cb, has electromagnetic
charge (m, q) = (0,3), since D0 · Cb = −3. We then have the identification:

t f = 2a , tb = 3a+µ0 , (103)

which is distinct from (69). Starting from the E2 curve, we should take the limit M1 →∞.
Using the gauge freedom (85), we first rescale t → t/

p

M1 and redefine λ → λ/
p

M1. We
then have:

eE1 :
p

λ

�

1
t
+ tw

�

+
1
w
+w− U = 0 . (104)

The E0 curve. Finally, we can take the limit from eE1 to E0, which corresponds to a ‘nega-
tive 5d gauge coupling’, λ→∞. We should first perform a gauge transformation (85) with
(s0, s1, s2) = (λ−

1
3 ,λ−

1
3 ,λ

1
6 ), rescale U → 3λ

1
3 U (the factor 3 being there for future conve-

nience), and then take the limit λ→∞. One then obtains:

E0 :
1
t
+

1
w
+ tw− 3U = 0 . (105)

The local P2 geometry (also known as dP0) has the GLSM description:

D1

D3

D5

D0

D1 D3 D5 D0 FI
H 1 1 1 −3 ξ

(106)
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4d limit. It is also interesting to consider the four-dimensional ‘geometric-engineering’ limit
of the E3 curve (94), given by the small-β limit. We pick:

w= e−2πβ x , (107)

for the coordinate w, as well as:

λ=
�

2πiβΛ(2)
�2

, M1 = −e2πβm1 , M2 = −e−2πβm2 , (108)

for the mass parameters,15 keeping Λ(2) fixed. This scale is identified with the dynamical scale
of 4d N = 2 SU(2) with two flavours. Recall, that, for SU(2) with N f flavours, we have:

Λ
b0
(N f )
= µb0 e2πiτ(µ) , b0 = 4− N f , τ=

θ

2π
+

4πi
g2

4d

. (109)

We identify the 5d and 4d gauge couplings at the threshold scale µ ∼ 1
β , according to

βm0∝
1

g2
4d

. The 5d U-parameter and the 4d u-parameter can be matched as:

U = 2+ 4π2uβ2 +O(β3) , u= 〈Tr(Φ2)〉 ≈ −a2 , Φ= −
i
p

2

�

a 0
0 −a

�

. (110)

We then obtain the 4d curve:

Λ(x +m1)
t

+Λt(x +m2) + x2 − u= 0 , (111)

with the replacement t →−i t done for convenience. Due to the change of coordinate (107),
the 4d curve is now a curve in C × C∗. The residual Z2 symmetry of the 4d u-plane for the
N f = 2 curve is restored by shifting u by an a-independent term, namely: eu = u− Λ2/2. As
pointed out in [36], this leads to a-independent terms in the prepotential, which have no effect
on the low-energy effective action. From the five-dimensional curve perspective, we can view
this as a mixing of the O(β2) term in (110) with λ, due to the fact that the parameters u and
Λ2
(2) have the same scaling dimension. Such mixings will be a general feature of 4d limits. The

identification (108) is in agreement with Nekrasov partition function computations in 4d and
in 5d, as discused in section 9 and appendix D. Similar 4d limits can be taken from the E2, E1
and eE1 curves, with:

λE2
= −i

�

2πiβΛ(1)
�3

, λE1
= λ

eE1
=
�

2πiβΛ(0)
�4

. (112)

For both the E1 and the eE1 theory, this gives us the curve corresponding to the pure SU(2)
gauge theory in four-dimensions:

Λ2
(0)

t
+Λ2

(0) t + x2 − u= 0 . (113)

Similarly, the limit on the Weierstrass form of the E2 curve leads to a four-dimensional curve
isomorphic to:

Λ(1)

t
(x +m1) +Λ

2
(1) t + x2 − u= 0 . (114)

We give the Weierstrass form of all these curves in appendix C.

15We changed the sign of m2 in 4d, in keeping with conventions used later in the text.
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2.4.2 The En Seiberg-Witten curves

While the mirror curves for the local toric dPn geometries (i.e. n ≤ 3) can be found from the
toric data, the curves for the non-toric cases (n≥ 4) can be determined as limits of the E-string
theory SW curve [11,24,156], or, alternatively, using toric-like diagrams [157]. These curves
are most easily written in terms of the En characters:

χ
En
R (ν) =

∑

ρ∈R
e2πiρ(ν) , (115)

for ρ = (ρi) the weights of the representation R, and ν = (νi) the En flavour parameters,
with the index i ∈ {1, . . . , n}. The relation between these parameters and the 5d gauge-theory
parameters can be found as explained in appendix A. The curves are written explicitly in Weier-
strass form in appendix C. The massless En curves correspond to the S1 reduction of the 5d
SCFTs, with no mass deformations turned on. The massless limit of these curves is obtained
by setting the characters equal to the dimension of the corresponding representation. For the
E6,7,8 theories, they read:

E8 : y2 = 4x3 −
1

12
U4 x +

1
216
(U − 864)U5 ,

E7 : y2 = 4x3 −
1

12
(U − 36)(U + 12)3 x +

1
216
(U − 60)(U + 12)5 ,

E6 : y2 = 4x3 −
1

12
(U − 18)(U + 6)3 x +

1
216
(U2 − 24U + 36)(U + 6)4 ,

(116)

with the following singular fibers at finite U:

E8 : I I∗ ⊕ I1 ,

E7 : I I I∗ ⊕ I1 ,

E6 : IV ∗ ⊕ I1 .

(117)

This manifestation of the flavour symmetry in the mirror threefold occurs for all En theories.
Furthermore, from this configuration of singular fibers it is straightforward to obtain the four-
dimensional limit of these theories. This is done by identifying the I1 singularities with the
KK charge and decoupling it from the bulk by ‘zooming in’ around the En type Kodaira singu-
larity on the U-plane. It is well known that these flow in 4d to the Minahan-Nemeschansky
(MN) theories [5, 6], which have the following scaling dimensions for the Coulomb-branch
parameter: (∆E8

,∆E7
,∆E6

) = (6, 4,3). Thus, we have:

E8 : (U , x , y) −→ (β6u,β10 x ,β15 y) ,

E7 : (U , x , y) −→ (β4u− 12,β6 x ,β9 y) ,

E6 : (U , x , y) −→ (β3u− 6,β4 x ,β6 y) ,

(118)

including constant shifts to bring the relevant singularity to the origin of the u-plane. This
leads to the massless SW curves for the four-dimensional MN theories:

E(4d)
8 : y2 = 4x3 − 4u5 ,

E(4d)
7 : y2 = 4x3 + 4u3 x ,

E(4d)
6 : y2 = 4x3 + u4 ,

(119)

which are standard En double-point singularities at the origin of (x , y, u) ∈ C3. One can also
reproduce the deformation patterns of these singularities by keeping track of the various 5d
mass parameters [24,156].
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The other massless En curves can be analysed in a similar way. One finds that the U-plane
has the following singularities, in addition to the I9−n singularity at infinity [11]:

E5 : I∗1 ⊕ I1 ,

E4 : I5 ⊕ I1 ⊕ I1 ,

E3 : I3 ⊕ I2 ⊕ I1 ,

E2 : I2 ⊕ I1 ⊕ I1 ⊕ I1 ,

E1 : I2 ⊕ I1 ⊕ I1 ,

eE1 : I1 ⊕ I1 ⊕ I1 ⊕ I1 ,

E0 : I1 ⊕ I1 ⊕ I1 .

(120)

The 4d low-energy effective field theories obtained from the circle compactification of the 5d
En SCFTs are IR free for n < 6. Interestingly, the E5 theory, which has a gauge-theory phase
corresponding to SU(2), N f = 4 in five dimensions, becomes an SU(2) theory with N f = 5
upon S1 reduction, which matches the E5 = so(10) symmetry of the UV theory. In some sense,
the ‘instanton particle’ becomes a perturbative hypermultiplet in four-dimensions, but it is
more accurate to say that the full IR-free SU(2) description is a magnetic dual description
of the UV theory. For the E4 theory, we have an I5 point, corresponding to SQED with five
flavours, which again reproduces the E4 = su(5) symmetry. Note that the E3 theory is special
in that there are now two distinct points with a non-trivial Higgs branch. This matches with
the fact that the Higgs branch of the 5d SCFT E3 is the union of two cones, on which each of the
two factors in E3 = su(3)⊕ su(2) act independently. In 4d, the instanton corrections separate
the two Higgs branch cones along the complexified Coulomb branch. Similarly, the E2 and E1
theories both have an su(2) symmetry that is reproduced by an I2 singularity. On the other
hand, the abelian part of E2 = su(2) ⊕ u(1) and eE1 = u(1) is encoded in the Seiberg-Witten
geometry in a more subtle manner, which we will discuss in the next section.

3 Rational elliptic surfaces, Mordell-Weil group and global sym-
metries

In the previous section, we mentioned the flavour symmetry algebra of various rank-one the-
ories, but it is natural to ask whether one can also determine the global form of the flavour
symmetry group – that is, the group that acts faithfully on gauge-invariant states – directly from
the SW geometry. For the massless En theory, the Higgs branch is always isomorphic to the
moduli space of one En-instanton, or equivalently to the minimal nilpotent orbit of En. (Except
for eE1 and E2, which one should discuss separately.) These Higgs branches are consistent with
the actual flavour symmetry group of the massless theory being:

GF = En/Z(En) , (121)

where En denotes the simply-connected Lie group with Lie algebra En, and Z(En) denotes its
center – see table 5. Very recently, the flavour symmetry group was determined to be precisely
the centerless (121) by looking at the 5d BPS states in M-theory [33] – see also [158] and
the index computation in [159]. In this work, we will give two complementary derivations of
that same fact, both from the 4d Coulomb-branch point of view. In addition, we will discuss
the abelian symmetries, and any flavour symmetry-breaking pattern, in a unified manner, by
taking full advantage of the elliptic fibration structure of the rank-one SW geometry.

In order to do so, it is useful to introduce some additional formalism, namely the theory
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Table 5: Simply-connected En groups and their centers.

n 1 3 4 5 6 7 8
En SU(2) SU(3)× SU(2) SU(5) Spin(10) E6 E7 E8

Z(En) Z2 Z3 ×Z2
∼= Z6 Z5 Z4 Z3 Z2 0

of rational elliptic surfaces.16 From that more global perspective, one can study the physics
of DS1 En throughout its whole parameter space rather systematically and efficiently. This per-
spective also leads to an improved understanding of the ‘well-known’ 4d gauge theories and
SCFTs, as we will discuss in the next section.

3.1 The Seiberg-Witten geometry as a rational elliptic surface

Consider the SW geometry (43) at fixed mass parameters. We write it as an elliptic fibration:

E −→ S π
−→ P1 , (122)

where the genus-zero base MC
∼= P1 is the U-plane with the point at infinity added, and the

fiber E is the Seiberg-Witten curve. Its minimal Weierstrass model reads:

y2 = 4x3 − g2(U)x − g3(U) , (123)

which is a single equation in the complex variables (x , y, U), thus describing a dimension-two
complex variety. By using homogeneous coordinates (as in footnote 10), this can be interpreted
as a projective variety. Importantly, this rational elliptic fibration has a section, called the zero
section O, which is given explicitly by the point ‘at infinity’, O = (x , y) = (∞,∞) on each
elliptic fiber.17

The Weierstrass model (123) has codimension-one singularities along the discriminant
locus ∆(U) = 0, as discussed in the last section (see table 4). In the (x , y, U) variables, they
look locally like ADE singularities. Each singular Kodaira fiber Fv at U = U∗,v can then be
resolved in a canonical fashion, giving us smooth reducible fibers:

π−1(U∗,v) = Fv
∼=

mv−1
∑

i=0

Òmv,iΘv,i , (124)

where Θv,i are the mv irreducible fiber components, of multiplicity Òmv,i , in Fv . If mv = 1, the
irreducible fiber Fv = Θv,0 is a genus-zero curve (a rational curve with a node or with a cusp,
for Fv of type I1 or I I , respectively). In all other cases, Fv is reducible and the exceptional fibers
together with Θ0,v (all of genus zero) intersect according to the affine Dynkin diagram of g,
where g is the flavour algebra listed in table 4, and Òmv,i are the Coxeter labels; in particular,
every irreducible component Θv,i has self-intersection −2 and corresponds to a simple root
of gv . For every resolved fiber Fv , the zero section O intersects Fv only through the fiber
component Θv,0 (which corresponds to the affine node in the ADE Dynkin diagram of Fv).
Some of the relevant affine Dynkin diagrams are shown in figure 2. The resulting smooth
surface eS → S, called the Kodaira-Neron model, is birational to the Weierstrass model S of
the SW geometry.

16For further background on this subject, we refer to the very accessible book by Schütt and Shioda [45], from
which much of the mathematical discussion in this section is taken.

17In the notation of footnote 10, the zero section is [X , Y, Z] = [1,1, 0]. At smooth fibers, this defines the ‘origin’
of the elliptic curve E ∼= T 2.
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(a) I2 ⊕ I3 (E3) (b) I5 (E4)

2 2

(c) I∗1 (E5)
3 22

2

(d) IV (E6)

4 3 232

2

(e) I I I (E7)

6 5 4 342

3

2

(f) I I (E8)

Figure 2: Examples of affine Dynkin diagrams corresponding to resolved Kodaira
fibers. These are the ones that correspond to the semi-simple En Lie algebras.
The affine node Θv,0 is indicated in dark red, and the nodes with unit multiplicity
(Òmv,i = 1) are all the nodes in (dark or light) red. The multiplicities Òmv,i > 1 are
indicated next to the nodes.

For future reference, to each reducible fiber Fv , let us associate the finite abelian group:

Z(Fv)≡ R∨v/Rv , (125)

where Rv is the root lattice of gv and R∨v is its dual lattice.18 It is isomorphic to the center
Z(eGv) of the simply-connected Lie group eGv associated with that algebra, and it has order:

Nv = |Z(Fv)|= |det(Agv
)| , (126)

where Agv
denotes the Cartan matrix of the Lie algebra gv . Note that Nv is the number of

components Θv,i of Fv with Òmv,i = 1 in the decomposition (124).

3.1.1 Mathematical interlude (I): rational elliptic surfaces

What we have described so far is a rational complex surface that admits an elliptic fibration
with a section. By definition,19 S (or rather, its resolution eS) is a rational elliptic surface (RES).
Such surfaces are tightly constrained, and a full classification exists [47, 48]. Any rational
elliptic surface can be obtained by blowing up P2 at nine points – in other words, a RES is an
almost del Pezzo surface dP9. In particular, it is also Kähler.

The most important topological fact about eS is that it is simply-connected and that its topo-
logical Euler characteristic e( eS) is equal to 12. We further have that χ = 1 for the holomorphic
Euler characteristic, and that the canonical divisor has trivial self-intersection:20 Thus:

b2 = h1,1 = 10 , h2,0 = 0 , K
eS ·K eS = 0 , (127)

with the Betti numbers bk = dim Hk( eS,Z) and hp,q = dim H p,q( eS). We then have:

NS( eS)∼= H1,1( eS)∩H2( eS,Z)∼= Z10 , (128)

18In the present case of an ADE algebra, we have R∨v
∼= Λv , with Λv the weight lattice of eGv such that Lie(eGv) = gv

and π1(eGv) = 0.
19To be precise, we should also require that the fibration be relatively minimal, meaning that one should blow

down any exceptional curve (i.e. any (−1)-curve) in the fiber.
20Recall that K ·K = 9− n for dPn. In the physics literature, RES are sometimes called 1

2 K3 surfaces.
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for the Neron-Severi (NS) group of eS – i.e. the group of divisors modulo linear equivalences, in
the present context. It is naturally endowed with an integral lattice structure, with the bilinear
form given by the intersection pairing:

NS( eS)×NS( eS)→ Z , (D, D′) 7→ 〈D, D′〉NS ≡ D · D′ . (129)

A beautiful mathematical fact, which we will discuss further below, is that the NS lattice of a
rational elliptic surface takes the explicit form [45]:

NS( eS) = U ⊕ E−8 . (130)

In particular, it is unimodular and of signature (1,9). Here, U is the dimension-2 lattice gen-
erated by the zero section (O) and the generic fiber F ∼= E, with intersection pairing:

U ∼= Span((O), F) , IU =

�

−1 1
1 0

�

, (131)

and E−8 is the E8 lattice with an overall minus sign (i.e., IE−8
= −AE8

, with AE8
the E8 Cartan

matrix). Note that this generalizes to dP9 the structure of the intersection pairing for the dPn
surfaces (n≤ 8), which have lattices Z⊕ E−n .

Another very important set of global constraints is as follows. To each exceptional fiber Fv ,
one associates its Euler number, which is given by:

e(Fv) =

¨

mv = k if Fv is of type Ik>0

mv + 1 otherwise

= ord(∆) at U∗,v ,

(132)

where ord(∆) is as listed in table 4. We also associate an ADE Lie algebra gv to each fiber Fv ,
including the trivial algebra for Fv of type I1 or I I , with rank:

rank(Fv)≡ rank(gv) = mv − 1 . (133)

Given these definitions, we have the two conditions:
∑

v

e(Fv) = 12 ,
∑

v

rank(Fv)≤ 8 , (134)

which severely restrict the possible configurations of singular fibers. Using these and some
more subtle geometric constraints (see in particular the discussion in subsection 3.2.1 below),
the complete list of all rational elliptic surfaces was first constructed by Persson [47] and
further checked by Miranda [48]. There are exactly 289 distinct RES. We will see that a given
surface can be interpreted as the Coulomb branch of several distinct En theories on a circle;
there are then 548 distinct DS1 En CB configurations in total, as summarised in table 1 in the
introduction.

Quadratic twist and ‘transfer of ∗’ operation. The allowed coordinate transformations that
preserve the Weierstrass form are (x , y)→ ( f 2 x , f 3 y), with f = C(U). On the other hand, a
‘quadratic twist’ is a rescaling of the form:

(x , y)→ ( f x , f
3
2 y) , f ∈ C(U) , (135)

which is equivalent to the rescaling:

(g2, g3)→ ( f −2 g2, f −3 g3) , f ∈ C(U) . (136)
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A quadratic twist induces a so-called ‘transfer of ∗’ amongst the singular fibers, wherever
p

f
has branch cuts (which can be at a smooth fiber, I0). The corresponding changes of fiber types
are:

Ik↔ I∗k (k ≥ 0) , I I ↔ IV ∗ , I I I ↔ I I I∗ , IV ↔ I I∗ . (137)

This simple operation relates many distinct rational elliptic surfaces amongst themselves [48].

3.1.2 Local mirror, rational elliptic surface and the F-theory picture

Recall that the local Calabi-Yau threefold bY mirror to the local dPn geometry eXEn
is a suspen-

sion of the En Seiberg-Witten curve. In the toric case, in particular, it is given by (83). Let
F(x , y; U) = 0 denote the SW curve at a particular value of U ∈ C. By introducing some
complex variables v1, v2 and W , one can write down the threefold as a complete intersection
in five variables (x , y, v1, v2, W ) [23]:

F(x , y; W ) = 0 , v1v2 = U −W . (138)

This describes the mirror threefold as a double fibration over the W -plane, at fixed U (and,
implicitly, fixed mass parameters M):

E ×C∗→ bY→ C∼= {W} . (139)

The SW curve fibered over the W -plane is again our RES S, with W substituted for U . The
C∗ ∼= R×S1

∗ fiber contains a non-trivial one-cycle S1
∗ which degenerates precisely when W = U .

The Coulomb-branch BPS states arise from D3-branes wrapping Lagrangian 3-cycles S3
γ

calibrated by the holomorphic 3-form. The latter takes the form Ω= Ω2 ∧
dv1
v1

. The 3-cycle S3
γ

can be constructed explicitly as follows [23]. Consider a path on the W -plane from a singularity
W =W∗, where the elliptic fiber E degenerates along some one-cycle γ ∈ E, to W = U , where
the C∗ fiber degenerates. By fibering the torus T2 ∼= γ× S1

∗ over that path, one spans out the
closed 3-cycle S3

γ , which is topologically a three-sphere. Let Γ2 ⊂ S3
γ be the two-chain with

boundary along γ ∈ EU above the fiber at W = U , obtained by forgetting the S1
∗ fiber. We then

have the periods:

Πγ =

∫

S3
γ⊂bY
Ω=

∫

Γ⊂S
Ω2 =

∫

γ∈E
λSW , (140)

with ∂ Γ = γ, provided that:
Ω2 = dλSW , (141)

inside S. Here, the closed (and exact) 2-form Ω2 is the holomorphic symplectic 2-form on S
that appears in the integrable-system description of Seiberg-Witten theory [160]. Note that
we simply have:

Ω2 =ω∧ dU , (142)

with ω the holomorphic one-form of the elliptic fiber, as follows from (45); here and in the
following, we freely switch back and forth between W and U to describe the ‘U-plane’ base
of the rational elliptic surface S. It is important to note, however, that W is a coordinate on
the IIB geometry while U is a complex structure parameter. It is the double fibration structure
(138) that allows us to substitute one for the other in the obvious way. In general, one should
also consider more general paths on the W -plane to construct supersymmetric 3-cycles. The
electro-magnetic charge of the BPS state is fixed by a choice of γ at the ‘base point’ W = U ,
but the path can branch out and meet several Kodaira singularities, as long as the total charge
γ is conserved. More formally, we may also consider candidate ‘pure flavour states’, which are
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closed 2-cycles Γ with ∂ Γ = 0, constructed by connecting directly different Kodaira singulari-
ties in the appropriate manner. In all cases, it follows from (140) and (142) that a necessary
topological condition for a 2-cycle or 2-chain Γ ⊂ S to give rise to a BPS state is that is has
‘one leg along the base and one leg along the fiber’.

Correspondence with F-theory. Since part of the IIB mirror symmetry appears to have an
elliptic fibration, it is useful to think about it in the language of F -theory. In our original setup,
we have a pure geometry in Type IIB with constant axio-dilaton, which is then ‘F-theory’ on
R4 × bY× T2. If we now interpret the elliptic fiber E as the axio-dilaton, instead of the trivial
T2 factor, the Kodaira singularities of the Weierstrass model correspond to 7-branes in the
standard way. In this picture, the singularity of the C∗ fibration at W = U is interpreted as the
position of a probe D3-brane on the W -plane [23]. This gives a nice alternative description of
the U-plane as the geometry seen by a D3-brane in the background of some fixed 7-branes.
The F-theory language offers some additional physical intuition. Firstly, it is clear in this
picture that the Kodaira singularities of the SW geometry realize the non-abelian ADE-
type flavour symmetries of the theory, simply because the 7-branes wrap non-compact cycles
C∗ × T2 ⊂ bY× T2. The BPS states from the 2-chains Γ ⊂ S here correspond to string junctions
on the W -plane, which are open-string networks connecting the D3-brane to the 7-branes in
a supersymmetric fashion. Such string junctions have been extensively studied in the litera-
ture, in this very same context [53, 56, 161–165]. Secondly, it is well-known in F-theory that
sections of the elliptic fibration are related to abelian symmetries and to the global form of
the ‘gauge group’ – see e.g. the review [166]. In the rest of this section, we will argue, not
surprisingly given what we have written so far, that essentially the same conclusions can be
reached when interpreting sections of the rank-one Seiberg-Witten geometries in terms of the
4d flavour symmetry.

Let us also recall that the F-theory perspective leads to a nice interpretation of the Higgs
branch that emanates from a Kodaira singularity with reducible components [50]. Indeed,
moving onto that Higgs branch corresponds to moving the D3-brane probe on top of the 7-
brane stack at W = U∗,v before ‘dissolving’ it into the 7-branes, which gives the Higgs branch
as the eGv one-instanton moduli space.21

Fixing F∞, the fiber at infinity. Consider a fixed rank-one 4d N = 2 supersymmetric field
theory TF∞ , which is either a 5d SCFT on a circle, a 4d SCFT, or a 4d N = 2 asymptotically-free
theory. For each theory, we are interested in the class of all rational elliptic surfaces with a
fixed singularity at U =∞, whose corresponding (resolved) Kodaira fiber is denoted by F∞.
The choice of F∞ fixes the ‘UV definition’ of the field theory:22

TF∞ ←→ {S | π−1(∞) = F∞} . (143)

For purely four-dimensional theories, this point of view was emphasized in [58]. As we re-
viewed in the previous section, the SW geometry for the KK theory DS1 En has an I9−n fiber at
infinity, as determined by the large volume monodromy in Type IIA. We can then obtain the
strictly four-dimensional theories by additional limits, thus ‘growing’ the singularity at infinity.
The 4d limits from the 5d En SCFT to the 4d En MN SCFT for n = 6,7, 8 correspond to the
degenerations:

F5d
∞→ F4d

∞ : I3→ IV (E6) , I2→ I I I (E7) , I1→ I I (E8) , (144)

21When a perturbative open-string description of this process exists (in particular, for k D7-branes in the case of
an Ik singularity), it reproduces exactly the ADHM construction.

22With the important exception of F∞ = I8, which includes both E1 and eE1.

33

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

at infinity, wherein one I1 collides with the ‘5d’ fiber at infinity F5d
∞ to give the ‘4d’ fiber F4d

∞.
Similarly, the geometric-engineering limit from the DS1 En theory with 1 ≤ n ≤ 5 to the 4d
SU(2) gauge theory with N f = n− 1 corresponds to:

F5d
∞→ F4d

∞ : I8−N f
→ I∗4−N f

(EN f −1, N f = 0,1, 2,3, 4) , (145)

wherein two I1’s are brought in to merge with the I8−N f
fiber at infinity. The correspondence

between F∞ and 4d N = 2 theories was summarised in table 1 in the introduction. The
remaining choices, F∞ = I I∗, I I I∗ or IV ∗ correspond to the Argyres-Douglas theories H0, H1
and H2, respectively, as also discussed in [58]. We will discuss the purely 4d theories further
in section 4.

Finally, we should mention that one may also consider the ‘generic’ situation for which the
fiber at infinity is trivial. The interpretation of that configuration is that we are considering
the 6d N = (1,0) E-string SCFT with E8 symmetry compactified on T2, whose U-plane has
the singularities [11]:

6d E-string (F6d
∞ = I0): I I ⊕ I1 ⊕ I1 , (146)

in the massless limit. The 5d E8 theory with F∞ = I1 is obtained from the E-string theory by
sending one I1 singularity to infinity, which corresponds to shrinking the T2 to S1 [156].

3.2 Mordell-Weil group and global symmetries

Let us finally explain how the flavour symmetry group is encoded by the rank-one Seiberg-
Witten geometry. This involves reviewing some very interesting mathematical results, follow-
ing closely [45].

3.2.1 Mathematical interlude (II): Mordell-Weil group and Shioda map

The Mordell-Weil group of sections. Any elliptic curve famously has the structure of an
additive group; viewing the curve as the torus E ∼= C/(Z + τZ), the neutral element is the
origin, and the addition operation is simply the addition of complex numbers. This becomes
more interesting for an elliptic curve defined over the field Q, in which case the equation
F(x , y) = 0 for the curve has a finite number of rational solutions, which form a finitely
generated abelian group. More generally, we are here considering the equation (123) where
g2, g3 are valued in C(U), the field of rational functions of U . A rational section of this elliptic
fibration is a rational solution to the equation (123):

P = (x(U), y(U)) , with x(U), y(U) ∈ C(U) . (147)

By the Mordell-Weil theorem, the sections of S form a finitely generated abelian group, which
we denote by either MW(S) or Φ.23 We then have:

Φ=MW(S)∼= Zrk(Φ) ⊕Zk1
⊕ · · · ⊕Zkt

. (148)

Here, rk(Φ) is the rank of the MW group – that is, the number of independent generators of
the free part of Φ. Note that the point ‘at infinity’ O = (∞,∞) is the neutral element of the
MW group, and therefore does not contribute to the rank. The MW group also generally has
a torsion component, which we denote by Φtor. The addition on sections in Φ is given by the

23We will denote the MW group by Φ, and use the symbol MW(S) for the MW lattice, to be defined below.
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standard addition of rational points of an elliptic curve. Let P1 = (x1, y1) and P2 = (x2, y2) be
two distinct points in Φ. Their sum is given by:

P = P1 + P2 = (x , y) ,

(

x = −(x1 + x2) +
1
4

�

y1−y2
x1−x2

�2
,

y = − y1−y2
x1−x2

(x − x1)− y1 .
(149)

For P1 = P2, we have the duplication formula:

P = 2P1 = (x , y) ,

(

x = −2x1 + ξ2 , ξ≡ 12x2
1−g2

4y1
,

y = −2ξ(x − x1)− y1 .
(150)

The inverse of a point P = (x , y) is given by −P = (x ,−y), so that P − P = O. A section P is
Zk torsion if kP = P + P + · · ·+ P = O. Each section P defines a divisor (P) ∈ NS( eS).

Vertical and horizontal divisors. One defines the trivial lattice of vertical divisors in eS as the
sublattice Triv( eS) ⊂ NS( eS) generated by the zero section, (O), and by the fiber components.
We then have:

Triv( eS)∼= U ⊕ T− , T ≡
⊕

v
Rv , (151)

where Rv is the root lattices of the Lie algebra gv associated to the reducible fiber Fv in the
Kodaira-Neron model, with the intersection form given by the Cartan matrix. Note that:

(Iv)i j = (−Agv
)i j = Θv,i ·Θv, j , (152)

for T−. We will call T ‘the 7-brane root lattice’, as a nod to the F-theory picture. We have:

rank(T ) =
∑

v

rank(gv) , (153)

with rank(gv) as in (133). Note that, in accordance to (130), T is a sublattice of the E8 lattice.
The ‘non-trivial’ divisors, or horizontal divisors, must then span the complement of T in E8.
They are precisely generated by the (non-zero) sections P; each divisor (P) decomposes into
a horizontal and a vertical component, but there are enough sections to generate all vertical
divisors. More precisely, we have the following theorem:

Φ∼= NS( eS)/Triv( eS) , (154)

as an isomorphism of abelian groups. It follows, in particular, that:

rk(Φ) = 8− rank(T ) , (155)

which implies the second condition in (134). The simple relation (155) will be important to
understand the flavour symmetry on the U-plane.

The Shioda map. The isomorphism (154) would be more useful if it could be ‘split’, i.e. if
we could embed the MW group of sections inside the NS group of divisors. This can be done
at the price of tensoring with Q. There exists a unique group homomorphism [167]:

ϕ : Φ→ NS( eS)⊗Q , (156)

which maps sections to horizontal divisors with rational coefficients. In other words, we must
have that ϕ(P) = (P) mod Triv( eS)⊗Q and that:

ϕ(P) · (O) = 0 , ϕ(P) · F = 0 , ϕ(P) ·Θv,i = 0 , ∀v, i . (157)
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The map (156), known as the Shioda map, is given explicitly by:

ϕ(P) = (P)− (O)− ((P) · (O) + 1)F +
∑

v

rank(gv)
∑

i=1

λ
(P)
v,i Θv,i , (158)

with the rational coefficients:

λ
(P)
v,i =

rank(gv)
∑

j=1

(A−1
gv
)i j Θv, j · (P) , (159)

given in terms of the inverse of the Cartan matrix of gv . In particular, for each Fv , the co-
efficients λv,i are valued in 1

Nv
Z, with Nv defined in (126). Note also that λv,i = 0, ∀i, if P

intersects the resolved Kodaira fiber Fv at the ‘trivial’ affine node Θv,0.

The MW lattice and the narrow MW lattice. Given two sections P and Q, define the Q-
valued bilinear form:

〈P,Q〉= −(ϕ(P) ·ϕ(Q)) . (160)

In this way, the intersection pairing induces a (positive-definite) lattice structure on the free
part of the MW group:

MW( eS)free ≡ Φ/Φtor . (161)

This defines the Mordell-Weil lattice (MWL). The intersection pairing on sections is called the
height pairing. It is often useful to define some natural sublattices of the MW lattice. In
particular, one defines the narrow Mordell-Weil lattice MS(S)0 as:

MS( eS)0 =
�

P ∈MW(S)
�

� (P) intersects Θv,0 for all Fv

	

, (162)

with the lattice structure defined by the height pairing. Since λv,i = 0 for narrow sections, the
narrow MW lattice is an integral lattice. One also defines the ‘essential sublattice’ L as minus
the complement of the trivial lattice inside the NS lattice:

NS( eS) = L− ⊕ Triv( eS) . (163)

Using the fact that the NS lattice of a RES is unimodular, one can show that the essential lattice
is isomorphic to the narrow MW lattice and that the MW lattice itself is isomorphic to the dual
lattice:

MW( eS)0 ∼= L , MW( eS)free
∼= L∨ . (164)

Finally, we have the important fact that, given (130), L is the orthogonal complement of the
7-brane root lattice T inside the E8 lattice:

L = T⊥ in E8 . (165)

While T = ⊕vRv is the root lattice of a semi-simple subalgebra gT = ⊕vgv of E8, the essential
sublattice L depends not only on gT as a Lie algebra, but on its particular embedding inside
E8. We review some relevant facts about subalgebras of E8 in appendix A.3.

Torsional sections. The kernel of the Shioda map is precisely the torsion part of the Mordell-
Weil group:

ker(ϕ) = Φtor . (166)
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Equivalently, a section P is torsion if and only if 〈P, P〉 = 0. It follows that, if P is torsion, we
have ϕ(P) · Γ = 0 for any divisor Γ ∈ NS( eS), and therefore we have the non-trivial integrality
condition:

∑

v

rank(gv)
∑

i=1

λ
(P)
v,i Θv,i · Γ ∈ Z . (167)

Let T ′ denote the primitive closure of the 7-brane root lattice T inside the E8 lattice:24

T ′ = (T ⊗Q)∩ E8 . (168)

One can prove that:
Φtor
∼= T ′/T . (169)

Moreover, since T ′ is a sublattice of the dual lattice T∨, we have the important property that the
torsion subgroup of the Mordell-Weil group is injective onto the center group Z(T ) = T∨/T :

Φtor ,→ Z(T ) =
⊕

v
Z(Fv) , (170)

with Z(Fv) defined in (125). This embedding can be determined by explicit computation in
the Kodaira-Neron model eS.

3.2.2 Flavour symmetry group from the SW elliptic fibration

To study the flavour symmetry of a theory TF∞ with a Coulomb branch described by a family
of rational elliptic surfaces as in (143), it is useful to consider two opposite limits. We first
consider the ‘massless curve’ – in particular, we have then MF = 1 for the theories DS1 En. In
the massless limit, the full flavour symmetry of the UV theory should be manifest. The other
limit is the ‘maximally massive curve’, wherein the UV flavour symmetry GF is broken explicitly
to a maximal torus, U(1) f .

Structure of the flavour symmetry algebra. Consider the U-plane of a 4d N = 2 theory
TF∞ with fixed masses (and/or relevant deformations) turned on, which is described by a
particular RES S with Kodaira fibers:

Fv = F∞ ⊕ F1 ⊕ · · · ⊕ Fk . (171)

We decompose the 7-brane root lattice in terms of the contribution from infinity and of the
contribution from the interior:

T = R∞ ⊕ RF , RF =
k
⊕

v=1

Rv . (172)

Here, the ‘flavour 7-brane root lattice’ RF is the root lattice of the non-abelian flavour algebra
of the theory TF∞ for some fixed values of the masses:

gNA
F =

k
⊕

v=1

gv . (173)

On the other hand, the fiber at infinity does not contribute to the flavour symmetry. The
reason for this is perhaps easiest to explain in the F-theory picture: BPS states charged under
the flavour symmetry are open strings stretched between the probe D3-brane and stacks of

24A sublattice M ⊂ N is called primitive if N/M is torsion-free. The primitive closure of any sublattice N in M is
the smallest primitive sublattice N ′ ⊂ M that contains N .
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7-branes, which have a mass proportional to the distance between the D3- and the 7-branes.
Modes of open strings stretching all the way to infinity have infinite mass, and are therefore
not part of the 4d N = 2 theory under consideration.

In addition, the flavour group generally includes abelian factors. They are precisely gen-
erated by infinite-order sections, P ∈ Φfree. Indeed, that is how U(1) gauge fields arise in
F-theory [69,70]. Consider the En theories, for definiteness (the other 4d N = 2 theories be-
ing obtained from them in appropriate limits). In the IIB description on bY, we have 3-cycles of
the schematic form ϕ(P)× S1

∗ , which are mirror to ‘flavour’ two-cycles in the En sublattice of
H2(eX,Z) [168]. Reducing the C4 RR gauge field of IIB on that 3-cycle, we obtain a background
U(1) gauge field in the low-energy description. The horizontality conditions (157) ensure that
the abelian gauge field is massless and neutral under the non-abelian flavour symmetry gNA

F .
The number of abelian factors in the low-energy flavour symmetry is then given by the rank
of the Mordell-Weil group, and we have the full flavour algebra:

gF =
rk(Φ)
⊕

s=1

u(1)s ⊕
k
⊕

v=1

gv , (174)

for any extended CB configuration described by a particular RES S. In particular, we see from
(155) that:

rank(gF ) = 8− rank(F∞) . (175)

This equation only depends on the fiber at infinity, and gives the rank of the flavour symmetry
GF of TF∞ , as indicated. The physical reason for this is clear: as we vary the mass parameters
of a given theory TF∞ , we may break the UV symmetry group GF to its maximal torus, or
to any allowed subgroup, while keeping the rank fixed. This is precisely what being on the
extended Coulomb branch, as opposed to the Higgs or mixed branches, means. Such extended
CB deformations are realised by ‘fusing’ or ‘splitting’ 7-branes by continuously varying the
complex structure parameters of the mirror threefold bY or, equivalently, the parameters of the
Weierstrass model S over the W -plane.

Flavour charges of the BPS states. Consider any BPS state on the Coulomb branch, corre-
sponding to a 2-chain Γ in eS ⊂ bY. Its flavour charges under the non-abelian flavour symmetry
gv ⊂ gF associated to the Kodaira fiber Fv are determined by the intersection numbers:

w(gv)
i (Γ ) = Θv,i · Γ . (176)

The integers w(gv)
i give us the weight vectors in the Dynkin basis, and thus determine which

representations of gv are spanned by the BPS states. Any physical state of the theory TF∞
should have finite mass, and therefore its corresponding 2-chain Γ should not intersect the
fiber at infinity. We then have:

Γ physical ⇔ w(F∞)i (Γ ) = Θ∞,i · Γ = 0 , (177)

which can be taken as a ‘topological’ definition of what we mean by a physical state.

Massless limit with GF semi-simple. Consider a theory TF∞ in the massless limit such that
gF is semi-simple, and let eGF denote the corresponding simply-connected group. That is the
case, in particular, for all the En KK theories with the exception of eE1 and E2. This means
that the Mordell-Weil group of S is purely torsion, Φ = Φtor, and so rk(Φ) = 0. Such rational
elliptic surfaces are called extremal – we will discuss them further in subsection 3.3. The flavour
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algebra gF = gNA
F is a maximal semi-simple Dynkin sub-algebra of E8 (see appendix A.3). As

explained above, Φtor injects into the finite abelian group Z(T ) = T∨/T , which is:

Φtor ,→ Z(T ) = Z(F∞)⊕ Z(eGF ) . (178)

In the extremal case, T ′ = E8 and the torsion group is related to the embedding of the full
7-brane lattice inside the E8 lattice:

Φtor
∼= E8/T . (179)

Let us denote by Z[1] the subgroup of sections that are narrow in the interior of the U-plane:

Z[1] =
�

P ∈ Φtor

�

� (P) intersects Θv,0 for all Fv 6=∞
	

, (180)

and let us denote by F the cokernel of the inclusion map Z[1] → Φtor. In other words, F is
the abelian group defined by the short exact sequence:

0→ Z[1]→ Φtor→F → 0 . (181)

Note that F is a subgroup of Z(eGF ). Given the injection (178), we can write any element of
Φtor as P ∼ (z∞, zF ), where z∞ ∈ Z(F∞) and zF ∈ Z(eG)F . The subgroup Z[1] corresponds to
elements of the form P ∼ (z∞, 0), while the group F contains all the elements in the image
of the projection map (z∞, zF ) 7→ zF . We then claim that the flavour symmetry group of the
theory TF∞ is given by:

GF = eGF/F . (182)

The argument for (182) is similar to the one given in the F-theory context [52, 71, 72]. One
should consider all possible closed 2-cycles Γ ∈ NS( eS), which give rise to formal ‘pure flavour’
states. The existence of torsion sections Ptor constrains the allowed weights of the pure flavour
states due to the integrability condition (167), which gives:

rank(F∞)
∑

l=1

λ
(Ptor)
∞,l w(F∞)i +

rank(gNA
F )

∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z . (183)

For the pure flavour states that satisfy the physical state condition (177), we have:

rank(gNA
F )

∑

i=1

λ
(Ptor)
v,i w

(gNA
F )

i ∈ Z , ∀ Ptor ∈F . (184)

The only sections that contribute to the constraint (184) are the elements of F since, by
definition, the ‘interior-narrow’ sections in Z[1] ⊂ Φtor lead to the constraint:

rank(F∞)
∑

i=1

λ
(Ptor)
∞,i w(F∞)i ∈ Z , ∀ Ptor ∈ Z[1] , (185)

which is trivial on physical states. This determines (182) as the effectively acting non-abelian
group on pure flavour states. We should note that the actual BPS states, which correspond
to two-chains ending on the fiber above W = U and thus carry electro-magnetic charge, will
typically be charged under the center of eGF , but the heuristic argument above shows that the
‘gauge invariant states’ are only charged under the smaller group GF . We will also check this
claim explicitly in many examples, using a more direct but essentially equivalent argument
presented in subsection 3.2.3.
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We should also note that the ‘interior-narrow’ section constraint (185) would be non-trivial
when dealing with defect states, which are BPS D3-branes on non-compact 3-cycles stretching
all the way to infinity. This leads us to the natural conjecture that this group is isomorphic to
the one-form symmetry of the field theory:

Z[1] ∼= 1-form symmetry of TF∞ . (186)

We will show that this agrees with all the known results. For instance, if the conjecture holds,
it must be true that, for a fixed F∞, Z[1] remains the same for any configuration of the singular
fibers {Fv} in the interior, which is a very strong constraint. We leave a more detailed discussion
and derivation of (186) for future work. In particular, it would be important to relate precisely
the group Z[1] with the defect group of the UV theory, which can be computed directly from
the mirror threefold bY [78, 79]. In the case of the DS1 E1 theory, we will observe that the full
Mordell-Weil torsion encodes the Z4 two-group symmetry recently discovered in [33]. We then
have the more general conjecture:

Φtor
∼= 2-group symmetry of TF∞ on its Coulomb branch. (187)

We again leave a deeper discussion of this point for future work.

Non-abelian flavour symmetry GNA
F in general. In any theory TF∞ with a flavour algebra

(173) for some fixed values of the masses, the same argument as above determines the global
form of the non-abelian part of the flavour symmetry group:

GNA
F = eGNA

F /F , (188)

where F is defined as in (182) in terms of the torsion part of the Mordell-Weil group. Of
course, conjecture (186) should still hold as well.

Abelian limit with generic masses. The opposite limit to the extremal limit is when the
rank of the Mordell-Weil group is the maximal one allowed by the fiber at infinity:

rk(Φ) = 8− rank(F∞) = rank(GF ) . (189)

In that limit, the flavour group is abelian and thus entirely generated by sections. The singular
fibers in the interior are then irreducible (that is, of type I1 or I I). This corresponds to the
maximal symmetry breaking allowed on the extended CB, i.e. with generic masses turned on:

GF →
rank(GF )
∏

s=1

U(1)s . (190)

Let the sections Ps be the corresponding generators of Φfree. The divisor dual to U(1)s is given
by ϕ(Ps). Then, the U(1)s charge of any ‘pure flavour’ state Γ is given by:

qs(Γ )≡ ϕ(Ps) · Γ . (191)

From the Shioda map, we then obtain an integrality condition:

qs −
rank(F∞)
∑

i=1

λ
(Ps)
∞,iw

(F∞)
i ∈ Z . (192)

On states satisfying the physical condition (177), the second contribution is trivial, and we
simply have:

qs(Γ ) ∈ Z if Γ is ‘physical’. (193)
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Since there is are no reducible fibers in this abelian configuration, the physical states actually
span the narrow Mordell-Weil lattice (162). Let Λphys denote the weight lattice of flavour
charges for the physical states, which is then isomorphic to the narrow MWL – in particular,
it is an integral lattice. According to (164) and (165), this physical flavour weight lattice is
isomorphic to the complement of the 7-brane lattice at infinity inside the E8 lattice:

Λphys
∼= L ∼= R⊥∞ in E8 . (194)

For gF semi-simple in the UV, we can check in each case (either for the 5d En theories or for the
4d theories considered in section 4), according to the general classification results [45, 169],
that Λphys is the root lattice of gF . Therefore, since Z(GF ) ∼= Λphys/Λr , the actual flavour
group is the centerless group, GF = eGF/Z(eGF ). This gives a complementary derivation of
(182) which avoids having to carefully compute the intersection of torsion sections with the
reducible fibers.25

Symmetry group GF in the general case. In the general case of a flavour algebra (174),
physical states Γ carry both weights under gNA

F and abelian charges:

w(gv)
i (Γ ) = Θv,i · Γ , qs(Γ )≡ ϕ(Ps) · Γ . (195)

The allowed weights are constrained by torsion sections as in (184), and the abelian charges
satisfy the conditions:

qs −
rank(gNA

F )
∑

i=1

λ
(Ps)
v,i w

(gNA
F )

i ∈ Z , ∀ Ps ∈ Φfree . (196)

Thus, for any given RES eS corresponding to an extended CB configuration of TF∞ , the global
form of the IR flavour symmetry takes the schematic form:

GF =
U(1)rk(Φ) × eGNA

F
∏rk(Φ)

s=1 Zms
×
∏p

j=1Zkp

, (197)

where the two factors in the denominator are determined by the conditions (196) and by the
torsion sections, respectively. In this work, we will mostly focus on the case of GF semi-simple.
The detailed form of (196) can also be deduced from the general classification of Mordell-Weil
lattices [45,169], in principle, by mass-deforming into a purely abelian flavour phase.

3.2.3 Global symmetries from the BPS spectrum

As a consistency check of the above discussion, it is interesting to also compute the flavour
group more directly, which can be done if we know the low-energy spectrum S , similarly
to the recent discussion in [33]. As a reasonably good approximation of the strong-coupling
spectrum, for our purpose, we can often consider S to be the set of dyons that become massless
at the SW singularities U∗. This is closely related to the existence of quiver point, which we
will briefly discuss in subsection 3.4 and throughout later sections.

At a generic point on the Coulomb branch, there is a U(1)[1]m ×U(1)[1]e one-form symmetry
in the strict IR limit, which is the one-form symmetry of a pure U(1) gauge theory [31]. One
can think of U(1)[1]e as the group of global gauge transformations in the electric frame, and
similarly for U(1)[1]m in the magnetic frame. This accidental continuous one-form symmetry

25See [73] for a related argument in the context of F-theory on an elliptically fibered Calabi-Yau threefold.
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is broken explicitly to a discrete subgroup (which can be trivial) by the spectrum of charged
massive BPS particles S . The one-form symmetry of the full 4d N = 2 theory is then given
by that subgroup.26 See also [94] for further discussion.

Given a theory at fixed masses with a flavour symmetry algebra gF which is non-abelian, for
simplicity, let eGF denote the corresponding simply-connected group, and let Z(eGF ) be its center.
For concreteness, let us have Z(eGF ) = Zn1

× · · ·Znp
. The dyons in S fall in representations

Rψ of gF . Let us denote these states ψ by the charges:

ψ : (m, q; l1, · · · , lp) , l1 ∈ Zn1
, · · · , lp ∈ Znp

, (198)

where (m, q) are the electromagnetic charges, and the integers l j mod n j give the charges of
ψ under the center Z(eGF ). Let us define the subgroup:

E ⊂ U(1)[1]m × U(1)[1]e × Z(eGF ) , (199)

as the maximal subgroup that leaves the spectrum S invariant. We will denote the generators
of E by:

gE = (km, kq; z1, · · · , zp) , km ∈Q , kq ∈Q , z j ∈ Zn j
. (200)

This is a generator that acts on a state (198) as:

gE : ψ→ e2πi
�

kmm+kqq+
∑p

j=1
zi li
ni

�

ψ . (201)

Let Z[1] denote the subgroup of E generated by:

gZ[1] = (km, ke; 0, · · · , 0) . (202)

In addition, the projection πF : U(1)[1]m × U(1)[1]e × Z(eGF ) → Z(eGF ) gives a subgroup F of
Z(eGF ) generated by:

gF = (z1, · · · , zp) , (203)

for each generator (200). These three groups are related by a short exact sequence:

0→ Z[1]→ E →F → 0 , (204)

precisely as in (181). Here, Z[1] is exactly the one-form symmetry. On the other hand, F is
the subgroup of the flavour center Z(eGF ) that can be compensated by gauge transformations,
and therefore the actual non-abelian flavour group of the theory is GF = eGF/F , as in (182).
In the presence of both a one-form symmetry and a non-trivial flavour symmetry, the group
E itself could be a non-trivial 2-group of the field theory, as shown in [33]. This leads to the
conjecture (187). In this work, we will focus on the computation of the global non-abelian
symmetry group.

3.3 Extremal rational elliptic surfaces and Coulomb branch configurations

A small and particularly interesting subset of all rational elliptic surfaces consists of those
with a Mordell-Weil group of rank zero, rk(Φ) = 0, which are called extremal. There are only
16 of them, as classified by Miranda and Persson [46]. We list them in tables 6 and 7. By
our general discussion, they correspond to Coulomb branch configurations with a semi-simple
flavour symmetry. A given extremal RES generally corresponds to several 4d N = 2 theories
TF∞ , simply by choosing which of the Kodaira fibers sits ‘at infinity’ on the one-dimensional
Coulomb branch.

26We are very grateful to M. Del Zotto for explaining this to us.
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Table 6: Extremal rational elliptic surfaces without multiplicative (i.e. Ik) fibers.

{Fv} Notation Φtor 4d theory gF

I I∗, I I X22 -
AD H0 -
E8 MN E8

I I I∗, I I I X33 Z2
AD H1 A1
E7 MN E7

IV ∗, IV X44 Z3
AD H2 A2
E8 MN E6

I∗0, I∗0 X11( j) Z2 ×Z2 SU(2), N f = 4 D4

The four surfaces listed in table 6 do not have any multiplicative fibers, and therefore they
cannot correspond to the DS1 En theories, which have F∞ = I9−n. Instead, they correspond
to the seven ‘classic’ 4d SCFTs associated to the 7 additive Kodaira singularities I I , I I I , IV ,
I I∗, I I I∗, IV ∗ and I∗0 – this was previously discussed in [58]. In each case, the massless curve
has a single Kodaira singularity at the origin, and therefore the singularity at infinity is such
that M0M∞ = 1. Thus, the first three extremal surfaces in table 6 describe both the En
Minahan-Nemeschansky theories [5,6] and the three rank-one AD theories. The last surface,
X11( j), describes SU(2) with four flavours. It is the only extremal surface that comes in a
one-dimensional family [46] (all the other extremal fibrations are unique), corresponding to
the marginal gauge coupling of this 4d SCFT. From the MW torsion of these surfaces, one can
also deduce the flavour symmetry group. This will be discussed in section 4.

The remaining 12 extremal RES are listed in table 7. These are also all the extremal RES
that have more than 2 singular fibers – in fact, they can only have 3 or 4 singular fibers. The first
and second columns in table 7 indicate the singular fibers and the names of the corresponding
surfaces in the notation of [46]. The third column gives the MW group of the elliptic fibration,
which is purely torsion. The fourth column lists the 4d N = 2 field theories for which this
extremal RES describes a CB configuration, while the fifth column gives the unbroken flavour
symmetry algebra in each case. The last column in table 7 indicates the modular group of the
surface, up to conjugacy. The modular group is identified by working out the expression for
U(τ) from the SW curve as explained in section 2.3.2. We will discuss these modular properties
in more detail in the following sections.

All the massless En KK theories other than E2 and eE1 appear in table 7. These last two are
the exceptions because their flavour group includes one U(1) factor, and therefore the corre-
sponding rational elliptic surfaces have rk(Φ) = 1. (Similarly so for 4d SU(2) with N f = 1.)
All but one of the extremal rational surfaces with more than 2 singularities have interesting
modular properties. The monodromy group turns out to be a congruence subgroup, as listed in
table 7 up to conjugacy. The first three curves in this table, X211, X321 and X431, are the massless
curves for the E8, E7 and E6 theories, respectively. Since the corresponding five-dimensional
SCFTs flow to SCFTs in four-dimensions, their congruence subgroups must have elliptic points,
which is indeed the case for the modular groups Γ 0(2) and Γ 0(3), respectively. The CB for the
massless DS1 E8 theory is not a modular curve. All these CB configurations will be discussed in
more detail in section 8. Note that none of the other elliptic curves have elliptic points. More-
over, we observe that the list of modular groups for the extremal elliptic fibrations includes all
possible torsion-free congruence subgroups of PSL(2,Z) up to index 12 – the latter have been
classified in [170].

For each five-dimensional En theory, we can realise many of the corresponding subalgebras
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Table 7: Extremal rational elliptic surfaces with Ik fibers and corresponding field
theories.

{Fv} Notation Φtor Field theory gF Modularity

I I∗, I1, I1 X211 − DS1 E8 E8 −
AD H0 −

I I I∗, I2, I1 X321 Z2

DS1 E8 E7 ⊕ A1
Γ0(2)DS1 E7 E7

AD H1 A1

IV ∗, I3, I1 X431 Z3

DS1 E8 E6 ⊕ A2
Γ0(3)DS1 E6 E6

AD H2 A2

I∗4, I1, I1 X411 Z2
DS1 E8 D8 Γ0(4)4d pure SU(2) −

I∗1, I4, I1 X141 Z4

DS1 E8 D5 ⊕ A3
Γ0(4)DS1 E5 D5

4d SU(2)N f = 3 A3

I∗2, I2, I2 X222 Z2 ×Z2
DS1 E7 D6 ⊕ A1 Γ (2)

4d SU(2)N f = 2 A1 ⊕ A1

I9, I1, I1, I1 X9111 Z3
DS1 E8 A8 Γ0(9)DS1 E0 −

I8, I2, I1, I1 X8211 Z4

DS1 E8 A7 ⊕ A1
Γ0(8)DS1 E7 A7

DS1 E1 A1

I5, I5, I1, I1 X5511 Z5
DS1 E8 A4 ⊕ A4 Γ1(5)DS1 E4 A4

I6, I3, I2, I1 X6321 Z6

DS1 E8 A5 ⊕ A2 ⊕ A1

Γ0(6)
DS1 E7 A5 ⊕ A2
DS1 E6 A5 ⊕ A1
DS1 E3 A2 ⊕ A1

I4, I4, I2, I2 X4422 Z4 ×Z2
DS1 E7 A3 ⊕ A3 ⊕ A1 Γ0(4)∩ Γ (2)DS1 E5 A3 ⊕ A1 ⊕ A1

I3, I3, I3, I3 X3333 Z3 ×Z3 DS1 E6 A2 ⊕ A2 ⊕ A2 Γ (3)

of rank s = n (see table 14 in appendix), but not all of them. Instead, for each simple algebra
En, we realise a CB for each of its regular ‘maximal’ semi-simple subalgebra, whose Dynkin
diagram is obtained by deleting a single node of the affine En Dynkin diagram [171]. For
DS1 E8, in particular, we have the 9 distinct CB configurations with flavour algebras indicated
in blue in table 7, including gF = E8 itself:

E8→ E8 , E7 ⊕ A1 , E6 ⊕ A2 , D5 ⊕ A3 , A2
4 , A5 ⊕ A2 ⊕ A1 , A8 , A7 ⊕ A1 , D8 . (205)

Two of the remaining 6 subalgebras (D4 ⊕ A4
1 and A8

1) cannot be realised as the 7-brane root
lattice of a RES [47]. The remaining 4 cases are:

A4
2 (4I3) , D6 ⊕ A2

1 (I
∗
2 ⊕ 2I2) , D2

4 (2I∗0) , A2
3 ⊕ A2

1 (2I4 ⊕ 2I2) , (206)
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which are realised by the extremal fibrations X3333, X222, X11( j) and X4422, respectively. These
4 subalgebras of E8 are realised physically as CB configurations of the 6d E-string theory on
T2 which are obtained as mass deformations of the E8 configuration (146) and do not descent
to CB configurations of the 5d KK theory DS1 E8. Similarly, we have the regular semi-simple
subalgebras of the simple groups En:

E7 → E7 , D6 ⊕ A1 , A5 ⊕ A2 , A2
3 ⊕ A1 , A7 ,

E6 → E6 , A5 ⊕ A1 , A3
2 ,

E5 → D5 , A3 ⊕ A2
1 ,

E4 → A4 ,

(207)

which are all realised in table 7. Finally, let us note that the last configuration in table 7, X3333,
gives the so-called T3 description of the E6 theory, in which only an A3

2 algebra is manifest;
similarly, the configuration X4422 for E7 with A2

3 ⊕ A1 realised, and the configuration X6321
for E8 with A5 ⊕ A2 ⊕ A1 realised, can be obtained by Higgsing from the T4 and T6 theories,
respectively [172].

3.4 Modularity on the U-plane and BPS quivers

We end this section with some general comments, before delving into many examples in the
rest of this paper. Our approach, in the following, will be to explore the U-plane at various
special points in parameters space, fixing the En masses MF (λ and Mi , and similarly for the
4d theories) and then studying the electromagnetic periods a, aD and their monodromies on
the resulting U-plane. In general, the Picard-Fuchs equation (54) will be unyieldy and an
explicit solution will be out of reach with the methods we are using – for instance, for generic
mass parameters the En theory has n+ 3 I1 singularities, and the monodromy group will be
generated by n+ 3 monodromy matricesMv , each conjugate to T , and such that:

n+3
∏

v=1

Mv = T n−9 , (208)

for some appropriate base point and ordering, as in figure 1. We do not attempt to solve for
the Mv in that general case. Instead, we first fix some interesting values of the masses, such
as the massless points discussed above. In such special limits, we can often give an explicit
solution for the electromagnetic periods; it is then instructive to compute the monodromies
by brute force.

In some interesting special cases, we can use a much more powerful and elegant method,
however. It turns out that, in many instances, the U-plane is a modular curve – that is, a
quotient of the upper half-plane by a subgroup Γ of the modular group PSL(2,Z):

{U} ∼=H/Γ , τ 7→ U(τ) , ∀τ ∈H . (209)

In this case, we can describe the U-plane equivalently as a fundamental domain for Γ in the
upper half-plane. Under this map, the fibers of type Ik and I∗k correspond to cusps of width k
of Γ , while the remaining additive fibers correspond to the elliptic points of order two or three,
depending on the value of τ in table 4. The corresponding monodromies can then be read off
directly by conjugating the monodromies for the cusp and elliptic points of the modular group
PSL(2,Z) itself. We will see this simple but powerful approach at work in many examples.

To identify which CB configurations are modular, we employ a combination of methods.
Firstly, we can always compute U(τ) explicitly in the weak-coupling regime, as explained at
the end of section 2.3.2, and try to see whether it can be identified with a principal modular
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function – a so-called Hauptmodul – for some Γ . In the cases when the q-series expansion
of U(τ) is a McKay-Thompson series of the Monster group [173], this identification is eased
by the fact that all such series arising in Moonshine are Hauptmoduls of certain genus zero-
modular groups. In this paper, we will mainly focus on congruence subgroups, which have
been classified in [170,174]. This classification provides configurations of singular fibers (up
to quadratic twists) for each congruence subgroup, which thus allows for the identification of
all the modular curves (209) with Γ a congruence subgroup.

The last point that we would like to mention concerns a by-product of our computations,
which would deserve a more serious investigation. Namely, we can often identify quiver points
on the U-planes. Those are points where the central charges of n + 3 ‘light’ BPS particles
almost align – for the DS1 En theories, they become real – and where, conjecturally, the full
BPS spectrum can be obtained as bound-states of the n+3 elementary particles. The problem
of finding the spectrum, as such a point, can be formulated in terms of a BPS quiver – see
e.g. [26, 85–87]. The rough intuition for quiver points, and an explicit way to compute the
resulting quivers, follows from considering the IIB mirror geometry, bY. We mentioned that BPS
particles correspond to D3-branes wrapping Lagrangian 3-cycles. In the IIA description, the
full B4 collapses to zero-volume in the classical picture, and the (derived) category of quiver
representations is expected to accurately describe the category of B-branes in that regime. In
the mirror IIB description, we have ‘light’ wrapped D3-branes on the ‘small’ 3-cycles mirror to
the shrinking D0/D2/D4 bound states, that correspond to string junctions connecting a base
point W = U0 near the origin of the W -plane to the ‘7-branes’ around it. In many cases, the
fractional branes are then simply the smallest ‘vanishing paths’ (in the sense of Picard-Lefschetz
theory) on the W -plane [23]. In other words, in an ideal situation, the fractional branes are the
dyons that become massless at the U-plane singularities around the base point. Once we have
identified the electromagnetic charge γi = (mi , qi) of these dyons, the BPS quiver is obtained
by assigning a quiver node (i)∼ Eγi

to each light dyon, and a number ni j or arrows from node
(i) to ( j) given by the Dirac pairing, which is also the oriented intersection number between
the 3-cycles inside bY:

ni j = miq j − qim j = 〈S3
γi

, S3
γ j
〉 . (210)

For the DS1 En theories, we recover in this way many known ‘fractional brane quivers’ for
dPn, toric and non-toric – as emphasised in [26], fractional-brane quivers are 5d BPS quiv-
ers. The quivers are best understood in terms of CB configurations with only multiplicative
fibers, where each Ik singularity corresponds to a ‘block’ of quiver nodes; in particular, the
cases of a DS1 En CB with 3 multiplicative fibers in the interior, corresponding to a config-
uration S ∼= (I9−n, Ik1

, Ik2
, Ik3
) with k1 + k2 + k3 = n + 3, reproduce quivers obtained from

3-block exceptional collections on del Pezzo surfaces [175] – see e.g. [176–178]. Finally, let
us mention that, importantly, a BPS quiver generally comes with a non-trivial superpotential,
which should be computed, in principle, by a careful consideration of the disk instantons –
see e.g. [179] for the case of the mirror to a toric threefold. It would be very interesting, but
probably challenging, to compute the superpotential in the non-toric cases discussed below.

4 Rank-one 4d N = 2 theories, revisited

In this section, we discuss the well-known case of purely four-dimensional rank-one theo-
ries. In particular, we revisit the Coulomb branches of the SU(2) gauge theories with N f ≤ 3
flavours, which are asymptotically free. This serves to illustrate the general formalism in a
familiar setting. Moreover, our observations on the precise interpretation of the Mordell-Weil
group of the SW geometry appear to be new. Finally, the 4d theories arise as limits of the 5d
theories, and are thus important as such.
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I∗4

I1 I1

(a) N f = 0.

I∗3

I1

I1
I1

(b) N f = 1.

I∗2

I2 I2

(c) N f = 2.

I∗1

I4 I1

(d) N f = 3.

I∗0

I∗0

(e) N f = 4.

Figure 3: The u-plane of 4d N = 2 SU(2) with N f massless flavours.

4.1 Four-dimensional theories: A bird’s-eye view

Let us start with some general comments, before delving into more detailed computations
in the next subsections. As we explained in the previous section, the SW geometry of the
4d N = 2 SU(2) gauge theory coupled to N f fundamental hypermultiplets is described by
rational elliptic surfaces with F∞ = I∗4−N f

. In the limit of vanishing quark masses, the flavour
symmetry group for N f > 1 is the quotient of Spin(2N f ) by its center, namely:

N f 2 3 4
GF (SU(2)/Z2)× (SU(2)/Z2) SU(4)/Z4 Spin(8)/(Z2 ×Z2)

(211)

For N f = 1, the flavour symmetry is abelian. For N f = 0, the flavour symmetry group is trivial
and we have a Z2 electric one-form symmetry, Z[1] = Z2. The flavour symmetry groups (211)
are easily understood in the free UV description: there is an SO(2N f ) symmetry acting on 2N f
half-hypermultiplets in the fundamental of the SU(2) gauge group, but the action of the Z2
center of SO(2N f ) on the matter fields is equivalent to the action of the center of the gauge
SU(2). Therefore, the actual flavour symmetry is SO(2N f )/Z2, which the same as (211). At
first sight, this appears to be in tension with the discussion in [2], where it is shown that various
dyons sit in spinors of Spin(2N f ). These are not gauge-invariant states, however, thus there
is no contradiction. In what follows, we will give other derivations of the flavour symmetry
groups (211) by using the low-energy description. As a further confirmation, note that this
global form of the flavour symmetry group is in perfect agreement with the Schur index as
given in [180].

The u-planes for the massless 4d SU(2) gauge theories are depicted in figure 3. If N f 6= 1,
the corresponding rational surfaces are extremal, in agreement with the fact that the flavour
symmetry has no abelian factor. The Mordell-Weil group for all the massless theories are [46,
47]:

N f 0 1 2 3 4
Φ Z2 Z Z2

2 Z4 Z2
2

(212)

This agrees with our discussion from section 3.2. For the pure SU(2) theory, there is no
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Table 8: Number of distinct rational elliptic surfaces on the extended CB of each 4d
theory.

SU(2), N f flavours, F∞ = I∗4−N f
N f = 0 N f = 1 N f = 2 N f = 3 N f = 4

#S ’s 1 2 6 13 19

AD theories, F∞ = I I∗, I I I∗, IV ∗ H0 H1 H2
#S ’s 2 4 8

MN theories, F∞ = IV, I I I , I I E6 E7 E8
#S ’s 49 93 137

reducible Kodaira fiber in the interior and therefore F = 0. Instead, Φ = Z2 injects into
Z(F∞) = Z2

2. According to the conjecture (186), it is then interpreted as the electric one-form
symmetry of the SU(2) gauge theory. For N f = 1, the Mordell-Weil group is free and the
flavour symmetry is abelian. For N f > 1, Φ= Φtor =F , which leads to (211).

For generic masses, we have N f + 2 I1 singularities in the interior of the Coulomb branch,
and Φ= ZN f . As we vary the mass parameters, we can obtain a number of other singularities.
In fact, we can obtain all possible configurations allowed by the classification of rational elliptic
surfaces, at fixed F∞. The exact number of distinct configurations of Kodaira singularities for
every 4d theory is given in table 8.

AD points and flavour symmetry. Some of these configurations are:

I∗3 ⊕ I I ⊕ I1 , I∗2 ⊕ I I I ⊕ I1 , I∗1 ⊕ IV ⊕ I1 , (213)

including the fiber at infinity, which are the maximal Argyres-Douglas points on the Coulomb
branch of SU(2) with N f = 1,2, 3. One can ‘zoom in’ onto the AD point, which amounts to
merging the I1 with the I∗4−N f

at infinity. This is the 4d N = 2 SCFT limit, and the correspond-
ing SW geometry is described by an extremal RES as in table 6.

For the H1 and H2 theories, we have Z2 and Z3 Mordell-Weil torsion which embeds diago-
nally into Z(T ) = Z2

2 and Z2
3, respectively. Following our interpretation of the MW group, we

find that the flavour symmetry group of the rank-one AD theories is:

GF [H0] = 0 , GF [H1] = SU(2)/Z2 , GF [H2] = SU(3)/Z3 . (214)

This is in agreement with the Schur index computation [180,181] and with the BPS spectrum,
as we will discuss below. Incidentally, we also see that, according to (186), these AD theories
do not have 1-form symmetries, in agreement with [78,79].

MN theories and flavour symmetry. The remaining ‘classic’ 4d SCFTs are the En MN theo-
ries. They are directly obtained from circle compactification of the 5d theory, as we reviewed
in section 2.4.2. In the massless limit, they are described by the same rational elliptic surfaces
as the AD theories, simply by sending U to 1/U (see table 6). It then follows from our general
considerations that:

GF [E6 MN] = E6/Z3 , GF [E7 MN] = E7/Z2 , GF [E8 MN] = E8 , (215)

just like their 5d parents. This same result was recently obtained in [34].
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4.2 The pure SU(2) SW solution

Let us first review the celebrated Seiberg-Witten solution for the four-dimensional N = 2
supersymmetric SU(2) gauge theory [1,2]. The Weierstrass form of the pure SU(2) SW curve
is given by [2]:

g2(u) =
4u2

3
− 4Λ4 , g3(u) = −

8u3

27
+

4
3

uΛ4 , (216)

with the discriminant ∆ = 16Λ8
�

u2 − 4Λ4
�

. Fixing the dynamical scale such that Λ4 = 1
4 for

convenience, the u-plane singularities are at u∗ = ±1 and∞. The J -invariant then reads:

J(u) =
(4u2 − 3)3

27(u2 − 1)
, (217)

such that J ∼ u4 in the classical limit, while in the strong coupling regime we have J ∼ (u−u∗)−1.
Consequently, the monodromies will be conjugate to T4 and T , respectively, in SL(2,Z). Let
us note that the J -invariant only depends on z ≡ u2.27 Inverting the expression (217) in the
weak coupling regime leads to:

u(τ) =
1
8

�

q−
1
4 + 20q

1
4 − 62q

3
4 + 216q

5
4 − 641q

7
4 + 1636q

9
4 +O

�

q
11
4

��

. (218)

The coefficients match the McKay-Thompson series of class 4C for the Monster group [173],
which are reproduced by the exact expression:

u(τ) =
ϑ2(τ)4 + ϑ3(τ)4

2ϑ2(τ)2ϑ3(τ)2
= 1+

1
8

�

η(τ4 )

η(τ)

�8

. (219)

In this way, we verify that u(τ) is a modular function for Γ 0(4), which is an index 6 subgroup
with three cusps. Using the modular properties of either the ϑ functions or the Dedekind-η
function, one can find the τ values that correspond to the u-plane singularities. For instance,
under an S-transformation:

uD(τD) = 1+ 32qD + 256q2
D + 1408q3

D +O
�

q4
D

�

, (220)

and thus the u = 1 singularity corresponds to the τ = 0 cusp. Note that the sign of (219)
changes under a T2 transformation and thus the u = −1 cusp is mapped to τ = 2 (or, equiv-
alently, to τ = −2). Incidentally, as pointed out in [103], the origin of the Coulomb branch
corresponds to the points in the orbit of τ= 1+ i. A fundamental domain for Γ 0(4) consistent
with these cusps is shown in figure 4a. We can read off the monodromies around the cusps
from the choice of the fundamental domain, as discussed in section 3.4 and in appendix B.
There are two strong coupling cusps at τ= 0,2 of width one (since they are I1 type singulari-
ties), and one cusp of width 4 at infinity, with the associated monodromies:

Mu=1 = STS , Mu=−1 = (T
2S)T (T2S)−1 , M∞ = PT4 . (221)

The periods a, aD can be written throughout the whole u-plane in terms of hypergeometric
functions [182], which involves a choice of non-trivial branch cuts. In this approach, it is

27This is a manifestation of the spontaneously broken Z2 symmetry on the Coulomb branch. In terms of z, we
have:

z(τ) = 1+
1
64

�

η( τ2 )

η(τ)

�24

=
1

64

�

q−
1
2 + 40+ 276q

1
2 − 2048q+O

�

q
1
2

��

,

with coefficients matching the McKay-Thompson series of class 2B for the Monster group. This is a Hauptmodul
for Γ 0(2), a subgroup of index 3 with two cusps.
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F TF T2F T3F

SF T2SF

(a)

T−2F T−1F F TF T2F

SF
T2SFT−2SF

(b)

Figure 4: Fundamental domains for Γ 0(4). Figure (a) shows a standard choice, with
width one cusps at τ = 0 and 2, while in figure (b) the cusp at τ = ±2 is split, with
the branch cut of the periods indicated by the dashed line.

directly apparent that the monodromies around the strong coupling singularities depend on
the base-point in the u-plane. The standard choice of cuts for the hypergeometric functions
corresponds to a ‘splitting’ of the fundamental domain as shown in figure 4b, such that the
cusps at τ = −2 and τ = 2 are identified. We will come back to this picture when we discuss
the 5d E1 theory in section 5. Finally, we can determine the BPS states becoming massless at
the u-plane singularities from the monodromies as follows. Recall that the monodromy around
a singularity where k particles of charge (m, e) become massless is Mk

(m,e), with M(m,e) given
in (41). We thus see that the monopole (1, 0) and dyons (1,±2) are the particles becoming
massless at the τ= 0 and ±2 cusps, respectively.

Torsion and one-form symmetry. The pure SU(2) SW geometry has a Mordell-Weil group
which is purely torsion, Φ= Z2, generated by the section:

P =
�u

3
, 0
�

, 2P = O . (222)

Indeed, one easily checks that P is a solution to y2 = 4x3 − g2 x − g3 with g2 and g3 given in
(216). According to (186), this captures the electric one-form symmetry of the theory. Note
that we can see the Z2 one-form symmetry more directly from the low-energy spectrum [31],
following the logic of section 3.2.3. At strong coupling, the full spectrum is generated by the
dyons that become massless at the cusps, while at weak coupling we have a tower of dyons
and the W -boson [1,182]:

SS : (1,0) , (1,±2) , SW : (0,2) , (1, 2n) , n ∈ Z . (223)

In either regime, the spectrum is left invariant by:

gE =
�

0,
1
2

�

, (224)

following the notation (200). We therefore have an electric one-form symmetry Z2 ⊂ U(1)[1]e ,
as expected from the UV description [31].

4.3 Asymptotically-free SU(2) theories and Argyres-Douglas points

Consider the 4d SU(2) gauge theories with 0 < N f ≤ 3 flavours. Their SW curves, with all
the mass parameters turned on, are given in appendix C, equation (C.1). The monodromy at
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Table 9: Properties of the 4d SU(2) theory with N f < 3 flavours. Note that the
modular groups for N f = 0, 2 and 3 are in the same PSL(2,R) conjugacy class.

Theory ∆(u) = 0 Fv 6=∞ F∞ Modular Function Monodromy Cusps τ

N f = 0 +1,−1 I1, I1 I∗4 u(τ) = 1+ 1
8

�

η( τ4 )
η(τ)

�8
Γ 0(4) 0, 2, i∞

N f = 1 u3 = 1 3I1 I∗3 u3 = 2E4(τ)
3
2

E4(τ)
3
2 +E6(τ)

ΓN f =1 0, 1,2, i∞

N f = 2 +1,−1 I2, I2 I∗2 u(τ) = 1+ 1
8

�

η( τ2 )
η(2τ)

�8
Γ (2) 0, 1, i∞

N f = 3 0,1 I4, I1 I∗1 u(τ) = − 1
16

�

η(τ)
η(4τ)

�8
Γ0(4) 0,−1

2 , i∞

infinity is determined by the one-loop β-function [1,2]:

M∞ = PT4−N f =

�

−1 N f − 4
0 −1

�

, (225)

which correspond to F∞ = I∗4−N f
. The u-planes of the massless theories are depicted in fig-

ure 3. The Weierstrass form of the SW curves are given by:

N f = 1 : g2(u) =
4u2

3
, g3(u) = −

8u3

27
+

16
27

,

N f = 2 : g2(u) =
4u2

3
+ 4 , g3(u) = −

8u3

27
+

8u
3

,

N f = 3 : g2(u) =
4
3

�

u2 − 16u+ 16
�

, g3(u) = −
8

27

�

u3 + 30u2 − 96u+ 64
�

,

(226)

in the conventions of appendix C.1, where the dynamical scales are set to (C.3) for conve-
nience. The u-planes manifest a spontaneously broken Z4−N f

symmetry [2]. For N f = 2 and
N f = 3, we have the non-trivial SW singularities I2⊕I2 and I4, respectively, and the correspond-
ing low-energy descriptions in terms of SQED with 2 or 4 electrons, respectively, reproduce
the expected Higgs branches. For N f = 2, the Higgs branch consists of two cones of the form
C2/Z2 which arise at two distinct points on the Coulomb branch, and the two factors of the
flavour group GF = SO(3) × SO(3) act on these two cones independently. Similarly to the
N f = 0 case, one can directly compute u(τ) from the massless curves:

N f = 1 : u(τ) =
1

2
2
3 6

�

q−
1
3 + 104q

2
3 − 7396q

5
3 +O

�

q
8
3

��

,

N f = 2 : u(τ) =
1
8

�

q−
1
2 + 20q

1
2 − 62q

3
2 + 216q

5
2 +O

�

q
7
2

��

,

N f = 3 : u(τ) = −
1
16

�

q−1 − 8+ 20q− 62q3 + 216q5 +O
�

q6
��

.

(227)

For N f = 2,3, the coefficients of the q-series expansion of u(τ) are those of the McKay-
Thompson series of class 4C , just like in (218). The monodromy group differs in each case,
however. The basic global data of the massless u-planes are given in table 9. For any N f , the
relation J(u) = J(q) gives a polynomial equation for u(τ) of order 6. It follows that the mon-
odromy group ΓN f

for N f massless flavours should be an index 6 subgroup, with T N f −4 ∈ ΓN f
.
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Figure 5: Fundamental domains for 4d SU(2) theories with N f = 1, 2,3 flavours.

For N f = 1, the theory has three strong coupling singularities, reflecting the residual Z3 sym-
metry of the u-plane. A similar curve arises in the context of the pure SU(3) SYM theory [103].
In this case, u(τ) can be written in closed form in terms of fractional powers of Eisenstein se-
ries [84]. It is not a modular function for either SL(2,Z) or any of the congruence subgroups.
A possible fundamental domain for the monodromy group is shown in figure 5a. For the mass-
less N f = 2 theory, u(τ) turns out to be a modular function for Γ (2). Similarly, the monodromy
group for N f = 3 is Γ0(4). Possible choices of fundamental domains are drawn in figures 5b
and 5c. In summary, for all the asymptotically free SU(2) gauge theories with N f 6= 1, the
u-plane is a modular curve, with the modular group as indicated.

We can again use the modular properties of u(τ) to match the cusps with the u-plane
singularities in each case. For N f = 1 and N f = 2, the strong-coupling cusps are related by the
Z4−N f

symmetry of the u-plane. For N f = 3, we use the transformations:

u(τ) = −
1

16

�

η(τ)
η(4τ)

�8
S
−→−16

�

η(τ)
η(τ4 )

�8
T2

−−→ 16

�

η(τ4 )η(τ)
2

η(τ2 )3

�8
S
−→

�

η(4τ)η(τ)2

η(2τ)3

�8

.

Here, τ successively denotes γτ for the appropriate transformed element γ ∈ SL(2,Z). These
relations can be proven using the identities reviewed in appendix B. They imply the identi-
fication of the u = 1 singularity with the cusp at τ = 1

2 (or τ = −1
2). For all N f ≤ 3, the

monodromies can then be read off from the list of coset representatives, which of course re-
produces the well-known results [2].

In the rest of this section, we further comment on the global symmetry groups and on the
possible Coulomb branch configurations, in particular the ones that include Argyres-Douglas
points [4].

4.3.1 Symmetry group and BPS spectrum

Let us consider the global symmetry in each case, in order to check (211) from the infrared
perspective. We consider the three cases in turn:

N f = 1, GF = U(1). The flavour group is abelian and of rank one. Correspondingly, there is
a single free generator of the Mordell-Weil group:

P1 =
�u

3
,Λ3

�

, (228)

with Λ3 = − 4i
3
p

3
in our conventions. Note that this section generates Φ ∼= Z also for non-zero

mass m. As we take the limit m1→∞ with m1Λ
3 fixed, P1 becomes the torsion section (222)

of the pure SU(2) theory.
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N f = 2, GF = SO(3)× SO(3). This massless SW geometry has three torsion sections:

P1 =
�

−
2u
3

,0
�

, P2 =
�

1
3
(u− 3), 0

�

, P3 =
�

1
3
(u+ 3), 0

�

, (229)

which satisfy 2Pi = O, and Pi + Pj = Pk for i 6= j and k 6= i, j, thus spanning Φ = Z2 × Z2.
Note that P2 (P3) intersects the ‘trivial’ component Θv,0 of the I2 singular fiber at u = −1
(and u = 1, respectively). Each of these sections generates a Z2 subgroup that injects into Φ
according to (181). Since the subgroup of sections that are narrow is trivial and the two sub-
groups Z( f )2 = Φ/Z2 act on the individual SU(2) factors of the flavour symmetry, we find that
GF = SO(3)× SO(3), as previously mentioned. This global symmetry can also be understood
directly from either the strong- or the weak-coupling spectrum [2,183]:

SS : (1, 0;1, 0) , (±1, 1;0, 1) ,

SW : (0, 2;0, 0) , (0,1; 1,1) , (1, 2n; 1, 0) , (1, 2n+ 1; 0,1) .
(230)

The charges are (m, q; 2 j1, 2 j2) for a dyon (m, q) in the representation of spin ( j1, j2) of the
universal cover eGF = SU(2) × SU(2). Moreover, (2 j1, 2 j2) mod 2 is the charge under the
Z2 ×Z2 center of eGF . All these states are left invariant by the Z2 ×Z2 action generated by:

gE =
�

1
2

,
1
2

;1, 0
�

,
�

0,
1
2

; 0,1
�

, (231)

in the notation (200), from which we conclude that the actual flavour group is SO(3)×SO(3).

N f = 3, GF = PSU(4). This massless SW geometry also has three torsion sections:

P1 =
�

1
3
(u+ 4),−4u

�

, P2 =
�

−
2
3
(u− 2), 0

�

, P3 =
�

1
3
(u+ 4), 4u

�

, (232)

which satisfy Pk + Pl = Pk+l (mod4) with P0 ≡ O, thus spanning Φ = Z4. Note that
all sections intersect non-trivially the I4 singular fiber. We then have the flavour group
GF = PSU(4) = SU(4)/Z4 by our general argument. This can also be verified at the level
of the BPS spectrum. In the weak and strong coupling regions, we have [2,183]:

SS : (2,−1;0) , (1,0; 1) , (−1,1; 1) ,

SW : (0, 1;2) , (0, 2;0) , (1, 2n; 1) , (1, 2n+ 1;−1) , (2,2n+ 1;0) ,
(233)

where the last entry z (mod 4) in (m, q; z) denotes the charge of the corresponding dyons
under the center Z4 of Spin(6) = SU(4). The Z4 action generated by:

gE =
�

−
1
4

,
1
2

;1
�

, (234)

leaves all the BPS states invariants. The actual flavour group is therefore PSU(4).

4.3.2 Configurations for SU(2), N f = 1

Let us now consider all possible distinct SW geometries for each theory, using the classification
of rational elliptic surfaces. With one flavour, there are only two allowed configurations, listed
below:

{Fv} m1 gF rk(Φ) Φtor

I∗3, 3I1 m1 u(1) 1 −

I∗3, I I , I1 m3
1 =

27
16Λ

3 u(1) 1 −

(235)
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SF TSF
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(1, 1) (1, 0) (1,−1) (1,−2)

Figure 6: Fundamental domain for the massless 4d SU(2) N f = 1 theory, with the
branch cut of the periods indicated by the dashed line. We also indicate the BPS
particles becoming massless at the I1 cusps.

The generic configuration (I∗3, 3I1) includes the Z3-symmetric massless curve for m1 = 0. At
the three I1 singularities, the dyons (1, 0), (1,−1) and (1,−2) become massless. This can be
seen from the fundamental domain in figure (5a), as follows:

M(τ=k) = (T
kS)T (T kS)−1 =M(1,−k) , (236)

for k = 0, 1,2. In fact, keeping track of the branch cuts of the periods, one can ‘split’ the
fundamental domain at τ= 2 as shown in figure 6, so that either the dyon (1,1) or the (1,−2)
become massless at that third cusp, depending on the sheet.

The second configuration in (235) is obtained by tuning the mass into the strong coupling
region, as indicated. Let us consider the configuration containing the AD theory on the CB.
Here, we fix Λ= 24/3

3 so that m1 = 1, for convenience. One then finds:

J(u) = −
(3u− 4)(3u+ 4)3

64(3u+ 5)
. (237)

One root of J = J(τ) is:

u(τ) = −
5
3
−

1
9

�

η
�

τ
3

�

η(τ)

�12

, (238)

which is the Hauptmodul of Γ 0(3). We note that, in this case, the periods can be expressed
in terms of hypergeometric functions. However, for our purposes, it suffices to read the mon-
odromies from the fundamental domain.

The AD theory H0 can be obtained in 3 equivalent ways, by ‘colliding’ a pair of I1 cusps. At
these points, two mutually non-local particles become massless. In terms of u(τ), we recover
the Hauptmodul of Γ 0(3) and its T and T2 transformations, respectively, in the three distinct
cases. The pairs of BPS particles becoming massless in each case are the ‘neighbouring’ dyons
indicated in figure 6. Let us also note that:

M(1,1)M(1,0) = (ST )−1 ,

M(1,0)M(1,−1) = T (ST )−1T−1 ,

M(1,−1)M(1,−2) = T2(ST )−1T−2 ,

(239)

which is indeed, in each case, the monodromy for a singularity of type I I . For the case when
u(τ) is given by (238), the remaining I1 cusp is at τ = 0, where the dyon (1,0) becomes
massless, and we have the monodromies:

MI1
= STS−1 , MI I = T2(ST )−1T−2 , M∞ = PT3 , (240)
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F TF T2F

SF
I I

Figure 7: Fundamental domain for Γ 0(3) corresponding to the configuration
(I∗3, I1, I I) on the CB of the 4d SU(2), N f = 1 theory. The marked point τ= 2+e2iπ/3

is the elliptic point of the congruence subgroup Γ 0(3).

which satisfy MI1
MI IM∞ = 1. These monodromies are in agreement with the fundamental

domain drawn in figure 7, where the AD theory appears at the elliptic point. Similar funda-
mental domains can be drawn for the other two cases, by shifting the cusp and the elliptic
point appropriately.

4.3.3 Configurations for SU(2), N f = 2

With two flavours, there are six allowed configurations:

{Fv} m1 m2 gF rk(Φ) Φtor

I∗2, 2I2 0 0 A1 ⊕ A1 0 Z2 ×Z2

I∗2, I2, 2I1 m1 6= ±Λ m1 A1 ⊕ u(1) 1 Z2

I∗2, I I I , I1 m1 = ±Λ m1 A1 ⊕ u(1) 1 Z2

I∗2, 2I I
p

2eiπ/4Λ eiπ/2m1 2u(1) 2 −

I∗2, I I , 2I1
1
2 e3πi/4Λ eiπ/2m1 2u(1) 2 −

I∗2, 4I1 m1 m2 2u(1) 2 −

(241)

Here, we only listed some particular values of the parameters m1,2 for the curve (C.1) which
give rise to the corresponding configuration. For generic values of the masses, we have the last
configuration, 4I1 singularities. The general structure of the extended CB can be understood
starting from the large-mass limit [2]. For equal bare masses m1 = m2 � Λ, the two I1
singularities corresponding to the quarks collide, giving rise to one I2 singularity, from which
emanate a classical Higgs branch C2/Z2, while we have the two I1 singularities of the pure
SU(2) theory in the strong-coupling region. This configuration is the one on the second line in
(241). Colliding this I2 singularity with one of the other two I1’s (which would correspond to
the monopole and dyon of the pure SU(2), in the large mass limit), we can obtain a type-I I I
singularity, as two types of mutually non-local BPS states become massless [4]. This is the
third line in (241).

Recall that the massless configuration (I∗2, 2I2) corresponds to an extremal rational elliptic
surface associated to the congruence subgroup Γ (2) with u(τ) given in (227) and in table 9.
By performing an S-transformation, one can show that one I2 cusp is at u(τ = 0) = 1. Fur-
thermore, u(τ) changes sign under a T , transformation, so that u(τ = ±1) = −1. In the
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F TFT−1F

SF TSFT−1SF
ST−1 TST

(1,1) (1,0) (1,−1)

(a) Massless theory.

F TF

TSFI I I

(1,−1)

(b) AD point H1.

Figure 8: Fundamental domains for the 4d SU(2) N f = 2 theory. (a) Choice of funda-
mental domain for m1 = m2 = 0 with a branch cut structure indicated by the dotted
lines. The τ= 0,±1 singularities are I2 cusps. (b) Choice of fundamental domain for
the configuration involving a type-I I I singularity. Three BPS states become massless
at the point at τ= i.

large mass picture, one I2 cusp is obtained from the pair of quarks, while the other I2 is ob-
tained by ‘colliding’ the monopole and dyon of pure SU(2) after a non-trivial monodromy as
m1 = m2→ 0 [4]. At this point, the flavour symmetry is enhanced from u(2) to so(4) and the
‘second’ C2/Z2 Higgs branch appears. The BPS states becoming massless at the two I2 cusps
of the massless theory have charges (1,0) and (1,±1), in agreement with [183]. The corre-
sponding fundamental domain is shown in figure 8a. In particular, the monodromy matrices:

MI2
=M2

(1,0) = ST2S−1 , M′I2
=M2

(1,±1) = (T
∓1S)T2(T∓1S)−1 , M∞ = PT2 , (242)

can be read off directly from figure 8a. Let us analyse in more detail the configuration con-
taining the type-I I I singularity. For m1 = m2 = Λ, with Λ=

p
2, we find:

u(τ) = − 5+
1
8

�

η(τ)2

η(τ2 )η(2τ)

�24

=
1
8

�

1

q
1
2

− 16+ 276q
1
2 + 2048q+ 11202q

3
2 +O(q2)

�

,

(243)

whose coefficients match the 4A McKay-Thompson series of the monster group [173]. The
expression (243) is related by a T transformation to the McKay-Thompson series of class 2B,
namely:

u(τ) = −5−
1
8

�

η
�

τ±1
2

�

η(τ± 1)

�24

, (244)

which is the Hauptmodul of the congruence subgroup Γ 0(2). Compared to the analysis for
N f = 1, here we split one of the I2 cusps of the massless N f = 2 theory into two I1’s, and
collide one of those with the other I2 cusp. Thus, in terms of the BPS particles, one of the
two dyons of the split I2, say a dyon (1,∓1), will also become massless, together with the two
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F TF

I I I I

Figure 9: Fundamental domain for the (I∗2, 2I I) configuration on the CB of the
4d SU(2) N f = 2 theory.

monopoles (1,0) at the other I2 cusp. Indeed, we have:

M2
(1,0)M(1,−1) =M(1,1)M2

(1,0) = S−1 , (245)

which is exactly the monodromy around the type-I I I elliptic point at τ = i in figure 8b. A
similar analysis can be done for the case when the two (1,±1) dyons and a monopole (1, 0)
collide to form a type-I I I singularity.

Let us also note that the flavour symmetry group SO(3) of the AD point can be corroborated
from the corresponding BPS states. Indeed, at the AD point in the configuration above, we
have a single dyon (1,∓1; 0) and a doublet of eGF = SU(2), denoted by (1, 0;1), where the
last entry denotes the charge under the center of SU(2). We then find that the actual flavour
symmetry is SU(2)/Z2, by the same argument as for the massless curve. Moreover, the full
spectrum of the 4d gauge theory is compatible with that symmetry, which agrees with the fact
that the MW group of this configuration is Φ= Z2.

Finally, the remaining possibilities in (241) involve ‘colliding’ I1’s corresponding to (1, 0) states
with the (1,±1) states, forming type-I I singularities. For instance, we can obtain the (I∗2, 2I I)
configuration by tuning the masses to the values given in (241). In that case, we find:

J(u) = 1+
u2

27
⇔ u2(τ) = −27+ 27

E4(τ)3

E4(τ)3 − E6(τ)2
, (246)

with u(τ) itself having coefficients matching the McKay-Thompson series of class 2A. In this
case, the monodromy group is Γ 2, the group whose elements are the squares of PSL(2,Z),
with the fundamental domain drawn in figure 9. Note that the type-I I singularities are elliptic
points of order 3, namely those for which J(τ∗) = 0, which correspond to the zeroes of the
Eisenstein series E4 at τ∗ = e2iπ/3. As a result, we expect two type-I I elliptic points at τ∗ and
1+τ∗. We note that:

M(1,1)M(1,0) = (ST )−1 , M(1,0)M(1,−1) = T (ST )−1T−1 , (247)

in agreement with the domain shown in figure 9.
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4.3.4 Configurations for SU(2), N f = 3

With three flavours, there are 13 allowed configurations:

{Fv} m1 m2 m3 gF rk(Φ) Φtor

I∗1, I4, I1 0 0 0 A3 0 Z4

I∗1, I3, 2I1 m1 m1 m1 A2 ⊕ u(1) 1 −

I∗1, IV, I1 Λ/2 m1 m1 A2 ⊕ u(1) 1 −

I∗1, I3, I I −Λ/16 m1 m1 A2 ⊕ u(1) 1 −

I∗1, I I I , I2 Λ/4 0 0 2A1 ⊕ u(1) 1 Z2

I∗1, 2I2, I1 m1 0 0 2A1 ⊕ u(1) 1 Z2

I∗1, I I I , I I −7
4Λ i

p
2Λ m1 A1 ⊕ 2u(1) 2 −

I∗1, I I I , 2I1
m2

2
Λ +

Λ
4 m2 m1 A1 ⊕ 2u(1) 2 −

I∗1, I I , I2, I1 m1
(4m1+Λ)3/2

6
p

3Λ
m1 A1 ⊕ 2u(1) 2 −

I∗1, I2, 3I1 m1 m2 m1 A1 ⊕ 2u(1) 2 −

I∗1, 2I I , I1

�

−2T2Λ+
13
8 Λ

3, 5T2Λ
2 − 57

16Λ
4
�

3u(1) 3 −

I∗1, I I , 3I1

�1
4 T2Λ−

1
16Λ

3, 1
2 T2Λ

2 − 3
16Λ

4
�

3u(1) 3 −

I∗1, 5I1 m1 m2 m3 3u(1) 3 −

(248)

We use the N f = 3 curve given in (C.4), and we again only specified the masses for some
simple configurations of interest. For the configurations (I∗1, 2I I , I1) and (I∗1, I I , 3I1) we give
values for the SO(6) Casimirs (T3, T4) defined in (C.2). Note that the (I∗1, I I , 3I1) configuration
can be in fact obtained by only ‘fixing’ one of the Casimirs. Here we give a subfamily for which
this configuration is realized. For generic masses, we have 5I1 singularities. For equal bare
masses m1 = m2 = m3, three of these singularities collide, forming an I3 singularity, with
flavour symmetry u(3), as in the second line in (248). In the massless limit, the I3 merges
with another I1 cusp, leading to the enhanced so(6) ∼= su(4) flavour algebra, and the Higgs
branch dimension increases accordingly. This is the first line in (248). As discussed above, the
massless configuration (I∗1, I4, I1) corresponds to the extremal rational elliptic surface X141, and
in that case the u-plane is a modular curve for Γ0(4). From the fundamental domain shown in
figure 5c, one can read off the monodromies:

MI4
= ST4S−1 =M4

(1,0) , M
±
I1
= (ST±2S)T (ST±2S)−1 =M(2,±1) , M∞ = PT . (249)

They satisfy:
MI4
M−I1
M∞ =M+I1

MI4
M∞ = 1 , (250)

as expected. Therefore, in the massless gauge theory, we have four monopoles (1, 0) becoming
massless at τ= 0 and one dyon (2,∓1) becoming massless at τ= ±1

2 . Note that the BPS quiver
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Figure 10: Fundamental domains for SU(2) N f = 3 configurations. (a) Γ0(4) cor-
responding to (I∗1, I4, I1), the massless configuration. (b) Γ0(3) corresponding to the
configuration (I∗1, I3, I I), involving the H0 AD point. (c) Fundamental domain for
the CB configuration (I∗1, IV, I1) involving the H2 AD point. This last configuration
is not modular. The transitions between these configurations can be seen from the
fundamental domains.

for that massless configuration takes the form [86]:

Eγ5=(2,−1)Eγ1=(1,0)

Eγ2=(1,0)

Eγ3=(1,0)

Eγ4=(1,0)

∼= Eγ5=(2,−1)Eγ1,2,3,4=(1,0)
. (251)

Note that, depending on the base point on the U-plane, we have either the dyon γ5 = (2,−1)
or γ′5 = (2,1). The corresponding quivers differ by the orientation of the arrows, and are
related by a quiver mutation (see e.g. [86]) on the central node. On the right-hand-side of
(251), and in the following sections, we use the ‘block’ notation, wherein several nodes with
the same dyonic charge (the four monopoles (1, 0), in this case) are written as one node, with
the understanding that the arrows between blocks connect each node of one block to each
node of the other.

Another interesting limit is obtained by starting with equal masses m1 = m2 = m3 and by
tuning that equal mass m1 = Λ/2, as shown on the third line of (248). In that case, the I3
cusp merges with one I1 cusp, forming an IV singularity, while the Higgs branch remains the
same. Setting Λ= 4 for simplicity, we find:

u(τ) = −19− 27
E4(τ)3/2 + E6(τ)
E4(τ)3/2 − E6(τ)

. (252)

The elliptic point of type IV corresponds to the zero of the Eisenstein series E4, namely
τ∗ = e2iπ/3. The monodromies are:

MIV = (ST )−2 , MI1
= STS−1 , M∞ = PT , (253)

satisfyingMIVMI1
M∞ = 1, as expected. Importantly, we have:

MIV =M(2,1)M3
(1,0) , (254)
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so that the AD point can be interpreted as having three monopoles (1, 0) and one dyon (2, 1)
becoming massless [4]. This corresponds to ‘spitting’ the I4 cusp of the massless gauge theory
into I3⊕ I1 before merging the I3 with the other, mutually non-local, I1 singularity. The funda-
mental domain for this configuration is shown in figure 10c. It follows that the BPS quiver for
the AD theory H2 can be obtained from (251) by deleting one of the four ‘monopole’ nodes,
say Eγ1=(1,0).

Let us also comment on the flavour group at this AD point. The flavour symmetry alge-
bra of the configuration, which can be read off from the SW geometry, is su(3)⊕ u(1), which
corresponds precisely to the splitting I4 → I3 ⊕ I1. Moreover, the Mordell-Weil group is tor-
sionless in this case. If we focus on the AD point itself, the relevant BPS particles are (2,1; 0)
and (1, 0;1), and the corresponding flavour symmetry group is SU(3)/Z3 due to the Z3 action
(1

3 , 1
3 ; 1) that leaves the configuration invariant. On the other hand, the full theory includes

the additional flavour singlet (1,0; 0) which is not invariant under this Z3, and therefore the
flavour symmetry group of the full configuration is SU(3). As we ‘zoom in’ into the AD point,
one sends that additional dyon singularity to infinity, fusing I∗1 ⊕ I1 → IV ∗ to obtain the con-
figuration (IV ∗, IV ) of the 4d SCFT H2. In that limit, we recover the flavour group SU(3)/Z3,
consistently with the non-trivial Mordell-Weil torsion of that limiting configuration.

All the other configurations in (248) can be discussed similarly. For instance, if we set
m1 = m2 = m3 = −Λ/16, we obtain the configuration (I∗1, I3, I I) on the fourth line in (248).
In that case, we find:

u(τ) = −
1
16

�

7+
�

η(τ)
η(3τ)

�12�

, (255)

which is the Hauptmodul for Γ0(3). The fundamental domain for this configuration is shown
in figure 10b. We find the monodromies:

MI3
= ST3S−1 =M3

(1,0) , MI I = ST2(ST )−1(ST2)−1 =M(2,1)M(1,0) , (256)

which satisfyMI IMI3
M∞ = 1.

5 The E1 and eE1 theories – 5d SU(2)θ

In this and the next two sections, we explore the U-plane of the En theories with n ≤ 3. The
corresponding toric geometries in Type IIA, and their Type IIB mirror, have been well studied in
the literature – see e.g. [12,18,23,184]. Here, we focus on the 5d interpretation and conduct
a systematic analysis of the possible Coulomb branch configurations. Moreover, we solve for
the physical periods as explicitly as possible for some interesting values of the masses, and in
particular in the massless limit. We also discuss the modular properties of the U-plane as well
as aspects of the global symmetries, following the general approach outlined in the previous
sections.

5.1 The E1 theory – 5d SU(2)0: Z4 torsion and BPS quivers

Let us first consider the E1 theory, which is the UV completion of the five-dimensional SU(2)0
gauge theory [13]. Its SW curve was first derived and studied in [12,19]. The ‘toric’ expression
(99) for the curve can be brought to the Weierstrass form (48), with:

g2(U) =
1
12

�

U4 − 8(1+λ)U2 + 16
�

1−λ+λ2
�

�

,

g3(U) = −
1

216

�

U6 − 12(1+λ)U4 + 24
�

2+λ+ 2λ2
�

U2 − 32
�

2− 3λ− 3λ2 + 2λ3
�

�

,
(257)
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I8

I1 I2 I1

(a) Massless case, λ= 1.

I8

I1 I1

I1 I1

(b) λ= e
2πi
3 .

I8

I1 I1

I1 I1

(c) λ= −1.

Figure 11: The U-plane of the DS1 E1 theory for some values of λ. Notice the Z2
symmetry, which is enhanced to Z4 at λ= −1.

Table 10: The two configurations of singular fibers for the E1 theory.

{Fv} λ gF rk(Φ) Φtor

I8, 2I1, I2 1 A1 0 Z4

I8, 4I1 λ 6= 1 u(1) 1 Z2

and with discriminant:

∆(U) = λ2
�

U4 − 8(1+λ)U2 + 16(1−λ)2
�

. (258)

At generic values of λ, the discriminant has four distinct roots, and we have four distinct I1
singularities in the interior of the U-plane, plus the I8 singularity at infinity – see figure 11.
Note that g2 and g3 in (257) depend on U2 instead of U , and therefore the Z2 action:

Z2 : U →−U , (259)

is a symmetry of the U-plane for any value of the complexified 5d gauge coupling, λ. This
symmetry has a simple physical explanation. Recall that U is defined as the expectation value
of the five-dimensional fundamental Wilson loop wrapped on S1. Then (259) is precisely the
action of the Z2 one-form symmetry of the E1 theory [76,77], which gives rise to both a one-
form and an ordinary (zero-form) symmetry of the KK theory DS1 E1. Both are spontaneously
broken on the Coulomb branch. It is useful to note that the E1 SW geometry is a two-to-one
covering of the pure SU(2) geometry [19]:

u(4d)←→
U2

4
− 1−λ , Λ4

(4d)←→ λ , (260)

with the 4d curve given in (216). Let us study the U-plane in some detail. There are two
configurations of singular fibers depending on the value of the parameter λ, as shown in ta-
ble 10. The case λ= 1 is the massless point, which gives us the low-energy description of the
5d SCFT R4 × S1 with vanishing real masses and without any non-trivial flavour Wilson line.
For λ 6= 1, the corresponding configuration (I8, 4I1) is not extremal, with the su(2) flavour
algebra broken to the Cartan subalgebra. The point λ= −1 corresponds to setting to zero the
fundamental flavour Wilson line for E1 = su(2):

χ
E1
1 =

p

λ+
1
p
λ
= 0 . (261)

The corresponding U-plane turns out to be Z4 symmetric, and the periods can be expressed in
terms of hypergeometric functions.
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5.1.1 The E1 massless curve

Let us first consider the massless E1 curve, by fixing λ = 1. In this case, it will be useful to
consider the variable:28

w=
U2

16
=

1
16z f

. (262)

Let (aD, a) be the physical periods, which are related to the D4- and D2-brane periods as
discussed in section 2.4. We also introduce the geometric periods ω= dΠ

dU , namely:

ΠD4 = aD , ΠD2 f
= 2a , ωD =

daD

dU
, ωa =

da
dU

, (263)

with the D4 period as given by (68):

ΠD4 = ΠD2 f
ΠD2b

+
1
6
= 2a

�

2a+
1

2πi
log(λ)

�

+
1
6

. (264)

These geometric periods satisfy the Picard-Fuchs equation:

d2ω

dU2
+

3U2 − 16
U(U2 − 16)

dω
dU
+

1
U2 − 16

ω= 0 . (265)

One can analyse the solutions to this equation, and their monodromies, rather explicitly. We
will first discuss the periods on the w-plane, before going back to the physical U-plane.

Geometric periods on the w-plane. In terms of w defined as in (262), the massless E1 curve
takes the Weierstrass form:

g2(w) =
4
3
(16w2 − 16w+ 1) , g3(w) = −

8
27
(64w3 − 96w2 + 30w+ 1) , (266)

with a discriminant ∆(w) = 256(w− 1)w. Thus, this one-parameter family of curves has two
I1 singularities (at w= 0 and w= 1) in the interior of the w-plane. One can also check that the
fiber at infinity is of type I∗4, which is consistent with the fact that the w-plane is isomorphic to
the four-dimensional pure SU(2) Coulomb branch. The w-plane analysis that follows is then
essentially the same as in [182].

Starting from the curve (266), one can consider a distinct curve obtained by a rescaling:

(g2, g3)→
�

(16w)2 g2, (16w)3 g3

�

. (267)

This is a quadratic twist, as explained around (136). The Kodaira singular fibers are then
transmuted according to:

w= (0, 1,∞) : (I1, I1, I∗4)→ (I
∗
1, I1, I4) . (268)

This operation is equivalent to a rescaling of the coordinates (x , y)→
�

(16w)−1 x , (16w)−
3
2 y
�

,

which has the effect of rescaling the holomorphic one-form asω→ (16w)−
1
2ω. In addition, we

find it convenient to multiply the geometric periods of this new curve by the regular function
16w, so that we actually consider:

eωγ ≡
p

16wωγ = U
dΠγ
dU

. (269)

28This w is distinct from the variable w ∈ C∗ used to describe the mirror curves F(t, w) = 0 in the previous
section. We will discuss various distinct ‘w-planes’ in the next subsections. This should cause no confusion.
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Let us now study these rescaled geometric periods on the w-plane. Firstly, they satisfy the
following PF equation:

(w− 1)
d eω
dw2

+
d eω
dw
−

1
4w2

eω= 0 . (270)

This is a standard hypergeometric differential equation, with singularities at w = 0,1,∞. In
particular, at each of the three singularities there is only one regular solution. A convenient
basis of solutions is given by:

eωa(w) = −
1

2πi 2F1

�

1
2

,
1
2

, 1;
1
w

�

, eωD(w) = −
1
π 2F1

�

1
2

,
1
2

,1; 1−
1
w

�

. (271)

The period eωa is regular in the large volume limit, w = ∞, while the ‘dual period’ eωD is
regular at the ‘conifold point’, w = 1. A Gauss-Ramanujan identity for the hypergeometric
function provides a way of analytically continuing these solutions past their respective regions
of convergence, to unit argument:

2F1

�

1
2

,
1
2

,1; x
�

≈
4
π

log(2)−
1
π

log(1− x) +O [(1− x) log(1− x)] . (272)

To analytically continue to w= 0, we use the Barnes integral representation:

2F1

�

1
2

,
1
2

, 1; x
�

=
1

2πi Γ
�1

2

�2

∫ i∞

−i∞

Γ
�1

2 + t
�2
Γ (−t)

Γ (1+ t)
(−x)t d t , (273)

for |arg(−x)| < π. The integration contour separates the poles of Γ
�1

2 + t
�

from those of
Γ (−t). Consequently, when closing the contour to the right we recover the regular solution
for eωa at w=∞, while when closing it to the left we find the asymptotic expansion:

2F1

�

1
2

,
1
2

,1;
1
w

�

−→
w

1
2

πi 2F1

�

1
2

,
1
2

, 1; w
�

�

− log
�

−
w
16

��

−
w

3
2

2πi
f (w) , (274)

where f (w) is given by:29

f (w) =
∞
∑

k=1

κkwk−1 = 1+
21
32

w+
185
384

w2 +
18655
49152

w3 +
102501
327680

w4 +O
�

w5
�

. (275)

We thus find:

eωa(w) =
ε
p

w
2π2

�

2F1

�

1
2

,
1
2

,1; w
�

log
�

−
w
16

�

+
w
2

f (w)
�

, (276)

at w = 0. Here we introduced the sign ε = sign (Im(w)), corresponding to a choice of branch
for the square root. This expression with ε= 1 holds on the principal branch of eωa. Note that
eωa has a branch cut on the interval w ∈ (0,1]. The same method can be used to analytically

29The rational coefficients κk can be written as the following residues:

κk =
2
π

Ress=k

�

24(s−k)Γ (−s)2 Γ
�1

2
+ s
�2
�

.
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w= 0 w= 0

w= 1w= 1π

−π

0

2π

Figure 12: Branch cuts of the geometric periods eωD and eωa, respectively.

continue eωD to w= 0. The leading asymptotics for the two periods are as follows:

w=∞ : eωa(w)≈ −
1

2πi

�

1+
1

4w
+O

�

1
w2

��

,

eωD(w)≈ −
1
π2

log(16w) +O
�

1
w

�

,

w= 1 : eωa(u)≈
1

2π2i
log

� u
16

�

+O (u log(u)) ,

eωD(u)≈ −
1
π

�

1+
1
4

u+O(u2)
�

,

w= 0 : eωa(w)≈
p

w
2π2

�

iπ− ε log
� w

16

�
�

+O
�

w
3
2

�

,

eωD(w)≈
p

w
π2

log
� w

16

�

+O
�

w
3
2

�

,

(277)

where we introduced the coordinate u = 1− 1
w . Note that the principal branch of eωa differs

from that of eωD. The branch cuts of the two periods are shown in figure 12. The factor
of ε is then necessary to match the two principal branches, allowing us to consider linear
combinations of the periods. As a consistency check, let us compute the monodromies of the
geometric periods in the ( eωD, eωa) basis. As we go around w= 0 (w→ e2πiw), one finds:

M(g)+w=0 =

�

−3 −4
1 1

�

, M(g)−w=0 =

�

1 −4
1 −3

�

, (278)

corresponding to a base point in the upper- or lower-half plane, respectively. The monodromies
at w= 1 and w=∞ (with u→ e2πiu and w→ e−2πiw at w=∞, respectively) are:

M(g)w=1 =

�

1 0
−1 1

�

, M(g)w=∞ =

�

1 4
0 1

�

. (279)

These matrices satisfy:

Mw=1M−w=0Mw=∞ = 1=M+w=0Mw=1Mw=∞ , (280)

as expected. Let us note also that these can be written as:

M(g)εw=0 = (T
−2εS)(−T )(T−2εS)−1 , M(g)w=1 = STS−1 , M(g)w=∞ = T4 , (281)

for ε= ±1. This is of course consistent with the global analysis, wherein we have the Kodaira
fibers (I∗1, I1, I4) as in (268). In particular, the point at w= 0 is the I∗1 singularity.

Interestingly, the w-plane can be viewed as a modular curve for the congruence subgroup
Γ 0(4) of SL(2,Z), exactly like the Coulomb branch of the pure SU(2) SW geometry [2]. The
dependence of Mw=0 on the base point is due to our choices of branch cuts [182], and it can
be interpreted as a ‘splitting’ of the fundamental domain, as shown in figure 4b, such that the
cusps at τ= −2 and τ= 2 are identified.
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Physical periods on the w-plane. The physical periods on the w-plane can now be obtained,
in principle, from the geometric periods, using the fact that:

eωγ = U
d

dU
Πγ . (282)

Let us also note that they satisfy the following third order differential equation:
�

z
�

θz −
1
2

�2

− θ2
z

�

θzΠγ = 0 , (283)

with z = 1
w and θ = z d

dz . This is a Meijer equation, and therefore the solutions can be writ-
ten in terms of Meijer G-functions. In order to fix a basis that corresponds to the physical
periods (aD, a), let us first consider the asymptotics of the periods obtained by integrating the
geometric periods. These are:

w=∞ : a(w)≈ α∞ −
1

4πi
log (w) +O

�

1
w

�

,

aD(w)≈ β∞ +
1

(2πi)2
log2

�

1
16w

�

+O
�

1
w

�

,

w= 1 : a(u)≈ α1 −
1

4π2i

�

1− log
� u

16

�
�

u+O
�

u2
�

,

aD(u)≈ β1 −
u

2π
+O(u2) ,

w= 0 : a(w)≈ α0 +
ε
p

w
2π2

�

2− log
�

−
w
16

�
�

+O
�

w
3
2

�

,

aD(w)≈ β0 −
p

w
π2

�

2− log
� w

16

�
�

+O
�

w
3
2

�

,

(284)

with α∗, β∗ some integration constants to be determined. We fix two of the constants, namely:

α∞ = −
1

4πi
log(16) , β1 = 0 , (285)

such that 2a(w) matches with the D2-brane period on C f at large volume a ≈ 1
4πi log z f , and

such that aD(w) vanishes at w = 1. Note that, a priori, this aD(w) might not match with the
D4-brane period at large volume. Comparing to the D4-brane period (264), this fixes β∞ =

1
6 ,

and we will check that this is indeed consistent. In order to fix β0, we proceed as in [56]. Using
the connection formula:

2F1

�

1
2

,
1
2

, 1;1− x
�

= x−
1
2

2F1

�

1
2

,
1
2

, 1;1−
1
x

�

, (286)

which analytically continues the aD period from the region |u| < 1 towards w = 0 (excluding
the point w= 0 point) in the |w|< 1 region, we have:

aD(w= 1) = −
1

2π

∫ 1

0

1
p

w 2F1

�

1
2

,
1
2

,1; 1−w
�

dw+ β0

= −
1

2π2

∫ 1

0

1
p

w

∞
∑

n=0

1
n!

Γ
�1

2 + n
�2

Γ (1+ n)
(1−w)n dw+ β0

= −
1

2π2
π2 + β0 .

(287)
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Given that aD vanishes at w = 1, it follows that β0 =
1
2 . Having fixed this constant, we can

write the periods in terms of Meijer G-functions:

a(w) = −
1

4π2i
G2,2

3,3

�

1
2

1
2 1

0 0 0

�

�

�

�

−
1
w

�

+
eε

4
,

aD(w) = −
1

2π3
G3,2

3,3

�

1
2

1
2 1

0 0 0

�

�

�

�

1
w

�

+
1
2

,

(288)

where eε = ±1 (modulo even integers) to match the large volume limit of a(w) on a given
branch. Using the Barnes-type integral representation of the G-functions,30 one can check
that β∞ =

1
6 , and one also finds α0 =

eε
4 . We thus have:

a(w= 0) =
eε

4
, aD(w= 0) =

1
2

. (289)

Finally, to fix the remaining constant α1 at w = 1, one can directly evaluate the Meijer G-
function at unit argument. This gives the ‘quantum volume’ of the curve C f at the conifold
point:

ΠD2 f
(w= 1) = 2a(w= 1) = 2α1 =

1+ eε
2
+ i

4G
π2

, (290)

where G ≈ 0.916 is the Catalan constant. This agrees with the recent discussion in [185].

Geometric periods on the U-plane. Having obtained explicit expressions for the periods
on the w-plane, the next step is to analytically continue the periods on the U-plane, which is
a double-cover of the w-plane. Let us first consider the geometric periods. We introduce the
functions:

fa(w) = −
1

2πi 2F1

�

1
2

,
1
2

; 1;
16
U2

�

, fD(w) = −
1
π 2F1

�

1
2

,
1
2

;1; 1−
16
U2

�

. (291)

Since the map U 7→ w is 2 to 1, we will split the U-plane into two regions separated by the
imaginary axis, which we denote by A (for Re(U) > 0) and B (for Re(U) < 0). The above
functions have branch cuts inherited from the hypergeometric function. Thus, it is not directly
obvious what their expressions throughout the whole U-plane are. Here, we will interpret fD
as a local function, which is well defined only around one of the two ‘conifold’ singularities at
U2 = 16. The branch cuts of fa connect the singularities at U = ±4 to the U = 0 singularity.
We choose the branch cut of fD to run along U ∈ [0, i∞), in agreement with the w-plane
branch cut. Recall also that the large volume asymptotics on the w plane gives:

fa(w)≈ −
1

2πi
+O

�

1
w

�

, fD(w) ≈ −
1
π2

log(16w) +O
�

1
w

�

. (292)

The geometric periods in the A and B regions will be linear combinations of fa and fD, with
the large volume (U →∞) asymptotics:

eωa ≈ −
1

2πi
, eωD ≈

2
π2

log
�

1
U

�

, (293)

30We have:

G2,2
3,3

�

1
2

1
2 1

0 0 0

�

�

�

�

x

�

=
1

2πi

∫

Γ (−s)2 Γ
�

1
2 + s

�2

Γ (1+ s)Γ (1− s)
x sds , G3,2

3,3

�

1
2

1
2 1

0 0 0

�

�

�

�

x

�

=
1

2πi

∫

Γ (−s)3 Γ
�

1
2 + s

�2

Γ (1− s)
x sds .
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U = −4

U = 0

U = 4 U = −4

U = 0

U = 4

B A B A−3π
2

π
2

Figure 13: Branch cuts for eωD(U) and eωa(U), respectively.

which reproduce the large volume monodromy:

MU=∞ =

�

1 8
0 1

�

= T8 . (294)

We first note that fa can be used for the a period in both regions of the U-plane, since the
large volume expression is a regular function. The eωa period will thus have two branch cuts,
running along U ∈ (0+, 4] and U ∈ [−4,0−). We can choose U∗ = −4 to be the cusp where
aD(U∗) = 0. Thus, in region B, the dual period eωD will be given by fD. The mapping of the
angles between the w-sheets and the U-plane is:

U : −
3π
2
→−π , −π →−

π

2
, −

π

2
→ 0 , 0→

π

2
,

w : − 3π→−2π , −2π→−π , −π→ 0 , 0→ π .
(295)

Recall that arg(w) ∈ (−π,π) was the principal branch of eωD in the w-plane. Now, consider
the function fD in region A. Analytic continuation to U →∞ leads to:

f (A)D ≈ −
1
π2

log(16w(A)) = −
1
π2

�

log(16w(B))− 2πi
�

. (296)

In order for this to match with the asymptotic expansion of eωD in all regions, we must subtract
a factor of 4 fa. We then have:

A : eωD(U) = fD(U) + 4 fa(U) ,

B : eωD(U) = fD(U) ,
(297)

while:
eωa(U) = fa(U) , (298)

for the entire U-plane. The branch cuts of the geometric periods eωD and eωa are shown in
figure 13. The monodromies around the two singularities at U = ±4 read:

MU=−4 =

�

1 0
−1 1

�

= STS , MU=4 =

�

−3 16
−1 5

�

= (T4S)T (T4S)−1 . (299)

For the series expansion around U = 0, one needs to take into account the various branch cuts
of eωa and eωD. In the region where Re(U) > 0, and Im(U) < 0, for instance, the asymptotics
are:

eωa(U)≈ −
U

2π2
log

U
4
+ i

U
2π
+O

�

U3
�

, eωD(U)≈ −
U

4π2
log

U
4
+ i

U
8π
+O

�

U3
�

, (300)
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leading to the monodromy:

MU=0 =

�

−3 8
−2 5

�

= (T2S)T2(T2S) , (301)

which, in particular, agrees with the fact that U = 0 is an I2 singularity. These monodromies
satisfy the consistency condition:

MU=−4MU=0MU=4 =M−1
U=∞ . (302)

Our explicit analysis of the U-plane periods thus recovers the Kodaira singularities expected
from the discriminant of the Seiberg-Witten curve:

(I1, I2, I1, I8) at U∗ = −4,0, 4,∞ . (303)

Finally, by integrating the geometric periods once, we can obtain the physical periods on the
U-plane, similarly to the analysis on the w-plane. One can determine in that way which BPS
particles become massless at which points. This can also be understood, more simply, from
the explicit monodromy matrices that we just derived.

Massless dyons and 5d BPS quiver. One finds that the following dyons of the KK theory
DS1 E1 become massless at these points:

U = −4 (I1) : a monopole of charge (1, 0), becomes massless,

U = 0 (I2) : two dyons of charge (−1, 2), become massless,

U = 4 (I1) : a dyon of charge (1,−4), becomes massless.

(304)

Here, we fixed the overall signs of the electromagnetic charges such that the total charge
vanishes. Interestingly, the point U = 0 is also a quiver point, where these BPS particles are
mutually BPS. Using the fact that a = 1

4 and aD =
1
2 at the origin, we find the central charge:

Zγ=(1,0)(U = 0) =
1
2

, Zγ=(−1,2)(U = 0) = 0 , Zγ=(1,−4)(U = 0) =
1
2

. (305)

The central charges of the γ= (1,−4) also carries a contribution from one unit of KK momen-
tum (D0-brane charge) [26]. The associated 5d BPS quiver is obtained by assigning one node
Eγ to each of the four dyons, and by drawing a net number of arrows ni j from Eγi

to Eγ j
given

by the Dirac pairing, ni j = det (γi ,γ j). The resulting quiver reads:

Eγ1=(1,0) Eγ2=(−1,2)

Eγ3=(−1,2) Eγ4=(1,−4)

(306)

This is a well-known ‘toric’ quiver for local F0 – see e.g. [186].

Modularity. The Coulomb branch of the massless E1 theory on a circle can be written as a
modular curve for the congruence subgroup Γ 0(8). To see this explicitly, we should look at the
explicit map U = U(τ), which can be worked out as explained in section 2.3. We find:

U(τ) =
η
�

τ
2

�12

η
�

τ
4

�4
η(τ)8

= q−
1
8 + 4q

1
8 + 2q

3
8 − 8q

5
8 − q

7
8 +O (q) . (307)
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F TF T2F T3F T4F T5F T6F T7F

SF T2SF T4SF
T2ST

Figure 14: A fundamental domain for Γ 0(8) on the upper half-plane. The four cusps
at τ= 0,2, 4, i∞ have widths 1, 2, 1 and 8, respectively. The modular curveH/Γ 0(8)
is isomorphic to the Coulomb branch of the massless DS1 E1 theory.

We refer to appendix B for some background on modular functions. The η-quotient (307) is
the Hauptmodul for Γ 0(8). Note that this expression is obviously invariant under the action of
T8. Its series expansion reproduces the coefficients of the McKay-Thompson series of class 8E
of the Monster group [173]. Using the S-transformation properties of the Dedekind η function:

η
�τ

α

�

= i−
1
2
p
α τD η(α τD) , (308)

for τD = −
1
τ , we find the q-series expansion around τD = 0:

U(τD) = 4
η(2τD)12

η(4τD)4 η(τD)8
= 4+ 32qD + 128q2

D + 384q3
D +O(q4

D) . (309)

Therefore, the cusp at τ = 0 corresponds to the type-I1 Kodaira singularity at U = 4 on the
U-plane. Similarly, under a T2 transformation τ→ eτ= τ+ 2, (307) becomes:

U(eτ) = −i

�

η
�

eτ
4

�

η(eτ)

�4

= −i
�

eq −
1
8 − 4eq

1
8 + 2eq

3
8 + 8eq

5
8 +O

�

eq
7
8

��

. (310)

Under an additional S-transformation, we find the following series expansion for eτD = τD+2:

U(eτD) = −16i
�

η(4eτD)
η(eτD)

�4

= −16i
�

eq
1
2

D + 4eq
3
2

D + 14eq
5
2

D +O
�

eq
7
2

D

��

. (311)

Therefore, the cusp at τ = 2 corresponds to the I2 type singularity located at U = 0. Finally,
note that (307) changes sign under a T4 transformation, and thus the cusp at τ = 4 corre-
sponds to U = −4. There is therefore a one-to-one mapping between the cusps of Γ 0(8) and
the U-plane singularities.

The periods themselves have interesting modular properties. For instance, the geometric
period ωa turns out to be a modular form of weight 1, which can be expressed in terms of the
Jacobi ϑ-function:

da
dU
(τ) = −

1
8πi

ϑ2

�τ

2

�2
= −

1
2πi

�

q
1
8 + 2q

5
8 + q

9
8 + 2q

13
8 +O

�

q
17
8

��

. (312)

We will see similar modular properties appear for most of the massless En theories.
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Global flavour symmetry. The massless E1 curve has three non-trivial sections:

P1 =
�

1
12
(U2 + 4),−U

�

, P2 =
�

1
12
(U2 − 8), 0

�

, P3 =
�

1
12
(U2 + 4), U

�

, (313)

which span a Z4 torsion group with Pk+Pl = Pk+l (mod 4). Let us note that the sections P1 and P3
intersect non-trivially the I2 singular fiber at U = 0. The remaining section, P2, only intersects
the ‘trivial’ component of this fiber and therefore generates a Z[1]2 subgroup which injects in

the torsion group Z4 according to (181). The group F = Z( f )2 = Z4/Z
[1]
2 then constraints the

global form of the flavour group to be:

GF = SU(2)/Z( f )2
∼= SO(3) , (314)

in agreement with [33]. We also identify the Z[1]2 subgroup as the one-form symmetry of the
E1 theory. Indeed, the same structure can be derived using the BPS spectrum, which can be
deduced in principle from the quiver (306). We have the states:

S : (1, 0;0) , (−1, 2;1) , (1,−4; 0) , (315)

where the charges (m, q; l) are given as in (198), with l ∈ Z2 the charge under the center of
the flavour eGF

∼= SU(2). The spectrum is left invariant by a group E = Z4 generated by:

gE =
�

0,
1
4

; 1
�

. (316)

This Z4 contains a Z[1]2 subgroup:

gZ[1] =
�

0,
1
2

;0
�

, (317)

which implies that the theory has an electric one-form symmetry Z[1]2 , as expected [76, 77].
We also have the cokernel F = Z( f )2 as above, which implies (314).

5.1.2 The E1 curve with λ= −1

The Picard-Fuchs equations for the periods can be solved for generic values of λ using Frobe-
nius’ method. However, there is a second value of the λ parameter for which the geometric
periods are standard hypergeometric functions, namely at λ = −1. In that limit, the U-plane
has a Z4 symmetry, rather than the generic Z2 symmetry of the E1 theory. Furthermore, the
associated rational elliptic surface has Φtor = Z2 for λ 6= 1. Let us introduce the coordinate:

w= −
U4

64
= eiπs U4

64
, (318)

and start by discussing the periods on this w-plane. Here the parameter s = ±1 (mod 2) is
introduced in order to keep track of logarithmic ambiguities.

Geometric periods on the w-plane. In terms of w, the PF equation for the eω periods reads:

(w− 1)
d2
eω

dw2
+

d eω
dw
−

3
16w2

eω= 0 . (319)

This is again a standard hypergeometric differential equation, as for λ = 1. However, there
are now two regular solutions at w = 0, as the singularity at w = 0 is in fact an elliptic point
rather than a cusp. We would like to normalize the periods in the large volume limit as:

eωa ≈ −
1

2πi
, eωD ≈

1
2π2

�

− 6 log(2) + log

�

eiπs

w

�

+ log(λ)
�

, (320)
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such that eωD includes the log(λ) contribution of the D4 brane in (264). It will become clear
momentarily that, in order for the D4 period to vanish at the ‘conifold’ point w = 1, we must
impose:

log(λ) = −iπs . (321)

As a result, it is convenient to set s = −1. Thus, we use the following geometric periods:

eωa = −
1

2πi 2F1

�

1
4

,
3
4

;1;
1
w

�

, eωD = −
1
p

2π 2F1

�

1
4

,
3
4

; 1;1−
1
w

�

. (322)

These functions have the same branch cuts as the λ= 1 geometric periods shown in figure 12,
and their asymptotics can be found as before. For the expressions at w= 0, one can either use
Barnes’ type integrals or Kummer’s connection formulae. We find the following monodromies
for u→ e2πiu around w= 1, and w→ e−2πiw around the point at infinity, respectively:

Mw=1 =

�

1 0
−1 1

�

= STS−1 , Mw=∞ =

�

1 2
0 1

�

= T2 . (323)

Similarly, for the monodromy around w= 0 (with w→ e2πiw) we have:

M±w=0 = T−εST ε , (324)

with ε = sign (Im(w)), by keeping track of the base-point. As a result, the three singularities
are (I2, I1, I I I∗), which correspond to the singular points of the Γ 0(2) elliptic curve31. Note
also that both ‘orbifold’ monodromies (324) satisfy (Mw=0)4 = 1, which will be useful below.

Physical periods on the w-plane. Recall that the geometric periods eω are the logarithmic
derivative of the physical periods. Due to the minus sign in the definition of w, one needs
to take additional care with the logarithmic ambiguities. The analysis is similar to the λ = 1
case and we only outline the main steps of the computation. Integrating the asymptotics of
the geometric periods, we find that the physical periods can be expressed in terms of Meijer-G
functions, namely:

a(w)≈ −
1

8
p

2π2i
G2,2

3,3

�

1
4

3
4 1

0 0 0

�

�

�

�

−
1
w

�

+
s− 1

8
,

aD(w)≈ −
1

8
p

2π3
G3,2

3,3

�

1
4

3
4 1

0 0 0

�

�

�

�

1
w

�

+
1
4

,

(325)

where the above expression of aD is chosen such that it vanishes at w = 1. It now becomes
clear from the asymptotics of aD that for this to satisfy the asymptotics of the D4 period, one
must impose the constraint (321) introduced before. In this setting, we find that at w= 0 the
periods become:

aD(w= 0) =
1
4

, a(w= 0) =
s− 1

8
= −

1
4

. (326)

Note that, compared to the λ= 1 case, we can now evaluate both the values of a(w= 1) and
aD(w= 1), without the use of the Meijer-G function. Using the methods of [56], we find:

a(w= 1)≈ −
s
8
+ 0.15257 i , (327)

in agreement with [97].

31The congruence subgroup Γ 0(2) has two cusps of widths 1 and 2 and one elliptic point of order 2.
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U = 0 U = 0

B A

C D

B A

C D

0

2π

Figure 15: Possible choices of branch cuts for the physical periods aD(U) and a(U)
for the E1 theory with λ= −1.

Periods on the U-plane. Consider now the geometric periods on the U-plane. In analogy to
the λ= 1 case, we first introduce the functions:

fa = −
1

2πi 2F
�

1
4

,
3
4

;1;−
64
U4

�

, fD = −
1
p

2π 2F
�

1
4

,
3
4

;1; 1+
64
U4

�

. (328)

Since fa is a regular function at U →∞, we will use this to define eωa throughout the U-plane.
The map U 7→ w is 4 to 1, and thus we will split the U-plane in four quadrants, labelled A to
D, as shown in figure 15. Recall also that on the w-plane, fD has the following behaviour at
large volume (w→∞):

fD(w)≈ −
1

2π2

�

6 log(2) + log(w)
�

. (329)

Given that the principal branch of the w-plane matches with region A of the U-plane, let us
choose U = 2

p
2eiπ/4 as the point where ewD = 0. Hence, fD can be used to describe the eωD

period in region A. However, since the other regions correspond to other sheets of the w-plane,
analytic continuation of fD (which we take to be well defined around the relevant U4 = −64
singularity) to large volume differs by the large volume expression obtained in region A. In
particular:

f (n)D (U)≈ −
1

2π2

�

6 log(2) + log(w(A)) + 2πi n
�

, (330)

with n = 1,2, 3 for regions B, C and D, respectively. By log(w(A)) here, we mean that the
underlying log(U) term will have the same principal branch as the logarithm from region A.
Because of this, we then find:

eωD(u) = fD(u)− 2nfa(u) , eωa(U) = fa(U) , (331)

where we introduce u= 1−Ui , with Ui the four singularities. The branch cuts of these periods
are shown in figure 15. Given the behaviour of fa around the U4 = −64 singularities for
u→ e2πiu, namely: fa→ fa − fD, we can readily find the monodromies:

MUn
=

�

2n+ 1 4n2

−1 −2n+ 1

�

= (T−2nS)T (T−2nS)−1 , (332)

which correspond to I1 cusps. Furthermore, the monodromy at large volume (for w→ e−2πiw)
becomes:

MU=∞ =

�

1 8
0 1

�

= T8 , (333)

corresponding to an I8 singularity.

72

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

Modularity. Let us now comment on the modular properties of this configuration. The Z4
symmetry of the U-plane becomes manifest at the level of the J -invariant, which only depends
on X = U4. Thus, we can start by solving the cubic32:

(64+ X ) j(τ) = (48+ X )3 . (334)

One root of the above equation is given by:

X (τ) = U(τ)4 = −

�

64+

�

η(τ2 )

η(τ)

�24�

, (335)

whose q-series expansion is the McKay-Thompson series of class 2B. Another root can be ob-
tained from a T transformation and turns out to be the McKay-Thompson series of class 4A.
We can further show that the above η-quotient is in fact a modular function for the Γ 0(2) con-
gruence subgroup, in agreement with the w-plane monodromies previously found. Taking the
fourth root of X (τ), we can then obtain an expression for U(τ) – we can then view the mon-
odromy group for the U-plane as a 4-to-1 cover of Γ 0(2). As a result, the monodromies around
the ‘conifold’ singularities can be read from the coset representatives T2nS, for n ∈ {0,1, 2,3},
for instance, which are also the monodromies we derived using the physical periods (332).
Let us also note that, the derivative of the a period can be expressed in terms of the Jacobi
theta function:

da
dU
(τ) =

e
5πi
4

8πi
ϑ2

�τ

2

�2
. (336)

Massless dyons and 5d BPS quiver. The previous prescription for the periods on the U-
plane implies that the KK theory has the dyons (1,0), (1,−2), (1,−4) and (1,−6) that become
massless at the four I1 singularities, respectively. These states do not appear to correspond
to physical states, however. Instead, we interpret them as defects corresponding D3-branes
wrapping non-compact 3-cycles that ‘end’ at the I1 cusps. The dual compact 3-cycles should
be identified with the ‘fractional branes’ in that case – see e.g. [23, 176]. It is not entirely
clear why our particular computation gives us this basis of ‘external states’. It appears to be
related to the fact that we implicitly chose a base point at large volume, instead of choosing it
at U = 0; we hope to clarify this point in future work.

To identify the actual dynamical BPS particles that vanish at the four points U4 = −64,
which corresponds to the usual ‘fractional brane states’ on the local F0 singularity, it is safer
to proceed as follows. We know that one of the BPS states is the D4-brane in IIA, which is
the monopole (1,0) that vanishes at the ‘conifold point’ on the U-plane, with a corresponding
conifold monodromyMw=1 given in (323). Then, the other 3 singularities on the U-plane can
be obtained by conjugating the conifold monodromy with the Z4 ‘orbifold’ monodromy at the
origin:

Mk =Mk
orbM0M−k

orb , M0 = STS−1 , Morb = TST−1 , (337)

for k = 0,1, 2,3. The corresponding BPS states agree with the known results about fractional
branes, and give us the Z4-symmetric quiver:

Eγ1=(1,0) Eγ2=(−1,2)

Eγ4=(1,−2) Eγ3=(−1,0)

(338)

32This is in fact a degree 12 equation in U .
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This is the well-known second ‘toric phase’ for the 5d BPS quiver of the E1 theory, as discussed
in detail in [26, 187]. Using the known brane charges of the fractional branes and the exact
periods (326) at the origin of the U-plane, one can check that the 4 fractional branes have a
real central charge, Z = 1

4 , so that we indeed have a quiver point at U = 0.33

Torsion section and one-form symmetry. Finally, let us discuss the global symmetries in
the general case λ 6= 1. The MW group for the (I8, 4I1) configuration is Φ= Z⊕Z2. The U(1)
symmetry is generated by the horizontal divisor ϕ(P) associated to the section:

P =

�

U2 + 4(2−λ)
12

, −U

�

, (339)

which generates the free part of Φ, and reduces to the Z4 generator P1 in (313) when λ = 1.
We have a Z2 torsion section:

Ptor =

�

U2 − 4(1+λ)
12

, 0

�

, (340)

which reduces to P2 in (313) when λ = 1. For any λ 6= 1, we have Φtor = Z[1] = Z[1]2 ,
consistent with our identification of Z[1] with the one-form symmetry of the field theory. This
is also confirmed by the dyonic charges in (338), which are left invariant by (317).

5.2 The eE1 theory – 5d SU(2)π: an Argyres-Douglas point on the U-plane

The eE1 theory is the UV completion of the parity-violating SU(2)π gauge theory in 5d. Let us
briefly discuss its U-plane. The Weierstrass form of the curve (104) read:

g2(U) =
1
12

�

U4 − 8U2 − 24λU + 16
�

,

g3(U) = −
1

216

�

U6 − 12U4 − 36λU3 + 48U2 + 216λ2 − 64
�

,
(341)

with the massless limit corresponding to λ = 1. By direct inspection, we find the following
allowed configurations of singular fibers:

{Fv} λ gF rk(Φ) Φtor

I8, 2I1, I I ± 16i
3
p

3
u(1) 1 −

I8, 4I1 λ u(1) 1 −

(342)

This is of course in agreement with the Persson classification [47]. As for E1, the generic
point on the Coulomb branch of eE1 has 4I1 type singularities. It is worth pointing out that
the classification of rational elliptic surfaces includes two distinct configurations with singular
fibers (I8, 4I1), which are distinguished by their MW torsion. That mathematical fact dovetails
nicely with the existence of two distinct theories with T8 monodromy at large volume, E1 and
eE1, with only the former having a non-trivial one-form symmetry [76,77].

One can write down the Picard-Fuchs equation for the geometric periods as in (54), but
its explicit form is not particularly illuminating. In particular, we do not find any modular

33There are some ambiguities in this identification, which we hope to discuss elsewhere. Importantly, for this
computation, one must use the Chern characters of the branes, which include induced D0-charge from worldvolume
flux. Then, if we use for instance the ‘dictionary’ of equation (5.26) in [187] together with our result ΠD4 =

1
4 ,

ΠD2 f
= − 1

2 and ΠD2b
= 0 from this section, we indeed obtain Z = 1

4 for the four fractional branes.
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properties in terms of congruence subgroups, nor any configuration for which the periods can
be expressed in terms of hypergeometric functions. Around any given point, the periods can
always be found as series expansions using the Frobenius method.

The DS1 eE1 Coulomb branch exhibits a feature that did not appear on the CB of the E1 theory,
however: there exists an allowed configuration with a singularity of type I I , whose low-energy
description is in terms of H0, the Argyres-Douglas theory without flavour symmetry. As we
reviewed in section 4.3.2, H0 also appears on the Coulomb branch of the SU(2) theory with
N f = 1. In fact, as we mentioned in the introduction, it is clear from the classification of RES
that H0 appears rather generically on rank-one Coulomb branches of theories with enough
parameters – we ‘simply’ need to tune the parameters such that two mutually non-local BPS
particles E1,2 with Dirac pairing 〈E1,E2〉= 1 become massless at the same point.

Recall that the Coulomb branch operator of the H0 fixed point has scaling dimension
∆u =

6
5 . We can then ‘zoom-in’ around the type-I I singularity as we have done for the En MN

theories in section 2.4.2, as follows. Setting λ= 16i
3
p

3
, the type-I I singularity sits at U = −2i

p
3,

and we thus consider:

U −→ β
6
5 u− 2i

p
3 , (x , y) −→

�

β
2
5 x , β

3
5 y
�

, (343)

in the β → 0 limit, which leads to the 4d curve:

y2 = 4x3 −
64i

9
p

3
u . (344)

We can also study the deformation pattern of this curve by introducing the parameter c of
the H0 theory, with scaling dimension ∆c = 2 −∆u =

4
5 . For this purpose, we consider the

following limit:

U −→ u β
6
5 − 2i

p
3−

3c
4
β

4
5 , λ −→

16i

3
p

3
+ c β

4
5 , (345)

such that, under the same rescaling of (x , y) as in (343), we obtain the curve:

y2 = 4x3 +
4i
p

3
c x −

64i

9
p

3
u , (346)

which, up to a rescaling of the parameters, is precisely the curve for H0 with the relevant
coupling turned on [3]. We have thus found an RG flow from the eE1 theory to the Argyres-
Douglas theory. In the above limit viewed from the point of view of the RES, the fiber at infinity,
F∞ = I8, becomes an I I∗ fiber after merging with two I1 singularities from the interior.

6 The E0 fixed point: Z3 symmetry on the U-plane

Let us now consider the E0 theory. This is a 5d SCFT without flavour symmetry, and therefore
it does not have any relevant deformations, nor any gauge-theory phase. It can be obtained
as a deformation of the eE1 theory [14], since it is realised in M-theory on a local P2, which is
obtained from dP1 by blowing down the exceptional curve. The DS1 E0 theory is then realised in
Type IIA on that same geometry, which is the simplest example of a local Calabi-Yau threefold
with an exceptional divisor. The origin of the Kähler cone, where the P2 shrinks to zero size, is
the orbifold singularity C3/Z3. This geometry has obviously been studied in much detail in the
literature – see in particular [16, 23, 188, 189]. The E0 SW curve (105) takes the Weierstrass
form:

g2(U) =
3
4

U
�

9U3 − 8
�

, g3(U) = −
1
8

�

27U6 − 36U3 + 8
�

, (347)
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with the discriminant:
∆(U) = 27(U3 − 1) . (348)

This has three distinct roots, leading to three I1 cusps in the interior of the U-plane, with an
additional I9 singularity at infinity. The J -invariant:

J(U) =
U3(9U3 − 8)3

64(U3 − 1)
, (349)

only depends on U3, which reflects the spontaneously broken Z3 symmetry of the U-plane.
This Z3 is inherited from the Z3 one-form symmetry of the 5d E0 theory [76, 77]. The total
space of the SW fibration is the RES with singular fibers (I9, 3I1), which has a MW groupΦ= Z3
torsion, in full agreement with the conjecture (186). Let us introduce the useful variable:

w= U3 . (350)

We will first compute the periods on the w-plane, similarly to the E1 theory. In the large
volume limit in IIA, the physical periods correspond to the D2-brane wrapping the hyperplane
class H ∼= P1 inside P2 and to the D4-brane wrapping the P2. Let us denote the single Kähler
parameter by:

T =
1

2πi

∫

H
(B + iJ) =

1
2πi

log
�

1
−27w

�

=
1

2πi
log

�

e−iπs

27w

�

, (351)

with the parameter s introduced to keep track of logarithmic ambiguities, as for the E1 theory.
Then, the ‘naive’ brane periods are:

tD2 = T +O
�

1
w

�

, tD4 =
1
2

T2 +
1
8
+O

�

1
w

�

. (352)

However, due to the Freed-Witten anomaly [154], the D4-brane period must carry half a unit of
world-volume flux. This induces−1

2 unit of D2-brane charge and 1
8 of a D0-brane charge [190].

The physical periods are then:

ΠD2 = tD2 , ΠD4 = tD4 −
1
2

tD2 +
1
8

. (353)

We will work in the basis (aD, a), with:

ΠD2 = 3a , ΠD4 = aD . (354)

Note the factor of 3, which is the electric charge of a wrapped D2-brane, since [H] · [P2] = −3
inside eX. The geometric periods ω= dΠ

dU satisfy the PF equation:

d2ω

dU2
+

3U2

U3 − 1
dω
dU
+

U
U3 − 1

ω= 0 . (355)

Geometric periods on the w-plane. Upon rescaling (g2, g3) → (U2 g2, U3 g3), the Weier-
strass form of the curve only depends on w= U3, with:

g2(w) =
3
4

w(9w− 8) , g3(w) = −
1
8

w(27w2 − 36w+ 8) , (356)

while the discriminant becomes:

∆(w) = 27w2(w− 1) . (357)
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This curve has one I1 singularity at w = 1, one type-I I elliptic point at w = 0 and one I∗3
singularity at infinity. By performing a quadratic twist, these can be mapped to (I1, IV ∗, I3),
with the I3 at infinity, to match the large volume monodromy in IIA. These transformations
amount to a rescaling of the holomorphic one-form as ω → (w)−

1
3ω. We then consider the

rescaled geometric periods:

eω= w
1
3ω= U

dΠ
dU

, (358)

which satisfy the following PF equation:

(w− 1)
d2
eω

dw2
+

d eω
dw
−

2
9w2

eω= 0 . (359)

This is a standard hypergeometric differential equation with singularities at w= 0, 1,∞, with
two regular solutions at w = 0 and only one regular solution at each of the other two singu-
larities. A convenient basis of solutions is given by:

eωa(w) = −
1

2πi 2F1

�

1
3

,
2
3

;1;
1
w

�

, eωD(w) = −
p

3
2π 2F1

�

1
3

,
2
3

;1; 1−
1
w

�

. (360)

Note that we will need to set s = −1 in (351) so that eωD agrees with the D4-brane asymptotics.
We can also check that this function is the ‘correct’ geometric period because it leads to a
vanishing D4-brane period at w = 1, the conifold point. Analytic continuation to w = 0 can
be done using the Barnes’ integral representations of the hypergeometric function, as well as
Kummer’s connection formulae. Additionally, the Gauss-Ramanujan formula can be used to
obtain expressions at unit argument. A basis of solutions at w= 0 is given by:

w
1
3

2F1

�

1
3

,
1
3

;
1
3

; w
�

, w
2
3

2F1

�

2
3

,
2
3

;
4
3

; w
�

. (361)

Note the cubic roots, which give rise to a Z3 monodromy. With a bit of work, we can then
explicitly compute all the monodromies. At large volume and at the conifold point, we find:

Mw=∞ =

�

1 3
0 1

�

= T3 , Mw=1 =

�

1 0
−1 1

�

= STS−1 , (362)

while the Z3 orbifold point monodromy reads:

M+w=0 = T−1(ST )2T , M−w=0 = T2(ST )2T−2 , (363)

depending on the base point being in the upper- or lower-half-plane. These monodromies do
indeed correspond to the singularities I3, I1 and IV ∗, respectively, and span the monodromy
group Γ 0(3). The dependence on the base-point in (363) can be visualised as a splitting of the
fundamental domain for the modular group Γ 0(3), as in previous examples.

Physical periods on the w-plane. Recall that the physical periods are related to the geomet-
ric periods by (358). Integrating the asymptotics of the geometric periods, we only need to fix
the remaining constants of integration. The solutions of the Picard-Fuchs equation satisfied
by the physical periods can be expressed in terms of Meijer-G functions. Fixing the integration
constants such that aD(w= 1) = 0 and ΠD2 = 3a in the large volume limit, we have:

a(w) = −
1

4
p

3π2i
G2,2

3,3

�

1
3

2
3 1

0 0 0

�

�

�

�

−
1
w

�

−
s+ 1

6
,

aD(w) = −
p

3
8π3

G3,2
3,3

�

1
3

2
3 1

0 0 0

�

�

�

�

1
w

�

+
1
3

,

(364)
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U = 0
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π

−π

Figure 16: Choice of branch cuts for the physical periods aD(U) and a(U) of the E0
theory.

with s as introduced in (351). Then, the large volume asymptotics of aD is fixed to:

aD(w) = −
1

8π2
log

�

1
27w

�2

+
1
8

. (365)

Thus, for this to be consistent with D-brane periods, we must ‘set’ s = −1, as previously men-
tioned. We then find:

aD(w= 0) =
1
3

, a(w= 0) = 0 , (366)

at the orbifold point. Lastly, we need to fix the integration constant for a at the conifold point,
which we can evaluate numerically using the methods of [56]:

a(w= 1) =
1
6
+ i

3
2π2

Im
�

Li2(e
πi
3 )
�

=
1
6
+ 0.1543i . (367)

This is consistent with the results of [97,189] and with [185], which gives the analytic result
quoted here.

Geometric periods on the U-plane. Consider next the geometric periods on the U-plane.
As before, we introduce:

fa = −
1

2πi 2F1

�

1
3

,
2
3

; 1;
1

U3

�

, fD = −
p

3
2π 2F1

�

1
3

,
2
3

;1; 1−
1

U3

�

. (368)

The function fa is regular at U → ∞ and can be used as eωa for the entire U-plane. The
map U 7→ w is 3 to 1 and we thus split the U-plane in three regions labelled by A, B and C ,
each containing one of the U3 = 1 singularities and covering a third of the U-plane, namely:
θA ∈ (−π/3,π/3), θB ∈ (π/3,π) and θC ∈ (−π,−π/3), as shown in figure 16. The angles are
mapped as:

U : −π→−
π

3
, −

π

3
→
π

3
,
π

3
→ π ,

w : − 3π→−π , −π→ π , π→ 3π .
(369)

Recall that the large volume asymptotics of the function fD on the w-plane are given by:

fD(w)≈ −
3

4π2

�

3 log(3) + log(w)
�

. (370)

Consequently, choosing region A to be the one that contains the singularity (U = 1) where
eωD→ 0, we must have:

eωD(U) = fD(U) + 3n fa(U) , (371)
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F TF T2F T3F T4F T5F T6F T7F T8F

SF T3SF T6SF

Figure 17: ‘Standard’ fundamental domain for Γ 0(9), with I1 cusps at τ = 0, 3 and
6.

for n = 0,1,−1 in regions A, B and C , respectively. The monodromies can be computed by
making use of the behaviour of fa around the U3 = 1 singularities, namely: fa→ fa− fD under
u→ e2πiu, for u= U − Un. Thus, we find:

M(n) =
�

1− 3n 9n2

−1 1+ 3n

�

= (T3nS)T (T3nS)−1 , (372)

with n = 0, 1,−1, as before. Furthermore, the monodromy at ∞ becomes T9, and thus we
find the cusps (I9, 3I1), with an obvious Z3 symmetry. Note also that:

M(n)M(n+1)M(n+2) = T−9 , (373)

as expected. These monodromies generate Γ 0(9) and agree with the ‘simplest’ fundamental
domain for this congruence subgroup, which is depicted in figure 17. We will show momen-
tarily that U(τ) is indeed the Hauptmodul for Γ 0(9), supporting the claim that this is the
monodromy group of the theory.

Fractional branes and BPS quiver. The Z3 symmetry of the U-plane is a Z3 orbifold sym-
metry in string theory, and the corresponding fractional branes are well understood – see
e.g. [188]. The Z3 orbifold monodromy on the w-plane is given by (363):

M+orb =

�

−2 −3
1 1

�

, M−orb =

�

1 −3
1 −2

�

,
�

M±orb

�3
= 1 , (374)

for a base point in the upper- or lower-half-plane, respectively. The U-plane monodromies
with a base point near the origin can be constructed by conjugating the conifold monodromy:

MCk
= (Morb)

kMw=1(Morb)
−k , (375)

for k = 0,1, 2. We will useMorb =M−orb in the following discussion. Note that we have:

MC0
MC1
MC2

= T−9 . (376)

In terms of the matricesM(n) in (372), these monodromies are:

MC0
=M(n=0) = STS−1 , MC2

=M(n=3) = (T
3S)T (T3S)−1 , (377)

whileMC1
takes the more complicated form:

MC1
=M∗TM−1

∗ , M∗ =
�

3 −2
2 −1

�

= T2ST2S . (378)
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T2F T3FTFFT−1FT−2F
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T2STT2ST2

T2ST2S

Figure 18: Different fundamental domain for Γ 0(9), with I1 cusps at τ= 0, 3
2 and 3.

We thus have 3I1 cusps, as expected, but with monodromies that are distinct from (372). The
monodromies (372) are associated to the massless BPS states:

S : (1, 0) , (−1,3) , (1,−6) , (379)

respectively. The corresponding BPS quiver reads:

Eγ1=(1,0) Eγ3=(1,−6)

Eγ2=(−1,3)

(380)

On the other hand, the monodromies (375) are associated to the massless BPS states:

S : (1, 0) , (−2,3) , (1,−3) , (381)

respectively. The corresponding BPS quiver is the well-known C3/Z3 orbifold quiver [188]:

Eγ′1=(1,0) Eγ′2=(−2,3)

Eγ′3=(1,−3)

(382)

These two quivers are related by a mutation on the ‘bottom’ node, in which case the electro-
magnetic charges transform as [86]:

γ′1 = γ1 , γ′3 = −γ2 , γ′2 = γ3 + 3γ2 . (383)

The BPS states (381) suggest a different choice of the fundamental domain for Γ 0(9), which
is shown in figure 18. Note, however, that for this choice of fundamental domain it is not
immediately obvious that the width of the cusp at τ= i∞ is 9.

Modularity. Let us analyse the modular properties of the E0 curve. Recall that the J -invariant
only depends on w= U3:

J(w) =
w(9w− 8)3

64(w− 1)
, (384)
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from which we find:

w(τ) =
1
27

�

q−
1
3 + 15+ 54q

1
3 − 76q

2
3 − 243q+O(q

4
3 )
�

, (385)

which is the McKay-Thompson series of class 3B for the Monster group [173]. We can thus
write this in closed form as:

w(τ) = 1+
1

27

�

η(τ3 )

η(τ)

�12

, (386)

which is the Hauptmodul for Γ 0(3), as expected. Under an S-transformation, this becomes:

w(τD) = 1+ 27
�

η(3τD)
η(τD)

�12

= 1+ 27qD + 324q2
D +O(q3

D) , (387)

where τD = −1/τ. We thus find that the cusps at w = ∞, 1 correspond to τ = i∞ and
τ = 0, respectively. Furthermore, w(τ) vanishes for τ = 2 + e2iπ/3 or τ = −1 + e2iπ/3, in
agreement with the splitting of the fundamental domain observed in (363). To obtain the
U-plane modular function, we take a cubic root of (386), to find:

U(τ) =
1
3

�

q−
1
9 + 5q

2
9 − 7q

5
9 + 3q

8
9 +O(q)

�

= 1+
1
3

�

η(τ9 )

η(τ)

�3

. (388)

This is the Hauptmodul for Γ 0(9), and it is obviously invariant under T9 transformations. Its
series expansion reproduces the McKay-Thompson series of class 9B. Under a T3n transforma-
tion, this expression changes by a phase factor:

T3n : U(eτ) = e
4nπi

3

�

1+
1
3

�

η( eτ9 )

η(eτ)

�3�

, (389)

for eτ= τ+ 3n. Furthermore, under an S-transformation, we have:

S : U(τD) = 1+ 9
�

η(9τD)
η(τD)

�3

= 1+ 9qD + 27q2
D +O(q3

D) , (390)

for τD = −
1
τ . We thus see that the singularity at U = 1 corresponds to the τ = 0 cusp. Using

the fact that U(τ) picks up phases under T3 and T6 transformations, we find that the cusps
at U = e

4πi
3 and U = e

2πi
3 are in the Γ 0(9) orbits of τ = 3 and τ = 6 (or τ = −3), respectively.

Let us further note that under the transformation:

γ : τ∗ 7→
−τ∗ + 9
−τ∗ + 8

, (391)

the cusp at τ∗ = 6 is mapped to τ = 3
2 . The element of PSL(2,Z) that corresponds to this

transformation is:

γ=

�

−1 9
−1 8

�

∈ Γ 0(9) . (392)

As a result, τ = 6,−3 and 3
2 are all in the same orbit of Γ 0(9). This shows that the two

fundamental domains shown in figures 17 and 18 are indeed fundamental domains of Γ 0(9).
Finally, let us note that the a period satisfies:

da
dU
(τ) = −

3
2πi

η(τ)3

η
�

τ
3

� . (393)
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Torsion and one-form symmetry. We already mentioned that the Z3 symmetry of the U-
plane is inherited from the one-form symmetry in 5d. The DS1 E0 SW geometry is an extremal
RES with singular fibers (I9, 3I1) and with a MW group Φ= Z3 spanned by the sections:

P1 =
�

3
4

U2,−1
�

, P2 =
�

3
4

U2, 1
�

= −P1 . (394)

We thus identify this Z[1]3 group with the one-form symmetry of the DS1 E0 theory, according to
our conjecture (186). The one-form symmetry can also be seen directly from the BPS spectrum
generated by the ‘fractional branes’ states (381), which are left invariant by the generator
gZ[1] =

�

0, 1
3) of the Z3 group.

7 The E2 and E3 theories – 5d SU(2) with one or two flavours

In this section, we discuss the U-plane of the E2 and E3 theories, which are the UV-completion
of the 5d SU(2) gauge theory with one and two flavours, respectively.

7.1 CB configurations for the E2 theory

The Weierstrass form of the DS1 E2 curve (97) reads:

g2 =
1
12

�

U4 − 8(1+λ)U2 − 24λM1U + 16
�

1−λ+λ2
�

�

,

g3 = −
1

216

�

U6 − 12(1+λ)U4 − 36λM1U3 + 144λM1(1+λ)U+

+ 24
�

2+λ+ 2λ2
�

U2 − 8
�

8− 12λ− 3
�

4+ 9M2
1

�

λ2 + 8λ3
�

�

.

(395)

The massless curve is obtained by setting λ = M1 = 1. However, similarly to the eE1 case, it is
not extremal, nor modular, because of the u(1) factor in the flavour symmetry algebra. As per
the classification of rational elliptic surfaces, the allowed CB configurations are:

{Fv} λ M1 gF rk(Φ) Φtor

I7, I2, 3I1 1 1 A1 ⊕ u(1) 1 −

I7, I I I , 2I1 1 2i A1 ⊕ u(1) 1 −

I7, I2, I I , I1 1 ± 2
3
p

3
A1 ⊕ u(1) 1 −

I7, 2I I , I1 eiθ0 2
7
4 eiθ1 2u(1) 2 −

I7, I I , 3I1 e
πi
3 2

33/4 e
5πi
12 2u(1) 2 −

I7, 5I1 λ M1 2u(1) 2 −

(396)

Here, θ0 = −π + tan−1
�

91
p

7
87

�

and θ1 =
1
2 tan−1

�

7
p

7
13

�

. Note that some of the choices of
parameters are not unique. For the first three configurations, setting λ = 1 leads to an I2
singularity in the bulk. As in the case of the eE1 theory, we see that there are configurations
that include the AD theories H0 and H1, corresponding to the type-I I and I I I singularities,
respectively. Since the E2 theory admits a gauge-theory deformation to the 5d SU(2) N f = 1
theory, we did expect the existence of at least one H0 point, but we can bypass the 4d gauge-
theory limit entirely. For instance, consider the configuration (I7, I2, I I , I1) with M1 =

2
3
p

3
.
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The type-I I singularity sits at U = −2
p

3, so we consider the limit:

(I7, I2, I I , I1) : U → u β
6
5 − 2

p
3−

c
p

3
β

4
5 , λ→ 1+ c β

4
5 , M1→

2

3
p

3
, (397)

with β → 0, leading to the curve:

y2 = 4x3 +
8
9

c x −
16

9
p

3
u , (398)

which gives us directly the SW curve of the H0 theory [3]. Similarly, the H1 AD theory can
be recovered from the CB configuration (I7, I I I , 2I1), with the type-I I I singularity sitting at at
U = −2i for the values of the parameters in (396). Recalling that we have ∆u =

4
3 and that

the 4d parameters (c,µ) have scaling dimensions
�2

3 , 1
�

, we consider the 4d limit:

(I7, I I I , 2I1) : λ→ 1+µ β , M1→ 2i + c β
2
3 ,

U → u β
4
3 − 2i − c β

2
3 − i µ β .

(399)

The resulting four-dimensional curve reads:

y2 = 4x3 −
�

−
4c2

3
+ 4i u

�

x −
�

8i
27

c3 +
4c
3

u+µ2
�

. (400)

Then, upon the redefinition:

u −→−i u−
i
4

c2 , (401)

followed by the rescalings (x , y)→
�

e
πi
2 x , e

3πi
4 y
�

and u→ 4u, c→ 2c, µ→ 2e−
πi
4 µ, we recover

the curve:

y2 = 4x3 −
�

4c2

3
− 16u

�

x +

�

8c3

27
+

32c
3

u+ 4µ2

�

, (402)

which is the Weiertrass form of the H1 curve [4,191]:

y2 + u= x4 + c x2 +µ x . (403)

In this limit, note that it is λ that plays the role of the flavour parameter in the Argyres-Douglas
theory, while M is related to the parameter conjugate to u. This is because the su(2) flavour
symmetry of H1 is here inherited from the su(2) flavour symmetry of the E2 theory, under
which the 5d W-boson and instanton particle transform as a doublet. This can be contrasted
with the physics of the 4d SU(2) N f = 2 CB, where the su(2) comes from a pair of quarks,
which are then combined with a light dyon [4].

Modularity and AD configuration. We already mentioned that the massless E2 curve is not
modular, but one may wonder whether any of the other configurations in (396) could have
some interesting modular properties. The genus-zero congruence subgroups of PSL(2,Z) have
been completely classified in [170, 174]. Using their lists, we find that most of the DS1 E2 CB
configurations of DS1 E2 cannot be modular.34 This leaves us with the (I7, 2I I , I1) configuration,
which could be modular under Γ 0(7). Note that this was one of the ‘missing groups’ in the
naive pattern that would assign Γ 0(9− n) to DS1 En.

34At least with respect to a congruence subgroup. In fact, two other configurations are modular with respect to
non-congruence subgroups.
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To check this explicitly, let us first relate the SW curve (395), which was obtained from the
‘toric’ curve (97), to the DS1 E2 curve obtained as a limit of the E-string curve [24]. This is sim-
ply done by finding the map between the gauge theory parameters and the E2 = SU(2)×U(1)
characters, as explained in appendix A, which gives:

χ
E2
1 =

p

λ+
1
p
λ

, χ
E2
U(1) = λ

1
4 M1 . (404)

Additionally, the U parameter differs by an overall normalization λ
1
4 . In terms of the E2 char-

acters, the (I7, 2I I , I1) configuration occurs for:

χ
E2
1 =

13

8
p

2
, χ

E2
U(1) = 2

7
4 . (405)

We then find that:

λ−
1
4 U(τ) = 2

1
4

 

9
2
+

�

η
�

τ
7

�

η(τ)

�4!

, (406)

which is indeed the Hauptmodul for Γ 0(7). One can check that the I1 singularity is at τ = 0
and that the type-I I elliptic points are in the Γ 0(7) orbit of τ1 = 3+ e

2πi
3 and τ2 = 5+ e

2πi
3 ,

respectively.

7.2 CB configurations for the E3 theory

Let us now consider the E3 theory, which is the UV fixed point of the 5d SU(2) gauge theory
with N f = 2. The Weierstrass form of the toric curve (94) reads:

g2(U) =
1
12

�

U4 − 8 (1+ (1+ p)λ)U2 − 24λsU

+ 16
�

1− (1+ p)λ+ (1− p+ p2)λ2
�

�

,

g3(U) = −
1

216

�

U6 − 12 (1+ (1+ p)λ)U4 − 36λsU3

+ 24
�

2+ (1+ p)λ+ (2+ p+ p2)λ2
�

U2 + 144λs (1+ (1+ p)λ)U

+ 4λ2
�

8− 96p+ 216p2 + 54s2 +
�

22+ 27p+ 3p2 − 2p3
�

λ
�

�

,

(407)

where we introduced s = M1 + M2 and p = M1M2. Additionally, the E3 characters can be
worked out as described in appendix A. One finds:

χ
E3
1 =

1+λ(1+ p)
κ2

E3

, χ
E3
2 = λ

1+ (1+λ)p
κ4

E3

, χ
E3
3 =

sλ
κ3

E3

, (408)

for κE3
≡ p

1
6λ

1
3 . Here, χ1 and χ2 are the SU(3) characters, and χ3 is the SU(2) character. The

16 allowed configurations of singular fibers are listed in table 11. Some of the configurations
shown in the table appear in one- or multi-parameter families, being particular examples which
exhibit enhanced U-plane symmetry. It is implicitly understood that, for the families with
explicit free parameters, the given configuration appears for generic values of the parameter,
with finitely many exceptions. It should be pointed out that two configurations appear more
than once in Persson’s classification [47]. These are:

S7 or8
∼= (I6, I I I , 3I1) , S11or 12

∼= (I6, I2, 4I1) , (409)

which both appear with two possible choices of MW torsion groups, Z2 or trivial. We will
discuss the difference between the two momentarily.
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Table 11: Allowed configurations of singular fibres on the Coulomb branch of the
DS1 E3 theory. Here, we have δ = 33/4

2 e
5πi
12 , α± =

1
9(7
p

6± 5
p

15) and κ± = 2±
p

3
and b ∈ C.

S# {Fv} λ M1 M2 gF rk(Φ) Φtor

1 I6, I3, I2, I1 1 1 1 A2 ⊕ A1 0 Z6

2 I6, IV, 2I1 1 i −i A2 ⊕ u(1) 1 Z3

3 I6, I3, 3I1 1 e
2πi
3 e

4πi
3 A2 ⊕ u(1) 1 Z3

4 I6, 2I2, 2I1 1 M M 2A1 ⊕ u(1) 1 Z2

5 I6, I I I , I2, I1 1 1
2

1
2 2A1 ⊕ u(1) 1 Z2

6 I6, I I I , I I , I1 1 δ− i δ+ i A1 ⊕ 2u(1) 2 −

7 I6, I I I , 3I1
(1±M)2

M2 M M A1 ⊕ 2u(1) 2 Z2

8 I6, I I I , 3I1 − (1−M2)2

4M2 M 1
M A1 ⊕ 2u(1) 2 −

9 I6, I2, 2I I 1 1
2
p

2
− 1

2
p

2
A1 ⊕ 2u(1) 2 −

10 I6, I2, I I , 2I1 −1 α+ α− A1 ⊕ 2u(1) 2 −

11 I6, I2, 4I1 λ M M A1 ⊕ 2u(1) 2 Z2

12 I6, I2, 4I1 λ M 1
M A1 ⊕ 2u(1) 2 −

13 I6, 3I I e
2πi
3 κ−e

5πi
6 κ+e

11πi
6 3u(1) 3 −

14 I6, 2I I , 2I1 χ =
�

−3
8 , 3, 0

�

3u(1) 3 −

15 I6, I I , 4I1 χ =
�

−6+ b2, 12− 6b, 6
�

3u(1) 3 −

16 I6, 6I1 λ M1 M2 3u(1) 3 −

It is interesting to explore how various configurations can be connected, similarly to the 4d
gauge-theory analysis. For instance, one can first start by setting the masses equal,
M1 = M2 = M , which automatically leads to an I2 singularity, namely the S11 configura-
tion. Imposing λ = 1

M2 (or λ = 1), one finds a one-parameter family for the configuration
S4
∼= (I6, 2I2, 2I1). Furthermore, tuning M = ±2 (or M = ±1

2 , respectively) leads to the
configuration S5

∼= (I6, I I I , I2, I1), as one of the I2 singularities combines with a mutually non-

local I1. Alternatively, starting from S11
∼= (I6, I2, 4I1), one can set λ = (1±M)2

M2 instead, which
leads to the S7

∼= (I6, I I I , 3I1) configuration. Note that from the family S7, it is not possible
to further tune the parameter M in such a way as to obtain the type-IV singularity in the
configuration S2.

Another starting point would be to set the masses M1 =
1

M2
= M , which, in the 4d gauge-

theory limit, would still correspond to |m(4d)
1 | = |m(4d)

2 |. In this case we also an I2 fiber along
that family, which we will argue to be S12. Compared to the previous case, it is now possible to
obtain a type-IV singular fiber, as follows. One can first set λ= 1, leading to S3 = (I6, I3, 3I1),
and then subsequently set M = i to reach S2

∼= (I6, IV, 2I1). Alternatively, one can tune

λ= − (1−M2)2

4M2 to find S8
∼= (I6, I I I , 3I1), which is further ‘enhanced’ to S2

∼= (I6, IV, 2I1) by set-
ting again M = i. In other words, if we start from the massless configurationS1

∼= (I6, I3, I2, I1),
the type-IV singularity is formed when the I2 fiber ‘splits’ into two I1 singular fibers, with one
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of them merging with the I3. From these considerations, we see that the two configurations
S7 and S8, despite having the same singular fiber types, have different physics. The differ-
ent torsion groups reflect that fact.35 A similar reasoning can be applied to the two distinct
(I6, I2, 4I1) configurations.

It is apparent from table 11 that we can find interesting configurations on the Coulomb
branch of the DS1 E3 theory even for |λ|= |Mi|= 1. In field theory language, this corresponds
to turning on flavour Wilson lines along the S1 in an otherwise massless five-dimensional
theory. We analyse some of these configurations in the following, starting with the massless
curve.

7.2.1 Massless curve, modularity and flavour symmetry group

The massless configuration corresponds to the extremal rational elliptic surface X6321, which
has a Z6 MW group. The Weierstrass form of the massless curve reads:

g2(U) =
1
12

U
�

U3 − 24U − 48
�

,

g3(U) = −
1

216

�

U6 − 36U4 − 72U3 + 216U2 + 864U + 864
�

,
(410)

with the discriminant:
∆(U) = (U − 6)(U + 2)3(U + 3)2 . (411)

Consequently, the U-plane has three singularities in the bulk, (I1, I3, I2), and one I6 cusp at
infinity. The geometric periods:

ω=
dΠ
dU

, (412)

satisfy the Picard-Fuchs equation:

(U − 6)(U + 2)(U + 3)
d2ω

dU2
+ (3U2 − 2U − 24)

dω
dU
+ Uω= 0 . (413)

Compared to the previous examples, this has four singular points. We will not solve (413)
directly, but rather use the modular properties of the curve [192]. One can first compute
U(τ), to find:

U(τ) = q−
1
6 + 1+ 6q

1
6 + 4q

1
3 − 3q

1
2 − 12q

2
3 − 8q

5
6 +O(q) = 6+

η
�

τ
6

�5
η
�

τ
2

�

η(τ)5η
�

τ
3

� , (414)

which gives the McKay-Thompson series of class 6E of the Monster group and the Haupt-
modul for Γ 0(6). The massless DS1 E3 SW geometry is therefore modular for that congruence
subgroup. This expression is invariant under a T6 transformation, while under an S transfor-
mation it becomes:

U(τD) = 6+ 72
η(6τD)5η(2τD)
2η(τD)5η(3τD)

= 6+ 72qD + 360q2
D +O(q3

D) , (415)

where τD = −
1
τ . Thus, the I1 singularity at U = 6 corresponds to an I1 cusp at τ= 0. To find

the other cusps, we use the properties of the η-function listed in appendix B. One can show
that, under an ST3 transformation, we have:

U(eτD) = 6−
9η (3eτD)

14

η (6eτD)
5η (2eτD)η

�

3eτD
2

�5
η (eτD)

2η
�

eτD
2

�

= −3− 9eq
1
2

D +O (eqD) , (416)

35For instance, the fact that S8 contains S2 as a limit implies it cannot have Z2 torsion, because S2 has Z3 torsion
and Z2 is not a subgroup of Z3.

86

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

F TF T2F T3F T4F T5F

SF T2SF T3SF
T2ST−1T2ST

T3ST

Figure 19: Fundamental domain for Γ 0(6)with cusps at τ= 0,2, 3 and i∞ of widths
1, 3,2 and 6, respectively.

where eτD = −
1
τ+3 . As a result, the I2 cusp at τ = 3 corresponds to the U = −3 singularity.

Finally, an ST2 transformation leads to a more involved closed form expression, with the power
series:

U(eτD) = −2− 8e
2πi
3
eq

1
3

D − 24e
πi
3
eq

2
3

D +O(eqD) , (417)

where here eτD = −
1
τ+2 , and thus the U = −2 singularity corresponds to the I3 cusp at τ = 2.

The corresponding fundamental domain of Γ 0(6) is shown in figure 19. We also find that the
a period satisfies:

da
dU
(τ) = −

1
2πi

η
�

τ
6

�

η(τ)6

η
�

τ
3

�2
η
�

τ
2

�3 . (418)

Flavour symmetry group, BPS states and BPS quiver. From the fundamental domain shown
in figure 19, we can directly read off the monodromies around the singularities of the massless
E3 curve. We find that the following dyons of the KK theory DS1 E3 become massless at these
points:

U = 6 (τ= 0) (I1) : a monopole of charge (1,0; 0,0) becomes massless,

U = −2 (τ= 2) (I3) : three dyons of charge (−1, 2;0, 1) become massless,

U = −3 (τ= 3) (I2) : two dyons of charge (1,−3; 1,0) become massless,

(419)

in the notation (m, q; l1, l2) of (198), with (l1, l2) ∈ Z2×Z3 the charge under the center of the
SU(2)× SU(3) flavour group associated to the I2 and I3 cusps. where the states are charged
under U(1)[1]m × U(1)[1]e × Z2 × Z3, with Zk the center of the flavour symmetry associated to
the Ik cusps. In particular let us also note that the group E = Z2 ×Z3

∼= Z6, generated by:

gE =
�

0,
1
3

; 0,1
�

,
�

0,
1
2

;1, 0
�

, (420)

leaves these states invariants. We can then conclude that the actual flavour group is:

GF = E3/Z6 = PSU(3)× SO(3) , (421)
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as expected. The BPS quiver corresponding to the states (419) takes the form of a 3-blocks
quiver, for a total of 6 nodes:

Eγ1=(1,0) Eγ2,3,4=(−1,2)

Eγ5,6=(1,−3)

(422)

which makes the su(3)⊕ su(2) symmetry – or rather, its Weyl group S3 × S2 – apparent. This
quiver is a well-known ‘toric quiver’ for local dP3 – see for example the ‘Model 10d’ in [193].

Torsion sections for the massless curve. The global form of the flavour group of massless
DS1 E3 can also be understood from the MW group Φ ∼= Z6. The sections of the massless E3
curve are given explicitly by:

P1 =
�

1
12
(U2 + 12U + 24),−(U + 2)(U + 3)

�

,

P2 =
�

1
12

U2 ,−(U + 2)
�

,

P3 =
�

1
12
(U2 − 12), 0

�

,

P4 =
�

1
12

U2, U + 2
�

,

P5 =
�

1
12
(U2 + 12U + 24), (U + 2)(U + 3)

�

,

(423)

which indeed span a Z6
∼= Z2 × Z3 torsion group, with Pk + Pl = Pk+l (mod 6). One can then

check that P2 and P4 only intersect the Θv,0 component of the I2 fiber, so that these sections
generate a Z3 subgroup which injects into Z3 = Z(SU(3)) at the I3 singularity. Similarly, the P3
section intersects the Θv,0 component of the I3 fiber, and generates a Z2 subgroup that injects
into Z2 = Z(SU(2)) at the I2 singularity. As a result, the global form of the flavour symmetry
is indeed (SU(3)× SU(2))/Z6.

7.2.2 Other interesting DS1 E3 CB configurations

S16
∼= (I6, 6I1) with Z6 symmetry. The configuration S16 appears at generic points on the

Coulomb branch of E3. We can, however, tune the parameters to obtain a Z6-symmetric con-
figuration, with the U-plane singularities organized as the roots of U6 = 432. This occurs for
(λ, M1, M2) = (e

4πi
3 , e

7πi
6 , e

iπ
6 ). Note that this corresponds to setting the three E3 characters to

zero. In this case, U(τ) is a solution to:

(X (τ)− 432) j(τ) = X (τ)2 , (424)

for X (τ) = U(τ)6 . This leads to the solutions:

X (τ) = 864
E4(τ)

3
2

E4(τ)
3
2 ± E6(τ)

. (425)

This function appeared for the massless 4d SU(2) N f = 1 theory in table 9, and it is not a
modular function for any of the congruence subgroups. Nonetheless, the Z6 symmetry leads
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to a major simplification of the PF equation, and the geometric periods can be expressed in
terms of hypergeometric functions. In particular, we find that:

da
dU
= −

1
2πi

1
U 2F1

�

1
6

,
5
6

, 1;
432
U6

�

, Π f = 2a . (426)

The periods can thus be determined explicitly on the U-plane, exactly as for the E1 theory.
Using the Z6 symmetry of the U-plane one can first determine the geometric periods eω= θUΠ

on the w = U6

432 plane. In this case, the Z6 ‘orbifold’ monodromy corresponds to a type-I I∗

singularity at the origin of the w-plane. It reads:

M+w=0 =

�

0 −1
1 1

�

= ST , M−w=0 =

�

1 −1
1 0

�

= T (ST )T−1 , (427)

for a base point in the upper/lower half-plane, respectively. Consequently, we can find the U-
plane monodromies by conjugating the ‘conifold’ monodromy, exactly as in previous examples:

Mk =
�

M−w=0

�kMw=1

�

M−w=0

�−k
, Mw=1 = STS−1 , (428)

for k = 0, . . . , 5. We then find that the BPS states becoming massless at the six I1 cusps are:

±(1, 0) , ±(0,1) , ±(1,−1) . (429)

The corresponding Z6-symmetric quiver takes the form:

Eγ2=(0,1) Eγ3=(−1,1)

Eγ1=(1,0) Eγ4=(−1,0)

Eγ6=(1,−1) Eγ5=(0,−1)

(430)

This is again a well-known quiver for dP3, called ‘Model 10a’ in [193]. Let us also mention
that the a period satisfies the simple relation:

U(τ)
da
dU
(τ) = −

1
2πi

E4(τ)
1
4 . (431)

With a bit more work, one can also establish the existence of a quiver point at U = 0, where
the central charges of the 6 fractional branes align to Z = 1

6 .

S7
∼= (I6, I I I , 3I1) with Z3 symmetry. This configuration can be obtained for unit absolute

values of the parameters from the one-parameter family S7 in table 11 by setting M = e
2πi
3 , for

instance. This is equivalent to (λ, M1, M2) = (e−
2πi
3 , e

2πi
3 , e

2πi
3 ), or to setting the E3 characters

to χE3
1 = χ

E3
2 = 0 and χE3

3 = 2. In that case, the discriminant becomes:

∆(U) = U3(U3 − 64) , (432)

with three I1 type singularities at U3 = 64 and an elliptic point (a type-I I I singularity) at
U = 0, where we have a H1 AD theory at low energy. As in previous examples, we can flow
directly to this Argyres-Douglas fixed point, bypassing the 4d gauge theory. Before taking the
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4d limit explicitly, let us look at the modular properties of this DS1 E3 curve. U(τ) can be
obtained by solving the cubic equation:

(X (τ)− 64) j(τ) = (X (τ)− 48)3 , (433)

for X (τ) = U(τ)3. It turns out that X (τ) is a modular function for the Γ 0(2) congruence
subgroup, with a root:

X (τ) = 64+

�

η
�

τ
2

�

η(τ)

�24

, (434)

which is the Hauptmodul for Γ 0(2). Furthermore, the a-period satisfies:

da
dU
= −

1
2πi

1
U 2F1

�

1
4

,
3
4

, 1;
64
U3

�

, U(τ)
da
dU
(τ) = −

p
2

4πi

�

ϑ3(τ)
4 + ϑ4(τ)

4
�

1
2

. (435)

As a result, one can find the analytic continuation of the periods throughout the whole U-
plane, as before, and one can determine which BPS states become massless at the U-plane
singularities.

In order to better understand the difference between this configuration, S7
∼= (I6, I I I , 3I1),

and the configuration S8 to be discussed momentarily, let us look at the BPS states from the
point of view of the massless theory. In the configuration at hand, where M1 = M2, the type-I I I
singularity is obtained when the two dyons (1,−3) of the I2 singularity in (419) as well as one
of the dyons (−1,2) or (1, 0) become massless at the same point on the U-plane, depending
on the deformation pattern. In the first case, for instance, we have:

MI I I =M(1,−2)M2
(1,−3) = T3S−1T−3 . (436)

In this configuration, we have the light BPS states:

S : (1,−3;1) , (1,−2;0)
︸ ︷︷ ︸

H1

, 2(−1, 2;0) , (1,0; 0) , (437)

where the third entry is the Z2 center charge associated with the su(2) symmetry from the
type-I I I singularity. Here, we see that all the particles are left invariant by a Z2 generated by:

gE =
�

0,
1
2

; 1
�

, (438)

and therefore the non-abelian part of the flavour symmetry of this CB configuration is
SU(2)/Z2, in agreement with the MW torsion. We can ‘zoom in’ onto the AD theory by taking
a 4d limit, as in other examples. In order to keep track of the parameters of the H1 theory, we
consider the limit:

U → u β
4
3 + 2c β

2
3 , λ→ e

4πi
3

�

1− 2c β
2
3

�

, M1,2→ e
2πi
3 (1±µ β) . (439)

Using the scaling (x , y)→ (β
2
3 x ,β y), the curve reduces to:

y2 = 4x3 −
�

16c2

3
− 4u

�

x −
�

64c3

27
−

8c
3

u− 4µ2

�

, (440)

which, upon the redefinition u → 4u + c2 becomes the Weierstrass form of the usual curve
(403) for the H1 AD theory. This shows that there exists an RG flow from the E3 theory to the
H1 Argyres-Douglas theory, which moreover preserves the full symmetry group SO(3) ⊂ E3/Z6
along the flow. We emphasise again that, in this setup, the starting point is the massless E3
theory with certain Wilson lines turned on along the S1.

90

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

F TF T2F T3F T4F T5F

SF T3SFIV

Figure 20: Fundamental domain for the (I6, IV, 2I1) configuration on the CB of the
DS1 E3 theory.

S8
∼= (I6, I I I , 3I1). This other (I6, I I I , 3I1) configuration can be obtained from the mass-

less configuration by first ‘splitting’ the I2 singularity of the massless curve through setting
M1 = 1/M2, and then merging one of the resulting I1 fibers with an I2 subset of the I3 fiber.
In terms of the BPS states (419), we then have the monodromy:

MI I I =M2
(1,−2)M(1,−3) = T2S−1T−2 . (441)

It is interesting to contrast the charges of the light BPS states to (437). In the present case, we
have:

S : (1,−3;0) , (−1,2; 1)
︸ ︷︷ ︸

H1

, (−1,2; 0) , (1,−3,0) , (1, 0;0) . (442)

In this case, the Z2 action gE = (1
2 , 1

2 ; 1) leaves invariant the states involved in the H1 point,
but not the full spectrum of the larger theory. This is similar to the discussion at the end of
section 4.3.4.

S2
∼= (I6, IV, 2I1) and the H2 AD point. This configuration shows perhaps the most ‘unex-

pected’ structure of the U plane. For the values of the parameters displayed in table 11, the
discriminant becomes:

∆(U) = U4(U2 − 27) , (443)

with two I1 singularities at U2 = 27 and a type-IV singularity at the origin. In this configura-
tion, the E3 characters are:

χ
E3
1 = 3 , χ

E3
2 = 3 , χ

E3
3 = 0 . (444)

The low-energy physics of this singularity is the AD theory H2, which appears on the Coulomb
branch of the 4d SU(2) theory with N f = 3 flavours, while the gauge theory phase of the E3
theory only has N f = 2. Let us first analyse the modular properties of this curve. U(τ) can be
obtained by solving:

(X (τ)− 27) j(τ) = X (τ)(X (τ)− 24)3 , (445)

with X (τ) = U(τ)2. While the S2 curve is not modular, we find that X (τ) itself is a modular
function for the Γ 0(3) congruence subgroup, being generated by:

X (τ) = 27+

�

η
�

τ
3

�

η(τ)

�12

. (446)
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F TF T2F T3F T4F T5F

SF
ST−1

I I I I

(a) 6C0, S9
∼= (I6, I2, 2I I)

F TF T2F T3F T4F T5F

I I I I I I

(b) 6A0, S13
∼= (I6, 3I I)

Figure 21: Fundamental domains for two modular configurations on the CB of DS1 E3.

Furthermore, the a period satisfies:

da
dU
= −

1
2πi

1
U 2F1

�

1
3

,
2
3

; 1;
27
U2

�

, (447)

which can be thus solved explicitly on the U-plane. The way this configuration appears can
be also understood from the corresponding fundamental domain, which is shown in figure 20.
Note that despite the fact that the configuration S2 is not modular, we can draw a fundamental
domain by making use of the fundamental domain of Γ 0(3). Starting with the BPS states of
the massless theory (419), the type-IV singularity appears when the three dyons (−1,2) of
the I3 cusp become massless at the same point with one of the dyons (1,−3) of the I2 cusp,
with the monodromy:

MIV =M3
(−1,2)M(1,−3) = T2(ST )−2T−2 . (448)

This is consistent with the Γ 0(3) Hauptmodul given in (446), as one can check that X (τ∗) = 0,
for τ∗ = 2+ e

2πi
3 . We can again obtain the full 4d curve, including all the 4d parameters, from

the full DS1 E3 curve. Recall that the H2 theory has a Coulomb branch parameter u of scaling
dimension ∆u =

3
2 , together with the parameters (c,µ1,µ2), of scaling dimensions

�1
2 , 1, 1

�

.
We then consider:

U −→ u β
3
2 + 2c β

1
2 , λ −→ 1−µ1β , M1,2→±i − c β

1
2 ±

i µ2

2
β , (449)

together with (x , y)→
�

β x ,β
3
2 y
�

. Upon the redefinition u→ u− c µ1 , the curve becomes:

g2(u) =
4
3

�

µ2
1 −µ1µ2 +µ

2
2 − 3cu

�

,

g3(u) =
1

27

�

8(µ3
1 +µ

3
2)− 12µ1µ2(µ1 +µ2)− 27c2µ2

1 + 18c(µ1 − 2µ2)u− 27u2
�

.
(450)

This is the Weierstrass form of the curve:

F(x , t) = µ2 t +µ1 x + u+ t x(t + x) + t2c = 0 , (451)

which is precisely the SW curve for the AD theory H2 [4,191].

Modular configurations. Let us briefly comment on the remaining configurations. As for
DS1 E2, we can use the classification of the genus-zero congruence subgroups [174] to check
which configurations are modular. We find that the configurations S9

∼= (I6, I2, 2I I) and
S13
∼= (I6, 3I I) correspond to the congruence subgroups 6C0 and 6A0, respectively, in their
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notation. For the first configuration, for the values of the parameters listed in table 11, the
U-plane is Z2 symmetric and we find that:

U(τ) =
i
p

2

�

η
�

τ
3

�

η(τ)

�6

, (452)

which reproduces the completely replicable function of class 6c [194]. One can further check
that the type-I I elliptic points correspond to τ1 = 2 + e

2πi
3 and τ2 = 5 + e

2πi
3 , while the I2

cusp sits at τ = 0. Finally, for the Z3 symmetric configuration (I6, 3I I) listed in table 11, the
J -invariant is a quadratic polynomial in w = U3 and the monodromy group on the w-plane
will be the subgroup of square elements of PSL(2,Z), usually denoted by Γ 2. This has a cusp
of width two and two elliptic points of order two, one of which is the ‘orbifold’ point on the
w-plane. Going back to the U-plane, the orbifold singularity will be resolved, and thus, Γ 2 can
be viewed as a triple cover of the monodromy group on the U-plane. We draw fundamental
domains for these configurations in figure 21.

8 The non-toric En theories – 5d SU(2), 3≤ N f ≤ 7

In this section, we discuss various configurations of singular fibers of rational elliptic surfaces
that correspond to the non-toric DS1 En theories. An important subset that we will focus on
here consists of the extremal rational elliptic surfaces, which we introduced in section 3.3.

8.1 Massless curves and modularity

The Seiberg-Witten curves mirror to the non-toric local dPn geometries can be determined as
limits of the E-string theory curve [11, 24, 156], and are usually expressed in terms of the
En characters, as we reviewed in section 2.4.2. The massless curves are obtained when the
characters are set to the dimension of the corresponding En representations. The modular
properties of the curves for n > 4 were discussed in [102], while the periods for the DS1 En
theories with n> 5 have been explicitly computed in e.g. [95,98,151]. For completeness, we
summarise some relevant results below. Additionally, we list the torsion sections and discuss
the global form of the flavour symmetry, which confirms that the flavour group is the centerless
En/Z(En), as anticipated in (121).

We will also comment on the modular properties of these curves, which we anticipated in
section 3.3. In table 7, and more specifically in table 2 in the introduction, we see the obvious
pattern Γ = Γ 0(9 − n) for En, with n = 4 being the important exception.36 The massless E4
curve corresponds to the configuration S ∼= (2I5, 2I1)while, on the other hand, the congruence
subgroup Γ 0(5) has only two cusps37 and thus cannot be the correct modular group. By direct
computation, we find that U(τ) is in fact a modular function for Γ 1(5), in this case. Note,
however, that Γ

0
(n) = Γ

1
(n) for n = 2, 3,4, 6, where we use the Γ notation to emphasise that

these are subgroups of PSL(2,Z) rather than the full SL(2,Z), and we can thus view the pattern
ΓEn
= Γ 1(9− n) as valid for n> 2 instead.38

36Another exception is n= 8: Γ 0(1) = PSL(2,Z) is indeed the monodromy group on the massless E8 CB, but that
CB configuration is not modular, as we will see.

37More generally, the congruence subgroup Γ 0(p) for prime p has only two cusps. This also ‘explains’ why Γ 0(7)
could not be a modular group for massless E2.

38By a slight abuse of notation, we used Γ (N), Γ 0(N), · · · to denote the corresponding congruence subgroups of
PSL(2,Z) instead of SL(2,Z).
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8.1.1 The massless DS1 E4 theory

The massless curve for the DS1 E4 theory is obtained from the mass-deformed curve by setting
the characters to χ = {5,10, 5,10}. In our conventions, it reads:

g2(U) =
1

12

�

U4 − 40U2 − 120U − 80
�

,

g3(U) = −
1

216

�

U6 − 60U4 − 180U3 + 480U2 + 2736U + 3160
�

,
(453)

with the discriminant:
∆(U) = (U2 − 5U − 25)(U + 3)5 , (454)

from which we see the I1, I1, I5 singularities in the bulk, and the I5 at infinity.

Modular properties. The PF equation (54) for this theory becomes:

(U + 3)(U2 − 5U − 25)
d2ω

dU2
+ (3U2 − 4U − 40)

dω
dU
+ Uω= 0 . (455)

This differential equation has four singular points, and the solutions can be expressed in terms
of the local Heun function [195]. Here, we instead use the modular properties of the curve to
analyse the light BPS states appearing in the massless theory. We first find that:

U(τ) = q−
1
5 + 2+ 10q

1
5 + 5q

2
5 − 15q

3
5 − 24q

4
5 +O(q) . (456)

This turns out the be the Hauptmodul for Γ 1(5), given explicitly in [170]:

U(τ) = −3+ q−
1
5

∞
∏

n=1

�

1− q
n
5

�−5( n
5 ) , (457)

where
� n

5

�

denotes the Legendre symbol. It is convenient to rewrite the above expression in
terms of the Hauptmodul of Γ 0(5):

f (τ) =

�

η
�

τ
5

�

η(τ)

�6

, (458)

as described in [170]. We find that, around the cusp at infinity, we have:

U(τ) =
1
2

�

5+ f (τ) +
Æ

125+ f (τ)(22+ f (τ))
�

. (459)

A fundamental domain for Γ 1(5) is shown in figure 22.

BPS states and flavour group. Using the fundamental domain in figure 22, one finds the
following BPS states:

τ= 0 (I1) : a monopole of charge (1,0; 0) ,

τ=
5
2
(I1) : a dyon of charge (−2,5; 0) ,

τ= 3 (I5) : five dyons of charge (1,−3; 1) ,

(460)
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F TF T2F T3F T4F

SF T3SF

T3ST2S

Figure 22: Fundamental domain for Γ 1(5), with (I1, I1, I5, I5) cusps at τ= 0, 5
2 , 3 and

i∞.

where (m, q; l) includes l ∈ Z5, indicating thus the charge under the center of the flavour
SU(5). The corresponding BPS quiver is a 3-blocks quiver with 7 nodes:

Eγ1=(1,0) Eγ2=(−2,5)

Eγ3,4,5,6,7=(1,−3)

(461)

This is a known quiver for dP4 [177]. Note that the D0-brane state corresponds to the ranks
(1; 3;1) for the three blocks of this quiver. The BPS states (460) are left invariant by E = Z5
generated by:

gE =
�

0,
2
5

; 1
�

, (462)

which confirms the global form of the flavour group, GF = PSU(5).

Torsion sections. Another way to see the global form of the flavour group is from the MW
group. In our conventions, the sections of the extremal rational elliptic surface are:

P1 =
�

1
12
(U2 − 8), U + 3

�

,

P2 =
�

1
12
(U2 + 12U + 28),−(U + 3)2

�

,

P3 =
�

1
12
(U2 + 12U + 28), (U + 3)2

�

,

P4 =
�

1
12
(U2 − 8),−(U + 3)

�

,

(463)

with Pk + Pl = Pk+l (mod 5). These sections intersect the I5 fiber non-trivially, and thus the full
Φtor = Z5 restricts the global form of the flavour symmetry, as expected.
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8.1.2 The massless DS1 E5 theory

The other massless theories can be treated similarly. The massless E5 curve is obtained by
fixing the characters χE5 = {10, 45,16, 120,16}, which gives:

g2(U) =
1

12
(U + 4)2(U2 − 8U − 32) ,

g3(U) = −
1

216
(U + 4)3(U3 − 12U2 − 24U + 224) ,

(464)

with the discriminant:
∆(U) = (U + 4)7(U − 12) . (465)

This is the (I4, I∗1, I1) configuration of singular fibers. Note that this configuration is related to
the one for the pure 4d SU(2) theory by a quadratic twist.

Picard-Fuchs equation and modularity. The Picard-Fuchs equation (54) for the geometric
periods ω= dΠ/dU reduces to:

(U + 4)2(U − 12)
d2ω

dU2
+ (U + 4)(3U − 20)

dω
dU
+ Uω= 0 . (466)

This is a hypergeometric differential equation, as can be easily seen by introducing w = U+4
16 .

A convenient basis of solutions for this is given by:

ωa = −
1

2πi
1

U + 4 2F1

�

1
2

,
1
2

; 1;
16

U + 4

�

,

ωD = −
1
π

1
U + 4 2F1

�

1
2

,
1
2

; 1;1−
16

U + 4

�

,
(467)

where ωD is chosen such that it reproduces the T4 monodromy at infinity. Then, the mon-
odromies around the other cusps read:

MU=12 = STS−1 , MU=−4 = (T
±2S)(−T )(T±2S)−1 , (468)

where, for U = −4, one needs to specify the base point. The above monodromies can also be
found from the modular properties of the curve. Solving the equation J = J(τ), we find that:

U(τ) = 12+

�

η
�

τ
4

�

η(τ)

�8

, (469)

which is the Hauptmodul for Γ 0(4). Using the properties of the η-function, one can show that
the (I1, I∗1) cusps at τ= 0, ±2 correspond to the singularities at U = 12, −4, as expected. The
fundamental domain consistent with these values is shown in figure 23b below.

Torsion sections and flavour group. The discussion of the BPS states at the massless points
of the DS1 En theories with n> 4 is more subtle, and we postpone it to the next subsection, and
to future work. We can still determine the flavour symmetry group from our general approach
using the MW torsion. In this case, we an extremal RES with Φ= Z4, as shown in table 7. The
sections are given explicitly by:

P1 =
�

1
12
(U + 4)(U + 8), (U + 4)2

�

,

P2 =
�

1
12
(U2 − 16), 0

�

,

P3 =
�

1
12
(U + 4)(U + 8),−(U + 4)2

�

,

(470)
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with Pk + Pl = Pk+l (mod 4). They intersect non-trivially the I∗1 fiber, and thus we can again
argue that the flavour symmetry is given by GF = Spin(10)/Z4.

8.1.3 The massless DS1 E6 theory

The massless curve of the DS1 E6 theory takes the simple form:

g2(U) =
1

12
(U + 6)3(U − 18) , g3(U) = −

1
216
(U + 6)4(U2 − 24U + 36) , (471)

with the discriminant:
∆(U) = (U + 6)8(U − 21) . (472)

This corresponds to the configuration (I3, IV ∗, I1), which is an extremal RES with Φ= Z3.

Picard-Fuchs equation and modularity. The PF equation (54) for the geometric periods
reads:

(U + 6)2(U − 21)
d2ω

dU2
+ 3(U + 6)(U − 12)

dω
dU
+ Uω= 0 , (473)

which is again a hypergeometric differential equation, similar to that of DS1 E0 on the w = U3

plane. A convenient basis of solutions is given by:

ωa = −
1

2πi
1

U + 6 2F1

�

1
3

,
2
3

;1;
27

U + 6

�

,

ωD = −
p

3
2π

1
U + 6 2F1

�

1
3

,
2
3

;1; 1−
27

U + 6

�

,
(474)

with ωD chosen such that the monodromy at infinity is T3. The monodromies around the
other singularities are:

MU=21 = STS−1 , MU=−6 = T k(ST )2T−k , (475)

for k = −1 or k = 2, depending on the base point. These monodromies can be also recovered
from the modular properties of the curve. We find that:

U(τ) = 21+

�

η
�

τ
3

�

η(τ)

�12

, (476)

which is the Hauptmodul for Γ 0(3). One can then easily show that U(τ = 0) = 21. Further-
more, it can be checked that U(−1+τ∗) = U(2+τ∗) = −6, with τ∗ = e

2πi
3 , in agreement with

the monodromies found from the geometric periods.

Torsion sections and flavour group. The SW geometry for the massless DS1 E6 theory is an
extremal RES with Φ= Z3. The sections read:

P1 =
�

1
12
(U + 6)2, (U + 6)2

�

, P2 =
�

1
12
(U + 6)2,−(U + 6)2

�

, (477)

with P1 + P2 = O. They intersect non-trivially the IV ∗ singular fiber, and thus we argue that
the global form of the flavour symmetry is GF = E6/Z3.
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8.1.4 The massless DS1 E7 theory

The curve of the massless DS1 E7 theory is given by:

g2(U) =
1

12
(U + 12)3(U − 36) , g3(U) = −

1
216
(U + 12)5(U − 60) , (478)

with the discriminant:
∆(U) = (U + 12)9(U − 52) . (479)

This corresponds to the extremal configuration (I2, I I I∗, I1), which has Φ= Z2.

Picard-Fuchs equation and modularity. The geometric periods satisfy the hypergeometric
differential equation:

(U + 12)2(U − 52)
d2ω

dU2
+ (U + 12)(3U − 92)

dω
dU
+ Uω= 0 , (480)

which is similar to that of the λ = 1 configuration for the DS1 E1 theory (on the w = U4 plane
of that theory). A convenient basis is given by:

ωa = −
1

2πi
1

U + 12 2F1

�

1
4

,
3
4

; 1;
64

U + 12

�

,

ωD = −
1
p

2π

1
U + 12 2F1

�

1
4

,
3
4

; 1;1−
64

U + 12

�

,
(481)

with ωD chosen such that the monodromy at infinity is T2. The monodromies around the
other singularities are:

MU=52 = STS−1 , MU=−12 = T kST−k , (482)

for k = ±1, depending on the base point. We can again show that these monodromies are
consistent with the modular properties of the curve. We first find that:

U(τ) = 52+

�

η
�

τ
2

�

η(τ)

�24

, (483)

which is the Hauptmodul for Γ 0(2). This congruence subgroup only has two cusps of widths
1 and 2, respectively, and an elliptic point of order 2. One can check that U(τ= 0) = 52 and,
additionally, that U(±1+ i) = −12. Thus, the elliptic point of Γ 0(2) is precisely the type-I I I∗

singularity of the massless DS1 E7 curve.

Torsion sections and flavour group. It is straightforward to check that the non-trivial sec-
tion of the massless DS1 E7 curve is:

P1 =
�

1
12
(U + 12)2, 0

�

, (484)

which spans a Z2 torsion group. It intersects non-trivially the type-I I I∗ singular fiber, and
therefore the flavour symmetry group is GF = E7/Z2.
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8.1.5 The massless DS1 E8 theory

Finally, the massless curve for the DS1 E8 theory reads:

g2(U) =
1

12
U4 , g3(U) = −

1
216
(U − 864)U5 , (485)

with the discriminant and j-invariant:

∆(U) = (U − 432)U10 , j(U) =
U2

(U − 432)
. (486)

The rational elliptic surface associated to this Seiberg-Witten curve is extremal, with the sin-
gular fibers (2I1, I I∗) and no torsion. The geometric periods can be determined explicitly, as
they again satisfy a hypergeometric differential equation:

U2(U − 432)
d2ω

dU2
+ 3U(U − 288)

dω
dU
+ (U − 60)ω= 0 , (487)

which is similar to that of the Z6 symmetric configuration of the DS1 E3 theory. We choose the
periods:

ωa = −
1

2πi
1
U 2F1

�

1
6

,
5
6

;1;
432
U

�

, ωD = −
1

2π
1
U 2F1

�

1
6

,
5
6

;1; 1−
432
U

�

, (488)

with ωD chosen such that the monodromy at infinity is T . The other monodromies read:

MU=432 = STS−1 , MU=0 = T k(ST )T−k , (489)

for k = 0 or 1, depending on the base point. As for the modular properties, solving J = J(τ),
the root corresponding to the cusp at τ= i∞ is given by:

U(τ) = 864
E4(τ)3 + E4(τ)

3
2 E6(τ)

E4(τ)3 − E6(τ)2
, (490)

with its S-transformation:

U(τD) = 864
E4(τ)3 − E4(τ)

3
2 E6(τ)

E4(τ)3 − E6(τ)2
. (491)

From the zeroes of the Eisenstein series E4, it follows that the elliptic point of type I I∗ cor-
responds to τ∗ = e

2πi
3 (or e

πi
3 ), in agreement with the monodromies found above. A funda-

mental domain can be chosen as in figure 10c, by replacing IV with I I∗ (a quadratic twist
relates that configuration (I∗1, IV, I1) to the (I1, I I∗, I1) configuration of interest here). Note
that the monodromies (489) generate the full PSL(2,Z) while the fundamental domain for
the CB configuration consists of two copies of the PSL(2,Z) fundamental domain, therefore
the massless DS1 E8 CB is not a modular curve. This is consistent with the fact that the unique
index 2 subgroup of PSL(2,Z) only has one I2 cusp [170,174].

8.2 Other configurations: modular curves and 5d BPS quivers

In the rest of this section, we discuss some other interesting CB configurations for the non-toric
DS1 En theories. Let us start with some general comments on the Higgs branch enhancement
as we vary the parameters, using the 5d gauge-theory intuition as a guide, in analogy with the
4d gauge theory analysis [2, 4]. We begin by setting the 5d hypermultiplet mass parameters
equal, Mi = M . This can be done explicitly by working out the map between the characters
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Table 12: Some Mi = M configurations for the DS1 En theories. Only the singularities
in the interior of the U-plane are indicated.

Theory Generic Mi = M , λ 6= 1 Mi = 1, λ 6= 1 Mi = M , λ= 1 Mi = 1, λ= 1

DS1 E4 7I1 4I1, I3 3I1, I4 2I1, I2, I3 2I1, I5

DS1 E5 8I1 4I1, I4 2I1, I∗0 2I1, I2, I4 I1, I∗1
DS1 E6 9I1 4I1, I5 2I1, I∗1 2I1, I2, I5 I1, IV ∗

DS1 E7 10I1 4I1, I6 2I1, I∗2 2I1, I2, I6 I1, I I I∗

DS1 E8 11I1 4I1, I7 2I1, I∗3 2I1, I2, I7 I1, I I∗

of En and the gauge theory parameters (λ, Mi), as discussed in appendix A. In this equal-mass
setting and for generic values of the ‘5d gauge coupling’ λ, N f = n − 1 of the I1 cusps will
merge together into an IN f

singularity. The corresponding Higgs branch is the one associated
classically with N f massive fundamental hypermultiplets of SU(2). The flavour symmetry of
these theories will thus be su(N f ). As the mass is turned off, i.e. for M → 1 with λ 6= 1, this
enhances to so(2N f ) – see table 12.

One can instead set λ= 1 first, in which case the U-plane singularities are (2I1, I2, IN f
). In

the large-mass limit (M � 1 or M � 1), the (2I1, I2) cusps can be viewed as the bulk singular-
ities of the ‘massless’ DS1 E1 theory, with the BPS states becoming massless at the various cusps
listed in (304). Then, as M → 1, the Higgs branch of the DS1 En theories changes as follows. For
the DS1 E4 theory, the IN f =3 and the I2 fibers merge, forming an I5 singular fiber. For the other
cases (DS1 En>4), the IN f =n−1 and the I2 singularity also merge with an I1 singularity, leading to
the massless configurations. We note that this discussion exactly parallels the F-theory analysis
of the combinations of 7-branes needed to produce the En 7-brane [49,161,196], which is of
course no coincidence.

For n = 6,7, 8, in the fully massless limit M = λ = 1, the ‘elliptic’ singularities IV ∗, I I I∗

and I I∗, respectively, that appear on the U-plane have a low-energy description in terms of
the 4d MN theories [11], as we reviewed in section 2.4.2. It is worth remarking that this
embedding of the 4d MN theories into the U-plane is qualitatively different from the way the
AD points often appear (either on 4d u-planes or on the U-plane). In the latter case, the AD
fixed points correspond to points where singularities merge without affecting flavour symmetry
algebra nor the Higgs branch. On the other hand, at these En MN singularities, the flavour
algebra enhances and the Higgs branch dimension increases dramatically – see e.g. [30] for a
discussion of the corresponding five-dimensional physics.

8.2.1 DS1 E4 configurations

Persson’s list for the allowed configurations of singular fibers [47] contains 26 configurations
with an I5 fiber, which should all be achievable on the extended Coulomb branch of the DS1 E4
theory. The only configuration with non-trivial torsion turns out to be the massless one. Let
us briefly comment on some of these configurations which show interesting symmetries or
modular properties.

One such configuration is obtained by setting all the E4 characters to zero. This is the
(I5, 2I1, I I) configuration, with rk(Φ) = 4, with the U-plane showing a Z5 symmetry. The
geometric periods eω= θUΠ can be solved in closed form on the w= U5 plane and are similar
to those of the massless E8 configuration. Another non-trivial configuration is the (I5, 3I1, IV )
configuration, which occurs for (Mi) = (1, e

iπ
3 , e−

iπ
3 ). In this case the masses are not equal,

and thus merging singularities correspond to non-local BPS states becoming massless at the

100

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

same point.
Based on the classification of genus-zero congruence subgroups [174], we can also list all

DS1 E4 configurations for which the monodromy group is a congruence subgroup. These are
given below:

{Fv} rk(Φ) Φtor gF Γ ∈ PSL(2,Z)

2I5, 2I1 0 Z5 A4 Γ 1(5)

I5, I1, 2I I I 2 − 2A1 Γ 0(5)

I5, I I I , 2I I 3 − A1 5A0

(492)

where 5A0 is an index 5 congruence subgroup, with only one cusp of width 5. We leave a
detailed study of the corresponding U-planes for future work.

8.2.2 DS1 E5 configurations

For the DS1 E5 theory there are 51 allowed configurations, some of which already appear in
table 12. Consider first the case where all characters vanish, leading to the generic configura-
tion (I4, 8I1), but with a Z4 symmetry on the U-plane. In fact, tuning to an odd looking value,
χ2 = 37+ 24

p
3, we find that the U-plane is Z8 symmetric instead.

As before, we can also list all the DS1 E5 configurations for which the monodromy group is
a congruence subgroup:

{Fv} rk(Φ) Φtor gF Γ ∈ PSL(2,Z)

I4, I∗1, I1 0 Z4 D5 Γ 0(4)

2I4, 2I2 0 Z4 ×Z2 A3 ⊕ 2A1 Γ 0(4)∩ Γ (2)
I4, I∗0, 2I1 1 Z2 D4 Γ 0(4)

2I4, 2I I 2 − A3 4D0

I4, 2I I I , I2 2 Z2 3A1 4C0

I4, 2I I I , I I 3 − 2A1 4A0

(493)

where 4D0, 4C0 and 4A0 are congruence subgroups of index 8, 6 and 4, respectively. As
pointed out in table 7, there is another rational elliptic surface associated to a configuration of
the U-plane that is extremal other than the massless one, namely the (2I4, 2I2) configuration.
This can be obtained by setting χ1 = −2, χ2 = −3, χ4 = 8, with the other characters set to
zero. In this case, we find:

U(τ) =

�

η
�

τ
2

�

η(2τ)

�4
T

−−−−→ −
iη(τ)12

η(2τ)8η
�

τ
2

�4 , (494)

which is the Hauptmodul for Γ 0(4)∩Γ (2) [170]. From the corresponding fundamental domain
shown in figure 23, we read off the following BPS states:

I2 : 2 (1,0; 1,0, 0) , I4 : 4 (−1,1; 0,1, 0) , I2 : 2 (1,−2;0, 0,1) , (495)

where we also indicated charges under the Z2 × Z4 × Z2 center of the flavour group. The
corresponding 3-blocks 5d BPS quiver reads:

Eγ1,2=(1,0) Eγ3,4,5,6=(−1,1)

Eγ7,8=(1,−2)

(496)
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F TF T2F T3F

SF TSF T2SF

I2 I4 I2

(1,0) (−1, 1) (1,−2)

(a) (2I4, 2I2)

F TF T2F T3F

SF T2SF

I1 I∗1

(1, 0)

(b) (I4, I1, I∗1)

Figure 23: Fundamental domains for configurations on the CB of DS1 E5.

This is a known quiver for local dP5 – in fact, this is also a quiver for a particular degenerate
toric limit of local dP5 into an orbifold of the conifold, see e.g. ‘Model 4d’ in [193]. From the
fractional-brane basis (495), we can also compute the global form of the flavour group in this
extremal configuration. The BPS states are left invariant by a Z4 ×Z2 generated by:

gE
Z4
=
�

1
2

,
1
4

;1, 1,0
�

, gE
Z2
=
�

1
2

,
1
2

;1, 0,1
�

. (497)

From this perspective, we find the flavour group:

GF = SU(2)× SU(4)× SU(2)
�

Z4 ×Z2 , (498)

with the non-trivial quotient determined from (497). This also agrees with a direct analysis of
the sections in the MW group Φ = Z4 ×Z2. Note that, unlike other examples for the massless
theories, this flavour group is semi-simple but with a non-trivial center, Z(GF ) = Z2.

This extremal configuration can be also used to understand the BPS spectrum of the mass-
less theory, as follows. Recall that, setting Mi = M and λ = 1, we obtain the (2I4, I2, 2I1)
configuration. By further setting Mi = e±iπ/2, we recover the above (2I4, 2I2) configuration.
Thus, we can obtain the massless limit by ‘breaking’ one of the I2 fibers and merging the
I1, I2 and I4 fibers into an I∗1 singularity – this can also be understood as an embedding of
A3⊕A1⊕u(1) inside D5. In terms of the monodromies associated to these massless BPS states,
this is:

MI∗1
=M(1,0)M4

(−1,1)M
2
(1,−2) =

�

1 −4
1 −3

�

= (T2S)(−T )(T2S)−1 , (499)

which agrees with the I∗1 monodromy determined directly from the periods in (468). The
fundamental domains for these two configurations are shown in figure 23.

There are multiple other DS1 E5 configurations for which we can find closed form expres-
sions for the periods. One such example is the (I4, 4I2) configuration, which can be obtained
for χ2 = −3, with the other characters vanishing. In terms of the gauge theory parameters, the
configuration is obtained by setting M1 = M2 = eπi/4, M3 = M4 = e3πi/4, and thus two of the
I2 cusps correspond to two semi-classical ‘flavour’ cusps. Additionally, we also set λ= 1, which
results into pairing the remaining singularities. In this case, the U-plane is Z4 symmetric and,
the monodromy group on the w = U4 plane is Γ0(2). A similar analysis as that for λ = 1 for
E1 leads to the orbifold monodromy:

Morb = (ST±ε)S(ST±ε)−1 , (500)
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with ε = ±1. Since M4
orb = I, this can then be used to determine the U-plane monodromies,

leading to the BPS states ±(1,0) and ±(1,−1), with two identical states becoming massless at
each of the I2 cusps. The corresponding 5d BPS quiver is a 8-nodes, 4-blocks quiver:

Eγ1,2=(1,0) Eγ3,4=(−1,1)

Eγ5,6=(−1,0)Eγ7,8=(1,−1)

(501)

This is also a known quiver for dP5 and for its toric limit [177,193]. We can also check that the
flavour group acting effectively on the BPS spectrum takes the form GF = U(1)× SU(2)4

�

Z2
2,

in agreement with the MW group Φ∼= Z⊕Z2
2.

8.2.3 DS1 E6 configurations

For the DS1 E6 theory, there are 77 allowed configurations, three of which are extremal. Let us
list the cases corresponding to rational elliptic surfaces associated to congruence subgroups,
in the notation of [174]:

{Fv} rk(Φ) Φtor gF Γ ∈ PSL(2,Z)

I3, I1, IV ∗ 0 Z3 E6 Γ 0(3)

4I3 0 Z3 ×Z3 3A2 Γ (3)

I3, I6, I2, I1 0 Z6 A5 ⊕ A1 Γ 0(3)∩ Γ0(2)
I3, I∗1, I I 1 − D5 Γ 0(3)

I3, I∗0, I1, I I 2 − D4 Γ 0(3)

2I3, 2I I I 2 − A2 ⊕ 2A1 3C0

I3, 3I I I 3 − 3A1 Γ 3

(502)

We have already discussed the massless configuration (I3, IV ∗, I1) in the previous section, so
let us discuss the other two extremal cases. The first one is (4I3), which can be obtained for
χ3 = −3, χ4 = 9, with the other characters set to zero. Note that this configuration can only
appear on the Coulomb branch of the DS1 E6 theory. We find that:

U(τ) = 3+

�

η
�

τ
3

�

η(3τ)

�3

, (503)

which is the Hauptmodul for Γ (3). The map between the U-plane and the τ-plane can be found
easily, as the above Hauptmodul only changes by an overall factor of e−2πi/3 upon T transfor-
mations. To obtain a quiver description, let us first determine the periods on the w= U3 plane,
where the monodromy group is Γ0(3), with the orbifold monodromy:

Morb = (ST k)(ST )2(ST k)−1 , (504)

with k = −1 or 2, depending on the base point. Then, by our usual trick, the BPS states
associated to the I3 cusps become (1,0), (−2,1) and (1,−1), each of multiplicity 3. The corre-
sponding quiver is variously known as the T3 quiver or as the C3/(Z3×Z3) quiver, this orbifold
being a degenerate limit of the local dP6:

Eγ1,2,3=(1,0) Eγ4,5,6=(−2,1)

Eγ7,8,9=(1,−1)

(505)
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We can analyse the BPS states and the MW torsion section, as in other examples, to conclude
that the flavour group of this configuration is SU(3)3/Z2

3.
The other extremal configuration is (I3, I6, I2, I1), which can be obtained by setting the

characters χE6 to {3,−9,−2,−35,−9, 3}, for instance. In this case, we have:

U(τ) = 6+
η
�

τ
3

�5
η(τ)

η
�2τ

3

�

η (2τ)5
. (506)

This is the Hauptmodul for Γ 0(3)∩ Γ0(2), which is a congruence subgroup conjugate to Γ 0(6).
This is consistent with the fact that this configuration is also the massless DS1 E3 configuration.
The (I2, I6, I1) cusps will then be at τ= 0, 1 and 3

2 , respectively, with the BPS states becoming
massless at these singularities being:

S : I2 : 2(1, 0) , I6 : 6(−1,1) , I1 : (2,−3) . (507)

The corresponding 5d BPS quiver:

Eγ1,2=(1,0) Eγ3,4,5,6,7,8=(−1,1)

Eγ9=(2,−3)

(508)

is of course another dP6 quiver, which can be obtained from (505) by a series of quiver muta-
tions. Here the D0-brane representation has quiver rank (1;1; 2). The flavour symmetry group
of this configuration is SU(6)× SU(2)/Z6, by our usual arguments. Furthermore, we can use
the light BPS states of this configuration to understand how the IV ∗ singularity appears in the
massless limit, similarly to the previous examples. For instance, one can fuse the I6 with two
other mutually non-local particles, to obtain the monodromy:

M(1,0)M6
(−1,1)M(2,−3) = T2(ST )2T−2 , (509)

which is precisely the one around the IV ∗ singularity found from the periods in (482). This
can be understood as an embedding of A5 ⊕ 2u(1) inside E6. Incidentally, this gives a first
principle derivation of a BPS quiver for the four-dimensional E6 MN theory (although not of
the superpotential) [86] – according to this particular realisation of the type-IV ∗ singularity,
the BPS quiver of the 4d MN theory can be simply obtained from (508) by removing the node
corresponding to the dyon γ1 = (1,0).

Another DS1 E6 configuration that is modular is the (I3, 3I I I) configuration, obtained for
χ3 = 78, χ4 = −1935 and χi 6=3,4 = 0 for the other characters. In this case the J -invariant is
simply given by:

j(U) = U3 , (510)

and thus U3 is a modular function for PSL(2,Z) itself. As a result, U(τ) will be a modular
function for Γ 3, which is the subgroup generated by the cubes of the elements of PSL(2,Z).
Let us finally mention the configuration (I3, 6I1, I I I) which is obtained for χi = 0. In this case
the U-plane is Z3 symmetric and the periods can be determined explicitly on the w= U3 plane.
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8.2.4 DS1 E7 configurations

For the DS1 E7 theory, Persson’s classification contains 140 allowed configurations, five of which
are extremal. Based on [174], the following cases are modular for a congruence subgroup:

{Fv} rk(Φ) Φtor gF Γ ∈ PSL(2,Z)

I2, I1, I I I∗ 0 Z2 E7 Γ 0(2)

2I2, I∗2 0 Z2 ×Z2 D6 ⊕ A1 Γ (2)

I2, I8, 2I1 0 Z4 A7 Γ 0(2)∩ Γ0(4)
I2, I6, I3, I1 0 Z6 A5 ⊕ A2 Γ 0(2)∩ Γ0(3)

2I2, 2I4 0 Z4 ×Z2 2A3 ⊕ A1 Γ0(4)∩ Γ (2)
I2, I∗1, I I I 1 Z2 D5 ⊕ A1 Γ 0(2)

I2, IV ∗, I I 1 − E6 Γ 2

3I2, I∗0 1 Z2 ×Z2 D4 ⊕ 2A1 Γ (2)

I2, I∗0, I I I , I1 2 Z2 D4 ⊕ A1 Γ 0(2)

I2, I4, 2I I I 2 Z2 A3 ⊕ 2A1 4C0

I2, I6, 2I I 2 − A5 6C0

I2, I∗0, 2I I 3 − D4 Γ 2

(511)

The first configuration is the massless configuration, which we have already discussed in the
previous subsection. Additionally, this is related to the (I2, I∗1, I I I) configuration by a quadratic
twist, and thus the two have the same J -invariant. The (2I2, I∗2) configuration is also the
configuration of the massless 4d SU(2) N f = 2 theory, discussed in section 4. This can be
achieved for χE7 = {5,−59,−16,−330,−144,3, 8}, leading to:

U(τ) = 12+

�

η
�

τ
2

�

η(2τ)

�8

, (512)

which is the Hauptmodul for Γ (2). Note that this subgroup is conjugate to Γ 0(4). Let us also
discuss the (2I2, 2I4) configuration, which also appeared on the CB of the DS1 E5 theory. Here,
this can be obtained for instance for χ1 = −3, χ2 = 5, χ4 = −10 and χ6 = 3, with the other
characters set to zero. We find that:

U(τ) =
η(2τ)12

η(4τ)8η(τ)4
, (513)

which is the Hauptmodul for Γ0(4) ∩ Γ (2), as outlined in [170]. Using the properties of the
η-function, we find that the (I4, I4, I2) cusps correspond to τ= 0, 1 and 1

2 , respectively, leading
to the BPS states:

S : I4 : 4(1, 0) , I2 : 2(−2,1) , I4 : 4(1,−1) . (514)

This gives a 3-blocks BPS quiver:

Eγ1,2,3,4=(1,0) Eγ5,6=(−2,1)

Eγ7,8,9,10=(1,−1)

(515)
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Table 13: Configurations on the Coulomb branch of the DS1 E8 theory that are modu-
lar with respect to a congruence subgroup. The flavour algebra excludes the abelian
u(1) factors.

{Fv} rk(Φ) Φtor gF Γ ∈ PSL(2,Z)

I1, I2, I I I∗ 0 Z2 E7 ⊕ A1 Γ0(2)

I1, I3, IV ∗ 0 Z3 E6 ⊕ A2 Γ0(3)

2I1, I∗4 0 Z2 D8 Γ0(4)

I1, I4, I∗1 0 Z4 D5 ⊕ A3 Γ0(4)

2I1, 2I5 0 Z5 A4 ⊕ A4 Γ1(5)

I1, I6, I3, I2 0 Z6 A5 ⊕ A2 ⊕ A1 Γ0(6)

2I1, I8, I2 0 Z4 A7 ⊕ A1 Γ0(8)

3I1, I9 0 Z3 A8 Γ0(9)

I1, I I I∗, I I 1 − E7 P LS(2,Z)
I1, I I I , IV ∗ 1 − E6 ⊕ A1 P LS(2,Z)
I1, I∗2, I I I 1 Z2 D6 ⊕ A1 Γ0(2)

I1, I∗3, I I 1 − D7 Γ0(3)

2I1, I∗0, I4 1 Z2 D4 ⊕ 2A1 Γ0(4)

I1, I∗0, I I I , I2 2 Z2 D4 ⊕ 2A1 Γ0(2)

I1, I∗0, I3, I I 2 − D4 ⊕ A2 Γ0(3)

I1, I5, 2I I I 2 − A4 ⊕ 2A1 Γ0(5)

I1, I7, 2I I 2 − A6 Γ0(7)

I1, I∗0, I I I , I I 3 − D4 ⊕ A1 PSL(2,Z)

This is a known dP7 quiver [177], with the D0-brane representation having rank (1;2; 1). The
details of the flavour symmetry group can be worked out as in other examples. Starting from
this configuration, the massless configuration (I2, I1, I I I∗) can be obtained by the recombina-
tion:

M3
(1,0)M

2
(−2,1)M

4
(1,−1) = TST−1 , (516)

which indeed is the monodromy around the type-I I I∗ singularity as determined in (482). This
can be viewed as an embedding of A2 ⊕ A1 ⊕ A3 inside E7. Note that this also gives us a BPS
quiver for the 4d E7 MN theory, simply by removing node γ1 = (1, 0) in (515).

Let us also briefly comment on the (I2, IV ∗, I I) configuration. It turns out that in this case
the J invariant is a degree 2 polynomial in U , and thus the monodromy group is Γ 2, i.e. the
subgroup containing the squares of the elements of PSL(2,Z). A fundamental domain can be
easily drawn for this subgroup, with the coset representatives {I, T}. In this case, the order-2
elliptic points will be at τ= e

πi
3 and e

2πi
3 .

8.2.5 DS1 E8 configurations

Finally, for the DS1 E8 theory, there are 227 allowed configurations in Persson’s classification,
nine of which are extremal. Based on [174], the configurations that are modular for a congru-
ence subgroup are shown in table 13. Many of these configurations have already appeared on
the Coulomb branch of the other DS1 En theories, some of them being also analysed in [156].
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Let us consider one of the extremal configurations that could be useful in visualising how
the type-I I∗ singularity appears in the massless limit. For simplicity, take again the (I1, I6, I3, I2)
configuration39, where now the monodromy group is Γ0(6), with the cusps (I6, I2, I3) at τ= 0,
1
3 and 1

2 , respectively. The associated BPS states are:

S : I6 : 6(1, 0) , I2 : 2(−3,1) , I3 : 3(2,−1) , (517)

which gives the 5d BPS quiver:

Eγ1,2,3,4,5,6=(1,0) Eγ7,8=(−3,1)

Eγ9,10,11=(2,−1)

(518)

This is a correct 3-blocks quiver for dP8 [177], with the D0-brane representation having rank
(1; 3;2). Starting from this configuration, the I I∗ monodromy in (489) can be realised as:

M5
(1,0)M

2
(−3,1)M

3
(2,−1) = T (ST )T−1 . (519)

As in the E6 and E7 examples, this construction also gives us a derivation of a BPS quiver for
the 4d E8 MN theory, which is obtained from (518) by removing the dyon γ1 = (1,0). We
hope to return to this important point in future work.

9 Gravitational couplings on the U-plane for the DS1 En theories

One can consider any 4d N = 2 field theory on a compact 4-manifold, M4, with the topo-
logical twist [197]. The low-energy effective field theory then includes effective gravitational
couplings of the form [37,38,108]:

Sgrav =
i

16π

∫

M4

Tr(R∧ ∗R)A(a) + i
12π

∫

M4

Tr(R∧ R)B(a) , (520)

where a is the low energy photon and R the Riemann curvature. On the Coulomb branch, the
field a is constant and we simply have:

Sgrav = 2πi
�

e(M4)A(a) +σ(M4)B(a)
�

, (521)

with e and σ the topological Euler characteristic and the signature of M4, respectively. In
general, the topological twist data must also include a choice of spinc line bundle, which
affects the path integral in a subtle way – see e.g. [39,198,199]. Here, we focus on the type-A
and type-B gravitational couplings on the U-plane, defined as:

e−Sgrav = AeBσ , A(U) = e−2πiA , B(U) = e−2πiB , (522)

using the ‘mirror map’ a = a(U). A general infrared prescription for these couplings was
given in [37,38,108] based on the S-duality of the low-energy theory. Given any rank-one SW
geometry, in particular, we should have:

A(U) = α
�

dU
da

�
1
2

, B(U) = β
�

∆phys
�

1
8 , (523)

39This can be obtained for χ E8 = {3, 15,−8,19,−10,−1, 5,−3}, for instance.
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with ∆phys the so-called ‘physical discriminant’, and α, β some prefactors to be determined.
In our examples, the physical discriminant will be equal to the geometric discriminant ∆ of
the DS1 En curves written in Weierstrass normal form, up to an overall factor.

The gravitational couplings (522) can also be extracted from the microscopic calculation
provided by the Nekrasov partition function on the Ω-background [109–111, 113, 200]. In
this section, we consider the R4 × S1 Nekrasov partition functions for the DS1 En theories with
n≤ 3 in order to extract the gravitational couplings, and we match that result to the infrared
expectation (523). We will focus on the E1 and E3 theories in the following.40 We find perfect
agreement between the UV and IR prescriptions up to three-instantons. This computation can
be seen as a 5d generalisation of recent computations in [36], where the same IR/UV matching
was investigated for rank-one 4d theories; our results reproduce theirs in the 4d gauge-theory
limit. We will discuss some other interesting aspects of the gravitational couplings in [40].

9.1 Instanton partition functions and gravitational couplings

The R4×S1 (K-theoretic) Nekrasov partition function for U(N) gauge theories is computed via
a simple prescription involving Young diagrams [109,110,113,200], which can be adapted to
SU(N) gauge theories by carefully decoupling the additional U(1) contribution. For 4d gauge
theories, this U(1) factor was first discussed in the context of the AGT correspondence. For
the 5d ‘toric’ theories, the partition function can be determined from the (refined) topological
vertex formalism [201,202], which allows for the identification of the correct SU(N) instanton
counting prescription. We review the relevant formulas and set our conventions in appendix
D.

Consider the Coulomb branch of a 5d SCFT on the Ω-background. As described in section
2, such theories are engineered in M-theory on:

C2
τ1,τ2

× S1 ×XEn
, (524)

where XEn
is a canonical singularity that admits a crepant resolution. We consider the local

del Pezzo geometries eX= Tot(K→ B4) engineering the DS1 En theories. Let τi = βεi , i = 1,2,
be the dimensionless Ω-background parameters, and let us introduce the notation:

q = e2πiτ1 , t = e−2πiτ2 . (525)

Recall also that, for the complexified Kähler parameters associated to curves C ∈ H2(B4,Z),
we introduced the single-valued parameters:

QC = e2πi tC , tC =

∫

C
(B + iJ) . (526)

The instanton counting prescription for the partition function is valid in the gauge theory phase
of the DS1 En theories, where it leads to a power series in the instanton counting parameter:

λ=
QCb

QC f

, (527)

in our conventions, for C f ,b the fiber and base curves of the Fano surface B4. In the non-
equivariant limit, τ1,2 → 0, the Nekrasov partition function has the asymptotic expansion:

− log(ZC2×S1(Q,τ1,τ2)) =
2πi
τ1τ2

�

F + (τ1 +τ2)H+τ1τ2A+
τ2

1 +τ
2
2

3
B
�

+O (τ) , (528)

40The other two toric theories with a gauge theory interpretation, eE1 and eE2, can be treated similarly, either
intrinsically or as limits of the E3 theory, but there are a few subtleties related to the 5d parity anomaly, which we
hope to discuss elsewhere.
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from which one can extract the prepotentialF and the gravitational correctionsA andB [109].
Closed-form expressions for the latter two can be determined from holomorphic anomaly equa-
tions – see e.g. [203, 204]. Here, we will determine A and B from the Seiberg-Witten curve
and from (528), leading to consistent results. In four dimensions, this same computation was
recently discussed in [36]. The 4d limit of our computation agrees with [36], once we fix our
conventions appropriately. We also note that the term H in (528) is expected to vanish on
general grounds, because there are no gravitational terms that it could correspond to on the
standard Ω-background, where only the SU(2)R gauge field is turned on – see e.g. [205].

Recall that the gauge-theory phase of the 5d theory is obtained in a special limit where the
fiber curve C f shrinks to zero while the base curve Cb remains large, in which case λ is very
small. A more natural limit, however, is the large volume limit in the local Calabi-Yau eX, in
which all effective curves are on equal footing, with their corresponding parameters QC → 0.
In that limit, the R4 × S1 partition function can be written as a product over contributions
of some (generally infinite) number of five-dimensional massive BPS particles, with masses
set by the Kähler parameters QC , and with spins given by the corresponding representations
of the little group SO(4) = SU(2)L × SU(2)R. That partition function captures the (refined)
Gopakumar-Vafa invariants [206] of eX, and can be computed in terms of the refined topological
string partition function [202]. For our present purposes, however, it will suffice to compute
the R4 × S1 partition function in the ‘gauge-theory phase’, order by order in the instanton-
counting parameter (527), and to compare with the quantities obtained from the Seiberg-
Witten geometry in that same limit.

9.1.1 ZR4×S1 partition function of the E1 theory

Let us first review the computation of the Nekrasov partition function for the 5d pure SU(2)
gauge theory, which is the gauge-theory phase of the E1 SCFT. This can be obtained directly
from the U(2) gauge-theory partition function by imposing the traceless condition on the VEV
of the 5d scalars. Using the conventions summarised in appendix D, we thus write the partition
function as:

ZC2×S1(Q,τ1,τ2) = Zclass
vector(Q,τ1,τ2)Z

pert
vector(Q,τ1,τ2)Z

inst
vector(Q,τ1,τ2) , (529)

where Zclass, Zpert, Z inst are the classical, perturbative and non-perturbative contributions,
respectively. Here we introduced Q ≡ e4πia, with a the dimensionless scalar defined in (18).
Note that the gravitational corrections do not receive any classical contributions. As argued in
(23), the perturbative contribution to the prepotential reads [19]:

Fpert =
2

(2πi)3
Li3(Q) +

2
3

a3 . (530)

The perturbative contribution to the gravitational couplings is discussed briefly in appendix D.1.
For the pure SU(2) theory, this reduces to the following contributions to the gravitational cor-
rections:

Apert = Bpert = −
1

2πi

�

1
2

log(1−Q)−
1
4

logQ
�

. (531)

The complete expression for the prepotential is of the form:

F = Fpert +
1

(2πi)3

∞
∑

k=1

qk
E1
Fk , (532)

where q is the instanton counting parameter and Fk are the k-instanton contributions. From
the prescription outlined in appendix D, we find the following instanton contributions Fk to
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the prepotential:

k = 1 :
2Q

(1−Q)2
= 2Q+ 4Q2 + 6Q3 + 8Q4 + 10Q5 + 12Q6 +O(Q7) ,

k = 2 :
Q2(1+ 18Q+Q2)

4(1−Q)6
=

Q2

4
+ 6Q3 +

65Q4

2
+ 110Q5 +

1155
4

Q6 +O(Q7) ,

k = 3 :
2Q3

�

1+ 98Q+ 450Q2 + 98Q3 +Q4
�

27(1−Q)10
=

2
27

Q3 + 8Q4 + 110Q5 +O(Q6) ,

(533)

where the series expansion in Q is done in order to relate this result to the large volume com-
putations from the Seiberg-Witten curve. Additionally, we find that the instanton corrections
to the order 1/τ term in (528) vanishes, as expected. For the gravitational coupling A, the
first instanton contributions are:

2πiAinst = qE1

�

Q
2
+ 5Q2 +

35Q3

2
+ 42Q4 +

165Q5

2
+O(Q6)

�

+ q2
E1

�

Q2

4
+

35Q3

2
+

355Q4

2
+

1919Q5

2
+O(Q6)

�

+ q3
E1

�

Q3

6
+ 42Q4 +

1919
2

Q5 +O(Q6)

�

+O
�

q4
E1

�

.

(534)

Similarly, the first few instanton contributions to B read:

2πiBinst = qE1

�

Q
2
+ 7Q2 +

51Q3

2
+ 62Q4 +

145Q5

2
+O(Q6)

�

+ q2
E1

�

Q2

4
+

51Q3

2
+

551Q4

2
+

3055Q5

2
+O(Q6)

�

+ q3
E1

�

Q3

6
+ 62Q4 +

3055Q5

2
+O(Q6)

�

+O(q4
E1
) .

(535)

9.1.2 ZR4×S1 partiton function of the E3 theory

As another example, let us consider the partition function of the E3 theory in theΩ-background.
The corresponding gauge-theory phase is the 5d SU(2) gauge theory with N f = 2. The par-
tition function that corresponds to the E3 Seiberg-Witten geometry (91) is given by [207]:

Z inst
E3
(a,µ1,µ2,τ1,τ2) =
∑

Y

�

t
q
qE3

�|Y |
Zvector

Y (a,τ1,τ2)Z
fund
Y (a,µ1,τ1,τ2)Z

a-fund
Y (a,µ2,τ1,τ2) ,

(536)

where µ1,2 are the complex masses for the two flavours, with the various factors defined in
appendix D. In order to simplify our expressions, let us define:

s = −e−2πiµ1 − e−2πiµ2 , p = e−2πi(µ1+µ2) . (537)

As we will see below, these parameters can be matched to the parameters s, p introduced to
describe the E3 curve in (407). As was the case for the E1 theory, the instanton partition
function will be a series in the instanton counting parameter qE3

. We consider a further limit
Q → 0, in order to compare to the large volume limit. The first non-perturbative corrections
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to the prepotential then read:

(2πi)3F inst
E3
= qE3

�

sQ
1
2 + 2(1+ p)Q+ 3sQ

3
2 + 4(1+ p)Q2 + 5sQ

5
2 + 6(1+ p)Q3

�

+

+ q2
E3

�

2p− s2

8
Q+

1+ 16p+ p2

4
Q2 + 5s(1+ p)Q

5
2 +

48(1+ p2) + 198p+ 45s2

8
Q3

�

+ q3
E3

�

s(s2 − 3p)
27

Q
5
2 +

2(1+ 81p+ 81p2 + p3)
27

Q3

�

+O(q4
E3
) ,

(538)

where we suppress the terms of order O(Q
7
2 ). As was the case for the E1 partition function,

we again find that the order O(τ−1) terms vanish. For A, we find:

(2πi)Ainst = qE3

�

1+ p
2

Q+ 2sQ
3
2 + 5(1+ p)Q2 + 10sQ

5
2 +

35(1+ p)
2

Q3
�

+ q2
E3

�

1+ 20p+ p2

4
Q2 + 10s(1+ p)Q

5
2 +

35(1+ p2) + 154p+ 33s
2

Q3

�

+ q3
E3

1
6

�

1+ 105p+ 105p2 + p3
�

Q3 +O(q4
E3
) ,

(539)

and similarly for B, we have:

(2πi)Binst = qE3

�

−
1
8

sQ
1
2 +

1+ p
2

Q+
21s
8

Q
3
2 + 7(1+ p)Q2 +

115s
8

Q
5
2 +

51(1+ p)
2

Q3
�

+ q2
E3

�

s2 − 2p
16

Q+
1+ 28p+ p2

4
Q2 +

115s(1+ p)
8

Q
5
2 +

408(1+ p2) + 9(218p+ 43s2)
16

Q3

�

+ q3
E3

�

s(3p− s2)
24

Q
3
2 +

1+ 153p+ 153p2 + p3

6
Q3

�

+O(q4
E3
) ,

(540)
where we again suppress the terms of order O(Q

7
2 ).

9.2 Seiberg-Witten geometry computations of F , A and B

We now turn our attention to the toric mirror curves (91). We first show how to compute the
quantities of interest from the E1 curve, and then also present the explicit results for the E3
theory. The expressions for the other toric theories follow by flavour decoupling.

9.2.1 Instanton expansion from the DS1 E1 curve

Consider first the E1 curve (99), and introduce the dimensionless parameters associated to the
complexified Kähler parameters of the IIA geometry:

Q f ≡Q = e2πi t f = e4πia , Qb = e2πi tb = e2πi(2a+µ0) , (541)

where t f ,b are the periods corresponding to D2-branes wrapping the curves C f and Cb, respec-
tively, with Qb = λQ f . The D4-brane period is given by ΠD4 = aD, and the prepotential can
be written as:

F = 1
2

∫

ΠD4 d t f =
1
4

∫

d t f

∫

d t f τ , τ=
daD

da
= 2

dΠD4

d t f
. (542)

Let us first consider the ‘classical’ contribution to the prepotential. This is obtained from the
large-volume analysis of the D-brane periods, leading to:

F class =
4
3

a3 +
1

2πi
log(λ) a2 +

1
6

a , (543)
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as in (72). Note that, in the strict 5d limit, the instanton corrections are suppressed, and thus
we reproduce the real prepotential for the E1 theory from [13,19]:

F (5d) = lim
β→∞

i
β3

F class =
4
3
σ3 +m0σ

2 , (544)

for λ→ e−2πβm0 , with σ the real scalar of the 5d N = 1 vector multiplet and m0 the inverse
gauge coupling. The Picard-Fuchs equation (54) for the periods can be solved in the large
volume limit for generic values of the parameters, using Frobenius’ method. However, this
is equivalent to the ‘universal’ PF equation (56) for the geometric periods, with one of the
solutions given by (58). Choosing the appropriate normalization constant, one can match this
period with the a period. For the E1 theory, this is:

2πi
d

dU
a(U ,λ) = −

1
U
−

2(1+λ)
U3

−
6(1+ 4λ+λ2)

U5
−

20(1+ 9λ+ 9λ2 + 1)
U7

+O
�

1
U9

�

. (545)

It is then straightforward to invert this series expansion to find:

U(Q,λ) =Q−
1
2 + (1+λ)Q

1
2 + 3λQ

3
2 + 5λ(1+λ)Q

5
2 +O

�

Q
7
2

�

, (546)

where we again used Q = e4πia. Finally, combining this with the expression τ= τ( j) obtained
by inverting (59) we obtain the prepotential:

(2πi)3F = (2πi)3Fclass +
�

2Q+
1
4

Q2 +
2
27

Q3 +
1
32

Q4
�

+λ
�

2Q+ 4Q2 + 6Q3 + 8Q4
�

+λ2
�

1
4

Q2 + 6Q3 +
65
2

Q4
�

+λ3
�

2
27

Q3 + 8Q4
�

+O(λ4) ,
(547)

where terms of order O(Q5) are suppressed. We thus immediately notice that this agrees with
the instanton counting results (533), upon the identification:

qE1
= λ . (548)

This comes as no surprise, since we already observed that the 4d limit of the SW curve in-
volves taking λ→ (2πiβΛ)4, which is the instanton counting parameter of the resulting four-
dimensional theory. Let us also note that the perturbative part of the above expression repro-
duces the series expansion of the trilogarithm, and thus agrees with (530). The remaining
task is to identify the correct expressions for the gravitational corrections A and B. Following
closely the four-dimensional computation in [36], we first consider the quantity:

−
1
2

log
�

−Q
dU
dQ

�

= a0 +λ
�

1
2

Q+ 5Q2 +
35
2

Q3 + 42Q4 +
165
2

Q5
�

+λ2
�

1
4

Q2 +
35
2

Q3 +
355
2

Q4 +
1919

2
Q5
�

+λ3
�

1
6

Q3 + 42Q4 +
1919

2
Q5
�

,
(549)

up to orders O(Q6) and O(λ4), with a0 encoding the perturbative contribution:

a0 = −
1
2

log(1−Q) +
1
4

log(Q) +
1
2

log(2) . (550)

The perturbative and non-perturbative corrections are in perfect agreement with (531) and
(534), respectively. We then find that:

A=
p

2
�

−
1

4πi
dU
da

�
1
2

, (551)
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with A given in (522). For the B gravitational coupling, let us first define the ‘physical’ dis-
criminant as:

∆phys(U) = λ−2∆E1
(U) , (552)

where ∆E1
is the discriminant of the E1 curve in (258). Then, we find that:

−
1
8

log
�

∆phys
�

= b0 +λ
�

1
2

Q+ 7Q2 +
51
2

Q3 + 62Q4 +
245
2

Q5
�

+λ2
�

1
4

Q2 +
51
2

Q3 +
551
2

Q4 +
3055

2
Q5
�

+λ3
�

1
6

Q3 + 62Q4 +
3055

2
Q5
�

,
(553)

with the terms of orders O(Q6) and O(λ4) suppressed, and with:

b0 = −
1
2

log(1−Q) +
1
4

log(Q) . (554)

This matches the contributions to the B gravitational correction in (531) and (535) and, as a
result, we find:

B =
�

∆phys
�

1
8 . (555)

It is also instructive to consider the 4d limit of these expressions. First, the perturbative part
(531) of these quantities becomes:

−
1
2

log(1−Q) ≈ −
1
2

log (−4πiβa) +O(β)≈ −1
2

log
�

−
2a
Λ

�

+O(β) , (556)

where we introduce the dynamical scale Λ as (2πiβ)−1. The K-theoretic Nekrasov partition
function reduces to its 4d counterpart in the 4d limit, by definition, and it is then not difficult
to see that the 4d limits of the expressions for A and B are in agreement with the expressions
given in [36]. Note that, in order to take the 4d limit at each order in the instanton expansion,
one needs to use the exact expression for the k-instanton correction instead of the above Q-
series. Let us show this explicitly for the 1-instanton correction. The 1-instanton corrections
to the gravitational couplings which reproduce the series (534), (535) are:

A : qE1
Q(1+ 6Q+Q2)

2(1−Q)4
≈
Λ4

4a4
+O(β2) ,

B : qE1
Q(1+ 10Q+Q2)

2(1−Q)4
≈

3Λ4

8a4
+O(β2) .

(557)

The physical discriminant reduces to ∆phys ≈ 16(2πiβ)4∆(4d) in the 4d limit, with
∆(4d) = (u2 − 4Λ4), and we find:

A=
1
p
Λ

�

−
du
da

�
1
2

, B =
p

2
p
Λ

�

∆(4d)
�

1
8 , (558)

in good agreement with [36].

9.2.2 Instanton expansion from the DS1 E3 curve

The same computation can be carried out for the E3 curve (91), with the parameters
s = M1 +M2 and p = M1M2. For generic values of the mass parameters, we find:

U =Q−
1
2 +(1+λ(1+ p))Q

1
2 +2sλQ+3λ (1+ (1+λ)p)Q

3
2 +4sλ (1+ (1+λ)p)Q2+O

�

Q
5
2

�

.

113

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

We should again arrange our expressions in terms of the parameter λ. Up to the first instanton
correction, the prepotential reads:

(2πi)3FE3
=

F0 +λ
�

sQ
1
2 + 2(1+ p)Q+ 3sQ

3
2 + 4(1+ p)Q2 + 5sQ

5
2 + 6(1+ p)Q3 +O(Q

7
2 )
�

,
(559)

which agrees with (538) upon the identifications Mi = −e−2πiµi , as in (96). This shows that the
parameters s and p defined in (537) are identical to the ones introduced above. We checked
explicitly that the IR and UV computations of the prepotential agree up to the three-instanton
correction. The F0 contribution is essentially the perturbative 1-loop contribution:

(2πi)3Fpert = 2Li3(Q)−
2
∑

j=1

�

Li3
�

−M j

p

Q
�

+ Li3

�

−
p

Q
M j

��

= 2Li3(Q)−
2
∑

j=1

�

Li3
�

e2πi(a−µ j)
�

+ Li3
�

e2πi(a+µ j)
��

,

(560)

where we omit a cubic polynomial in a. We define the physical discriminant as:

∆phys(U) =
1

λ2M1M2
∆E3
(U) , (561)

such that the coefficient of the highest power in U in the physical discriminant is unity. We
then checked the following relations up to the three-instanton correction:

−
1
2

log
�

−
1

4πi
dU
da

�

= a0(Q) + 2πiAinst ,

−
1
8

log
�

∆phys(U)
�

= b0(Q) + 2πiBinst ,
(562)

where a0 and b0 are given by:

a0 = −
1
2

log(1−Q) +
1
4

log(Q) +
1
2

log(2) ,

b0 = −
1
2

log(1−Q) +
3
8

log(Q)−
1
8

2
∑

j=1

�

log
�

1+M j

p

Q
�

+ log

�

1+

p

Q
M j

��

.
(563)

These factors are the correct perturbative contributions for the 5d SU(2) gauge theory with
N f = 2. We then find perfect agreement between the IR and UV computations of the effective
gravitational couplings for the DS1 E3 theory.
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A Del Pezzo surfaces, En characters and 5d gauge-theory variables

In this appendix, we review some well-known facts about how the En root system arises from
the second homology lattice of the del Pezzo surface dPn – see e.g. [208]. We also explain our
choice of 5d gauge-theory parameters, and how they are related to the IIA Kähler parameters
naturally associated to the decomposition:

H2(dPn,Z)∼= Λ−K ⊕ E−n . (A.1)

We also mention some useful facts about subalgebra of E8.

A.1 En roots and characters from dPn

Consider the En algebra, with the n simple roots labelled according to:

En :
α1 α2 α4 α5

· · ·
αn

α3

(A.2)

for n≥ 4.41 Note that the 5d mass deformation of the En theory leading to the En−1 theory in
the IR corresponds to ‘removing’ the node αn. For n< 4, we have:

E3 :
α1 α2

α3

E2 :
α1

u(1)

E1 :
α1

(A.3)

In particular, for E3 = su(3)⊕ su(2), we denote by α1,α2 the simple roots of su(3). For n≥ 2,
we view dPn as the blow-up of F0

∼= Cb ×C f at n−1 generic points. We then have the basis of
curves:

Cb , C f , Ei , i = 1, · · · , n− 1 , (A.4)

with the only non-zero intersection numbers inside dPn being:

Cb · C f = 1 , Ei · E j = −δi j . (A.5)

This basis is related to the basis (H, eEi), i = 0, · · · , n, for dPn viewed as the blow-up of P2 at n
points, with H the hyperplane class in P2, by:

H = C f + Cb − E1 , eE0 = Cb − E1 , eE1 = C f − E1 , eEi = Ei for i = 2, · · · , n− 1 . (A.6)

The canonical class of dPn is given by:

K = −2Cb − 2C f +
n
∑

i=1

Ei = −3H +
n
∑

i=0

eEi . (A.7)

41Notice that for n = 4, we have the A4 Dynkin diagram with an unusual ordering of the simple roots,
(α1,α2,α4,α3).
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En roots. Let us consider the following basis of curves orthogonal to K:

Cα1
= Cb − C f ,

Cα2
= C f − E1 − E2 ,

Cα3
= E1 − E2 ,
...

Cαn
= En−2 − En−1 .

(A.8)

These curves intersect according to the Dynkin diagram (A.2), namely:

Cαi
· Cα j

= −Ai j , (A.9)

where (Ai j) is the Cartan matrix of En, in our choice of basis. (In particular, each Cα has
self-intersection −2.) Therefore, M2-brane wrapping these curves will correspond to the En
W-bosons, in the standard way. The En symmetry is a flavour symmetry in 5d, instead of a
gauge symmetry, because En curves are dual to non-compact divisors.

En characters. Let us also define n (formal) curves, denoted by Cei
corresponding to the

fundamental weights of En, according to:

Cαi
=

n
∑

j=1

Ai jCe j
. (A.10)

Let us denote by dn the order of the center of the simply-connected group En:

dn = |Z(En)|= det(Ai j) =K ·K = 9− n . (A.11)

It is equal to the degree of the del Pezzo surface (for n > 2), as indicated. We see that dnCei

gives us an element of H2(dPn,Z).42 One can use this simple fact to argue that the flavour
symmetry group of the 5d En theory is En/Z(En), since formal ‘pure flavour’ states should wrap
integral curves [33].

To each ‘pure flavour’ curve C, we associate a fugacity zC =QC . In particular, let zαi
denote

the fugacities associated to the En roots (A.8). We then define the fugacities:

t i =
n
∏

j=1

z
A−1

i j
α j

, (A.12)

which are associated to the fundamental weights ei . Then, for any representation R of En, we
can compute the character:

χR =
∑

ρ∈R
tρ , tρ ≡

n
∏

i=1

tρi
i , (A.13)

where ρ = (ρi) are the weights of R in the fundamental weight basis.

42For E3 = SU(3)×SU(2), we can treat the two factors separately, and therefore 3Ce1
, 3Ce2

and 2Ce3
are integral

cohomology classes.
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A.2 Geometric En parameters versus gauge-theory parameters

Let eX denote the total space of the canonical line bundle over dPn, and let D0
∼= [dPn] be the

compact divisor. Given any ‘flavour’ curve CF ⊂ dPn, we have a non-compact divisor DF such
that CF

∼= DF · D0. It is then natural to expand the (complexified) Kähler class in terms of
parameters ba and νi such that:

B + iJ = baD0 +
n
∑

i=1

νi Dαi
, (A.14)

and similarly for the C3 gauge field in M-theory or Type IIA. We then have a dynamical U(1)g
vector multiplet with scalar field ba and n background U(1)i vector multiplets with mass pa-
rameters νi . In this basis, the U(1)g electric charge bq and the U(1)i flavour charges bqF

i of any
M2- or D2-brane wrapping a curve C are given by the intersection numbers:

bq0 = −E0 · C , bqF
i = −Dαi

· C . (A.15)

In particular, we see that, for n> 2, the Kähler parameters in the basis (A.4) read:

t f = 2ba− ν1 ,

tb = 2ba+ ν1 − ν2 ,

tE1
= ba− ν2 + ν3 ,

tE2
= ba− ν2 − ν3 + ν4 ,

tE j
= ba− ν j+1 + ν j+2 , j = 3, · · · , n− 1 .

(A.16)

This should be compared to the choice (69), namely:

t f = 2a , tb = 2a+µ0 , tEi
= a+µi , (A.17)

which defines the ‘5d gauge-theory parameters’ used throughout the main text. One can easily
work out the map between the ‘geometric’ and ‘5d gauge-theory’ parameters by comparing
(A.17) to (A.16). In particular, we have:

ba = a+
1

9− n

 

2µ0 −
n−1
∑

j=1

µ j

!

. (A.18)

Of course, the mixing of the U(1) gauge field with background vector multiplets does not
affect the physics. We use the parameter a because it directly relates to the 5d (and 4d)
gauge theory, wherein the M2-brane wrapped over C f is the W-boson of an SU(2) gauge group
– that parameterisation is just a convenient choice, which breaks explicitly the permutation
symmetry between C f and Cb in F0. Note that, given the mixing (A.18), we should also define
a corresponding complex structure parameter in the mirror geometry bY:

bU =

 

λ2
n−1
∏

j=1

M j

!n−9

U , (A.19)

in the notation of section 2.4.1. In fact, bU corresponds precisely to the parameter u in [24].

117

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

Table 14: Root lattices of rank s that embed into E8. The sublattices that admit two
inequivalent embeddings are shown in [blue], while those that cannot be associated
with rational elliptic surfaces are in (grey).

s = 8
A8 , D8 , A7 ⊕ A1 , A5 ⊕ A2 ⊕ A1 , A2

4 , A4
2 , E6 ⊕ A2 , E7 ⊕ A1 ,

D6 ⊕ A2
1 , D5 ⊕ A3 , D2

4 , (D4 ⊕ A4
1) , A3 ⊕ A2

1 , (A8
1) .

s = 7
A6 ⊕ A1 , A4 ⊕ A2 ⊕ A1 , A5 ⊕ A2 , A3

2 ⊕ A1 , E6 ⊕ A1 , E7 ,
D7 , D5 ⊕ A2

1 , D4 ⊕ A3
1 , A2

3 ⊕ A1 , (A7
1) , D6 ⊕ A1 , D5 ⊕ A2 ,

A3 ⊕ A2 ⊕ A2
1 , D4 ⊕ A3 , A3 ⊕ A4

1 , A4 ⊕ A3 , A5 ⊕ A2
1 , [A7] .

s = 6
A3

2 , E6 , D6 , D4 ⊕ A2
1 , [A2

3] , D5 ⊕ A1 , A3 ⊕ A3
1 , D4 ⊕ A2 , A6

1 ,
A2 ⊕ A4

1 , A4 ⊕ A2
1 , A6 , A3 ⊕ A2 ⊕ A1 , [A5 ⊕ A1] , A4 ⊕ A2 , A2

2 ⊕ A2
1 .

s = 5
D5 , [A3 ⊕ A2

1] , A3 ⊕ A2 , A5 , A5
1 , A4 ⊕ A1 ,

D4 ⊕ A1 , A2 ⊕ A3
1 , A2

2 ⊕ A1 .
s = 4 D4 , [A4

1] , A2 ⊕ A2
1 , A2

2 , A3 ⊕ A1 , A4 .
s = 3 A3 , A2 ⊕ A1 , A3

1 .
s = 2 A2 , A2

1 .
s = 1 A1 .

A.3 Root lattices embedded into E8

Consider g ⊂ E8 a ‘Dynkin subalgebra’ of rank s [171], namely an ADE-type subalgebra of E8.
The root lattice of g embeds into the E8 lattice. It is then one of the root lattices given in
table 14. Most of these have a single embedding into E8, while the five root lattices:

A7, A2
3 , A5 ⊕ A1 , A3 ⊕ A2

1 , A4
1 , (A.20)

shown in blue in the table, have two distinct embeddings, one being primitive and the other
not. Let us also note that, in the language of section 3, the three subalgebras shown in grey in
table 14 cannot arise as the 7-brane root lattice of a rational elliptic surface [45].

B Congruence subgroups of PSL(2,Z)

In this appendix, we review some useful features of the congruence subgroups of PSL(2,Z).
For more details, see for example [209]. The modular group PSL(2,Z) is generated by:

S =

�

0 −1
1 0

�

, T =

�

1 1
0 1

�

, (B.1)

modulo the center of SL(2,Z), P = S2 = −1. We first introduce the principal congruence
subgroup:

Γ (N) =

��

a b
c d

�

∈ PSL(2,Z) :

�

a b
c d

�

=

�

1 0
0 1

�

mod N

�

, (B.2)

which can be viewed as the kernel of the group homomorphism PSL(2,Z) → PSL(2,ZN ).
The subgroups Γ of PSL(2,Z) containing the principal congruence subgroup Γ (N) are called
congruence subgroups, with the level being the smallest such positive integer N . The level-N
congruence subgroups encountered in this paper are:

Γ0(N) =

��

a b
c d

�

∈ PSL(2,Z) : c = 0 mod N

�

.

Γ1(N) =

��

a b
c d

�

∈ PSL(2,Z) :

�

a b
c d

�

=

�

1 b
0 1

�

mod N

�

.

(B.3)
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In a similar fashion, we can introduce the groups Γ 0(N) and Γ 1(N), by requiring b = 0 mod N
instead, which will be related by conjugation to the Γ0(N) and Γ1(N) groups, respectively.

The index43 nΓ of Γ in PSL(2,Z) is finite for all congruence subgroups. As a result, we
have:

PSL(2,Z) =
nΓ
⊔

i=1

Γ αi , αi ∈ PSL(2,Z) , (B.4)

for a list of coset representatives {αi}. The elements of the modular group act on the upper
half-plane H as:

τ 7→
aτ+ b
cτ+ d

, γ=

�

a b
c d

�

∈ PSL(2,Z) , ∀τ ∈H . (B.5)

It then follows that a fundamental domain for the subgroup Γ is defined as an open subset
FΓ ⊂ H of the upper half-plane, such that no two distinct points are equivalent under the
action of Γ , unless they are on the boundary of FΓ ; furthermore, under the action of Γ , any
point of H is mapped to the closure of FΓ . Let us denote the fundamental domain of PSL(2,Z)
by F0. The upper half-plane H is then obtained by the action of the modular group as:

H = PSL(2,Z)F0 . (B.6)

The fundamental domain of Γ ⊂ PSL(2,Z) can be obtained from a list of coset representatives
{αi}, since:

H =
� nΓ
⊔

i=1

Γ αi

�

F0 =
nΓ
⊔

i=1

Γ (αiF0) . (B.7)

Thus, the fundamental domain of Γ is FΓ =
⊔

α−1
i F0, with the coset representatives chosen

such that FΓ has a connected interior.44

A cusp of Γ is defined as an equivalence class in Q ∪ {∞} under the action of Γ . The
PSL(2,Z) group has only one cusp, with the representative usually chosen as τ∞ = i∞. The
width of the cusp τ∞ in Γ is the smallest integer w such that T w ∈ Γ . More generally, for a
cusp eτ= γτ∞, the width is defined as the width of τ∞ for the group γ−1Γγ. The cusps other
than τ∞ are typically chosen as the points of intersection of the fundamental domain with the
real axis.

The other special points in the fundamental domain are the elliptic points, which are those
points with non-trivial stabilizer, i.e. γτ= τ for some non-trivial element γ ∈ Γ . The elements
γ are called the elliptic elements of Γ . It can be shown that the elliptic points always lie on
the boundary of the fundamental domain. Finally, the order of an elliptic point τ is the order
of the stabilizing subgroup of τ in Γ . For PSL(2,Z) the only elliptic points are τ0 ∈ {i, e

2πi
3 },

with stabilizers 〈S〉 and 〈ST 〉, of order 2 and 3, respectively. One can prove that, for a given
finite index subgroup Γ with fundamental domain F , the elliptic points τ ∈ F are always in
the SL(2,Z) orbit of the above elliptic points, i.e. τ= γτ0, and thus must have orders 2 or 3.

Elliptic modular surfaces. A major simplification in the computation of periods and mon-
odromies occurs when the elliptic surface associated to the Seiberg-Witten curve is modular.
These surfaces were first discussed by Shioda [211] and are defined as follows. For a finite
index subgroup Γ ⊂ PSL(2,Z), the quotient H/Γ , together with a finite number of cusps, forms
a compact Riemann surface XΓ , of genus:

gΓ = 1+
n

12
−

e2

4
−

e3

3
−

c
2

, (B.8)

43That is, the number of right-cosets of Γ in PSL(2,Z).
44The fundamental domains of the congruence subgroups introduced in this section can be drawn using H. Verill’s

Java Applet [210].

119

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

where n is the index of Γ in PSL(2,Z), ei the number of elliptic points of order i and c the
number of cusps. There exists a holomorphic map on P1:

JΓ : XΓ → P1 , (B.9)

which reduces to the usual modular function j(τ) for Γ = PSL(2,Z), where XΓ becomes P1.
The elliptic modular surface corresponding to Γ is then the elliptic surface over the Riemann
surface XΓ . From the above map, it becomes clear that these surfaces are rational.

If the associated elliptic surface to a given Seiberg-Witten curve is modular, one can read
the monodromies around the cusps and elliptic points of Γ from a set of coset representatives
of H/Γ as follows. For a cusp of width w in the Γ -orbit of τ = γτ∞, with γ ∈ SL(2,Z), the
monodromy matrix is conjugate to T w. In a conveniently chosen basis, this monodromy is
given by γT wγ−1. The matrices γ are part of the coset representatives as one requires that the
fundamental domain of Γ has connected interior. Note that the choice of γ for a given cusp is
not unique. Similarly, the monodromies around elliptic points are conjugate to some matrix
M ∈ SL(2,Z), as shown in table 4, with the conjugacy matrix γ being given by τ = γτ0, for
τ0 ∈ {i, e2πi/3}.

Modular forms. A modular form of integer weight k for a subgroup Γ is a holomorphic
function f : H→ C, satisfying:

f
�

aτ+ b
cτ+ d

�

= (cτ+ d)k f (τ) ,

�

a b
c d

�

∈ Γ . (B.10)

The ring of modular forms for the SL(2,Z) group is generated by the E4 and E6 Eisenstein
series, defined as:

E4(τ) = 1+ 240
∞
∑

n=1

n3qn

1− qn
, E6(τ) = 1− 504

∞
∑

n=1

n5qn

1− qn
, (B.11)

for q = e2πiτ. Additionally, these satisfy:

Ek(τ+ 1) = Ek(τ) , Ek

�

−
1
τ

�

= τkEk(τ) . (B.12)

The modular j-function in Γ (1) = PSL(2,Z) defined as:

j(τ) = 1728
E4(τ)3

E4(τ)3 − E6(τ)2
, (B.13)

is a bijection between H/Γ (1) and C, which parameterizes isomorphism classes of elliptic
curves. Using the zeroes of the Eisenstein series E4,6, we find that:

J(i) =
1

1728
j(i) = 1 , J

�

e
2πi
3

�

=
1

1728
j
�

e
2πi
3

�

= 0 . (B.14)

The rings of modular forms M? (Γ ) for the congruence subgroups usually have more generators.
In order to describe those, we first introduce the Dedekind η-function:

η(τ) = q
1
24

∞
∏

j=1

(1− q j) , (B.15)

which has the T and S transformations:

η(τ+ 1) = e
iπ
12η(τ) , η(−1/τ) =

p

−iτη(τ) . (B.16)
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Additionally, we have [192]:

η

�

τ+
1
2

�

= e
iπ
24

η3(2τ)
η(τ)η(4τ)

,

η3
�

τ+
1
3

�

= e
iπ
12η3(τ) + 3

p
3e−

iπ
12η3(9τ) .

(B.17)

A useful theorem used throughout the text states that the η-quotient f (τ) =
∏

δ|N η(δτ)
rδ

satisfying:
∑

δ|N

δrδ = 0 mod 24 ,
∑

δ|N

N
δ

rδ = 0 mod 24 , (B.18)

with k = 1
2

∑

δ|N rδ ∈ Z is a weakly holomorphic weight k modular form for Γ0(N), namely:

f
�

aτ+ b
cτ+ d

�

= χ(d)(cτ+ d)k f (τ) , (B.19)

with the Dirichlet character χ(d) =
�

(−1)ks
d

�

, where s =
∏

δ|N δ
rδ . When the associated elliptic

curve XΓ has genus zero, there is only one modular form of weight 0, called the Hauptmodul of
Γ . For the congruence subgroups of interest in the main text, these modular functions appear
as McKay-Thompson series of the Monster group [173]. One Hauptmodul that does not appear
in these lists is the Hauptmodul for Γ1(5). Its expression is given by [170]:

f (τ) =
1
q

∞
∏

n=1

(1− qn)−5( n
5 ) , (B.20)

where the notation
�

n
p

�

denotes the Legendre symbol. Note also that this is the fifth power of
the Hauptmodul of Γ (5).

C Seiberg-Witten curves

In this appendix, we list various Seiberg-Witten curves used throughout the main text.

C.1 Curves for the 4d SU(2) gauge theories

The Weierstrass form of the four-dimensional SU(2) SYM theories we use are given by [2,203]:

N f = 0 : g2(u) =
4u2

3
− 4Λ4 , g3(u) = −

8u3

27
+

4
3

uΛ4 ,

N f = 1 : g2(u) =
4u2

3
− 4m1Λ

3 , g3(u) = −
8u3

27
+

4
3

m1uΛ3 −Λ6 ,

N f = 2 : g2(u) =
4u2

3
− 4m1m2Λ

2 +Λ4 ,

g3(u) = −
8u3

27
+

4
3

m1m2uΛ2 − (m2
1 +m2

2)Λ
4 +

2
3

uΛ4 ,

N f = 3 : g2(u) =
4u2

3
−

4uΛ2

3
− 4T3Λ+ T2Λ

2 +
Λ4

12
,

g3(u) = −
8u3

27
−

5u2Λ2

9
+

uΛ
9

�

12T3 + 6T2Λ+Λ
3
�

− T4Λ
2 +

1
3

T3Λ
3 −

1
12

T2Λ
4 −

1
216
Λ6 ,

(C.1)
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where in the last line we introduce the SO(6) Casimirs:

T2 =
3
∑

i

m2
i , T4 =

∑

i< j

m2
i m2

j , T3 =
3
∏

i

mi . (C.2)

These conventions are chosen such that the curves agree with the 4d Nekrasov partition func-
tion computations. We review the latter in appendix D. Note that in the massless limit, it is
convenient to set the dynamical scales to:

Λ0 = 2−
1
2 , Λ1 = 2

2
3 3−

1
2 i , Λ2 = 2

1
2 , Λ3 = 4 . (C.3)

These curves are isomorphic to:

N f = 0 :
Λ2

t
+Λ2 t + x2 − u= 0 ,

N f = 1 :
Λ

t
(x +m1) +Λ

2 t + x2 − u= 0 ,

N f = 2 :
Λ

t
(x +m1) +Λt(x +m2) + x2 − eu= 0 ,

(C.4)

where for N f = 2 we have:

N f = 2 : eu= u−
Λ2

2
. (C.5)

The CB parameter eu in the above notation, breaks the Z2 symmetry, but agrees with Nekrasov
partition function considerations. These a-independent shifts do not change the low-energy
effective action, as discussed in [36]. Finally, for the N f = 3 theory, the curve:

1
t
(x + em1)(x + em3) +Λt(x + em2) + x2 − eu= 0 , (C.6)

has the same Weierstrass form as in (C.1), upon the identifications:

N f = 3 : emi = mi −
Λ

2
, eu= u− (m1 +m2 +m3)

Λ

2
+
Λ2

4
. (C.7)

C.2 Seiberg-Witten curves for the En theories

In this section, we review the Seiberg-Witten curves for the non-toric (rank one) En theories,
which are obtained as limit of the E-string theory SW curve. The fully mass deformed curves
were derived in [24, 156], and more recently reviewed in [157, 204]. In terms of the flavour
characters χi , the E8 curve can be written in Weierstrass form as:

g2(bU ,χ) =
bU4

12
−
�

2
3
χ1 −

50
3
χ8 + 1550

�

bU2 −
�

−70χ1 + 2χ3 − 12χ7 + 1840χ8 − 115010
�

bU

+
4
3
χ1χ1 −

8
3
χ1χ8 − 1824χ1 + 112χ3 − 4χ2 + 4χ6 − 680χ7 +

28
3
χ8χ8 + 50744χ8

− 2399276 ,

(C.8)

122

https://scipost.org
https://scipost.org/SciPostPhys.12.2.065


SciPost Phys. 12, 065 (2022)

and:

g3(bU ,χ) =

−
bU6

216
+ 4bU5 +

�

1
18
χ1 +

47
18
χ8 −

5177
6

�

bU4

+
�

−
107

6
χ1 +

1
6
χ3 + 3χ7 −

1580
3
χ8 +

504215
6

�

bU3 +
�

−
2
9
χ1χ1 −

20
9
χ1χ8

+
5866

3
χ1 −

112
3
χ3 +

1
3
χ2 +

11
3
χ6 −

1450
3
χ7 +

196
6
χ8χ8 + 39296χ8 −

12673792
3

�

bU2

+
�94

3
χ1χ1 −

2
3
χ1χ3 +

718
3
χ1χ8 −

270736
3

χ1 −
10
3
χ3χ8 + 2630χ3 − 52χ2 + 4χ5

− 416χ6 + 16χ7χ8 + 25880χ7 −
7328

3
χ8χ8 −

3841382
3

χ8 + 107263286
�

bU +
8

27
χ1χ1χ1

+
28
9
χ1χ1χ8 − 1065χ1χ1 +

118
3
χ1χ3 −

4
3
χ1χ2 +

4
3
χ1χ6 −

8
3
χ1χ7 −

40
9
χ1χ8χ8

−
19264

3
χ1χ8 +

4521802
3

χ1 −χ3χ3 +
572
3
χ3χ8 − 59482χ3 −

20
3
χ2χ8 + 1880χ2 + 4χ4

− 232χ5 +
8
3
χ6χ8 + 11808χ6 −

2740
3
χ7χ8 − 460388χ7 +

136
27
χ8χ8χ8 +

205492
3

χ8χ8

+
45856940

3
χ8 − 1091057493 .

(C.9)
The other En curves are recovered iteratively. Starting from the E8 curve, one should rescale
the variables as:

(bU , x , y) −→ (αbU ,α2 x ,α3 x) , (C.10)

and the characters as:

(χ1,χ2,χ3,χ4,χ5,χ6,χ7,χ8)→ (α2χ1,α4χ2,α3χ3,α6χ4,α5χ5,α4χ6,α3χ7,α2χ8) . (C.11)

Then, taking α→∞ and setting χ8 = 1, one obtains the E7 curve, and similarly for the other
En theories. Note that this statement is equivalent to decomposing En into En−1 × U(1) and
decoupling the U(1) factor [156]. For the toric theories, we can also find the map between
the bU , χ variables used here and the U , λ, Mi variables used in the main text, by explicit
comparison with the Weierstrass form of the ‘toric’ curves, and one finds perfect agreement
with the discussion of appendix A. For instance, for the E3 curve, we find:

χ
E3
1 =

1+λ+M1M2λ

κ2
E3

, χ
E3
2 =

λ+λM1M2 +λ2M1M2

κ4
E3

, χ
E3
3 =

λ(M1 +M2)
κ3

E3

,

bU =
1
κE3

U , κE3
≡ λ

1
3 M

1
6

1 M
1
6

2 .

In the massless case, we always have bU = U , as we see from (A.19). For generic masses, we
can always rescale the characters and the coordinates so that this equality is maintained; this
is what we do implicitly in section 8.

D SU(2) instanton partition functions in 5d and 4d

In this section, we review the Nekrasov partition functions of the 5d rank-one toric En theories
on R4 × S1 with the Ω-background, as well as their 4d gauge theory limits. These can be
determined using the refined topological vertex formalism [202, 212], which is equivalent to
the K-theoretic Nekrasov partition functions of the 5d SU(2) gauge theories [113].
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D.1 Perturbative contributions

For the 5d theories, we introduce the notation:

q = e2πiτ1 , p = t−1 = e2πiτ2 , x = e2πia , (D.1)

where τi = βεi are the dimensionless Ω-background parameters and a is the scalar of some
U(1) vector multiplet. The perturbative part of the Nekrasov partition function for a gauge the-
ory with gauge group G and matter transforming in some representation R of the Lie algebra
g is:

Zpert
C2×S1 (a,τ1,τ2) =

∏

α∈g
(xα; q, p)∞

∏

ρ∈R

1
(xρ yF ; q, p)∞

, (D.2)

where α are the roots of g and ρ are the weights of R, while the parameters yF keep track of
the flavour symmetries. Hence, for a single hypermultiplet of charge one under a U(1) gauge
field, we have:

Zhyper
C2×S1 (a,τ1,τ2) = (x; q, p)−1

∞ , (D.3)

with the double-Pocchammer symbol defined as:

(x; q, p)∞ =
∞
∏

j,k=0

(1− xq j pk) . (D.4)

Note that this product converges for Im(τi)> 0. We define the ‘quantum trilog’ as:

Li3(x; q, p) = − log(x; q, p)∞ , (D.5)

which, in the limit τi → 0, becomes:

Li3(x; q, p)∼
1

(2πi)2
1
τ1τ2

Li3(x)−
1

2πi
τ1 +τ2

2τ1τ2
Li2(x)−

1
12

�

3+
τ1

τ2
+
τ2

τ1

�

log(1− x) +O(τ1,τ2) .

(D.6)
We should mention that the perturbative contribution as written here is given in a somewhat
unconventional parity-violating quantisation scheme (see the discussion in [121]). We must
generally add additional 5d (flavour) Chern-Simons contribution to restore parity (in parity-
preserving theories). This is what we did in (530) and (531), in particular.

D.2 Instanton contributions

In what follows, we give our conventions for the K-theoretic Nekrasov partition functions.

5d Partition function. Following [200], given a Young tableaux Y = (νi), with transpose
Y t = (νt

j), and a box s = (i, j) in Y , we define the arm and leg lengths:

AY (s) = νi − j , LY (s) = ν
t
j − i . (D.7)

Then, for τi = βεi , the non-perturbative part of the Nekrasov parition function of the five-
dimensional pure SU(2) theory is given by:

Zvector
Y (a,τ1,τ2) =

2
∏

α,β=1

1
Nαβ(a, t, q)

, (D.8)
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with q the instanton counting parameter, and Y = (Y1, Y2). We defined the product:

Nαβ(a,τ1,τ2) =
∏

s∈Yα

�

1− e−2πi(aβ−aα)e2πi LYα (s)τ1 e−2πi(AYβ
(s)+1)τ2

�

∏

es∈Yβ

�

1− e−2πi(aβ−aα)e−2πi(LYβ
(es)+1)τ1 e2πiAYα (es)τ2

�

,
(D.9)

with a1 = −a2 = −a. Introducing Qα = e−2πiaα , as well as Qβα =QβQ−1
α , we have:

Nαβ(Q, q, t) =
∏

s∈Yα

�

1−Qβα qLYα (s) tAYβ
(s)+1

�∏

es∈Yβ

�

1−Qβα q−LYβ
(es)−1 t−AYα (es)

�

,

=
∞
∏

i, j=1

1−Qβαq−i+να, j t− j+νt
β ,i+1

1−Qβαq−i t− j+1
,

(D.10)

with q, t defined in (D.1). Note that the above prescription in fact applies to the partition
functions of U(N) gauge theories, rather than SU(N) or Sp(N). In five dimensions, we will
need to account for non-zero Chern-Simons level and fundamental or anti-fundamental matter
contributions. The Chern-Simons contribution can be expressed as [213]:

ZCS
Y , k(a,τ1,τ2) = e−2πi k

2 (τ1+τ2)
2
∏

α=1

∏

s∈Yα

e−2πikaαe−2πik(i−1)τ1 e−2πik( j−1)τ2

=
2
∏

α=1

e−2πikaα|Yα|e−2πi k
2 ||Y

t
α ||

2τ1 e−2πi k
2 ||Yα||

2τ2

=
2
∏

α=1

Qk|Yα|
α q−

k
2 ||Y

t
α ||

2
t

k
2 ||Yα||

2
,

(D.11)

for which we used the identities [202]:

∑

s∈Y

(i − 1) =
1
2

�

||Y ||2 − |Y |
�

,
∑

s∈Y

( j − 1) =
1
2

�

||Y t ||2 − |Y |
�

, (D.12)

with |Y | =
∑

i νi and ||Y ||2 =
∑

i ν
2
i . Finally, the building blocks for fundamental and anti-

fundamental matter can be expressed as [214]:

Z fund
Y (a,µ,τ1,τ2) =
∏

s∈Y1

�

1− e−2πi(µ+a)qLY1
(s)+ 1

2 t− j+ 1
2

�∏

es∈Y2

�

1− e−2πi(µ−a)qLY2
(es)+ 1

2 t−ej+
1
2

�

,

Za-fund
Y (a,µ,τ1,τ2) =

∏

s∈Y2

�

1− e−2πi(µ+a)q−LY2
(s)− 1

2 t j− 1
2

�∏

es∈Y1

�

1− e−2πi(µ−a)q−LY1
(es)− 1

2 tej−
1
2

�

,

(D.13)

where s = (i, j) and es = (ei,ej). These can also be expressed in terms of the function Nαβ defined
before. It is known that the Nekrasov partition function for the toric En theories agrees with
results from topological vertex. For a review of the topological vertex formalism for all the
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toric cases, see [207,214]. In our notation, the En partition functions are given by:

E1 : Z inst
E1
(a,τ1,τ2) =

∑

Y

�

qe−2πi(τ1+τ2)
�|Y |

Zvector
Y (a,τ1,τ2) ,

eE1 : Z inst
eE1
(a,τ1,τ2) =

∑

Y

�

qe−2πi(τ1+τ2)
�|Y |

Zvector
Y (a,τ1,τ2)Z

CS
Y , k=1(a,τ1,τ2) ,

E2 : Z inst
E2
(a,µ1,τ1,τ2) =

∑

Y

�

qe−2πi(τ1+τ2)
�|Y |

Zvector
Y (a,τ1,τ2)Z

f und
Y (a,µ1,τ1,τ2) ,

E3 : Z inst
E3
(a,µ1,µ2,τ1,τ2) =

∑

Y

�

qe−2πi(τ1+τ2)
�|Y |

Zvector
Y (a,τ1,τ2)×

× Z fund
Y (a,µ1,τ1,τ2)Z

a-fund
Y (a,µ2,τ1,τ2) .

(D.14)

In these conventions, the instanton counting parameter is:

En : q= λ , eE1 : q= −λ . (D.15)

Let us also note that the series expansion in the instanton counting parameter is an expression
for the partition function valid in the gauge-theory limit of the En theories. In this regard, we
will identify:

Q = e4πia ≈
1

U2
, (D.16)

when comparing to the results obtained from the SW curves.

4d partition function. The 4d partition functions can be obtained in the small-circle limit,
by introducing the appropriate factors of β in the 5d expressions, namely:

τi → βεi , a→ βa , µi → βmi . (D.17)

The SU(2) vector multiplet contribution is then given by:

Zvector
Y (a,ε1,ε2) =

2
∏

α,β=1

1
Nαβ(a, t, q)

, (D.18)

with the 4d version of the product:

Nαβ(a,ε1,ε2) =
∏

s∈Yα

�

aβ − aα − LYα(s) ε1 + (AYβ (s) + 1) ε2

�

∏

es∈Yβ

�

aβ − aα + (LYβ (es) + 1) ε1 − AYα(es) ε2

�

,
(D.19)

again with a1 = −a2 = −a. The fundamental matter contribution is given by:

Z f und
Y (a, m,ε1,ε2) =

2
∏

α=1

∏

s∈Yα

�

aα +m+
�

i −
1
2

�

ε1 +
�

j −
1
2

�

ε2

�

. (D.20)

We are interested in computing the partition function for the 4d SU(2) theories with N f ≤ 3.
This is given by:

Z inst
N f
(a, m,ε1,ε2) =

∑

(Y1,Y2)

q |Y1|+|Y2|Zvector
Y (a,ε1,ε2)

N f
∏

i=1

Z fund
Y (a, mi ,ε1,ε2) . (D.21)
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For N f = 4, there is an additional contribution needed to fully decouple the U(1) factor from
the above U(2) prescription of the partition function – see e.g. [36] The U(N) prescription
can be used for SU(N) gauge theories, by identifying and factoring out the additional U(1)
contribution. In four dimensions, this factor was first identified in the context of the AGT cor-
respondence [215]. We further note that the 4d limit obtained from the E3 partition function
discussed in the main text slightly differs from the above expression. In particular, the differ-
ence appears at the level of the prepotential, but it only involves an a-independent term [36].
This is related to our choice of quantisation for the 5d fermions.
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