
SciPost Phys. 12, 071 (2022)

Thermodynamic limit and boundary energy of the spin-1
Heisenberg chain with non-diagonal boundary fields

Zhihan Zheng1,2, Pei Sun1,2, Xiaotian Xu1,2?, Tao Yang1,2,3,4,
Junpeng Cao4,5,6,7 and Wen-Li Yang1,2,3,4

1 Institute of Modern Physics, Northwest University, Xi’an 710127, China
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China

3 School of Physics, Northwest University, Xi’an 710127, China
4 Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China

5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

6 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
7 School of Physical Sciences, University of Chinese Academy of Sciences,

Beijing 100049, China

? xtxu@nwu.edu.cn

Abstract

The thermodynamic limit and boundary energy of the isotropic spin-1 Heisenberg chain
with non-diagonal boundary fields are studied. The finite size scaling properties of the
inhomogeneous term in the T − Q relation at the ground state are calculated by the
density matrix renormalization group. Based on our findings, the boundary energy of
the system in the thermodynamic limit can be obtained from Bethe ansatz equations of
a related model with parallel boundary fields. These results can be generalized to the
SU(2) symmetric high spin Heisenberg model directly.
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1 Introduction

The study of quantum integrable models is an interesting subject in the fields of cold atoms,
quantum field theory, condensed matter physics and statistic mechanics [1–5]. The spin-1/2
Heisenberg model can effectively quantify the spin-exchanging interaction and plays an im-
portant role in the quantum magnetism and many-body theory. By using the Bethe ansatz
method, the one-dimensional (1D) spin-1/2 Heisenberg model can be solved exactly [6]. The
typical spin-exchanging couplings in the 1D spin-1 system are characterized by the bilinear
biquadratic model, where the Hamiltonian reads

H =
N
∑

k=1

�

J1~Sk · ~Sk+1 + J2(~Sk · ~Sk+1)
2
�

. (1)

Here ~Sk(S x
k , S y

k , Sz
k) is the spin-1 operator at site k, N is the number of sites, and the periodic

boundary condition gives ~SN+1 = ~S1. If J2/J1 = 1, the system (1) has the SU(3) symmetry
and is integrable. If J2/J1 = −1, the SU(2) symmetry exists, and the system is known as
the Zamalodchikov-Fateev (ZF) model [7]. The Bethe ansatz solution and thermodynamic
properties of the ZF model are studied by Takhtajan [8] and Babujian [9, 10]. If J2 = 0, the
system is no longer integrable. Starting from the nonlinear sigma model, Haldane conjectures
that the excitation of the system has a gap [11, 12]. If J2/J1 = 1/3, the Hamiltonian (1)
degenerates into a projector operator that is in fact the projection onto the sum of the spin-0
and spin-1 subspaces (up to a constant) and the ground state is the famous valence bond solid
state [13,14]. If J1 = 0, by using the Temperley-Lieb algebra, the system can be mapped into
the XXZ spin chain and is also integrable [15–17].

Besides the periodic boundary condition, the integrable open one is also an interesting
subject, which means that the system has magnetic impurity or the boundary magnetic fields
[18, 19]. In the past few decades, the exact results of high spin models with periodic [7–10,
20–25] and parallel boundary fields [26–29] have been extensively studied. It is emphasized
that the integrable boundary reflection matrix can have non-diagonal elements, which means
that the boundary fields are unparallel. Then the U(1) symmetry is broken and it is very hard
to study the exact solution of the system. It is known that the integrable systems without
U(1) symmetry have many applications in the open string theory and the stochastic process
of nonequilibrium statistics. Therefore, many interesting works of high spin models with non-
diagonal boundary reflections have been done [30–35].

Many attentions have been paid for quantum integrable models without U(1) symmetry
during past decades [36–49]. Recently, a systematic method, i.e., the off-diagonal Bethe ansatz
(ODBA) is proposed to solve the models with or without U(1) symmetry [50]. Eigenvalues and
eigenstates of several typical integrable models are obtained, where eigenvalues are given in
terms of some homogeneous/inhomogeneous T−Q relation [50–53]. The next task is to derive
the physical quantities in the thermodynamic limit, which is very complicated because the
related Bethe ansatz equations (BAEs) are inhomogeneous and the traditional thermodynamic
Bethe ansatz can not be employed. In order to overcome this difficulty, an effective method is
to study the finite size scaling effects of the inhomogeneous term in the T −Q relation. With
the help of this idea, the thermodynamic limit, surface energy and elementary excitations
of spin-1/2 XXZ spin chain with arbitrary boundary fields are studied [54]. The boundary
energy of the SU(3) symmetric spin-1 chain with generic integrable open boundaries is also
obtained [55]. However, the corresponding thermodynamic properties of the SU(2) symmetric
spin-1 Heisenberg model are still missing.

In this paper, we study the thermodynamic limit and boundary energy of the spin-1 isotropic
Heisenberg spin chain with non-diagonal boundary reflections. The finite size scaling analy-
sis of the contribution of the inhomogeneous term in the T − Q relation (namely, the third
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term in (18) below) to the ground state energy is studied as follows. We first introduce a
very function Λhom(u) which is given in terms of a reduced T −Q relation1 (see (27) and (28)
below) [51–53] and the associated BAEs are homogeneous ones (see (29) below). For any
finite N , Λhom(u) is actually not an eigenvalue of the transfer matrix with generic off-diagonal
boundary K-matrices. Since that the function is given by a homogeneous T −Q relation, we
can apply the conventional thermodynamic Bethe ansatz [2] to investigate its thermodynamic
limit. Then, comparing with the result of its thermodynamic limit and that of the density ma-
trix renormalization group (DMRG) numerical [56–58] studies, we conclude that Λhom(u), in
the limit N →∞, really gives the correct boundary energy. Moreover, we find that most Bethe
roots of the reduced BAEs at the ground state in the thermodynamic limit form 2-strings, as-
sociated with certain boundary strings and the rearrangement of the Fermi sea. The different
structures of Bethe roots in different regimes of model parameters are given explicitly. Based
on them, we obtain the boundary energy induced by the boundary magnetic fields. We also
check the analytic results by the numerical extrapolation, and find that the analytical results
and the numerical ones coincide with each other very well. The results given in this paper can
be generalized to the SU(2) symmetric spin-s Heisenberg model directly.

This paper is organized as follows. Section 2 serves as an introduction to the notations for
the spin-1 Heisenberg model with non-diagonal boundary fields. The ODBA exact solution is
also briefly reviewed. In Section 3, we focus on the contribution of the inhomogeneous term
in the T −Q relation to the ground state energy. In Section 4, by using the patterns of Bethe
roots of the reduced BAEs, we study the boundary energy of the model in the thermodynamic
limit. We summarize the results and give some discussions in Section 5.

2 Non-diagonal boundary Spin-1 Heisenberg model

The spin-1 Heisenberg model with non-diagonal boundary fields is related to the 19-vertex
R-matrix

R12(u) =





























c(u)
b(u)

d(u)
e(u)

g(u) f (u)
e(u)

g(u)
b(u)

a(u)
b(u)

g(u)
e(u)

f (u) g(u)
e(u)

d(u)
b(u)

c(u)





























, (2)

where the non-vanishing elements are

a(u) = u(u+η) + 2η2 , b(u) = u(u+η) , c(u) = (u+η)(u+ 2η) ,

d(u) = u(u−η) , e(u) = 2η(u+η) , f (u) = 2η2 , g(u) = 2uη , (3)

u is the spectral parameter, and η is the crossing parameter. Here we are dealing with the
isotropic model, and η can be scaled out. Throughout this paper, we adopt the standard nota-
tions. For any matrix A∈ End(V), A j is an embedding operator in the tensor space V⊗V⊗ . . . ,
which acts as A on the j-th space and as identity on the other factor spaces. For any matrix
B ∈ End(V⊗V), Bi, j is an embedding operator in the tensor space, which acts as an identity on

1The function Λhom(u) can be simulated by eigenvalue of the transfer matrix with parallel boundary fields of
the strengthes: p→ p/

Æ

1+α2
−; q→ q/

Æ

1+α2
+.
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the factor spaces except for the i-th and j-th ones. The R-matrix R12(u) satisfies the quantum
Yang-Baxter equation (QYBE) [59,60]

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) . (4)

Besides, the R-matrix (2) also enjoys the properties

Initial condition : R12(0) = 2η2P12 , (5)

Fusion condition : R12(−η) = 6η2 P(0)12 , (6)

where P12 is the permutation operator and P(0)12 is the projector in the total spin-0 channel.
The most general off-diagonal boundary reflection on one side of the chain is quantified by
the reflection matrix obtained in [61,62]

K−(u) = (2u+η)





x1(u) y ′4(u) y ′6(u)
y4(u) x2(u) y ′5(u)
y6(u) y5(u) x3(u)



 , (7)

where the matrix elements are

x1(u) = (p− + u+
η

2
) (p− + u−

η

2
) +
α2
−

2
η (u−

η

2
) ,

x2(u) = (p− + u−
η

2
) (p− − u+

η

2
) +α2

− (u+
η

2
) (u−

η

2
) ,

x3(u) = (p− − u−
η

2
) (p− − u+

η

2
) +
α2
−

2
η (u−

η

2
) ,

y4(u) =
p

2α− e−iφ− u (p− + u−
η

2
) , y ′4(u) =

p
2α− eiφ− u (p− + u−

η

2
) ,

y5(u) =
p

2α− e−iφ− u (p− − u+
η

2
) , y ′5(u) =

p
2α− eiφ− u (p− − u+

η

2
) ,

y6(u) = α2
− e−2iφ− u (u−

η

2
) , y ′6(u) = α

2
− e2iφ− u (u−

η

2
) , (8)

p−, α− and φ− are the boundary parameters which measure the strength and direction of the
boundary field. The reflection matrix K−(u) satisfies the reflection equation (RE)

R12(u− v)K−1 (u)R21(u+ v)K−2 (v) = K−2 (v)R21(u+ v)K−1 (u)R12(u− v) . (9)

The most general off-diagonal boundary reflection at the other side is quantified by the dual
reflection matrix

K+(u) = K−(−u−η)
�

�

�

(p−,α−,φ−)→(p+,−α+,φ+)
, (10)

where p+, α+ and φ+ are the boundary parameters characterizing the strength and direction
of the corresponding boundary field. The dual reflection matrix K+(u) satisfies the dual RE

R12(v − u)K+1 (u)R21(−u− v − 2η)K+2 (v) = K+2 (v)R21(−u− v − 2η)K+1 (u)R12(v − u) . (11)

From the R-matrix (2), we construct the single row monodromy matrices T0(u) and T̂0(u)
as

T0(u) = R0N (u− θN )R0N−1(u− θN−1) . . . R01(u− θ1) ,

T̂0(u) = R10(u+ θ1)R20(u+ θ2) . . . RN0(u+ θN ) , (12)
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where {θk, k = 1, . . . , N} are the inhomogeneous parameters, and the subscript 0 means the
auxiliary space and 1, . . . , N denote the quantum spaces. The single row monodromy matrices
T0(u) and T̂0(u) are the 3×3 matrices in the auxiliary space V0 and their elements act on the
quantum space V⊗N . The transfer matrix of the system reads

t(u) = t r0{K+0 (u)T0(u)K
−
0 (u)T̂0(u)} . (13)

From the QYBE (4), RE (9) and dual RE (11), one can prove that the transfer matrices with
different spectral parameters commute with each other, i.e.,

[t(u), t(v)] = 0 . (14)

Therefore, t(u) serves as the generating functional of all the conserved quantities, which en-
sures the integrability of the system. The model Hamiltonian is generated from the transfer
matrix t(u) as [19]

H = ∂u {ln t(u)}
�

�

u=0,{θk=0}

=
1
η

N−1
∑

k=1

�

~Sk · ~Sk+1 − (~Sk · ~Sk+1)
2
�

+
1

p2
− −

1
4

�

1+α2
−
�

η2

�

2p−
�

α− cosφ−S x
1 −α− sinφ−S y

1 + Sz
1

�

−η(Sz
1)

2

−
1
2
α2
−η
�

cos (2φ−)
�

�

S x
1

�2 −
�

S y
1

�2�−
�

Sz
1

�2�−α−η cosφ−
�

S x
1 Sz

1 + Sz
1S x

1

�

+
1
2
α2
−η sin (2φ−)

�

S x
1 S y

1 + S y
1 S x

1

�

+α−η sinφ−
�

S y
1 Sz

1 + Sz
1S y

1

�

�

+
1

p2
+ −

1
4

�

1+α2
+

�

η2

�

2p+
�

α+ cosφ+S x
N −α+ sinφ+S y

N − Sz
N

�

−η
�

Sz
N

�2

−
1
2
α2
+η
�

cos (2φ+)
�

�

S x
N

�2 −
�

S y
N

�2�−
�

Sz
N

�2�
+α+η cosφ+

�

S x
N Sz

N + Sz
N S x

N

�

+
1
2
α2
+η sin (2φ+)

�

S x
N S y

N + S y
N S x

N

�

−α+η sinφ+
�

S y
N Sz

N + Sz
N S y

N

�

�

+
η

p2
+ −

1
4

�

1+α2
+

�

η2
+

η

p2
− −

1
4

�

1+α2
−
�

η2
+

1
η

�

3N +
8
3

�

. (15)

Now, we seek the exact solution of the system (15). Let |Ψ〉 be an arbitrary eigenstate of
t(u) with the eigenvalue Λ(u), i.e.,

t(u)|Ψ〉= Λ(u)|Ψ〉 . (16)

Using the ODBA method [50] and fusion hierarchy, in the homogeneous limit {θk = 0}, the
eigenvalue Λ(u) can be expressed as the inhomogeneous T −Q relation,

Λ(u) = −4u(u+η)Λ(
1
2 ,1)(u+

η

2
)Λ(

1
2 ,1)(u−

η

2
) + 4u(u+η)δ(1)(u+

η

2
) , (17)

Λ(
1
2 ,1)(u) = a(1)(u)

Q(u−η)
Q(u)

+ d(1)(u)
Q(u+η)

Q(u)
+ cu(u+η)

F (1)(u)
Q(u)

, (18)
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where

a(1)(u) = d(1)(−u−η)

= −
2u+ 2η
2u+η

(
q

1+α2
+u+ p+)(

q

1+α2
−u− p−)

�

u+
3η
2

�2N

, (19)

F (1)(u) = (u−
η

2
)2N (u+

η

2
)2N (u+

3η
2
)2N , (20)

δ(1)(u) = a(1)(u) d(1)(u−η) , (21)

c = 2
�

α−α+ cos(φ+ −φ−)− 1+
q

(1+α2
−)(1+α

2
+)
�

, (22)

Q(u) =
2N
∏

k=1

(u− uk)(u+ uk +η) =Q(−u−η) , (23)

and the 2N parameters {uk|k = 1, . . . , 2N} in Q-function (23) are the Bethe roots. The singu-
larity of eigenvalue Λ(u) requires that the Bethe roots should satisfy the BAEs

a(1)(uk)Q(uk −η) + d(1)(uk)Q(uk +η) + c uk(uk +η) F
(1)(uk) = 0 , k = 1, . . . , 2N . (24)

The eigenvalue of Hamiltonian (15) reads

E =
2N
∑

k=1

4η

(uk +
3η
2 )(uk −

η
2 )
+

1
η

3N +
1
η

E0 , (25)

where {uk} should satisfy the BAEs (24) and

E0 =
8
3
+

2
Æ

1+α2
+p+η

p2
+ −

η2

4 (1+α
2
+)
−

2
Æ

1+α2
−p−η

p2
− −

η2

4 (1+α
2
−)

. (26)

Some remarks are in order. If the non-diagonal boundary parameters are α+ = α− = 0, or
α+ = −α− 6= 0 and φ− = φ+ (which corresponds to the parallel boundary fields case), the
parameter c in Eq.(22) becomes zero and the corresponding T −Q relation (18) is naturally
reduced to the conventional diagonal one [30] obtained by the algebraic Bethe Ansatz.2 For
the other case with unparallel boundary fields, the parameter c does not vanish. Thus the
corresponding T − Q relation has to include a non-vanishing inhomogeneous term for any
finite N .

3 Finite size scaling behavior

The present BAEs (24) are inhomogeneous, thus it is very hard to investigate the thermody-
namic properties of the system by using the traditional thermodynamic Bethe ansatz. In order
to overcome this difficulty, we first analyze the contribution of inhomogeneous term in the
T −Q relation (18).

Define the reduced T −Q relation as

Λhom(u) = −4u(u+η)Λ
( 1

2 ,1)
hom (u+

η

2
)Λ
( 1

2 ,1)
hom (u−

η

2
) + 4u(u+η)δ(1)(u+

η

2
) , (27)

Λ
( 1

2 ,1)
hom (u) = a(1)(u)

Q(u−η)
Q(u)

+ d(1)(u)
Q(u+η)

Q(u)
. (28)

2If the non-diagonal boundary parameters satisfy the condition α+ = α− 6= 0, |φ−−φ+|= π (which corresponds
to the antiparallel boundary fields case), the parameter c in Eq.(22) also becomes zero and the corresponding T−Q
relation naturally degenerates into the conventional diagonal one.
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It should be emphasized that although the non-diagonal boundary parameters {p±, α±} except
φ± are included in the above reduced T −Q relation (28), the Λhom(u) is not the eigenvalue
Λ(u) for any finite N but rather that of the transfer matrix with parallel boundary fields of the
same strength. In the limit N →∞ it will give, however, the correct boundary energy (see
the following parts of the paper). From the singularity analysis of the reduced T −Q relation
(28), we obtain the following reduced BAEs

i
2 −µk
i
2 +µk

pi −µk

pi +µk

qi −µk

qi +µk

�

i −µk

i +µk

�2N

=
M
∏

l=1

i − (µk −µl)
i + (µk −µl)

i − (µk +µl)
i + (µk +µl)

, k = 1, . . . , M , (29)

where M = 1, . . . , 2N and we have putη= 1, µk = −iuk−
i
2 , p = p+

q

1+α2
+

−1
2 and q = − p−

q

1+α2
−
−1

2

for convenience. From the Λhom(u) given by Eq.(27), we obtain the reduced energy which is
defined as

Ehom = ∂u {lnΛhom(u)}
�

�

u=0 = −
M
∑

k=1

4

µ2
k + 1

+ 3N + E0 . (30)

Solving the reduced BAEs (29), we could obtain the values of reduced Bethe roots {µk}. Sub-
stituting the Bethe roots into Eq.(30), we obtain the values of Ehom.

Let us focus on the ground state. The reduced ground state energy can be calculated by
the reduced BAEs (29). It is well-known that the even N and odd N give the same physical
properties in the thermodynamic limit. Thus we set N as even. At the ground state, the number
of Bethe roots in the reduced BAEs (29) is M = N . For simplicity, we choose the boundary
parameters as p > 0 and q 6= 0,−1. We should note that at the points of q = 0,−1, the
boundary field is divergent due to the present parameterization of the Hamiltonian (15). The
distribution of reduced Bethe roots at the ground state in the thermodynamic limit is shown
in Figure 1. We see that the Bethe roots can be divided into six different regimes in the p− q
plane.

1) In the regime I, where p ≥ 1/2, q < −1, −1/2 ≤ q < 0 or q ≥ 1/2, all the Bethe roots
form 2-strings, i.e., µk = λk ±

i
2 +O(e−δN ), where λk denotes the position of 2-string in the

real axis, δ is a small positive number and O(e−δN ) means the finite size correction.
2) In the regime II, where p < 1/2, q < −1, −1/2 ≤ q < 0 or q ≥ 1/2, besides N − 2

2-strings, there are two boundary strings, i.e., pi and (p−1)i. The boundary strings mean the
pure imaginary Bethe roots which are related with the boundary parameters p and q [63].

3) In the regime III, where p ≥ 1/2 and 0 < q < 1/2, besides N − 2 2-strings, there are
two boundary strings, qi and (q− 1)i.

4) In the regime IV, where 0< p < 1/2 and 0< q < 1/2, besides N −4 2-strings, there are
four boundary strings, pi, (p− 1)i, qi and (q− 1)i.

5) In the regime V, where p ≥ 1/2 and −1 < q < −1/2, besides N − 2 2-strings, only
the boundary string qi survives and one real Bethe root λ0 appears which is caused by the
rearrangement of Fermi sea.

6) In the regime VI, where 0< p < 1/2 and −1< q < −1/2, besides N −4 2-strings, there
are three boundary strings qi, (q− 1)i, pi and one real root λ0.

Because the Bethe roots are different in the different regimes of boundary parameters, we
shall discuss them separately. In the regime I, where all the Bethe roots are the 2-strings.
Substituting the 2-string solutions into the reduced BAEs (29), omitting the exponentially
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-1 -0.5 0 0.5 1

0.5

1

Figure 1: The distribution of reduced Bethe roots at the ground states with different
boundary parameters p and q.

minor corrections and taking the product of all the string solutions, we readily obtain

−
i −λ j

i +λ j

(p− 1
2)i −λ j

(p− 1
2)i +λ j

(p+ 1
2)i −λ j

(p+ 1
2)i +λ j

(q− 1
2)i −λ j

(q− 1
2)i +λ j

(q+ 1
2)i −λ j

(q+ 1
2)i +λ j

×

� 1
2 i −λ j
1
2 i +λ j

3
2 i −λ j
3
2 i +λ j

�2N

=
M1
∏

l=1

�

i − (λ j −λl)

i + (λ j −λl)

�2 � i − (λ j +λl)

i + (λ j +λl)

�2

×
2i − (λ j −λl)

2i + (λ j −λl)

2i − (λ j +λl)

2i + (λ j +λl)
, j = 1, . . . , M1 . (31)

Taking the logarithm of above Eq.(31), we obtain

2πI j =W (λ j; M1) + θ2p−1(λ j) + θ2p+1(λ j) + θ2q−1(λ j) + θ2q+1(λ j), j = 1, . . . , M1 , (32)

where

W (λ j; M1) = θ2(λ j) + 2N
�

θ1(λ j) + θ3(λ j)
�

−
M1
∑

l=1

�

2θ2(λ j −λl) + 2θ2(λ j +λl) + θ4(λ j −λl) + θ4(λ j +λl)
�

, (33)

I j is the quantum number, θn(x) = 2 arctan(2x/n) and M1 = N/2. The ground state is char-
acterized by the set of quantum numbers

{I j}= {1,2, . . . , M1} . (34)

Solving the reduced BAEs (32) and substituting the values of Bethe roots into Eq.(30), we
obtain the reduced ground state energy as

Ehom = −2
M1
∑

j=1

1

λ2
j +

1
4

+
3

λ2
j +

9
4

+ 3N + E0 ≡ G(λ j; M1) . (35)
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Figure 2: The values of Einh versus the system size N . The data can be
fitted as Einh = γNβ . Due to the fact β < 0, when the size of system
N → ∞, the contribution of the inhomogeneous term tends to zero. Here
(a) p = 1.1370, q = −1.0821,γ = 0.06203 and β = −0.9407 in regime
I; (b) p = 0.3263, q = −1.8931,γ = 0.2371 and β = −1.052 in regime
II; (c) p = 0.2428, q = 2.3735,γ = 0.6236 and β = −0.8384 in regime
III; (d) p = 0.4453, q = 0.3789,γ = 2.234 and β = −1.087 in regime IV;
(e) p = 0.8410, q = −0.6990,γ = 0.715 and β = −1.219 in regime V; (f)
p = 0.3971, q = −0.7985,γ = 4.912 and β = −1.429 in regime VI. The insets show
the distribution of Bethe roots with N = 10.

Now, we are ready to characterize the contribution of inhomogeneous term in the T −Q
relation (18) at the ground state by the quantity

Einh = Ehom − Eg , (36)

where Ehom is the reduced ground state energy given by (35) and Eg is the actual ground
state energy (25) of the Hamiltonian (15). The ground state energy Eg can be obtained by
two methods. One is solving the inhomogeneous BAEs (24) directly and the other is DMRG
[56–58]. We have checked that the ground state energy E obtained by these two methods are
the same.

In Figure 2(a), we give the values of Einh versus the system size N in the regime I. The red
circles are the data calculated from Eq.(36) and the blue solid line is the fitted curve. From
the fitted curve, we find that Einh and N satisfy the power law relation Einh = γNβ . Due to
the fact that β < 0, the value of Einh tends to zero when the system size N tends to infinity.
Therefore, in the thermodynamic limit, the inhomogeneous term in the T −Q relation (18)
can be neglected at the ground state and Ehom = Eg . The inset shows the distribution of Bethe
roots with N = 10.

In the regime II, substituting the N − 2 2-strings, two boundary strings µM−1 = pi and
µM = (p− 1)i into the reduced BAEs (29) and taking the logarithm, we have

2πI j =W (λ j; M2) + θ2q−1(λ j) + θ2q+1(λ j)− θ1−2p(λ j)− θ2p+1(λ j)

−θ3+2p(λ j)− θ5−2p(λ j)− 2θ3−2p(λ j) , j = 1,2, . . . , M2 , (37)
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where W (λ j; M2) is given by Eq.(33) with the replacing of M1 by M2, M2 = N/2− 1 and the
quantum numbers are

{I j}= {1, 2, . . . , M2} . (38)

The corresponding reduced ground state energy reads

Ehom = G(λ j; M2) +
4

p2 − 1
+

4
(p− 1)2 − 1

, (39)

where G(λ j; M2) is given by Eq.(35) with the replacing of M1 by M2.
The procedure in the regime III is similar and reduced ground state energy is

Ehom = G(λ j; M2) +
4

q2 − 1
+

4
(q− 1)2 − 1

. (40)

In the regime IV, substituting the string solutions including four boundary strings into
Eq.(29) and taking the logarithm, we have

2πI j =W (λ j; M3)− θ1−2p(λ j)− θ2p+1(λ j)− θ3+2p(λ j)− θ5−2p(λ j)− 2θ3−2p(λ j)

−θ1−2q(λ j)− θ2q+1(λ j)− θ3+2q(λ j)− θ5−2q(λ j)− 2θ3−2q(λ j), j = 1, 2, . . . , M3, (41)

where M3 = N/2− 2 and the quantum numbers are

{I j}= {1,2, . . . , M3} . (42)

The reduced ground state energy is

Ehom = G(λ j; M3) +
4

p2 − 1
+

4
(p− 1)2 − 1

+
4

q2 − 1
+

4
(q− 1)2 − 1

. (43)

In the regime V, the logarithm form of the BAEs are

2πI j =W (λ j; M4) + θ2p−1(λ j) + θ2p+1(λ j)− θ3+2q(λ j)− θ3−2q(λ j)− 2θ1−2q(λ j)

−θ1

�

λ j −λ0

�

− θ1

�

λ j +λ0

�

− θ3

�

λ j −λ0

�

− θ3

�

λ j +λ0

�

, j = 1,2, . . . , M4 , (44)

where M4 = N/2− 1 and the quantum numbers are {I j} = {1, 2, . . . , M4}. We shall note that
the quantum number corresponding to the real Bethe root λ0 is 0. The reduced ground state
energy reads

Ehom = G(λ j; M4) +
4

q2 − 1
−

4

λ2
0 + 1

. (45)

Similarly, the reduced ground state energy in the regime VI is

Ehom = G(λ j; M5) +
4

p2 − 1
+

4
(p− 1)2 − 1

+
4

q2 − 1
−

4

λ2
0 + 1

, (46)

where M5 = N/2− 2.
Substituting the reduced ground state energies in different regimes into Eq.(36), we obtain

the values of Einh, which are shown in Figures 2(b)-(f). According to the finite size scaling
analysis, we see that the inhomogeneous term indeed can be neglected at the ground state
in the thermodynamic limit. Due to the existence of inhomogeneous term in BAEs.(24), it is
hard to analytically calculate the finite size correction for the present off-diagonal boundary
reflections along the lines given in references [64–66]. We shall note that the diagonal case is
tractable along the lines of A. Klümper et al. [65] and J. Suzuki [66]. The O(N1) bulk term
and the O(N0) boundary term for the ground state energy do not depend on the orientations
of the boundary fields. The true finite size correction terms are probably of order O(N−1)
and are out of reach for the inhomogeneous/off-diagonal case. Due to higher order correction
terms, the effective exponents β determined in the paper differ from −1.
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4 Boundary energy

In this section, we study the physical effects induced by the boundary magnetic fields and
compute the boundary energy in the thermodynamic limit [18, 35, 67–69]. As mentioned
above, we can calculate the boundary energy based on the string hypothesis of the reduced
BAEs (29), then the numerical analysis allows us to obtain the boundary energy induced by
the boundary fields.

The values of Bethe roots at the ground state are determined by the quantum numbers
{I j}. Thus we define the counting function as Z(λ j) =

I j
2N . In the thermodynamic limit, the

Bethe roots can take the continuous values and we have Z(λ j)→ Z(u). Taking the derivative
of Z(u) with respect to u, we obtain

dZ(u)
du

= ρ(u) +ρh(u) , (47)

where ρ(u) is the density of Bethe roots and ρh(u) means the density of holes in the real axis.
Again, the distribution of Bethe roots in different regimes are different. We should consider
them separately. In regime I, from the BAEs (32) with the constraint N → ∞ and using
Eq.(47), we obtain the density of states as

ρ(u) =
dZ(u)

du
−

1
2N
[ρh(u) +δ(u)]

= a1(u) + a3(u) +
1

2N

�

a2(u) + a2p−1(u) + a2p+1(u) + a2q−1(u) + a2q+1(u)
�

−
1

2N
[ρh(u) +δ(u)]−

∫ ∞

−∞

�

2a2(u− v) + a4(u+ v)
�

ρ(v)dv , (48)

where

an(u) =
1

2π
n

u2 + n2

4

,

ρh(u) =
1

2N

�

δ
�

u−λh
1

�

+δ
�

u+λh
1

�

+δ
�

u−λh
2

�

+δ
�

u+λh
2

��

. (49)

We should note that the presence of delta-function in Eq.(48) is due to that λ j = 0 is the
solution of BAEs (32), which should be excluded because it makes the wavefunction vanish
identically [70]. Note that two holes λh

1 and λh
2 are introduced to ensure the magnetization

satisfying

M
N
= 2

∫ ∞

−∞
ρ(u)du= 1 . (50)

Thus the holes are located at the infinities in the real axis.
With the help of Fourier transformation

F̃(ω) =

∫ ∞

−∞
eiωuF(u)du , F(u) =

1
2π

∫ ∞

−∞
e−iωu F̃(ω)dω , (51)

from Eq.(48), we obtain

ρ̃(ω) = ρ̃g(ω) + ρ̃0(ω) + ρ̃1(ω) + ρ̃2(ω) , (52)
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where

ãn(ω) = e−
n|ω|

2 , ρ̃g(ω) =
ã1(ω) + ã3(ω)

1+ 2ã2(ω) + ã4(ω)
, ρ̃0(ω) =

1
2N

ã2(ω)− 1
1+ 2ã2(ω) + ã4(ω)

,

ρ̃1(ω) =















1
2N

ã2p+1(ω)− ã1−2p(ω)

1+ 2ã2(ω) + ã4(ω)
, 0< p <

1
2

,

1
2N

ã2p−1(ω) + ã2p+1(ω)

1+ 2ã2(ω) + ã4(ω)
, p >

1
2

,

ρ̃2(ω) =



































−
1

2N

ã1−2q(ω) + ã−2q−1(ω)

1+ 2ã2(ω) + ã4(ω)
, q < −

1
2

,

1
2N

ã2q+1(ω)− ã1−2q(ω)

1+ 2ã2(ω) + ã4(ω)
, −

1
2
< q <

1
2

,

1
2N

ã2q−1(ω) + ã2q+1(ω)

1+ 2ã2(ω) + ã4(ω)
, q >

1
2

.

(53)

Then the ground state energy (35) can be expressed as

Eg = −2N

∫ ∞

−∞
[ã1(ω) + ã3(ω)] ρ̃(ω)dω+ 3N + E0 = Neg + es , (54)

where eg is the ground state energy density which is the same as that for the periodic boundary
condition [9],

eg = −2

∫ ∞

−∞

[ã1(ω) + ã3(ω)]
2

1+ 2ã2(ω) + ã4(ω)
dω+ 3= −1 , (55)

and es is boundary energy

es = 2π− 4+ E0 + e1 + e2 , (56)

e1 =















−
∫ ∞

−∞
[ã1(ω) + ã3(ω)]

ã2p−1(ω) + ã2p+1(ω)

1+ 2ã2(ω) + ã4(ω)
dω , p >

1
2

,

−
∫ ∞

−∞
[ã1(ω) + ã3(ω)]

ã2p+1(ω)− ã1−2p(ω)

1+ 2ã2(ω) + ã4(ω)
dω , 0< p <

1
2

,

(57)

e2 =



































∫ ∞

−∞
[ã1(ω) + ã3(ω)]

ã−2q−1(ω) + ã1−2q(ω)

1+ 2ã2(ω) + ã4(ω)
dω, q < −

1
2

,

−
∫ ∞

−∞
[ã1(ω) + ã3(ω)]

ã2q+1(ω)− ã1−2q(ω)

1+ 2ã2(ω) + ã4(ω)
dω , −

1
2
< q <

1
2

,

−
∫ ∞

−∞
[ã1(ω) + ã3(ω)]

ã2q−1(ω) + ã2q+1(ω)

1+ 2ã2(ω) + ã4(ω)
dω, q >

1
2

.

(58)

Now, we consider the regime II. The boundary strings pi and (p − 1)i can give rise to the
rearrangement of Bethe roots in Fermi sea. From BAEs (37), the density of states ρp(u) is
obtained as

ρp(u) = a1(u) + a3(u)−
∫ ∞

−∞

�

2a2(u− v) + a4(u− v)
�

ρp(v)dv

+
1

2N

�

a2(u)− a1−2p(u) + a2p+1(u) + a2q−1(u) + a2q+1(u)−δ(u)
�

−
1

2N

�

2a2p+1(u) + 2a3−2p(u) + a3+2p(u) + a5−2p(u)
�

. (59)
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In order to show that there exist the stable boundary bound states, we denote the deviation
between ρp(u) and ρ(u) as δρp(u) = ρp(u)−ρ(u). From Eqs.(48) and (59), we obtain

δρp(u) = −
1

2N

�

2a2p+1(u) + 2a3−2p(u) + a3+2p(u) + a5−2p(u)
�

−
∫ ∞

−∞

�

2a2(u− v) + a4(u− v)
�

δρp(v)dv . (60)

Taking the Fourier transformation of Eq.(60), we have

δρ̃p(ω) = −
1

2N

2ã2p+1(ω) + 2ã3−2p(ω) + ã3+2p(ω) + ã5−2p(ω)

1+ 2ã2(ω) + ã4(ω)
. (61)

The energy deviation δep induced by the density deviation δρ̃p(ω) can be expressed as

δep = −2N

∫ ∞

−∞
[ã1(ω) + ã3(ω)]δρ̃p(ω)dω+

4
p2 − 1

+
4

(p− 1)2 − 1

= 2

∫ ∞

0

e−(p+1)ω

1+ e−ω
dω+ 2

∫ ∞

0

e−(2−p)ω

1+ e−ω
dω+

2
p(p− 1)

< 0 . (62)

Because of δep < 0, the boundary strings are stable. Then we conclude that in this regime, the
ground state energy of the system is Eg = Neg + es +δep. The total spin along the z-direction

is Sz = −
∫∞
−∞δρp(u)du= 3/4.

Next, we consider the regime III where boundary strings are qi and (q−1)i. Similarly, the
energy deviation δeq between this case and that without boundary strings is

δeq = −2N

∫ ∞

−∞
[ã1(ω) + ã3(ω)]δρ̃q(ω)dω+

4
q2 − 1

+
4

(q− 1)2 − 1

= 2

∫ ∞

0

e−(q+1)ω

1+ e−ω
dω+ 2

∫ ∞

0

e−(2−q)ω

1+ e−ω
dω+

2
q(q− 1)

< 0 . (63)

Due to the fact δeq < 0, we know that the ground state energy is Eg = Neg + es +δeq and the
total spin along the z-direction is Sz = 3/4.

In the regime IV, we combine the results (62) and (63), and conclude that the ground state
energy with boundary strings pi, (p−1)i, qi and (q−1)i equals to Eg = Neg + es +δep +δeq.

Then, we consider the regime V where besides the N −2 2-string, there also exist one real
Bethe root λ0 and a single boundary string qi. Taking the thermodynamic limit of BAEs (44),
we obtain the density of states ρλq(u) as

ρλq(u) =a1(u) + a3(u)−
1

2N
[a1 (u−λ0) + a1 (u+λ0) + a3 (u−λ0) + a3 (u+λ0)]

+
1

2N

�

a2(u) + a2p−1(u) + a2p+1(u)− 2a1−2q(u)− a3+2q(u)− a3−2q(u)−δ(u)
�

−
∫ ∞

−∞

�

2a2(u− v) + a4(u− v)
�

ρλq(v)dv . (64)

Denote the deviation between ρλq(u) and ρ(u) as δρλq(u) = ρλq(u)− ρ(u). From Eqs.(48)
and (64), the value of δρλq(u) reads

δρλq(u) = −
1

2N
[a1 (u−λ0) + a1 (u+λ0) + a3 (u−λ0) + a3 (u+λ0)]

−
1

2N

�

a1−2q(u)− a−1−2q(u) + a3−2q(u) + a3+2q(u)
�

−
∫ ∞

−∞

�

2a2(u) + a4(u)
�

δρλq(v)dv . (65)
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Taking the Fourier transformation of Eq.(65), we obtain

δρ̃λq(ω) = −
1

2N

ã1−2q(ω)− ã−1−2q(ω) + ã3−2q(ω) + ã3+2q(ω)

1+ 2ã2(ω) + ã4(ω)
−

1
N

cos(ωλ0)e−
|ω|
2

1+ e−|ω|
. (66)

Then the deviation of energy δeλq induced by δρ̃λq(ω) is given by

δeλq = −2N

∫ ∞

−∞
[ã1(ω) + ã3(ω)]δρ̃λq(ω)dω+

4
q2 − 1

−
4

λ2
0 + 1

= 2

∫ ∞

0

e−(2+q)ω

1+ e−ω
dω− 2

∫ ∞

0

eqω

1+ e−ω
dω−

2
1+ q

< 0 . (67)

Due to δeλq < 0, the ground state energy in this regime is Eg = Neg + es +δeλq and the total
spin along the z-direction is Sz = 3/4.

In the regime VI, there are N−4 2-string, one real Bethe root λ0 and three boundary strings
qi, pi and (p − 1)i. Combining the results (62) and (67), we obtain the ground state energy
as Eg = Neg + es +δep +δeλq.

After tedious calculation, we find that the boundary energy eb for all the regimes in Figure
1 can be expressed as

eb =











−
2
p
−

2
q
+ 2π− 4+ E0, p > 0, q > 0 or q < −1,

−
2
p
−

2
q
+ 2π csc(qπ) + 2π− 4+ E0, p > 0, −1< q < 0.

(68)

The boundary energies with different boundary parameters p and q calculated by the ana-
lytical expression (68) are shown in Figure 3 as the coloured solid lines. Now we check the
correction of expression (68) by the numerical simulation with DMRG algorithm, and the re-
sults are shown in Figure 3 as the red points. Specifically, for each red point that is for the
given boundary parameters p and q, we first calculate the ground state energy Eg(N) of the
model (15) with the system size N = 10(n− 1) + 4 and n = 1, 2, . . . , 20 by using the DMRG
method. Then we consider the physical quantity

eb(N) = Eg(N)− Neg , (69)

-2.5 -1.5 -0.5 0.5 1.5
-5

-2.5

0

2.5

5

Figure 3: Boundary energies versus the boundary parameters p and q. The
coloured curves are those calculated from the analytical expression (68) and the
red points are those obtained from the DMRG. The values of q at the red points are
q = −2.6,−2.1,−1.7,−1.3,−0.7,−0.5,−0.25, 0.35,0.7, 1.15,1.5 and 1.8.

14

https://scipost.org
https://scipost.org/SciPostPhys.12.2.071


SciPost Phys. 12, 071 (2022)

0 50 100 150 200

1.5

2

2.5

3 DMRG data
Fitting curve
Asymptotic value

Figure 4: The values of eb(N) versus the system size N . The red points are the DMRG
results with N = 4,14, 24, . . . , 194. The data can be fitted as eb(N) = aNβ + c, where
a = 6.7308, β = −1.0046 and c = 1.5460. Due to the fact β < 0, when the system
size N → ∞, the values of eb(N) tend to the asymptotic value c, which gives the
boundary energy. Here the boundary parameters are chosen as p = 0.3 and q = 0.7.

where eg = −1 is the ground state energy density of the system with periodic boundary con-
ditions. Obviously, in the thermodynamic limit, the value of eb(N →∞) gives the boundary
energy. In Figure 4, we show how to extrapolate the boundary energy, where the red points
are the numerical values of eb(N), the blue solid line is the fitting curve, and the red solid line
is the extrapolated boundary energy. From the fitting curve, we find that the eb(N) and N
satisfy the power law relation, i.e., eb(N) = aNβ + c. Due to the fact that β < 0, the values of
eb(N) tend to the asymptotic value c when the system size N tends to infinity. Therefore, in
the thermodynamic limit, the asymptotic value c determines the boundary energy. Repeating
this process, we obtain the boundary energies with other values of boundary parameters. As
shown in Figure 3, the analytical and numerical results agree with each other very well.

5 Conclusions

In this paper, we have studied the thermodynamic limit and boundary energy of the isotropic
spin-1 Heisenberg chain with generic integrable non-diagonal boundary reflections. It is shown
that the contribution of the inhomogeneous term in the associated T −Q relation (18) (due
to the unparallel boundary fields) at the ground state can be neglected when the system size
N tend to infinity. Then we calculate the analytical expression of boundary energy (68) in the
thermodynamic limit based on the string hypothesis of the reduced BAEs (29).
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