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Abstract

We present a mechanism for accelerated expansion of the universe in the generic case
of negative-curvature compactifications of M-theory, with minimal ingredients. M-theory
on a hyperbolic manifold with small closed geodesics supporting Casimir energy – along
with a single classical source (7-form flux) – contains an immediate 3-term structure for
volume stabilization at positive potential energy. Hyperbolic manifolds are well-studied
mathematically, with an important rigidity property at fixed volume. They and their
Dehn fillings to more general Einstein spaces exhibit explicit discrete parameters that
yield small closed geodesics supporting Casimir energy. The off-shell effective potential
derived by M. Douglas incorporates the warped product structure via the constraints of
general relativity, screening negative energy. Analyzing the fields sourced by the local-
ized Casimir energy and the available discrete choices of manifolds and fluxes, we find
a regime where the net curvature, Casimir energy, and flux compete at large radius and
stabilize the volume. Further metric and form field deformations are highly constrained
by hyperbolic rigidity and warping effects, leading to calculations giving strong indica-
tions of a positive Hessian, and residual tadpoles are small. We test this via explicit back
reacted solutions and perturbations in patches including the Dehn filling regions, initiate
a neural network study of further aspects of the internal fields, and derive a Maldacena-
Nunez style no-go theorem for Anti-de Sitter extrema for a range of parameters. A simple
generalization incorporating 4-form flux produces axion monodromy inflation. As a rel-
atively simple de Sitter uplift of the large-N M2-brane theory, the construction applies to
de Sitter holography as well as to cosmological modeling, and introduces new connec-
tions between mathematics and the physics of string/M theory compactifications.
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1 Introduction, motivation and summary of results

The observational discovery of the accelerated expansion of the universe demands a much
more complete theoretical understanding. This requires a full formulation in quantum gravity,
along with its implications for cosmological observables. The accelerated expansion in ΛC DM
cosmology is well modeled phenomenologically by a cosmological constant at late times and
by a range of viable inflationary dynamics in the early universe. Inflationary cosmology is
ultraviolet-sensitive, and its modeling extends to quantum gravity via string theoretic real-
izations of metastable de Sitter and inflation, some with novel features and testable signa-
tures [1–6]. These models also illuminate the more abstract problem of formulating quantum
gravity in cosmology.1 There is clearly much more to learn about the structure of string theory
and cosmological observables, building from the existing results.

In this work, we will introduce a new class of models of four dimensional de Sitter and
accelerated expansion in M theory based on negatively curved internal geometry.2 We are
motivated in part by the typicality of negative curvature among Riemannian manifolds, there
being infinitely many topologies at a fixed dimensionality. Although more generic in that sense
than most previously studied compactifications, this setup also enjoys several simplifying fea-
tures. The hyperbolic metric is known explicitly and the tree level potential is positive.3 This
combined with the automatically generated Casimir energy and 7-form flux F7 = dC6 pro-
vides a simple power-law volume stabilization mechanism. The crucial negative contribution
from the Casimir energy is readily tunable to compete with the two classical contributions via
discrete choices of finite-volume hyperbolic manifolds. In particular, we find that the net in-
tegrated curvature including variations of the warp and conformal factors can be tuned small
enough to enable the quantum Casimir energy to compete in the volume stabilization mech-
anism, illustrating this with back reacted solutions in large patches of the space. Moreover,
negative curvature spaces enjoy rigidity properties that enhance stability [14–16], as does the
warped product structure [17,18].

The Casimir contribution arises from small circles in relatively localized regions of the
internal manifold. Two concrete examples of this are the Einstein spaces obtained from a
higher-dimensional analogue of Dehn filled cusps [19]4 and the ‘inbreeding’ construction [20–
22]. The localized support of the Casimir energy requires a detailed analysis of the effect on
internal fields, including a warp factor and perturbations away from the fiducial hyperbolic
metric gH:

ds2 = e2A(y)ds2
dS4
+ e2B(y)(gH i j + hi j)d y id y j . (1.1)

We will make use of Douglas’ elegant formulation of a well defined off-shell effective poten-
tial Ve f f [B, h, C6] [17],5 incorporating the dominant one-loop Casimir stress-energy tensor

T (Cas)M
N . This is a functional of the internal fields obtained by solving the internal part of the

constraint equation
δAS11,classical = −〈T (Cas)µ

µ〉 , (1.2)

1For example, the metastable structure of string-theoretic de Sitter as an uplift of AdS/CFT provides a striking
consistency check on de Sitter and FRW holography [7–9] along with concrete microphysical entropy counts such
as [10].

2See also [11] for previous AdS constructions.
3Useful properties of negatively curved internal spaces were exploited in earlier works such as [12] and [13].
4A cusp is a region covered by a metric of the form (4.1) with a shrinking 6-torus; a filling consists of a smooth

cigar geometry in which one cycle of the 6-torus shrinks smoothly and the remaining torus stays finite. See appendix
A.2 for a quick summary.

5For other work in this direction see e.g. [23] and [24].

3

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

for the warp factor u= e2A, with a finite four dimensional Newton constant:

1
GN
=

1
`9

11

∫
d7 y

√
det(gH + h)e 7Be2A . (1.3)

The formulation [17] and appropriate generalizations will be useful for analyzing the back-
ground fields, their second order perturbations, and more general field configurations includ-
ing inflationary ones.

In the region of the localized Casimir energy, the screening effect of the warp factor alone
[17] stabilizes the naïve instability toward arbitrarily small Casimir circle. The Casimir energy
sources a particular profile of warp and conformal factors in the bulk, dressing the underlying
hyperbolic metric. We find a backreacted solution in the region of a cusp which illustrates the
stability of the Casimir circle and the expected warp and conformal factor variation, along with
other features, at the level of radial variation in that region. Manifolds such as those in [25]
contain a substantial fraction of their volume in cusps.

Second order metric variations are highly constrained by the rigidity properties of nega-
tively curved Einstein spaces [14–16] and effects of the warp factor. For dimension n > 2,
finite volume hyperbolic n-manifolds do not come in continuous families, and there is a pos-
itive gapped Hessian for −

∫ pgR deformed along modes orthogonal to the conformal factor.
On the latter, a key effect derived in [17] shows explicitly that the warp factor e2A serves to
stabilize conformal mode fluctuations [17]. We generalize this to obtain a model-independent
statement of the positive warping contribution to the Hessian, expanding near a small cos-
mological constant. Using this and related methods, we argue for a positive Hessian overall
expanding around the dressed hyperbolic metric, and present a nontrivial test of this expand-
ing around the backreacted cusp solution although we stop short of a full calculation of the
Hessian in our problem. Our mechanism requires a certain parameter regime for integrated
quantities, one which we find to be readily available by working with known classes of hyper-
bolic manifolds such as [25–27], summarized in appendix A.

Moreover, via a simple comparison of two integrated combinations of the equations of mo-
tion, we derive a Maldacena-Nunez style no-go theorem for Anti-de Sitter extrema for a range
of parameters. Altogether these results indicate metastable de Sitter solutions, including ex-
amples fairly close to our fiducial hyperbolic metric in the bulk of the internal space. Further,
the homology of suitable hyperbolic manifolds supports a simple generalization to axion mon-
odromy inflation [28–32] (along the lines of [33] or [34] but with fewer ingredients). We
summarize the mechanism and spatial structure of our compactifications in figures 1-2.

It is interesting to explore the internal fields as explicitly as possible, both to concretely
study the back-reaction coming from the localized Casimir energy, and to characterize the
landscape arising from more general field configurations for these topologies. For this, we
analyze the equations of motion,

δVe f f

δB
= 0=

δVe f f

δh
=
δVe f f

δC6
, (1.4)

with the constraint equation δAS11 + T (Cas) = 0 determining A as a functional of B, h, and C6.
Including the constraint, this constitutes a set of nonlinear partial differential equations (PDEs)
for deformations {A(y), B(y), h(y), C6}, including deviations from the fiducial hyperbolic met-
ric (1.1). This problem is well posed, as many concrete examples of appropriate finite volume
hyperbolic spaces are known explicitly [15,25–27]. One way such spaces can be characterized
is as a joined set of hyperbolic polygons [15]. This gives an explicit formulation of the PDEs
and boundary conditions.

In this setup, we can similarly characterize regimes of more general accelerated expansion
as well as metastable de Sitter. Approximate solutions of the PDEs (1.4) correspond to more
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Figure 1: Schematic of our stabilization mechanism. The overall volume is stabilized
by the indicated three-term mechanism involving curvature (including warp factor
gradients), Casimir energy, and flux, in a regime of large radius control (5.88). The
additional directions in 4d field space are stabilized via a combination of hyperbolic
rigidity and warping effects. Near the small circles supporting a strong negative
contribution to Ve f f from Casimir energy, the exponential decay of the warp factor
u= e2A prevents a runaway instability toward larger |ρC | and stabilizes the circle size
Rc∗ as discussed around (5.27). The integrated gradient squared of the warp factor
enters in combination with the integrated internal curvature, but with opposite sign,
to yield a tunable leading positive term in the potential, parameterized by a � 1
(4.6). Hyperbolic manifolds exhibit a positive Hessian for deformations h in (1.1)
[16], and warping effects render the net Hessian for the conformal mode B positive
along the lines explained in [17]. These effects extend to our system as described in
§3.1, §5.4 suggesting a positive Hessian overall, although a detailed calculation of the
Hessian in our problem is beyond the scope of this paper. In the absence of four-form
flux, the potential C6 relaxes to the solution (3.10)(3.11). If we include quantized F4
fluxes, the generalized flux term produces multifield axion monodromy inflation as
explained in §7. The features required for our construction exist in concrete classes
of hyperbolic manifolds as described in §A. Although the quantum effect of Casimir
energy is a leading contribution to the inflationary and de Sitter potential, quantum
corrections to other quantities such as the 4d Newton constant are suppressed as
explained in §4.2.

general accelerated expansion. The slow roll parameters (given in terms of the canonically
normalized fields φcI)

εV =
1
2

∑
I

(
∂φcI

Ve f f

Ve f f

)2
1

GN
, ηV,I J =

∂φcI
∂φcJ

Ve f f

Ve f f

1
GN

(1.5)

are proportional to the PDEs and their derivatives. We derive an explicit functional corre-
sponding to εV in our landscape, and comment on applications.
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Figure 2: Schematic of the spatial structure of our compactification. Casimir energy
is concentrated in regions with small circles, e.g. filled [19] cusps as pictured here,
or other types of systoles [20] ( the systole of a manifold being its shortest closed
noncontractible geodesic). The constraint equation (3.7) is related to a Schrödinger
problem. The solution contains gradients of the analogue wavefunction, the warp
factor u = e2A, as discussed e.g. in §5.1.1-5.1.2, and the conformal factor B also
varies internally, enabling a small value of the net curvature term in the effective po-
tential. We schematically sketch the hyperbolic space dressed with the varying warp
and conformal factors; explicit solutions illustrating the back reacted filled cusp ge-
ometry appear in section 5.3. The direction of variation of the deformation B away
from the hyperbolic space arises because the negative curvature pushes outward on
the volume, whereas the Casimir energy contributes a force in the opposite direction.
The effective Schrödinger potential develops a potential barrier for sufficiently large
Casimir energy. The warp factor dynamics also keeps the Casimir circle size � the
eleven dimensional Planck length `11 since the wavefunction dies rapidly under the
Schrödinger potential barrier ∼ |ρC | if the latter gets too large. The discrete param-
eters determining the volume and the size of the filled region enable independent
variation of the integrated curvature and gradient terms as discussed in §4, §5.1,
and appendix A, which details explicit classes of hyperbolic manifolds which satisfy
our requirements (including more precise illustrations in the upper half space). The
leading term in the effective potential ∼

∫ √
g(7)u2(−R(7)−3(∇u

u )
2) is tuned to small

positive value via these choices, enabling the quantum Casimir energy to compete.

In studying the internal dynamics, we focus on analytic methods, but also include some
numerics. We will touch on neural network techniques for solving PDEs and exploring the
potential landscape Ve f f [17], including a novel approach using the slow roll functionals as
loss functions to minimize in machine learning. The concreteness of hyperbolic manifolds
yields a number of well-posed problems in this area that could benefit from a much more
extensive study of the internal fields in the landscape of hyperbolic compactifications of M
theory.
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After explaining our framework in the bulk of the paper, we will comment on other future
directions and applications of our results to aspects of observational cosmology and de Sitter
quantum gravity, along with connections to mathematics.

2 Setup and volume stabilization mechanism

We compactify M theory on a manifold admitting a finite-volume hyperbolic metric, obtained
as a freely acting orbifold H7/Γ with constant curvature radius `. In upper half space coordi-
nates, we can write the H7 metric as

ds2
H7
= `2 dz2 + ds2

R6

z2
= d y2 + e−2y/`ds2

R6 . (2.1)

Each example in our class of finite-volume compactifications is obtained by modding this out
by a freely acting group Γ of isometries [15], with specific features needed in our application.

The main specification we will need is one or more regions in the geometry with small
circles of slowly varying size Rc � `, as occurs in hyperbolic cusps (combined with a higher
dimensional analogue of Dehn filling [19]) or in other constructions in systolic geometry6

such as [20–22]. We will describe this in more detail as we go, connecting them with standard
features of hyperbolic spaces [15]. To be specific we will realize them in a class of examples
obtained from the simple and explicit constructions introduced recently in [25].

Including a warp factor and allowing for deformations away from the hyperbolic metric
yields the metric (1.1) appropriate for seeking four dimensional de Sitter solutions. There is
no additional dilaton field (as would arise in perturbative string theory). We also introduce
N7 units of 7-form flux, and will take into account Casimir stress-energy generated at the
quantum level. This will be straightforward to calculate in regions of the manifold with slowly
varying circles. As we will review in detail below in §4, the Casimir energy ρC is negative for
suitable fermion boundary conditions, and in the region of small circle size Rc it behaves like
ρC ∼ −

1
R11

c
as an 11d energy density. So its averaged contribution will be ∼ − 1

R11
c

VolC
Vol7

where
VolC is the volume over which the Casimir energy has its leading support, with Vol7 the full
internal volume. The bosonic part of the 11d (super)gravity limit of M-theory including the
classical sources is described by the action

S(classical)
11(bosonic) =

1
`9

11

∫
d11 x

√
−g(11)

(
R(11) −

1
2
|F7|2

)
+ SCS , (2.2)

in (−+ . . .+) signature, where SCS is a Chern-Simons term that will not play a direct role in
our de Sitter construction. Around a background configuration, quantum fluctuations of field
perturbations will build up a quantum Casimir stress-energy which we will specify below. This
will enter into the four dimensional effective theory in an important way.

The hyperbolic geometry, as an Einstein space, is an extremum of the Einstein-Hilbert
action

∫
11d

√
−g(11)R(11)/`9

11 for all metric deformations except the overall volume direction
(equivalently the curvature radius `), which would run away to large radius in the absence
of stress energy sources. We will start by showing that the averaged effect of the flux and
Casimir contributions gives a potential of the right shape to stabilize this would-be runaway
direction. This may happen in a regime of large-radius control, given a large parameter in
the problem which enables the Casimir energy to compete with the classical sources. We
will obtain this control parameter in detail, once we incorporate the warping effects [17]
required for a complete treatment of compactification. In that framework, we will analyze

6the systole of a manifold being the shortest closed noncontractible geodesic
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and bound the effects of the inhomogeneity in the Casimir energy, finding strong indications
of overall meta-stability from the combined effects of warping [17] and the Hessian from the
internal curvature [16]. For this full problem, we will work extensively with the complete four
dimensional effective potential Ve f f [B, h, C6] derived in [17] (which we will introduce below
in §3).

First, let us explain the basic motivation, a simple mechanism for volume stabilization.
Dimensionally reducing (2.2) to four dimensions and taking into account the one-loop Casimir
contribution, yields a four dimensional Einstein frame potential for the curvature radius –
equivalently the volume – of the form7

V (`) ∼ M4
4

1

v7
ˆ̀7

(
a
ˆ̀2
+

∫
H7/Γ

d7 ypgHρC `
4
11

v7
ˆ̀7

+
N2

7

v2
7

ˆ̀14

)
+warping+ inhomogeneities

= M4
4

1

v7
ˆ̀7

(
a
ˆ̀2
−

K
ˆ̀11
+

N2
7

v2
7

ˆ̀14

)
+warping+ inhomogeneities , (2.3)

where

M4
2 ∼ v7

`7

`9
11
= v7

ˆ̀7

`2
11

(2.4)

is the four dimensional Planck mass. Here we define ˆ̀ ≡ `/`11 in terms of the eleven dimen-
sional Planck length `11, and define v7 by

Vol(H7/Γ ) = v7 `
7 = Vol7 , (2.5)

and

K ∼
(
`

Rc

)11 VolC
v7`7

, (2.6)

where as defined above VolC represents the internal volume over which the Casimir energy
density has its leading support ∼ −1/R11

c .8 The first term in (2.3) descends from the 11d
Einstein-Hilbert action. With no backreaction, a = 42, but we will see in §5 that effects from
warping and inhomogeneities allow us to get a � 1. This will play an important role in the
stabilization mechanism, helping to increase the relative importance of the Casimir term. The
third term is the quantized 7-form flux squared descending from the 11d C6 kinetic term.
The middle term arises from the aforementioned Casimir energy whose contribution we will
discuss in detail in §4-5. We note that the 11d supergravity fields that give rise to the Casimir
term also induce other quantum corrections, such as corrections to 1/GN and higher derivative
terms. But as we will explain in detail below, these are suppressed by higher powers of `11/Rc
and `11/`, which will be controllably small in our setup.

We will later treat the warping and inhomogeneity effects in the potential, finding them
consistent with the volume stabilization mechanism suggested by the first three terms with
appropriate tunes to obtain large radius control. The first step is to note that the shape of
the first 3 terms in the potential (2.3) is consistent with a metastable minimum at positive
potential, given sufficiently large values of K and N2

7 scaling like

N2
7

v2
7
∼

K4/3

a1/3
. (2.7)

7We use a positive sign for the Casimir term, noting that the Casimir energy density ρC for bosons (which
dominate due to the fermion boundary conditions) is negative.

8Note that both K and v7 are dimensionless as defined in (2.3) and (2.4).
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A large flux quantum number is straightforward to prescribe. For the quantum Casimir energy
to compete with the other terms will require an input large number. If we were to balance the
hyperbolic curvature term against the Casimir term in (2.3), this requires

a
`9

11`
2
∼

1
R11

c

VolC
v7`7

. (2.8)

If K/a in (2.3) and (2.6) is fixed and large and positive – corresponding to net negative Casimir
energy – then there is a minimum for ` at large radius compared to `11:

ˆ̀=
`

`11
∼
(

K
a

)1/9

� 1 . (2.9)

This enhancement of the negative Casimir energy such that is competes with the term of
order a

`2`9
11

with a � 1 will be readily available in concrete hyperbolic manifolds with small

cycles Rc � `, consistently with Rc � `11. The latter criterion Rc � `11 avoids potential
instabilities from the M-branes arising in the UV completion of 11d supergravity. It is worth
stressing that since the curvature radius ` is much larger than the small circle size Rc , this
criterion is not needed for weak curvature but it does eliminate light degrees of freedom from
wrapped branes.

In a similar local geometry studied in [35], wrapped strings cause an instability when a
Scherk-Schwarz circle size reaches the string scale. This is analogous to the potential insta-
bilities that could occur if Rc reached the `11 scale. If the circle reaches the scale where the
wrapped extended object condenses, the end result may be, as in [35], a solution capped off at
a scale `. As explained in detail in [35], this transpires via a process where first the wrapped
string condenses, removing the region with small Rc to produce a thin cigar geometry, and
then the geometry retracts to a cigar geometry with a curvature scale∼ `. The latter geometry
is analogous to the cigar geometry in a Euclidean black hole; since it contains no structure at
a scale smaller than `, it would not support strong Casimir energy. 9 However, this wrapped
string/brane instability does not set in until the circle size reaches the fundamental scale. Con-
versely, if the circle is large in Planck units, the process is a Euclidean quantum gravity effect,
the Witten bubble [36], which is exponentially suppressed in R2

c/`
2
11. Our mechanism, includ-

ing key effects of the warping, will meta-stabilize Rc � `11, so that any instability of this sort
is a negligible non-perturbative effect.

A typical potential shape is depicted in Fig. 3. The squared 4d Hubble constant propor-
tional to the value of the potential at the minimum scales like 1/`2 with no further tuning
(since all terms are then comparable, including the internal curvature). Further tuning is
available via our parameters K and N7. Altogether we have a small 4d curvature

H2
dS ∼

Vmin

M4
4
≤

1
`2
�

1
`2

11
� M2

4 , (2.10)

in units of both the eleven and four dimensional Planck scales. The final inequality here arises
from the large internal volume.

Finally, let us stress again that in motivating our setup in this section, we have discussed
the homogeneous terms in the expression (2.3) for the potential V (0) that arises from the
averaged sources. However, it will be important to take into account effects from warping
and inhomogeneities, and we will do this in our more complete treatment of the full potential
Ve f f in what follows. This will lead us to an approximation scheme in which the required
strong localized Casimir contribution is stabilized by warping effects, and for bulk fields the
metastable minimum shifts by a controllably small amount as a result of tadpoles introduced
by the inhomogeneity.

9We thank Juan Maldacena for discussions related to this point.
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Figure 3: Effective potential with 3-term structure from (2.3). The intermediate
negative Casimir contribution balances against curvature (dominant at small 1/ˆ̀),
and flux. This produces a dS minimum according to the averaged effects of our
stress energy sources, We will incorporate inhomogeneities and warping effects in
later sections and find that this volume-stabilization structure persists, with a strong
localized Casimir source and controllably small shifts in the bulk fields.

3 Off shell effective potential and slow roll functionals

We will now incorporate the full effective potential, which captures the warping and inhomo-
geneity effects indicated schematically above in (2.3). This is presented in equations (3.1-3.2)
of [17], which we reproduce here for our setup. Let us define the metric components as in
(1.1),

ds2 = g(4)µν d xµd xν + g(7)i j d y id y j = e2A(y)ds2
symm + e2B(y) g̃(7)i j d y id y j , (3.1)

with the metric ds2
symm being any maximally symmetric 4d metric, (A)dS4 or Minkowski, with

curvature R(4)symm. Furthermore, g̃i j is an arbitrary fiducial metric, although for part of our
analysis we will be interested in fluctuations around a fiducial hyperbolic metric,

g̃(7)i j = gH i j + hi j . (3.2)

It is very useful for some purposes to work directly with the warp factor, defining the variable

u(y) = e2A(y). (3.3)

In terms of this, the effective potential in four dimensions is (see App. B)

Ve f f [g
(7), C6] =

1
2`9

11

∫
d7 y

√
g(7)u2|c

(
−R(7) −

1
4
`9

11T (Cas)µ
µ +

1
2
|F7|2 − 3

(
∇u
u

)2 ∣∣∣
c

)

+
C
2

(
1

GN
−

1
`9

11

∫ √
g(7)u|c

)
, (3.4)

where from (4.2),
〈T (Cas)µ

µ〉= −4ρC(Rc) , (3.5)
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C is a Lagrange multiplier enforcing a fixed 4d Newton constant

1
GN
=

1
`9

11

∫ √
g(7)u|c , (3.6)

∇ is the gradient with respect to g(7)i j , and u|c denotes the functional u[g(7), C6] which satisfies
the constraint equation(

−∇2 −
1
3

(
−R(7) −

1
4
`9

11T (Cas)µ
µ +

1
2
|F7|2

))
u= −

C
6

, (3.7)

with appropriate boundary conditions, along with the normalization condition (3.6). For a
hyperbolic manifold decomposed into hyperbolic polygons, the boundary conditions are con-
tinuity of u and its normal derivative at the totally geodesic interfaces between polygons.

Upon solving for u in this way, the value of C is proportional to the potential (and hence
the four dimensional curvature):

Ve f f =
C

4GN
=

R(4)symm

4GN
. (3.8)

This expression for Ve f f is valid off-shell in the effective theory, and depends only on the
internal fields. Setting to zero its variation with respect to the internal fields, while solving
for u via (3.7), reproduces the 11d field equations for C6 and the metric (3.1). In App. B, we
collect the equations of motion for A (equivalently u), B, and C6 around any fiducial geometry
g̃(n)i j .

We can also write this in a way that makes contact with the standard Einstein frame 4d
potential, by integrating out C:

Ve f f [g
(7), C6] =

`9
11

2G2
N

∫
d7 y

√
g(7)u2|c

(
[−R(7) − 3

(∇u
u

)2
∣∣∣
c
]− 1

4`
9
11T (Cas)µ

µ +
1
2 |F7|2

)
(
∫

d7 y
√

g(7)u|c)2
. (3.9)

This has the overall volume scaling as in (2.3), with the addition of the −3(∇u
u )

2 term which
scales with ` like the internal curvature term.

The organization of these equations into the constraint equation and variations of the
effective potential Ve f f has several practical advantages (in addition to its conceptual impor-
tance) [17]. For fixed internal metric and other sources, the constraint equation (3.7) can be
understood in terms of a Schrödinger problem [17], with the analogue Schrödinger poten-
tial getting positive contributions from negative stress energy sources, and vice versa. Thus
the analogue wavefunction u gets its support in regions where positive stress energy sources
dominate, and conversely it dies off rapidly where negative sources dominate, like a quantum
mechanical wavefunction in a classically disallowed region. As such, it screens would-be un-
stable regions of negative energy, as we will see in detail in §5.1. At a perturbative level, [17]
showed that the warp factor staunches a naïve second order instability in the direction of the
conformal factor of the internal metric. We will generalize this shortly to derive a model-
independent formula for this effect on the Hessian. A key restriction that we will take into
account is that u must be real non-negative in our problem.

Our system contains 7-form magnetic flux F = dC6. It is useful to record here the equation
of motion for C6 and a simple solution F̄ (7) for the flux:

0 = ∂ j1

(√
g(7)u2 g(7) j1 i1 . . . g(7) j7 i7 Fi1,...,i7

)
,

F̄ (7)i1,...,i7
= f0

√
g(7)

u2
εi1,...,i7 . (3.10)
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On a compact space we must impose flux quantization10,

(2π)1/3

`6
11

∫
Σ7

F̄ (7) = 2πN7⇒ f0 ∼ `6
11

N7∫
Σ7

p
g(7)

u2

, (3.11)

where Σ7 is the internal manifold; see e.g. [37] where the key role of fluxes in string com-
pactifications was articulated. With this in place, we note that the overall scale of u = e2A,
equivalently the zero mode of A, does not enter in F̄ (7). This is the general solution for C6
given maximal symmetry in 4d and no magnetic F4 flux internally.

Let us explain this statement. There is a unique 4-form flux that is closed and compatible
with maximal symmetry:

F (4)µ1...µ4
= f0

√
g(4)symmεµ1...µ4

, (3.12)

with f0 given by the functional (3.11) which respects the maximal symmetry and ensures flux
quantization. Dualizing this gives the solution in (3.10).

It is also useful to consider the energetics directly in terms of the magnetic description. We
want to compare two configurations:

F̄ (7)i1,...,i7
= `6

11
N7∫ √
g(7)e−4A

√
g(7)e−4Aεi1,...,i7 ,

F̄ ′i1,...,i7
= `6

11
N7∫ √

g(7)

√
g(7)εi1,...,i7 . (3.13)

The first one contributes an energy density

E =
∫ √

g(7)e4A|F̄ (7)|2 ∼
N2

7∫ √
g(7)e−4A

. (3.14)

So in fact regions with strong warping u→ 0 tend to decrease the contribution of this config-
uration to the energy. For the second one,

E′ ∼
N2

7

∫ √
g(7)e4A

(
∫ √

g(7))2
. (3.15)

Thus
E′

E
=

1

(
∫ √

g(7))2

(∫ √
g(7)e4A

)(∫ √
g(7)e−4A

)
≥ 1 , (3.16)

by Cauchy-Schwarz. So F̄7 is energetically preferred over the unwarped ansatz F̄ ′7.
If we work with the properly quantized flux solution (3.10) and (3.11) from the start, then

the constraint equation (3.7) becomes a nonlinear integro-differential equation:

Ĥu= −
C`2

6
, Ĥ[u] = −∇2

w −
1
3

(
−R(7)`2 + `9

11`
2ρC +

`2`12
11

2

N2
7

u4(
∫ √

g(7) 1
u2 )2

)
. (3.17)

We stress that the u-dependence here is consistent with the screening effect just noted fol-
lowing [17]. A rapidly decreasing ‘wavefunction’ u in a classically disallowed region of the
effective Schrödinger potential is consistent with finite flux in that region, as a result of the∫ pg 1

u2 factor in the denominator of the final term in (3.17). For some purposes, it is useful
to begin with a fixed flux configuration (independent of u) such as F̄ ′7 in (3.13), to maintain

10In the rest of the paper we are going to omit these factors of 2π.
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the linearity of the constraint equation, and later shift C6 to its minimum. This also puts the
C6 perturbations in the same footing as the metric perturbations.

This formulation of an off-shell effective potential facilitates exploration of the landscape
beyond the fiducial hyperbolic metric. Another application which we will develop below is to
formulate a functional version of the inflationary slow-roll parameters related to variations of
Ve f f . As we will see, these expressions will enable useful analytic upper bounds on deviations
from de Sitter in appropriate configurations in this landscape that can extend well beyond the
hyperbolic geometry. Moreover, numerical approaches based on machine learning can natu-
rally explore the Ve f f landscape as well as a loss landscape built from the squared equations
of motion or the functional slow roll parameters, as we will see in §8.

In the remainder of this paper, we will first study our system starting from the fiducial hy-
perbolic metric, taking into account the inhomogeneities introduced by the localized Casimir
energy in the solution and in the analysis of the Hessian, which we find to be positive overall.
It is interesting to further analyze the internal field equations, in part to explore field configu-
rations well beyond this nearby de Sitter minimum. This is a well posed problem given explicit
hyperbolic manifolds obtained by gluing polygons. We will discuss a warmup example in this
direction below, but largely leave it to future work. In general, our setup raises numerous
directions for ongoing analysis.

3.1 Warping contributions to the Hessian

We can use this formalism to derive model-independent consequences for small fluctuations
about a solution to the equations of motion with small cosmological constant. The result
will be a universal stabilizing (positive) contribution to the Hessian arising directly from the
warping dependence in Ve f f (3.4).

Motivated by the analogy to a Schrödinger problem, let us write

2`9
11 Ve f f = −uIHI JuJ = −〈u|H|u〉 , (3.18)

with
H =

√
g(7)(R(7) − `9

11ρC −
1
2

F2
7 − 3∇2) = 3

√
g(7)Ĥ/`2 . (3.19)

Suppose that we consider a system for which the ground state wavefunction u0 satisfies

H|u0〉 ≈ 0 , (3.20)

so that the ground state energy λ0 is close to zero. Such a wavefunction u0 gives a good
approximation to a solution of the constraint equation (3.7) for C`2� 1, a regime of interest
for compactifications.

Let us denote metric deformations by γ (corresponding to h,δB in the compactifications
(1.1) we are studying in this work). In this language, the γ equation of motion at fixed u= u0
is

〈u|(∂γH)|u〉= 0 . (3.21)

In standard quantum mechanical perturbation theory, this corresponds to a vanishing first
order correction to the small ground state energy in (3.20). This in turn means that (3.20) is
preserved under this first order perturbation, so we can write

δ

δγ
(H|u〉)' 0 ⇒ H|∂γu〉 ' −(∂γH)|u〉 . (3.22)

We would like to analyze the Hessian for small fluctuations about such a solution.
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3.1.1 Universal positive contribution

The mass term for γ taking into account the warp factor variation is (using the chain rule and
eliminating terms that vanish on shell)

2`9
11

δ2Ve f f

δγ2
= −〈u|(∂ 2

γH)|u〉 − 2〈∂γu|H|∂γu〉 − 4〈∂γu|(∂γH)|u〉 . (3.23)

Generically the warp factor Hamiltonian has no exactly zero eigenvalues and is invertible, so
from (3.22) we have

|∂γu〉= −H−1(∂γH)|u〉 . (3.24)

Plugging this into (3.23) gives

2`9
11

δ2Ve f f

δγ2
=
〈

u
∣∣∣(−∂ 2

γH+ 2∂γHH−1∂γH
)∣∣∣u〉 . (3.25)

Denote the eigenstates as H|uα〉= λα|uα〉, so that the “propagator”

H−1 =
∑
α

1
λα
|uα〉〈uα| . (3.26)

If we now approximate the warp factor by the ground state, |u〉 ≈ |u0〉, with λ0`
2� 1, we see

that only excited states contribute to the second term in (3.25), since 〈u0|(∂γH)|u0〉 ≈ 0 from
(3.21). Therefore

2`9
11

δ2Ve f f

δγ2
≈

〈
u0

∣∣∣∣∣∣
−∂ 2

γH+ 2∂γH

∑
i 6=0

1
λi
|ui〉〈ui|

∂γH
∣∣∣∣∣∣u0

〉
(3.27)

=
〈

u0

∣∣∣(−∂ 2
γH)

∣∣∣u0

〉
+
∑
i 6=0

1
λi
|〈u0|∂γH|ui〉|2 .

The same result arises from applying standard quantum mechanical perturbation theory, with
a perturbation∆Ĥ = γ∂γĤ leading to a perturbation∆u orthogonal to the unperturbed wave-
function. For λ0 small and negative, and for larger level spacing (of order 1/`2 in our appli-
cation), all the λi > 0 and thus the warping correction to the mass squared is always positive.

A key example of this appears in section 4.1 of [17], showing explicitly how the full Hessian
including warping effects avoids an instability that would otherwise arise from short modes of
the conformal factor in any compactification. In our application, there are two contributions
that are automathically positive to the Hessian: this warping contribution, and the positive
δ2

δh2

∫ pg(−R(7)) [16] arising from the negative sectional curvatures of our fiducial manifold.
We will develop this further below in §5.4, using trial wavefunctions in the sense of the ana-
logue Schrödinger problem and also analyzing the perturbations around our explicit patchwise
solutions from §5.3.

3.2 The slow roll functionals in our landscape

In our de Sitter construction, the metastable minima of Ve f f are needed, requiring the formula
(3.4) [17] for the full effective potential. For the purpose of more general cosmological evo-
lution, other aspects of the four dimensional effective theory are of interest. Before leaving
the subject of the effective four dimensional theory, we note that one can use this framework
to derive an expression for the slow roll parameters (1.5). We can think of these as function-
als of the internal fields, εV [δB, h, C6] and ηV [δB, h, C6] in the parameterization (1.1) of our
landscape.
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The general formula for the slow-roll parameter εV is

εV =
1
2

∑
I

(
∂φc,I

Ve f f

Ve f f

)2
1

GN
, (3.28)

in terms of the canonically normalized four-dimensional fields φc,I . Before continuing, we
note that the model-independent parameter of most general interest is ε = −Ḣ/H2 (in terms
of Hubble H(t) = ȧ/a for FRW metric −d t2 + a(t)2d ~x2 with scale factor a(t)). The model-
independent quantity ε directly determines whether accelerated expansion occurs: it does so if
ε < 1 [38]. In general, this can arise due to a combination of kinetic and potential effects, not
requiring a flat potential. However εV � 1 is a sufficient condition for accelerated expansion,
and for simplicity we will focus on this quantity here.

In appendix §C we will incorporate the structure of the kinetic terms to derive explicit
formulas for contributions to εV from δB and certain deformations h (1.1); similar methods
capture the full εV and ηV . The resulting expressions are amenable to both analytic estimates
and numerical evaluation.

4 Casimir contribution

Since it is essential for the volume stabilization mechanism, we next explain the origin of the
strong Casimir contribution in our compactifications. As explained above in §2, the Casimir
stress energy will dominate in regions of the internal space with a small, slowly varying circle
of size Rc . The study of short geodesics is known as systolic geometry, with various explicit
constructions given in hyperbolic geometry [20–22] and in more general Einstein spaces ob-
tained by filling in hyperbolic cusps [19]. These constructions, which feature a small circle
supported in a local Einstein geometry are suitable for our application. In this section, we
will describe this in detail, focusing for specificity on the case of a hyperbolic cusp filled in as
in [19]. We will incorporate the warping effects encoded in the effective potential Ve f f [17]
reviewed in the previous section.

A hyperbolic manifold can contain thin regions, including near-cusps whose metric is

ds2
cusp = d y2 + e−2y/`ds2

T6
comoving

, y0 < y < yc . (4.1)

The upper endpoint yc prescribed here can effectively arise via Anderson’s generalization of
Dehn filling [19], with the metric (4.1) joined to a twisted Euclidean AdS black hole geometry
as described in [19], smoothed out to form an Einstein space. We review this construction
in more detail in appendix A.2. In that construction, or other realizations of thin regions
containing a small, finite-size circle, the local geometry is a small circle S1 times a region of
R6. We can view yc in (4.1) as a regulator modeling the finite size of the minimal circle in
these constructions.

This filled cusp is, for now, a fiducial geometry in our compactification; we will discuss the
back reacted warped geometry – including the dynamics of the S1 size, and its stability –in
detail in what follows. In sections 5.1.1 and 5.1.2 we illustrate some of the dynamics of our
fields in simpler analogues of the geometry [19], in section 5.2 we derive the sourced fields
away from the Casimir region, and in section 5.3 we present a back reacted cusp solution
smoothly joining these regions.

At smaller y , the cusp joins to the central manifold. In (4.1) we have described this with a
lower endpoint y0, but we note that there is a more natural interface that is totally geodesic:
a hyperbolic space can be obtained by gluing a set of hyperbolic polygons via a pairing of their
totally geodesic facets, including those with ideal vertices that join together to form cusps [15];
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see e.g. [25] for recent examples. For our present purposes of calculating the Casimir energy,
the large y region of the cusp dominates: the small proper size of the T6 for large y leads to
a large contribution to the Casimir energy ∼ −1/R11

c localized in that region.
We will take antiperiodic fermion boundary conditions on the minimal-length cycle(s) of

the T6, leaving bosons as the dominant contribution to the Casimir energy. The proper size RT6

of the cycles in the T6 are small at large y , and in that regime they shrink slowly:
dRT6

d y ∝ e−y/`.
This leads to a simple result for the expectation value of the Casimir stress-energy for each
bosonic fluctuation, as reviewed in e.g. [39]:

〈T (Cas)µ
ν〉= −ρC(Rc)δ

µ
ν , 〈T (Cas) y

y〉= −ρC(Rc) , 〈T (Cas)a
b〉= −

(
ρC(Rc) +

1
N

Rcρ
′
C(Rc)

)
δa

b ,

(4.2)
with

ρC(Rc)∼ −
1

R11
c
∼ −

e11y/`

λ11
c

, (4.3)

where λc is the length of the shortest cycle on the T6 cross section in the comoving metric ds2
T6

in (4.1). Here N is the number of dimensions with the minimal cycle size Rc , and µ,ν range
over both the four external dimensions of the putative dS4 as well as the remaining 6−N torus
directions. This expression also assumes that the warp factor in (1.1) does not vary rapidly
enough to affect the modes entering into this calculation of the Casimir stress energy. We will
see below that this is the case in our backgrounds.

Let us denote the volume of the comoving torus as vT`
6. We can estimate the integral that

enters into the second term of (2.3) as:∫ pgHρC `
4
11

v7
ˆ̀7

∼ −nc
vT

ˆ̀6

v7
ˆ̀7

∫ ŷc

ŷ0

d ŷ

λ̂11
c

e−6 ŷ/ˆ̀e11 ŷ/ˆ̀ ' −
vT nc

5v7λ̂11
c

e5yc/`

∼ −
1

ˆ̀11

(
ˆ̀

R̂c

)5
Vol(T6

comoving)

λ6
c

nc

v7
(4.4)

times 128, the number of bosonic species, where again hats indicate variables in units of the
11d Planck length `11, and nc is the number of cusps like this. This incorporates our minimal
cycle size Rc � `, cutting off the divergence in the Casimir energy. This expression reproduces
the general behavior discussed above in (2.6). Without including additional effects, balancing
this against the curvature term would yield a stabilization mechanism

ˆ̀4 ∼
1
R̂5

c

[
128
42

nc

v7

Vol(T6
comoving)

λ6
c

]
(no warping or backreaction) . (4.5)

From this we see that obtaining ` � Rc � `11 would require the factor in square brackets

to be � 1. The final factor
Vol(T6

comoving )
λ6

c
, in itself, grows with increasing cusp asymmetry, e.g.

a square torus with one circle radius Rc much less than the others. It follows from Mostow
rigidity that cusp shapes of hyperbolic manifolds do not vary continuously, but there are many
discrete choices of finite-volume spacesH7/Γ depending on the choice of isometry subgroup Γ .
Mathematical work has established the existence of a dense set of cusp cross sections in various
cases including [40] and [41]. It is straightforward to obtain a parametrically large asymmetry
in an elementary way by taking covers of explicit manifolds with symmetric cusps such as the
7-manifold in [25] to construct hyperbolic manifolds with arbitrarily asymmetric cusps.11 In
that procedure, however, we find that the volume per cusp grows with the asymmetry in such
a way that the factor in square brackets remains of order 1.

11We thank Ian Agol for this suggestion.
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This behavior may be more general. In the mathematical literature, there is much discus-
sion of the spectrum of volumes of hyperbolic manifolds. Of particular interest to us is an
inverse relationship between systole size and volume: such a bound derived in [21,22] in the
context of the inbreeding construction for small systoles [20] has the same effect of maintain-
ing an order 1 value of the factor in brackets in (4.5). This suggests an interesting relationship
between bounds on negative energy in physics and systolic geometry in mathematics.

However, in our physical context, this is not the final result: additional effects on Rc and
the Casimir energy are important. These involve the full four dimensional effective potential
Ve f f introduced in the previous section. There are two basic effects that will be important to
consider: a contribution of warp and conformal factor gradients reducing the curvature term
in the potential, and a tadpole for Rc that will be stabilized by a combination of the rigidity and
warp factor screening. In particular, the gradient of the warp factor in the effective potential
(3.4) can reduce the magnitude of the curvature term allowing the Casimir compete with it in
the regime `� Rc � `11. Indeed, define

a =

∫ √
g(7)u2|c[−R(7) − 3

(∇u
u

)2
∣∣∣
c
]∫ √

g(7)u2|c 42/`2
, (4.6)

with R(7) the full internal curvature. Balancing the warping-corrected full curvature term and
the Casimir contribution now requires

a
∫ √

g(7)u2|c
42
`2
∼ `9

11

∫
p

g7u2|c|ρc| , (4.7)

equivalently,

ˆ̀4 ∼
1
a

1
42

ˆ̀6`11
11

∫ √
g(7)u2|c|ρc|∫ √

g(7)u2|c
. (4.8)

The unwarped analysis above is obtained in the limit u→ 1 (a→ 1), with the right hand side

of (4.8) proportional to the averaged Casimir contribution ∼
∫ p

g(7)|ρc |
Vol7

estimated in (4.4) and
leading to the unwarped relation (4.5). However, we see that a � 1 helps the two terms to
compete, stabilizing at ˆ̀� 1, even if the last factor is of order 1.

We will explain more about this tuning shortly, but first let us incorporate the second effect.
With the full effective potential in place, we can also give a glimpse of the dynamics of the
Casimir circle Rc and its role in the stabilization mechanism. The first point to note is that the
Casimir energy becomes more negative as Rc shrinks. As a result, starting from the fiducial
metric, given any asymmetry in the hyperbolic cusp, there is a nonzero force −Rc∂Rc

Ve f f < 0.
To determine the fate of this tadpole, we must again incorporate the warping effects in the full
Ve f f . This contains dependences on the internal fields that enter via the solution u|c to the
constraint equation (3.7) appearing in (3.9). To study the net effect of the tadpole Rc∂Rc

Ve f f
and the warping, we will use the fact that the constraint equation takes a Schrödinger form
for small C`2, with u proportional to the analogue wavefunction with analogue energy eigen-
value near zero. In §5.1, we will study this in detail. In particular, we will explain how the
parameters required to ensure C`2 � 1 arise in our setup, analyzing the relevant integrated
quantities that enter into the volume stabilization, and also enable a perturbative treatment of
other metric deformations. In the remainder of this section, we summarize more schematically
this dynamics and how it applies to our stabilization mechanism.

In the analogue Schrödinger problem, the increasing magnitude of the localized Casimir
energy as Rc shrinks leads to a stronger potential barrier ∼ |ρC(y)| for the ‘wavefunction’ u.
For a sufficiently small Rc , the barrier is high enough that in the region of support of ρC , the
wavefunction is in the classically disallowed regime, below this barrier. Once this happens,
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the analogue wavefunction becomes exponentially suppressed ∼ Exp[−
√
|ρC |]. In (3.9), the

integrand contains a factor of u2. As a result, the Casimir term in the potential for the unstable
mode R̂c behaves schematically as Ve f f [R̂c]∼ −bR̂−11

c exp[−bR̂−11/2
c ] for sufficiently small Rc .

This, combined with the Hessian, is enough to prevent an unbounded instability for small Rc
as we will discuss further below in §5.1, and we will exhibit a backreacted cusp solution with
stabilized Rc in §5.3.

Let us now return to the question of what provides the large parameter needed in the `
stabilization to ensure that all length scales can be� `11, now working with the full effective

potential (3.9). Recall that above in (4.5), we were left with a factor
[

nc
v7

Vol(T6
comoving )
λ6

c

]
of order

1, but we had not yet taken into account any tuning of a as defined in (4.6), or the tadpole
along which Rc shrinks, along with the warping effects that ultimately stabilize this tadpole
at a lower value of Ve f f . We will now incorporate those effects and check the relative sizes of
`, Rc , and `11. Since all terms in (3.9) will compete in the solution, we get a relation between
our parameters by balancing the first term −R(7)−3((∇u)/u)2 against the Casimir term, giving

ˆ̀4 ∼
1

R̂5
c∗

[
128
42

b
a

u2
∗

nc

v7
|∗
∆Y
`

Vol(T6)
R6

c
|∗

]
, (4.9)

where we denote with a ∗ the values of geometric quantities at the stabilized value of Rc ,
including the proper volume of T6 in the Casimir region of size∆Y and support u2; the reduced
Rc has an effect also on the total volume v7, reducing it somewhat as Rc shrinks. We also
defined

b =

∫
d7 y

√
g(7)u2(y)|ρC(y)|

∣∣∣
c

128 u2
∗VolC/R11

c,∗
. (4.10)

This constant b will be order 1 in the numerical solutions below and we will often drop it in
what follows. This reduces to the previous expression in the unwarped Einstein metric (4.5)
if we set u∗ = 1 = a = b = ∆Y /` and identify Rc∗ with its value in the Einstein metric. With
the warping effects included, this factor

1
ε
=
[

128
42

b
a

u2
∗

nc

v7
|∗
∆Y
`

Vol(T6)
R6

c
|∗

]
(4.11)

may be� 1. Starting from a configuration with ε∼ 1, as we descend the potential landscape in
the direction of the Rc∂RcVe f f tadpole, the number nc of cusps stays constant and the remaining
factors lead to some increase in 1/ε, although the effects of other fields including the warp
factor stabilize it, as we will see below in §5.1 and §5.3.

The method that we will focus on to ensure that ε� 1 is to tune a� 1. To achieve this,
we need to incorporate variations in the warp and conformal factors. One general result in
compactifications with C ≥ 0 is that in a region where the Casimir contribution is negligible,
the solution of the warp and conformal factor equations of motion implies a net negative value
pointwise of the potential energy density appearing in the formula for Ve f f [42],

−R(7) − 3
(
∇u
u

)2

= 4`9
11|ρC | −

C
u
−

5
2

F2
7 . (4.12)

This combination −R(7) − 3
(∇u

u

)2
contributing to a may be positive with sufficiently strong

Casimir energy, near the small circles in our construction. Conversely, where the Casimir
energy is negligible, we will have a negative contribution to a. In general, the contributions to
a coming from the variation of various metric components depend on different aspects of the
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compactification (related to the group Γ and cusp fillings) and flux quanta, suggesting they
are tunable via small variations of contributions to a:

|∆
∫ √

g(7)u2
(
−R(7) − 3(

∇u
u
)2
)
| � |

∫ √
g(7)u2

(
−R(7) − 3(

∇u
u
)2
)
| . (4.13)

We can analyze this more concretely as follows.
Below in section 5.3 we will present a class of back reacted solutions in the cusp which

smoothly joins the Casimir and bulk regions (with positive and negative contributions to a,
respectively). These solutions evolve purely radially (depending on y in (4.1)), whereas the
full solution must depend on all directions near the gluing to the central manifold, but the
solution illustrates several important features. In these solutions by themselves, one can (as
we show explicitly below) tune 0 < a � 1. In the underlying hyperbolic space, the cusps
contain a significant fraction of the volume of the manifold, so the existence of cusp solutions
with small a > 0 suggests that this tuning is possible in the full space.

4.1 Tuning a� 1

Indeed, we can identify parameters enabling us to tune a. Suppose we start from a solution in
which a is too large. Starting from manifolds such as [25], summarized in appendix A, we may
add bulk regions which contribute negatively to a. Specifically, using the filling prescription
[19] we can obtain (via choice of simple closed geodesic as reviewed in §A.2) short cusps
which add volume without significant Casimir energy; we can also take covers of the manifold
to proliferate or extend either type of cusp, as described in the appendix. Conversely, starting
from a value of a that is too small, we can increase it by reducing the flux quantum number
N7. Since this appears on the right hand side of (4.12), reducing it will reduce the negative
contribution to a in the bulk regions. In the explicit solutions in section 5.3, the strong Casimir
region does not get much contribution from flux, so this adjustment of N7 predominantly
affects the bulk region, increasing a. Below in §5.5 we will see that the adjustment of a indeed
leads to large length scales in all directions, including the Casimir circle. This mechanism,
together with the wide availability of the relevant sequences of geometric and flux parameters,
also suggests that this effect is parametric, that it is possible to parametrically control all the
length scales.

4.2 Bounding additional quantum effects

Having described the crucial effect of the Casimir energy in our stabilization mechanism, let
us now assess other quantum effects in the theory. In addition to Ve f f , the kinetic terms get
quantum corrections. The renormalization of the four-dimensional Newton constant is the
most UV sensitive of these, but as we will see here this is suppressed compared to its classical
value. We can study this both from the bottom up 4d perspective and the 11d perspective.

In the 11d language we obtain a correction

∼
ncVolC
v7`7

R(11)

R9
c∗

(4.14)

to the equations of motion, with R(11) the 11d curvature scalar. This can be thought of as a
curvature expansion of the Casimir stress energy calculation (which starts at order 1

R11
c∗

ncVolC
Vol7

as

above). The R(4) part of this contains a renormalization to the Einstein term. Since we have

nc
VolC
Vol7

∼
nc

v7

R6
c∗
`6

Vol(T6)
R6

c
|∗ , (4.15)
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we obtain a ratio of quantum contributions to 1/GN to classical ones of order

∆1/GN

1/GN
∼
`9

11

`6R3
c∗

nc

v7

Vol(T6)
R6

c
|∗ . (4.16)

This ratio is small since we work in a regime where `� Rc∗� `11.
In the four dimensional effective theory, the Newton constant is given up to one loop order

by
1

GN
=

1
`9

11

∫ √
g(7)u+ quantum∼

v7`
7

`9
11
+

Nspecies

L2
SUSY−breaking

, (4.17)

where we used the fact that in the bulk of our space, where the classical contribution to 1/GN
gets its dominant contribution, the variation of u is not large in the sense we have described
above (as detailed in §5.2 below). The cutoff on the effective theory is of order the SUSY
breaking scale 1

LSUSY−breaking
, with an effective number of species Nspecies contributing.

The SUSY breaking scale is of order 1/Rc∗ for species localized in the region of the small
circles dominating the quantum corrections,

Nspecies

L2
SUSY−breaking

∼
1

R2
c∗

nc

{
`

Rc∗

Vol(T6)
R6

c
|∗

}
. (4.18)

As indicated here, the number of species contributing up to the scale 1/Rc∗ is the number of
cusps nc times the factor in curly brackets which gives the number of KK modes of mass 1/Rc∗
in the region with the small circle of size Rc∗. This region is parametrically of proper length
∼ ` in the radial direction down each (filled) cusp. Given this, the 4d description reproduces
the ratio in (4.16).

The result is that although Casimir energy competes with the classical terms in Ve f f via
our mechanism (4.9), the quantum correction to the Newton constant is subdominant to its
classical value. Related to this, there is no suppression of the bare Newton constant term,
analogous to the available tuning a� 1 in (4.6) that applies to the leading (curvature) term in
Ve f f . Similarly, the quantum corrections to the kinetic terms of 4d scalar fields are suppressed
compared to the classical contribution.

5 Effect of inhomogeneities near the hyperbolic metric

We have seen that the averaged Casimir energy, combined with flux and curvature, leads to
a stabilized volume provided that we can tune a � 1 (4.6). Having laid out the appropriate
formalism and our strategy for large radius control, our next step is to determine the effect
of the inhomogeneity of the Casimir contribution to the effective theory. This involves four
interrelated parts:
(i) A more detailed analysis of the geometry in the region toward the end of the cusp with

a strong Casimir energy, to check the robustness of the localized Casimir source described in
§4.
(ii) More generally check of the effect of warping and a varying conformal factor on Ve f f

including bulk regions away from the end of the cusp, given the localized Casimir source.

These studies (i) and (ii) enter into the tunability of our parameter a (4.6), with contribu-
tions to it from different regions.
(iii) An analysis of the Hessian around the a background consisting of our hyperbolic

metric dressed with warp and conformal factor variations. We have two universal positive
contributions: the rigidity of non-conformal deformations of the hyperbolic metric, and the
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positive contribution from warping calculated model-independently in §3.1. Extending those
analyses leads to evidence for a positive Hessian overall as described below in §5.4.
(iv) Applying (iii) to obtain a check of the magnitude of the deformation in the bulk fields

needed to absorb residual tadpoles arising from the inhomogeneity. In order to make a general
estimate of the effects of the inhomogeneity-induced tadpoles on δB and h in (1.1), we need
to compare the linear and quadratic terms upon expanding the potential in these fluctuations.
The shift in a given field σ is given by

∆σ =
∂σVe f f

m2
σ

, (5.1)

if the Hessian HI J = ∂I∂J Ve f f is diagonalized, or more generally

∂I∂J Ve f f∆σJ = ∂I Ve f f ⇒∆σJ =H−1∂ Ve f f . (5.2)

We present this estimate below in §5.5, finding a small shift from the dressed bulk hyperbolic
metric.

5.1 Geometry and Casimir source near small circle

In this section we will elaborate on the dynamics summarized in §4, filling in some of the
requisite details. Here we focus on warp factor effects, in sections 5.2 and 5.3 we fill in details
of the full dressed background solutions, and in section 5.4 we will describe the Hessian around
this background.

Let us start by putting our analysis in a broader context. The metastability of M/string
theory compactifications depends on the strength of the intermediate negative source in the
expansion about weak coupling and large radius [18, 43–45]. Such sources must compete
with the other terms to create a dip in the potential as in Figure 3, without engendering any
runaway instability in the theory as a whole. For example, negative mass Schwarzschild solu-
tions should be absent to avoid rampant pair production instabilities [46]. This requirement
relates to fascinating aspects of quantum field theory and quantum gravity involving energy
conditions [47–51], a connection that would be interesting to explore more systematically in
the future. In the context of the compactifications we are studying here, this also connects to
mathematics in an interesting way: small circles supporting strong Casimir energy come with
lower bounds on the overall volume of the internal manifold [22,52].

In perturbative string limits, orientifold planes play this role beautifully, appearing at the
first subleading order in the expansion in the string coupling. Their long range effect on
spacetime and their non-dynamical positions prevent pair production. Although limited in
number, they proliferate in setups of interest, e.g. at large dimensionality [45, 53] and in the
presence of triply intersecting 7-branes [13, 54, 55]. They can play a useful role in systems
with stronger gradients such as [56].

In the present construction, Casimir energy plays this role. To understand its behavior
including the effects of gravitational interactions, it is useful to employ the effective potential
formalism in §3. In the constraint equation (3.7), viewed as an analogue Schrödinger equa-
tion, a region of negative energy introduces a potential barrier. The warp factor u, propor-
tional to the analogue wavefunction, decreases exponentially in the corresponding classically
disallowed region. This screens such regions [17], preventing a runaway instability.

This raises the question of whether such screening limits the negative stress energy sources
to the extent of eliminating the dip in Ve f f essential to metastability of de Sitter. We can
eliminate this possibility in general, as follows (and we will see this in action in examples). In
order to assess the strength of our negative source in Ve f f , we must solve the constraint (3.7)
and include the resulting u-dependences in (3.4). In this section, we will show that a significant
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negative contribution survives this step, preserving a three-term stabilization structure for the
volume. This follows both from general estimates of Schrödinger wavefunctions – applicable
to small systoles wherever they appear – as well as from explicit warped solutions in the cut off
cusp and the filled cusp including a backreacted solution for the warp and conformal factors
there.

We can derive this in general as follows. Consider a solution of the constraint equation
(3.7) with small C . Now integrate this equation against u, obtaining

`9
11

∫ √
g(7)u2|cρC = −

∫ √
g(7)u2|c

([
−R(7) − 3

(
∇u
u

)2 ∣∣∣
c

]
+

1
2
|F7|2 −

C
2u|c

)
. (5.3)

Here we dropped boundary terms, working on a closed manifold, e.g. with the Casimir energy
localized near a small systole. As we will see in detail in the next section,

∫ √
g(7)(∇u)2|c gets

its support in the region where the Casimir energy dominates; in the bulk of the manifold,
∇2A� (∇A)2 and this term is subdominant in Ve f f , satisfying the criterion articulated in [8].
In this region, positive curvature develops – as we saw above in (4.12), when Casimir energy
is negligible the equations of motion imply −R(7)−3

(∇u
u

)2
< 0 pointwise [42]. We will exhibit

a tunably positive contribution to −R(7) − 3
(∇u

u

)2
from the end region. For sufficiently small

contribution from the bulk volume, the net effect is∫ √
g(7)u2|c

[
−R(7) − 3

(
∇u
u

)2
]
> 0 . (5.4)

As a result, if we solve the constraint (3.7) with C ' 012, and satisfy (5.4), it is inevitable
that ρC will compete with the other terms, cancelling them as in the original 3-term struc-
ture. We may work with a fiducial flux contribution, F̄ (7)′ in (3.13) to begin with, so that
the constraint equation is linear. As we will see shortly, the true flux solution F̄ (7) is a small
perturbation from this. Viewing the constraint as a Schrödinger problem, C ' 0 corresponds
to demanding an energy eigenvalue ' 0, a one parameter tune. Discrete parameters in the
group Γ in H7/Γ and in the flux quantum number N7 can be tuned to achieve this and (5.4).

In addition to the competitive size of
∫ √

g(7)u2ρC just addressed, we need to check that
the `-dependence of u|c does not overcome the 3-term stabilization mechanism that is based on
the variation with respect to ` of curvature, Casimir energy, and flux. In other words, since u|c
depends on g(7)i j (in particular the overall scale `), Ve f f contains additional dependence on `
beyond these three sources. We will now show that this new ` dependence can be subdominant
to that of the original sources in our parameter regime of interest.

We will use perturbation theory, writing ` = `0 + δ`, expanding all quantities in δ` and
determining which contributions are dominant in the variation of Ve f f . We start from a fiducial
configuration given by the hyperbolic metric and flux

F (7)f id, j1,..., j7
= `6

11
Ñ7

Vol7

√
g(7) ε j1,..., j7 . (5.5)

Note that in (5.5) we are not yet working with the u-dependent solution for F7 described above
in (3.10), and we distinguish the flux quantum number N7 from Ñ7 which will be an auxiliary
parameter in our analysis. This fiducial configuration is a conceptually useful starting point

12More precisely, we will be interested in a regime C`2 � a as described below in (5.21). Note that the overall
scale of the warp factor u is fixed in terms of the Newton constant by (3.6), and given the resulting relation (3.8)
we identify C as the proper curvature in the four dimensional theory, of order Hubble2 in our dS and inflationary
models. In other words, we will mostly work in a regime in which 4d Hubble is weaker than the internal curvature
scale.
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because it preserves the linearity of the warp factor constraint (3.7). We will then incorporate
effects from C6 and metric tadpoles.

Because of the form of the constraint equation, part of our problem is similar to ordinary
quantum mechanical perturbation theory. We start from this equation, rescaled with a factor
of `2 to take the form(

−∇2
w −

1
3

(
−`2R(7) + `9

11`
2ρC +

`2

2
|F (7)f id |

2
))

u= −
C`2

6
, (5.6)

where wi = yi/` is a dimensionless coordinate. The effective Schrodinger Hamiltonian Ĥ is
perturbed as

Ĥ = −∇2
w −

1
3

(
−`2R(7) + `9

11`
2ρC +

`2

2
|F (7)f id |

2
)
= H(0) +

δ`

`
H(1) , (5.7)

with

Ĥ(0) = −∇2
w −

1
3

(
−`2

0R(7) + `9
11`

2
0ρ
(0)
C +

`2
0

2
(F (0)f id)

2

)
, (5.8)

and
Ĥ(1) = `2

0

(
3`9

11ρ
(0)
C + 2(F (0)f id)

2
)

. (5.9)

This last expression follows from the power law scalings with ` of the Casimir and flux terms
(multiplied by `2 in (5.6)); the curvature scales like 1/`2 and does not contribute to Ĥ(1).

We start from a configuration as just laid out in the discussion surrounding (5.3), with
warp factor u(0)(w) satisfying the constraint with the C term subdominant to the contributions
from individual sources. Perturbing around that, we have

` = `0 +δ` ,

u = u(0) +
δ`

`
u(1) ,

uk = u(0)k +
δ`

`
u(1)k ,

λk = λ
(0)
k +

δ`

`
λ
(1)
k , (5.10)

where the last two lines are the eigenfunctions and eigenvalues of Ĥ:

Ĥuk = λkuk ,

Ĥ(0)u(0)k = λ
(0)
k u(0)k , (5.11)

with orthonormalization condition similar to that in [17],

1
Vol7

∫
p

gu juk = δ jk . (5.12)

We find the familiar expression for the first-order shift in eigenvalues: at order δ`, the eigen-
value equation is

Ĥ(1)u(0)k + Ĥ(0)u(1)k = λ
(1)
k u(0)k +λ

(0)
k u(1)k . (5.13)

Integrating this against
∫ √

g(0)u(0)j /Vol(0)7 and integrating by parts gives

λ
(1)
j =

1

Vol(0)7

∫ √
g(0)u(0)j Ĥ(1)u(0)j

=
1

Vol(0)7

∫ √
g(0)u(0)j `

2
0

(
3`9

11ρ
(0)
C + 2(F (0)f id)

2
)

u(0)j , (5.14)
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where in the second line we used (5.9).
From [17] equation (2.38), we then have

u(w) = −
1
6

C`2
∑

k

uk(w)
1
λk

1
Vol7

∫
d7 y
p

guk , (5.15)

and substituting this into 1
GN
= 1
`9

11

∫ pgu and using Ve f f =
C

4GN
, we have (cf. (2.43) of [17])

Ve f f = −
1

G2
N

3 `9
11Vol7
2`2

1∑
k

1
λk
|
∫ pguk|2

. (5.16)

We can also express the effective potential upon integrating out the constraint as

Ve f f =
C

4GN
=

C
4`9

11

∫
p

gu . (5.17)

We are starting from a configuration described above around (5.3) with C , and hence Ve f f

near zero; 0 ® C � −R(7). In (5.16) we see that this corresponds to having a small negative
eigenvalue λ0 ® 0. We would like to impose that this corresponds to good approximation
to a local minimum of Ve f f in the ` direction, to confirm that the 3-term structure remains
consistent with the warping. As such, we need the variation with ` of Ve f f to be much smaller
than that of its individual terms, such as the curvature term∝ 42/`9 in (2.3). More precisely,

we will require this variation to be much less than the [−R(7)−3
(∇u

u

)2
∣∣∣
c
] term (3.9) for which

δVa ∼
δ`

`

9`9
11

G2
N`

9

Vol7
∫

d7 y
√

g(0) (u(0)|c)2a

(
∫

d7 y
√

g(0)u(0)|c)2
, (5.18)

where a was defined above in (4.6). Since we have a small eigenvalue, expanding Ve f f in the
form (5.16) gives (using Vol7 ∼ `7)

δVe f f ' −
δ`

`

3`9
11

2G2
N`

9

λ
(1)
0

(
∫

d7 y `−7
√

g(0)u(0)|c)2
+O(λ(0)0 ) . (5.19)

Comparing (5.19) and (5.18) we see that our criterion for a small variation with respect to `
in our configuration near Ve f f = 0 is satisfied provided that we tune

λ
(1)
0 � a . (5.20)

This is given by (5.14), and the signs work for this tune to be available. Altogether, the con-
ditions we require on our discrete parameters – the group Γ defining the hyperbolic manifold
H7/Γ , the size of the Dehn/Anderson fillings [19] reviewed in appendix A.2, and the fiducial
flux quantum number Ñ7 are

a �
1

Vol(0)7

∫ √
g(0)(u(0)0 )

2`2
0

(
3`9

11ρ
(0)
C + 2(F (0)f id)

2
)

,

a
∫ √

g(7)u2
0(42/`2) �

∫ √
g(0)(u(0)0 )

2

(
−R(0)7 − 3

(
∇u(0)

u(0)

)2

+ `9
11ρ

(0)
C +

1
2
(F (0)f id)

2

)
> 0 ,

with

a
∫ √

g(7)u2
0(42/`2) '

∫ √
g(0)(u(0)0 )

2

(
−R(0)7 − 3

(
∇u(0)

u(0)

)2
)
¦ 0 , (5.21)
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with the last requirement just as in the above discussion of the fiducial configuration. Note
that these are integrated conditions (rather than local conditions), tunable with constant pa-
rameters. As a check, substituting ρc = −

2
3 F2

f id from the top condition into the second, the

coefficient of the F2
7 term is then −1

6 < 0, so the three conditions are consistent. With the pa-
rameters in Γ , the Dehn/Anderson filling [19], and Ñ7, we have the freedom to tune this. The
mathematical discrete choices available to tune the third line in (5.21) are described above
around (4.13) and in appendix A. We can change the volume, e.g. using k-fold covers of the
manifolds [25], independently of the parameters chosen for the Anderson filling of cusps [19]
which can be used in combination with the choice of Ñ7 to ensure the first two lines of (5.21).

With these relations we have established that the fiducial solution satisfying the constraint
preserves our basic mechanism for stabilizing `. This fiducial configuration does not satisfy
the other equations of motion; Ve f f [δB, h, C6]will contain tadpoles generically. It is important
to study the fate of these instabilities, taking into account the solution to the constraint as we
move along the directions of the tadpoles.

Let us first treat this for the C6 potential field. Here the tadpole arises from the difference
between the fiducial configuration (5.5) we have used so far, and the u-dependent solution for
F7 described above in (3.10). We denote the flux quantum number of the latter by N7, which
does not need to be the same as Ñ7. Let us write

Ĥ f id = −∇2
w −

1
3

(
−`2R(7) + `9

11`
2ρC +

`2

2
|F (7)f id |

2
)

. (5.22)

Define u0, f id as the ground state of the Hamiltonian Ĥ f id , which is determined by a linear
Schrödinger problem. Let us choose Ñ7/`

7 such that

0< −λ0, f id =
∫
p

g u0, f id Ĥ f id u0, f id =O(C`2)� a . (5.23)

This means that if Ĥ f id is a good approximation to the effective Schrödinger Hamiltonian, the
corresponding warp factor solution yields a small Ve f f . To check this, let us write

Ĥ[ũ] = −∇2
w−

1
3

(
−`2R(7) + `9

11`
2ρC +

`2`12
11

2

N2
7

ũ4(
∫ pg 1

ũ2 )2

)
= Ĥ f id+(Ĥ[ũ]− Ĥ f id) . (5.24)

Consider Ĥ[u0, f id]. Note that in the classically disallowed region where u0, f id decays expo-
nentially in

√
|ρC |, the flux term in Ĥ[u0, f id] remains bounded because the second factor in

the denominator compensates for the first; indeed this term integrates to a magnitude smaller
than the integrated fiducial flux term as we saw above in (3.16). We choose N7/`

7 to tune∫
p

gu0, f id(Ĥ[u0, f id]− Ĥ f id)
2u0, f id � 1 , (5.25)

ensuring that (Ĥ[u0, f id] − Ĥ f id) is a small perturbation, in the sense that in acting on the
ground state u f id,0 of Ĥ f id , the perturbation (Ĥ[u0, f id] − Ĥ f id) produces a vector of small
magnitude. As such, it preserves the solution u0, f id to the constraint equation up to a small
correction. Thus for the purpose of solving the constraint (3.7), we can view Ĥ[u0, f id] as a
small perturbation of Ĥ f id , with the latter more easily solvable as it contains constant back-
ground fields aside from the Casimir energy. In so doing, we are free to separately tune Ñ7/`

7

and N7/`
7 to ensure that the configuration ũ= u0, f id in the full problem will give a small eigen-

value λ0, and hence a small Ve f f (as in (5.16)). This feature, a small Ve f f , is what entered
into the δ` analysis; note that the tune (5.23) is the same as line 2 of (5.21).
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Next we will study tadpoles for metric deformations in the Casimir region; in the following
sections §5.2- §5.5 we will treat these in the bulk.

To analyze this concretely, we can return to the interpretation of u as a wavefunction in a
Schrödinger problem [17], described above in §3. An instability in the end region of the cusp
would decrease the contribution to Ve f f there. But as the localized stress energy gets more
negative, the ‘wavefunction’ u dies more quickly. That reduces the magnitude of the negative
contribution. As an extreme example we can immediately exclude an instability with energy
in this region diverging → −∞: a vertical wall in the effective Schrödinger potential would
then force u to zero, entirely screening the would-be decay mode.

Analyzing this more generally, we find a stabilizing effect of the warping, as follows. The
Casimir energy becomes more negative as we decrease the size Rc = Rc0eδσc of the smallest
circle contributing to it. From the point of view of the naive potential, i.e. without solving the
constraint equation for the warping, we would have relevant terms

Vnaive ∼
∫ √

g(7)
(
c1e−11δσcρc0(yi) + c2δσ

2
c + . . .

)
, (5.26)

where c1 and c2 are positive constants. Here, the first term is the Casimir energy
ρC ∼ e−11δσcρc0(yi), with ρc0(y) < 0 calculated from (4.2) in the fiducial Einstein metric.
The second term represents the positive mass squared from the curvature term that we get
in the hyperbolic metric [16], something we will discuss in the next section, along with any
gradient energy in the modes of δσc . This naive potential by itself would have a runaway
instability to negative δσc even perturbatively, despite the Hessian from the curvature.

The full effective potential is instead of the form

Ve f f ∝
∫ √

g(7)u[δσc]
2

(
c1e−11δσcρc0(yi)− 3

(
∇u[δσc]
u[δσc]

)2

+ c2δσ
2
c+

)
. . . , (5.27)

where u depends on δσc via the constraint, reproduced here:(
−∇2 −

1
3

(
−R(7) + `9

11ρC +
1
2
|F7|2

))
u= −

C
6

, (5.28)

and we have in mind working at small C as discussed above. The instability suggested in
(5.26) increases the Schrödinger potential barrier in this equation, forcing u to fall faster in
the classically disallowed region. The effective energy in the Schrödinger problem is much
smaller than the potential barrier from −`9

11ρC , so we can use the WKB approximation under
the barrier. The solution for u dies like

exp(−|ρc|1/2)∼ exp
(
−
∫

e−11δσc/2|ρc0(yi)|
)

, (5.29)

doubly exponentially in δσc in the classically disallowed region. All of the terms in
(c1e−11δσc − 3(∇u[δσc]

u[δσc]
)2 + c2δσ

2
c ) are at most singly exponentially growing. The resulting

contribution they make to the spacetime effective potential in the Casimir region is of the
form

∼
∫

y
−e−2

p
κcγκcγ+ (

logγ
11
)2 , (5.30)

with γ ∼ −ρc0(yi)e−11δσc and κc a positive constant. This leads to a potential which has a
minimum rather than a runaway. To be more precise, we can start from the effective potential
(3.9) and vary it with respect to a mode of δσc with support in the Casimir region and also
the bulk (if it had support in just the Casimir region, its Kaluza-Klein mass would be large,

26

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

stabilizing even the naive potential (5.26)). In the full system, we can view Ve f f as a functional
of both u and deformations such as σc and write

dVe f f

dδσc
=
∂ Ve f f

∂ u
du

dδσc
+
∂ Ve f f

∂ δσc
=
∂ Ve f f

∂ δσc
, (5.31)

evaluated at the solution of the constraint, u = u|c , which kills the first term in the middle
expression here. This takes the schematic form

V ′ ∼ 11e−2
p
κcγκcγ+ 2

logγ
112

, (5.32)

coming from the explicit δσc dependence in the Casimir and mass terms in Ve f f . This expres-
sion has a zero at positive γ corresponding to a local minimum of Ve f f . Both the warping and
the mass term [16] (to be discussed further below in §5.4) play a role in this. We note that
the constants here are such that the Casimir contribution (5.30) is net negative, since it arises
from a tadpole direction, descending in Ve f f until u drops below the Schrodinger barrier and
yields the stabilization mechanism (5.30). In the full backreacted patch solution in §5.3 other
fields beyond the warp factor play a role, exhibiting a stabilized value of Rc .

As mentioned above, our expression for the Casimir energy in terms of Rc (4.2) assumes
that the warp factor gradient A′ = u′/2u does not strongly affect the behavior of the modes
that enter into the Casimir stress-energy calculation. Given that the potential (5.27) quickly
suppresses deformations for which the wavefunction dies rapidly under the barrier, we do
not expect strong variation of u. We will verify this, and its consistency with the competitive
contribution of the warp factor gradient in suppressing our parameter a (4.6) below in §5.1.2.

The result is a bounded, but sufficiently strong, source of negative Casimir energy in our
problem. This analysis is reasonably model-independent, and applies to small systoles as in
the ‘inbreeding’ construction [20–22] or Anderson filling [19].

One may also consider a full hyperbolic cusp where the fiducial metric contains arbitrarily
small cycles in the T6 cross section. This setup by itself produces an ultimately singular ge-
ometry, albeit screened by a rapidly dying warp factor. It would be interesting to resolve such
singularities, which might eliminate the need for filling the cusps at some finite y f . In the next
subsections we will illustrate the behavior of the internal fields, and the integrated quantities
appearing in Ve f f , using the cut off cusp metric (4.1) as a mockup of a filled cusp.

5.1.1 Fiducial solution in a cut off cusp

To illustrate some of the features just described in a technically simpler setting, consider the
geometry (4.1), with a fiducial constant flux. This yields a concrete solution to the constraint
(3.7) in terms of Bessel functions, which we can use to assess the contributions of the various
integrated quantities appearing above in (5.21). We will repeat this exercise in a toy model of
a Anderson/DF geometry in §5.1.2 and in a fully backreacted cusp geometry in §5.3.

The region (4.1) contains a part in which the Casimir energy density is of order−1/Rc(yc)11,
and for sufficiently small y0 it also has a region where the Casimir energy becomes subdomi-
nant. The constraint equation (3.7) becomes simply

−
1
6

C =
(
−∂ 2

y +
6
`
∂y +

1
3
[R(7) −

1
2
|F7|2 + `9

11
1
4

Tr(4d)TCas]
)

u , (5.33)

−
1
6

C`2 =
(
−∂ 2

w + 6∂w + [−ã+ b̃e11w]
)

u , w= y/` , ã = 14+
(1/6)N2

7

v2
7
ˆ̀12

, b̃ = ˆ̀2 cρ
λ̂11

c

,

where C is the 4d curvature and cρ is an order one positive constant.
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As explained above, we can work in a regime where Ve f f is much smaller than its individual
contributions, and we can neglect the C term on the left hand side here. Then the general
solution is given in terms of Bessel functions.

The correct linear combination which exhibits the decay in u at the end is given in terms
of the modified Bessel function of the second kind Kν:

u= Nue3wKν(z) , (5.34)

with

z =
2
11

√
b̃e11w/2 , ν=

2
11

√
9− ã =

2
11

i

√
5+
(1/6)N2

7

v2
7
ˆ̀12

. (5.35)

The normalization N in (5.34) can be traded for 1/GN as in (1.3). From this solution (5.34), we
can study the cusp contribution to integrated quantities appearing in our de Sitter mechanism,
as summarized in (5.21). From this one finds a variety of regimes of positive, tunable values
of a at the level of the analysis of this section (incorporating the warp factor variation but not
yet all fields). This includes regimes where a is much less than the integrated curvature, and
the integrated Casimir energy competes with the net

∫ √
g(7)u2[−R(7) − 3(∇u

u )
2]. Moreover,

we obtain a finer tuning of the integrated Casimir energy by varying yc , which mocks up the
choice of simple closed geodesic determining the size of the T6 at where the filling geometry
starts to deviate from the cusp for Anderson’s Dehn filling of the cusp [19] (see appendix A.2).

5.1.2 Fiducial solution in a simple filled region

In the previous sections, we have described general features of the Schrödinger problem asso-
ciated to the constraint equation (3.7) and analyzed it in a cut off cusp, where analytic results
can be obtained. There we mocked up the presence of a minimal circle in [19] (figure 14) with
the cutoff yc in (4.1). In this section, we analyze the constraint equation in a smooth geome-
try somewhat closer to the filled geometry of [19]. Here we continue to focus on the warping
generated by the constraint equation; below in section 5.3 we will treat the fully backreacted
cusp. For the present section, we replace the cusp geometry (4.1) by the line element

ds2
filled-cusp = d y2 + R2

c ds2
T (n−2) + R2dθ2 , (5.36)

where we have isolated one of the circles from the (n − 1)-dimensional transverse torus in
(4.1). In this filled geometry the θ circle shrinks smoothly at a certain y = yDF, where the
volume of the now (n− 2)-dimensional transverse torus reaches its minimal value. Explicitly,
this is realized by the functions

Rc = Rc(0)e
y
`

 e−
(n−1)(y−yDF)

` + 1

e
(n−1)yDF

` + 1

 2
n−1 ,

R= R(0)e
y
`

1− e−
2(n−1)(y−yDF)

`

1− e
2(n−1)yDF

`

 1
n−1

 tanh
(
(n−1)(y−yDF)

2`

)
tanh

(
(1−n)yDF

2`

)
 n−2

n−1 .

(5.37)

Here we introduced a parameter yDF . This would be determined by matching to the bulk
manifold; it is not a free parameter. In the more general construction of [19], there is a
discrete parameter that plays a similar role: a choice of simple closed geodesic determines
how far down the cusp the filling deviates significantly from the cusp metric. Note that in that
construction, however, the metric (A.5) is not diagonal as it is here in (5.36). In this section,
we will work with a yDF of order ` and explore the behavior of the constraint equation (3.7) in
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the background (5.36). This by itself – without special tuning of yDF – will yield results similar
to what we require for our mechanism, although the ability to tune via the discrete choices
described around (5.25) and in appendix A ensures that each of our conditions (5.21) can
be met. Locally, (5.36) and (5.37) describe an n-dimensional Einstein space with curvature
normalized as R(n) = −

n(n−1)
`2 . To guide the intuition, we notice that for n= 3 the expressions

(5.37) simplify to R2
c ∼ cosh2( y−yDF

` ), R2 ∼ sinh2( y−yDF
` ), which for yDF

` � 1 and y � yDF
reduce to the single exponentials in the cusp geometry (4.1). This is true for any n ≥ 3, and
from now on we specialize the discussion to n = 7. An example of the resulting geometry is
plotted in Figure 4a. In a region near small y we glue (5.36) to the bulk of the hyperbolic
manifold. The boundary conditions for gluing hyperbolic polygons are naturally set at their
facets, which are totally geodesic submanifolds [15]. As reviewed in more detail in appendix A,
these are vertical walls and hemispheres centered at z = 0 (and any ~x) in the upper half space
model ds2 = dz2+d ~x2

z2 , with y = log(z). A submanifold at constant y is not totally geodesic,
and a proper gluing will require to introduce extra angular dependencies, which we are going
to neglect in this section.

In the compact space defined by (5.36), (5.37) for 0 ≤ y ≤ yDF we will now study the
Schrödinger equation described around (3.17), which we repeat here for convenience of our
reader

(∆+ V )ui = λiui ,

V =
1
3

[
R(7) −

1
2
|F7|2 +

`9
11

R11
c

]
,

(5.38)

where ∆ ≡ −∇2 = − 1p
g(7)
∂m

(√
g(7)g(7)mn∂n

)
and we use the fiducial flux |F7|2 = `12

11
N2

7
Vol27

.

We have also set to 1 the constant coefficient in front of the Casimir term. We normalize the
eigenfunctions ui as in (5.12): δi j = 〈ui , u j〉 ≡

1
Vol7

∫
M

√
g(7)uiu j . Given the eigenstates ui , the

solution u to the constraint equation (3.7) is given by (5.15).
Before resorting to numerics, let us recall here a few elementary properties of Schrödinger

operators on compact spaces. First of all, we have the lower bound

λi = λi
1

Vol7

∫
M

√
g(7)u2

i =
1

Vol7

∫
M

√
g(7)ui(∆+ V )ui

=
1

Vol7

∫
M

√
g(7)|∇ui|2 +

1
Vol7

∫
M

√
g(7)Vu2

i

≥
1

Vol7

∫
M

√
g(7)Vu2

i .

(5.39)

Since for small λ0 the sum in (5.15) is dominated by the ground state (see also Figures 4d,
4e), in order to have a positive u for dS (C > 0) we need λ0 < 0. From (5.39) we see that
this requires V to be negative in some regions. In the full geometry this happens in the bulk
of the manifold, where the Casimir energy does not contribute (cf. figure 2). In the local
region we study in this section, the filled geometry (5.36), this is true near y = 0, where the
Casimir contribution to the potential is suppressed as `2`9

11Rc(0)−11. Also, from the variational
principle we have

λ0 =min
ϕ

∫
M

√
g(7)(|∇ϕ|2 + Vϕ2)∫

M

√
g(7)ϕ2

≤
1

Vol7

∫
M

√
g(7)V , (5.40)

meaning that we also require V to be not too negative, in order to allow for λ0 ∼ 0. In Figure
4b we show that the potential (5.38) specialized to the geometry (5.36), (5.37) has all these
features.
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We now solve numerically the Schrödinger problem (5.38) in the geometry (5.36), (5.37).
First of all, we need to impose boundary conditions. At y = 0 everything goes to a constant,
and we impose Neumann boundary conditions to match to a solution u ∼ const. in the bulk.
This boundary condition is consistent with the fact that we have discarded boundary terms at
y = 0 in the expressions (5.39),(5.40). Approaching y = yDF, the volume density vanishes as√

g(7) ∼ c1(y − yDF ) + c2(y − yDF )3, for some constants ci . Assuming also for the eigenfunc-
tions ui a power-like behavior ui ∼ ui,0|y − yDF|α + ui,1|y − yDF|β + . . . , by plugging it in the
Schrödinger equation (5.38) we obtain a single class of solutions

ui ∼ ui,0 + ui,1(y − yDF)
2 + . . . . (5.41)

Thus, we impose Neumann boundary conditions also at y = yDF. We note that this behavior is
familiar from textbook quantum mechanics problems with a finite radially symmetric potential
barrier.

Working in 11d Planck units, the Schrödinger problem (5.38) reads

∆̂u+
1
3

[
−

42
ˆ̀2
−

1
2

f̂ 2
7 +

1
R̂11

c

]
u= λ̂iu , (5.42)

where ∆̂ and R̂c are constructed from (5.36) (5.37) with ŷ ≡ y/`11. Similarly,

f̂ 2
7 ≡ `

14
11

N2
7

Vol2
7
≡ N2

7

v2
7
ˆ̀14 and λ̂i ≡ `2

11λi . Notice that equation (5.42) is invariant under the

parametric rescaling

ŷ → ec ŷ , ˆ̀→ ecˆ̀ , R̂c → e
2

11 cR̂c , f̂7→ e−c f̂7 , λ̂i → λ̂ie
−2c , (5.43)

for a real constant c. The rescaling of R̂c is obtained by also rescaling yDF → ec yDF and
Rc(0)→ e

2
11 cRc(0) in (5.37). Thus, acting with c� 1 on a given solution of (5.42) produces a

new one with hierarchy ˆ̀� R̂c � 1, tuning at the same time λ̂i → 0. The relative scaling under
c of the various terms in the Schrödinger potential in (5.42) is consistent with the parametric
estimates (2.7) and (2.9). Finally, notice that this rescaling is quantized, since it also acts on
N7. For this reason it can also be used to generate a solution with an integer N7 starting from
a non-quantized one. In Figure 4 we show a particular numerical solution of the Schrödinger
problem (5.42). Evaluating on this numerical solution we obtain∫ √

g(7)u2
[
−R(7) − 3

(∇u
u

)2
+ 1

2 |F7|2
]

−
∫ √

g(7)u2 `9
11 R−11

c

∼ −1 , (5.44)

confirming a competitive Casimir energy. Also, the ratio∫ √
g(7)u2

[
−R(7) − 3

(∇u
u

)2
]

−
∫ √

g(7)u2R(7)
∼ .04 (5.45)

shows that already a single filled cusp contains a nontrivial contribution from the warp factor
gradient contribution to Ve f f , here reducing a (4.6) by a significant amount, while keeping it
positive. At the same time, this solution illustrates that the warp factor gradient does not sig-
nificantly affect the Casimir energy calculation (4.2). For this we need to check that the radial
friction term in the equation of motion for the field fluctuations does not compete with the
dominant modes of momentum ∼ 1/Rc that generate the stress energy (4.2). This condition

1
`

u′

u
�

1
R2

c
(5.46)
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is satisfied in the present solution (as anticipated in the discussion above around (5.30)). In
our full compactification, we make use of geometric choices to tune a as discussed above and
in appendix §A.

As a technical note, we add that thinking about the (linear) Schrödinger problem helps
with finding numerical solutions with the required physical properties, especially since we
have shown in our perturbation theory analysis above that the ground state is a very good
approximation to the full solution. Indeed, an alternative way to look for numerical solutions
to the constraint equation (3.7) in the filled geometry (5.36), (5.37) could have been to tune
the radially-initial parameters in order to directly solve the non-linear equation shooting from
y = 0. However, this problem is complicated by the fact that for generic values of the param-
eters the solution for u usually blows up. A similar phenomenon would appear trying to solve
the Schrödinger equation as an initial value problem with the wrong energy, since only for a
measure-zero set of λi the Neumann boundary problem admits a solution. On the other hand,
solving the linear Schrödinger equation directly as a boundary problem, and using it as seed
for the non-linear problem, allows us to quickly find smooth solutions to the full non-linear
integro-differential equation (3.17), as we show in the example in Figure 5. This confirms
that there are no obstructions to finding smooth solutions to the non-linear constraint equa-
tion (3.17) arising when the flux is properly taken into account. Moreover, in the solution in
Figure 5, it is still true that the Casimir term competes with the classical ones in the potential
since ∫ √

g(7)u2
[
−R(7) − 3

(∇u
u

)2
+ 1

2 |F7|2
]

−
∫ √

g(7)u2 `9
11R−11

c

∼ −1 . (5.47)

The next step would be to solve numerically all the equations of motion. This would incor-
porate the shifting due to the metric tadpoles, whose effect we have bounded in the rest of the
work. This is harder to do explicitly since, as we noted above, already the fiducial configuration
would require us to work with a more complicated setup that includes the angular dependence.
Failing to do so could produce spurious singularities, similarly to the untuned situation dis-
cussed above. In Section 5.3, however, we will present a nonsingular full backreacted solution
in an example of a complete filled cusp (without the general angular dependence of [19]),
and in Section 8 we will discuss how neural network methods can be applied to this problem;
it is well posed for complete filled hyperbolic manifolds obtained by joined polygons.

5.2 Warp and conformal factors sourced by localized Casimir

Casimir stress-energy (4.2) is localized in our compactifications, near a systole such as those
in [20–22] or down a filled hyperbolic cusp. In this subsection, we will treat the fields in the
bulk regions which are sourced by the concentrated Casimir energy. In the case of a cusp, we
may more specifically separate our system into two parts: the central manifold combined with
any region in the bulk of the cusp for which `9

11|ρC | � −R(7), and the end of the cusp where
|ρC | competes with the other energy sources.

In order to have a valid de Sitter compactification, there must exist a pointwise solution
to the equations of motion in the internal geometry. This requires nonzero gradients of the
warp factor and conformal factor in (1.1), as we saw above in (4.12) and will describe in detail
below in §5.2.1. The physical reason for this is straightforward for both the warp factor u= e2A

and the conformal factor. Around any fiducial metric, the warp factor includes the Newtonian
potential sourced by the localized Casimir stress-energy. In particular, the constraint equation
takes the form:

∇2δA∼ (ρC − ρ̄C) +O((∇A)2) , (5.48)

where δA denotes the deformation away from the fiducial metric with constant A = A0. The
simplest regime – which we will see shortly applies in the bulk of our setup – is one where
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(a) Background geometry: the
Casimir circle R̂2

c (green), and the

smoothly-shrinking circle
(

R̂ Rc(0)
R̂(0)

)2

(orange).
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(b) Different contributions to the Schrödinger poten-
tial in units of `11
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(c) First four normalized eigenstates and their energies.
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(d) The contribution of the ground state
(blue) to (5.15) is indistinguishable from the
sum of the first ten eigenfunctions (red).
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(e) A close-up near the end point of the par-
tial sums in panel (d).

Figure 4: An instance of the Schrödinger problem (5.42) with ˆ̀ ∼ 221, ŷDF = ˆ̀/2,
N7/v7 ∼ 2× 1015. In panel 4a we see the slowly-varying Casimir circle R̂c , and the
smoothly-shrinking circle R̂. Comparing with 4b, we see that when R̂c decreases its
contribution to the potential gives rise to a finite potential barrier. The total potential
has a slightly negative region, compatible with the bounds in the main text. In panel
4c we show the first eigenstates. From panels 4d, 4e we see that the ground state is
a very good approximation to u, and from the close-up in panel 4e we can check that
u stays finite on the smooth point.
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Figure 5: A smooth solution to the non-linear version of the Constraint equation
(3.17) in the filled the geometry (5.36).

the O((∇A)2) ∼ (∇u
u )

2 contribution is subdominant to the other contributions. This means
that bulk contributions to the integrated (∇u

u )
2 term in Ve f f are subdominant to the other

terms in (3.4), meaning that the gradients of the sourced field A do not introduce significant
corrections to the 4d theory from the bulk regions of the manifold, only from the Casimir-
dominated regions in the way we saw above.

The basic physical reason for variation of the conformal factor B in (1.1) relative to the
hyperbolic metric is the following. B includes the overall volume mode B0, which is stabi-
lized at the level of the averaged sources. Writing B = B0 + δB, the deformations δB will
be subject to opposite forces in the region dominated by Casimir energy as compared to the
regime dominated by curvature and flux. Negative fiducial curvature R(7)H and flux each push
the compactification toward larger volume, whereas the negative Casimir energy pushes it to-
ward smaller volume. Since these dominate in different regions (the bulk versus the end of
the cusp), gradients of B will be induced.

Now let us explain why we can remain in the simplest regime where∇2A> (∇A)2. We start
by comparing to flat spacetime of size `with a localized source. In that case, dimensional anal-
ysis – consistently with a calculation along the lines of [8] via the sum of power-law Green’s
functions arising in flat space – estimates this ratio to be of order 1, suggesting no such hierar-
chy. A naive generalization to our case would give the same result, as follows. In the bulk of
the space, the Casimir contribution is absent. As a result, in that region only the homogeneous
terms 1

3

(
R(7) − 1

2 |F7|2)
)

contribute to the effective Schrödinger potential in (3.7). Using the
fact that this is of order of the curvature contribution in our stabilization mechanism, we must
have ∇2δA∼ |R(7)| ∼ 1/`2 in order for it to balance against the other terms in the equations
away from the Casimir source. By dimensional analysis, this entails δA of order 1, and so
∇2δA∼ 1/`2 ∼ (∇δA)2.

However, for the hyperbolic case, there is an extra effect that helps to suppress δA away
from the localized sources: the spreading of geodesics in hyperbolic geometry encoded in the
propagator (∇2)−1. For example, in the cusp the geodesics spread exponentially as we move
toward the central manifold from the end where the Casimir energy dominates. This sup-
presses the Green’s functions compared to the power law ones we just discussed in the flat
space analogue, with an IR regulating effect as in the treatment of Euclidean field theory on
hyperbolic space in [57]. The fully backreacted solution of §5.3 will combine a region of neg-
ative curvature in the approximate cusp joined to a central part where the internal curvature
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becomes positive. In this latter region the warp factor solution will be near a minimum and
hence still (∇A)2 <∇2A.

5.2.1 Details of warp factor in bulk and the regime ∇2A> (∇A)2

Let us now check the previous intuition in the bulk of the cusp where the Casimir energy is
negligible. We focus on the warp and conformal factors A and B in (1.1), and will present an
analysis of tadpoles in the other directions h below in §5.5. We work in terms of variables u
and v

u= e2A , v = e
5
2 B , (5.49)

with the equations for u and v (equivalently A and B) in the form

−
∇2u

u
+

R(7)

3
−

1
6

F2
7 +

C
6u
≈ 0 , (5.50)

−R(7) +
9
5
(
∇u
u
)2 −

7
10

F2
7 +

24
5
∇2u

u
−

7
5

C
u
≈ 0 , (5.51)

with as above C = R(4)symm. To specialize these equations to the h = 0 case of (1.1), with the
internal metric conformally hyperbolic, we replace

R(7)→ v−4/5(R(7)H −
24
5

∇2
Hv

v
) , (5.52)

and
∇2 f → v−

4
5 (∇2
H f + 2

∇Hv
v
∇H f ) . (5.53)

Note that these bulk equations do not admit a physical solution (with real flux) with exactly
constant u> 0. This reflects the fact that the 3-term solution from the averaged sources in §2
requires the Casimir contribution, but in bulk it is not present. This is a familiar feature in top
down models, and is what leads to the need for warp factor variations in the bulk geometry
[8,17]; see also [23,58]. However, as described above and articulated in general terms in [8],
there is a distinction between a regime where all the gradient terms participate equally and
a regime where ∇2A � (∇A)2 (or the opposite, WKB like regime where (∇A)2 � ∇2A). It
is our purpose in this section to assess which of these regimes we are in in the bulk of our
compactification.

We can assess this within the simpler geometry of the cusp (4.1), since if δA has died
down in that region, then it is small at the matching to the central manifold, indicating that
the hyperbolic suppression of its response function has been realized. The equations simplify
further if we seek a solution which respects a translation symmetry along the directions of the
cusp cross section T6 transverse to the radial y direction (4.1). The Casimir stress energy has
this property, so this is consistent on that end. Dependence on the T6 directions is ultimately
required to extend our solution into the central manifold. One can organize that problem in
terms of hyperbolic polygons which join together to form the complete internal manifold. The
boundaries of these polygons are totally geodesic submanifolds, unlike the constant y surface.
However, incorporating the appropriate Fourier modes on the T6 direction does not spoil the
overall suppression of δA far from the localized Casimir source which is the aim of the present
analysis. Those are like masses and should further suppress δA as we propagate farther from
the source.

These equations can be solved numerically, but similar results are obtained analytically
with a few simplifications. We keep the contributions from ∇2u/u and ∇2v/v but not the
quadratic gradient terms, and then check that the latter terms would be subdominant in the

34

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

solution. We also neglect the nonlinear factors from v4/5. With these specifications, we can
solve (5.50) and (5.51) algebraically for ∇2u/u and ∇2v/v, finding

∇2
Hu

u
=

C v4/5

2u
+

2F2
7

3
,

∇2
Hv

v
= −

5C v4/5

24u
−

25F2
7

48
+

5R(7)H
24

. (5.54)

Although we have neglected the Casimir source since we are working in the bulk of the cusp,
it affects the solution we pick for u and v via the need to match those to the decaying warp
factor solution in the Casimir region near the end of the cusp as described above in §5.1.

From (4.12) we should obtain positive curvature in this region since we have negligible
Casimir energy. This is indeed true as follows immediately by combining (5.53) and (5.52).
We would like to solve these equations. Before doing that, we can make another simplification
and neglect the terms proportional to C here, using our 3-term structure as explained above
in sections §2 and 4. For now, we will also treat the F2

7 term as a constant, and check later
that this is a reasonable approximation even in the full zero mode solution (3.10), (3.11).

With these additional simplifications, the equations to solve are

u′′(y)− 6u′(y) =
2
3
`2F2

7 u(y) , (5.55)

and

v′′(y)− 6v′(y) = −
25
48
`2F2

7 v(y) +
5
24
`2R(7)H v(y) . (5.56)

These equations have solutions

u(y) = a1 e3 y
` (1−

√
1+

2`2F2
7

27 ) + a2 e3 y
` (1+

√
1+

2`2F2
7

27 ) , (5.57)

and

v(y) = b1 e3 y
` (1−

√
1−

25`2F2
7

432 +
5`2R(7)H

216 ) + b2 e3 y
` (1+

√
1−

25`2F2
7

432 +
5`2R(7)H

216 ) , (5.58)

where a1, a2, b1, and b2 are integration constants. We choose the a2 = 0 solution for which
the warp factor u decreases as we go further down the cusp in the direction of increasing y .

In this solution, we can evaluate the key ratio (∇A)2/∇2A, or its equivalent in terms of u,
finding

u′(y)2

u(y)(u′′(y)− 6
`u′(y))

∼O(1/10) , (5.59)

for the range of applicable flux values.

In these equations, we have neglected not only the (∇Hu)2

u2 term (which we just explicitly
showed is subdominant), but also the cross term ∇Hu

u
∇Hv

v which appears in ∇2
Hu via (5.53).

We can similarly check whether this is self-consistently small in our current solution. We find

u′(y)v′(y)
v∇2
Hu

∼ −0.4 (5.60)

in this solution. This is not as small as the ratio (5.59). We can address this by generalizing the
equation (5.55) to include this cross term, with v′ introducing radial friction. That equation
is also solvable and reproduces the small ratio (5.59). We also find that the∝ 1/u4 behavior
of the flux term in the zero mode solution does not affect this qualitative result: it varies
slowly throughout the bulk of the cusp, so the approximation of constant F2

7 in the above
equations is justified. Numerical solutions without the simplifying approximations taken here
give qualitatively similar results.
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5.3 Full backreacted solution in the cusp region

In this section, we solve the full set of equations of motion in the cusp and near-cusp region.
We will do it by employing a radial ansatz, where we assume that all the functions only de-
pend on the coordinate which extends longitudinally in the cusp, and we will work with a
special Dehn filling in which the cross sectional torus remains rectangular throughout, though
the general case includes a radial varying shape [19] as reviewed below in appendix A. This
radial approximation breaks down going towards the central manifold, where the transverse
gradients of the metric functions are important. Nonetheless it allows us to capture the main
deviations from the fiducial hyperbolic metric in the cusp and near-cusp region, confirming at
the same time the existence of smooth solutions to the full set of equations of motion with a
strong Casimir contribution and with net positive parameter a (4.6). The analysis here will be
similar to the one in Section 5.1.2 but it will deviate from it by the fact that we will now allow
the cusp geometry to backreact, by solving the complete set of equations of motion. We thus
start again with the metric (5.36), which we rewrite here in full for convenience

ds2
11 = e2Ads2

4 + d y2 + R2
c ds2

T5 + R2dθ2 . (5.61)

The equations of motion are now composed of the radial constraint

0= 4A′
(

5R′c
Rc
+

R′

R

)
+ 6(A′)2 −

1
4

e−8A f 2
0 −

1
2

e−2AC +
5R′R′c
RRc

−
|ρc|
2R11

c
+

10(R′c)
2

R2
c

, (5.62)

and the second order equations for the metric fields, which can be organized as

A′′ = −A′
(

4A′ +
5R′c
Rc
+

R′

R

)
+

1
3

e−8A
(

3
4

e6AC + f 2
0

)
−
|ρc|
2R11

c
, (5.63)

R′′c
Rc

= −
R′c

(
4A′ + 5R′c

Rc
+ R′

R

)
Rc

−
1
6

e−8A f 2
0 +

3|ρc|
5R11

c
+
(R′c)

2

R2
c

, (5.64)

R′′

R
= −

R′
(

4A′ + 5R′c
Rc
+ R′

R

)
R

+
1
6

(
−e−8A f 2

0 −
3|ρc|
R11

c

)
+
(R′)2

R2
, (5.65)

where f0 is a constant flux parameter, as defined in (3.10). For the purposes of this section we
work in Planck units, by setting `11 = 1, and from now on we will also set |ρc|= 1. To remind
ourselves of these units, we will henceforth put hats on all the physical quantities.

The rescaling symmetry (5.43) of the local fiducial geometry is not broken in the nonlinear
equations. In the gauge (5.61) it acts as

ŷ → ec ŷ , R̂c → e
2
11 cR̂c , f̂0→ e−c f̂0 , Ĉ → e−2c Ĉ , (5.66)

for a real constant c.
We are seeking solutions to the equations of motion where R̂ shrinks so as to cap off the

geometry smoothly. To construct this class of solutions we first analyze the equations locally
near this smooth point, which we take to be at ŷ = 0, and we will then evolve them numerically.
Smoothness is imposed by requiring that R̂ goes to zero linearly and that the first derivatives
of all the other functions vanish. These conditions result in the following power expansion of
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the metric functions:

e2A = e2a0 + ŷ2
(
−

e2a0

4r11
c0
+

1
6

e−6a0 f̂ 2
0 +

Ĉ
8

)
+ (5.67a)

+ ŷ4

(
−

11e−6a0 f̂ 2
0

384r11
c0

+
67e2a0

480r22
c0
−

1
6

e−8a0 f̂ 2
0

1
12

Ĉ −
7

432
e−14a0 f̂ 4

0 −
3
16

e−2a0
1

144
Ĉ2 −

1
64r11

c0

)
+O( ŷ5) ,

R̂2
c = r2

c0 + ŷ2
(

3
10r9

c0
−

1
12

e−8a0 f̂ 2
0 r2

c0

)
+ (5.67b)

+ ŷ4

(
−

e−8a0(54e6a0 1
12 Ĉ + 5 f̂ 2

0 )

360r9
c0

+
1
54

e−16a0 f̂ 2
0 r2

c0(e
6a0

3
4

Ĉ + f̂ 2
0 )−

17
200r20

c0

)
+O( ŷ5) ,

R̂2 = ŷ2 + ŷ4
(
−

5
36

e−8a0 f̂ 2
0 −

1
6

e−2a0 Ĉ −
1

3r11
c0

)
+O( ŷ6) . (5.67c)

We have displayed in (5.67) only the first few perturbative orders, but the expansion can be
analytically computed to arbitrarily high order. Since a constant shift of A is unphysical, we
set a0 to 1. Also, we can trade Ĉ for c by using (5.66). Thus, at a fixed c, the expansion only
depends on the flux parameters f̂0 and on rc0, the size of the Casimir circle at the end of the
cusp.

We can now ask how these smooth local solutions extend away from the end of the cusp.
A common strategy is to evaluate them at a very small ŷ , where the expansion is reliable, in
order to obtain the initial conditions for starting a radial numerical evolution. By scanning
over the parameters, we have obtained that if rc0 is too big the Casimir contribution is al-
ways subdominant. However, for rc0 below a certain threshold the integrated Casimir energy
competes with the other sources, producing solutions such as the one in Figure 6.

On the right, this solution is glued to the core of the manifold, where the radial ansatz
breaks down and the transverse gradients become important. More precisely, u= e2A reaches
its minimum, and after this point a region starts where (A′)2 � ∇2A. As we expect from
general results, the integrated Casimir energy is competitive with the other sources also in
the backreacted geometry. Indeed, evaluating the ratio (5.44) for the solution in Figure 6, we
obtain ∫ √

g(7)u2
[
−R(7) − 3

(∇u
u

)2
+ 1

2 |F7|2
]

−
∫ √

g(7)u2 `9
11 R−11

c

∼ −1.06 . (5.68)

In this solution, we can also check that
∫ √

g(7)u2
[
−R(7) − 3

(∇u
u

)2
]
> 0. Let us normalize it

by comparing with the flux, obtaining for the solution in Figure 6 the ratio∫ √
g(7)u2

[
−R(7) − 3

(∇u
u

)2
]

∫ √
g(7)u2|F7|2

∼ .25 . (5.69)

Notice that the ratios (5.68) and (5.69) are unaffected by the rescaling (5.66), meaning that
they have the same values in the rescaled solutions where R̂c � 1.

5.4 The Hessian in our problem

Let us now address second order deformations away from our background backreacted con-
figuration. We will study this in two ways, first a general method and then a test of the result
obtained by perturbing the explicit patchwise solution in §5.3.
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(a) Energy densities in the backreacted cusp so-
lution in units of `11. The warping-corrected cur-

vature u2
(
−R̂7 − 3

(∇u
u

)2
)

is displayed in green;

the flux contribution 1
2 u2|F7|2 in orange and the

Casimir energy density −u2R̂−11
c in blue.

0.5 1. 1.5 2.
y

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(b) Different contributions to the on-shell
Schrödinger potential (5.38) in units of `11:
curvature+flux(red), Casimir (blue), and their
sum (purple). Notice that when the flux is
on-shell the equation satisfied by u becomes
non-linear, but the non-linearity is mild enough
that the intuition from the Schrödinger problem
still applies.

.

0.5 1. 1.5 2.
y


0.25

0.5

0.75

1
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Figure 6: A numerical solution of the equations of motion in the cusp region. At
ŷ = 0, the function R̂ (orange) goes to zero linearly, with the circle parametrized by
the coordinate θ shrinking smoothly. At the same point, both e2A(red, rescaled with
e−2a0) and R̂c(green), reach a finite value, in agreement with the expansion (5.67).
On the right, the solution is glued to the bulk of the manifold, as discussed in the
main text. Panel (a) and (b) show the backreacted energy densities and contributions
to the u equation of motion respectively. This numerical solution is obtained for
c = 2.2, rc0 = e

2
11 c0.65, f̂0 = e−c150. For clarity we are displaying it for a small c,

but increasing c acts as a simple rescaling as in (5.66). This can be used to make the
manifold big, ensuring at the same time R̂c � 1 and quantizing the integral of F7.

Here we will make use of the analogue Schrödinger problem [17] structure of the con-
straint equation (3.7), via trial wavefunctions. Pursuing this method, developed earlier in
§3.1, we start by noting that a trial wavefunction ut will yield an approximation to the ground
state energy that is no better than the true ground state:

〈ut |(−Ĥ)|ut〉 ≤ 〈u0|c|(−Ĥ)|u0|c〉 ' 2`9
11`

2 Ve f f , (5.70)
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where we now use an inner product

〈 f1| f2〉=
∫ √

g(7) f1 f2 . (5.71)

In writing the last relation of (5.70) we work, as above, in the regime where C`2� 1 so that
the the warp factor u is well approximated by the ground state wavefunction.

We start in a solution with Ve f f G2
N ¦ 0 and we would like to incorporate second order

variations away from this solution, determining if these keep Ve f f positive or if they lead to
tachyons sending the system to negative Ve f f .

Let us write the internal metric in the form g(7) = e2BG, yielding curvature
e−2B(R(7)G − 12∇2

GB − 30(∇GB)2). Ve f f becomes

Ve f f = −
1

2`9
11

∫
d7 y
p

Ge5Be4A|c

(
R(7)G +

1
4
`9

11e2B T (Cas)µ
µ −

1
2

e2B|F7|2

+12(∇A)2
∣∣∣
c
− 12∇2B − 30(∇B)2

)
+

C
2

(
1

GN
−

1
`9

11

∫ √
g(7)u|c

)
. (5.72)

With an integration by parts on the ∇2B, this becomes

Ve f f = −
1

2`9
11

∫
d7 y
p

Ge5Be4A|c

(
R(7)G +

1
4
`9

11e2B T (Cas)µ
µ −

1
2

e2B|F7|2

+12(∇A)2
∣∣∣
c
+ 30(∇B)2 + 48∇B∇A|c

)
+

C
2

(
1

GN
−

1
`9

11

∫ √
g(7)u|c

)
,(5.73)

as in [17] equation (4.2).
Let us begin by considering a trial wavefunction ut0 = e2At0 given by

At0 = −2B , (5.74)

up to a constant addition where B includes the background solution for the conformal factor
along with small deformations δB away from it which enter into the Hessian. Plugging this
into the formula (5.73) for Ve f f yields

〈ut0|(−Ĥ)|ut0〉= `2
∫ p

Ge−3B
(

18(∇B)2 − R(7)G + e2B(`9
11ρC +

1
2

F2
7 )
)

. (5.75)

The integrand in this expression is positive away from the Casimir source. Firstly, the gradient
squared term is net positive; this comes about because the cross term proportional to ∇A∇B
in (5.73) is positive and overcompensates the negative (∇B)2 and (∇A)2 terms. This is very
similar to the effect obtained in [17] in studying the solution to the constraint equation for
short wavelength modes of A and B, for which the constraint boils down to ∇2A = −2∇2B
and leads to a positive Hessian despite the naïve catastrophic instability from the conformal
factor gradients. Here in (5.74) we are taking a similar relationship, working at the level of a
trial wavefunction rather than a solution to the constraint equation (the analogue Schrödinger
equation). Secondly, in our problem−R(7)G > 0, with the metric G describing a hyperbolic space
possibly deformed in directions h orthogonal to the conformal mode; the varying conformal
factor in (5.72) leads to net positive curvature required (4.12) in bulk regions as described
above in §5.2. These deformations h are volume-preserving according to a standard decom-
position [16, 59]; see also the more recent [60]. These directions are positive up through
second order [16], reflecting the rigidity of hyperbolic space. This follows from Theorem 4.60
and Corollary 12.73 in [16]. Moreover, as we deform in the volume-preserving directions h,
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we can solve the C6 equation of motion as in (3.10), and there is no dependence of the
∫

F2
7

term in Ve f f on h.
But this trial wavefunction ut0 is not yet appropriate for our purposes: the integrand of

(5.75) develops a large negative contribution there as B becomes smaller in the Casimir re-
gion since the Casimir energy pushes down on the volume. This is reflected in our dressed
background solution sketched in figure 2 and illustrated above in section 5.3. Let us instead
consider an improved trial wavefunction ut which only takes the form (5.74) outside the re-
gion where Casimir becomes significant – in our setup this will be near small circles in the
geometry. Before getting to the Casimir region, we may join (5.74) to a wavefunction that
decays exponentially (starting where the integrand is still positive). We would first like to
understand if we can construct a trial wavefunction in this (or another) way which gives a
positive result overall for 〈ut |(−Ĥ)|ut〉, in which case the true wavefunction will give a larger
positive value than this for Ve f f .

Let us make some estimates of this. We can use coordinates for the cusp region

ds2 = d y2 + e2Bds2
⊥ , (5.76)

where the end of the filled cusp is at y = yDF and ds2
⊥ contains the proper cross sectional T6.

We work with the trial wavefunction (5.74) in the central manifold and for y < y∗. Those
regions give a positive contribution to Ve f f = 〈u|− Ĥ|u〉 as just explained, from the expression
(5.75) with negligible contribution from the only negative term, the Casimir energy. For y > y∗
we join this to a function approximating

At = At∗e
(y−y∗)/` = −2B(y∗)e

(y−y∗)/` , (5.77)

with B(y∗)> 0. The contribution to 〈ut |− Ĥ|ut〉 from this region is given by the earlier expres-
sion (5.73), but with the constraint solution A|c replaced by the trial function At . The function
(5.77) plugged into (5.73) yields negative contributions from the gradients, in contrast to
the net positive contribution in the other region (5.75). But this is multiplied by a rapidly
dropping function u2

t = e4At (5.77). One contribution is from the −12(∇A)2 term; taking the
gradient of (5.77) we find that this goes like the transverse proper hyperbolic torus volume at
the transition point ∼ e6y∗ times

−12×4B2
∗

∫ ∞
y∗

d ye−6(y−y∗) exp(−8B∗e
(y−y∗))e2(y−y∗)e5B(y) = −48`B2

∗

∫ ∞
1

dYe−8|B∗|Y Y−5e5B(y) ,

(5.78)
with B∗ = B(y∗) and 0< B∗ ® 1, with Y = e(y−y∗)/`.

An upper bound on the magnitude of this negative contribution is given by evaluating the
e5B factor at B = B∗, since B decreases toward the end of the cusp in our solution. Evaluating
this gives

−48`B2
∗ e

5B∗

∫ ∞
1

dYe−8B∗Y Y−5 (5.79)

times the transverse volume at y∗. A similar estimate can be made for the other gradient terms
in (5.73); for them the analogue of (5.79) is

−30`e5B∗

∫ ∞
1

dYe−8B∗Y Y−7 ,

for the (∇B)2 term and

−96B∗e
5B∗

∫ ∞
1

dYe−8B∗Y Y−6 ,

for the ∇A · ∇B term.
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Figure 7: The relative sizes of the positive, negative, and net contributions to
〈ut |(−Ĥ)|ut〉 as a function of B∗, as roughly estimated in the text.

We would like to compare these to the positive contribution from the bulk region. A con-
servative estimate for this is given by ∼ O(10)e−3B∗ times the bulk volume (which is larger
than the volume over which the negative contribution (5.79) has support).

These crude estimates for the total negative contribution from gradients and the positive
bulk contribution to 〈ut |(−Ĥ)|ut〉 roughly cancel each other, as depicted in figure 7. This in
itself is a check of the arguments we made for the tunability of our a parameter and the cosmo-
logical constant – if a trial wavefunction gave a large result it would require a correspondingly
large cosmological constant (5.70). Moreover, with a conservative estimate for the positive
term of 10e−3B∗ this enables a net positive result for 〈ut |(−Ĥ)|ut〉 which is smaller than the
individual terms. For a larger coefficient (larger volume of the positive piece), the range of B∗
with a positive net value would be greater. The volume of the positive and negative contribu-
tions depend on our choice of y∗, which is limited by the volume of bulk and Casimir regions of
the underlying solution. In particular, the bulk volume is limited in our a� 1 tuned models,
a feature that fits with the substantial cusp volume in the class of hyperbolic manifolds (such
as [25] that we are considering).13

If the net result for an appropriate choice of trial wavefunction is indeed positive, as sug-
gested by this crude estimate (and the positive contributions from curvature and warping
§3.1), it yields a more general result about the Hessian. We can include in 〈u|(−Ĥ)|u〉 defor-
mations away from the solution which are small compared to a typical term in this integral but
large compared to λ0. Since we see here that the full perturbed Hamiltonian remains positive,
we can conclude that such deformations increase Ve f f . 14

5.4.1 Perturbations of the backreacted solution from §5.3

We can study the Hessian as well as nonlinear deformations of Ve f f by perturbing the ex-
plicit radial solution in section 5.3. To do this, we must define deformations of the fields
σc = δ log(Rc) and σ = δ log(R) which are non-singular, turn them on and solve the con-
straint equation (3.7) in order to construct the off-shell potential Ve f f as a functional of the
original fields and the deformations.

The solution in §5.3 extends over a patch (5.61) with a finite range of y . Studying this
patch in depth was motivated by the role of the cusps in our geometry supporting Casimir
energy. We must include appropriate boundary terms in Ve f f for the radial patch in order to
obtain a good variational problem. However, as we stressed above the boundary of the patch in
§5.3 is not aligned with the polygon boundaries relevant for constructing hyperbolic manifolds

13We stress that, within these limitations, we should choose the variational parameter y∗ so that 〈ut |(−Ĥ)|ut〉 is
maximized, as this will produce the strongest bound on the exact wavefunction.

14We note that the unstable direction found in a subset of previous perturbative de Sitter models followed a
pattern [61, 62] involving an N=1 supersymmetry breaking goldstino and other features not present here. A
tachyon was also found in [63], but not in [8,13,45] (although the last reference was less explicit).
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via a gluing as described in [15] and appendix A, where a significant role is played by transverse
gradients going beyond the radial ODEs solved in §5.3. For this reason, let us now focus on
deformations that are supported away from the boundaries. We note as well that the flux is
a subdominant contribution in the end region of the backreacted radial solution. This also
simplifies our analysis of the behavior of the off-shell potential Ve f f under the deformation.

Let us define deformed metric components (5.61)

R[σ] = Rsol(1+ εσ( ŷ)) , Rc[σc] = Rcsol(1+ εσc( ŷ)) , (5.80)

with the subscript sol denoting the background solution. The deformations σ,σc must be
chosen in such a way that they are well-defined in the geometry. In the radial setup of §5.3,
we impose boundary conditions to ensure a smooth filled end at ŷ = 0 in (5.61) (so that the
geometry behaves like T5 times the origin of polar coordinates in the y,θ directions). This
requires R′(0) = 1, R(0) = 0, R′c(0) = 0.

An example of a deformation satisfying these conditions is

σ = 25 sin( ŷ)2(tanh(
ŷ − ŷ f

∆ ŷ
)− 1) ,

σc =
cos( ŷπ

2 ŷmax )
)

cosh( ŷ
∆ ŷ )

, (5.81)

where ŷ f is the point where the flux begins to grow; it is highly subdominant in the filling
region near ŷ = 0. Here ŷmax is the largest value of ŷ in the radial solution, and ∆ ŷ � ŷmax
is much less than the range of the solution. For this type of deformation, an explicit calculation
of Ve f f – including the calculation of the warp factor solving the constraint equation (3.7) for
the full deformed metric (5.80) – yields a positive Hessian, with Ve f f increasing for both signs
of the deformation parameter ε� 1. Similar results hold for a deformation of this kind in the
direction of σc alone.

This provides a consistency check of the general arguments above. In so doing, this directly
addresses the effect of a localizedσc deformation which might a priori appear dangerous since
it can increase the magnitude of the negative Casimir energy.

5.4.2 Hessian summary

Let us now summarize the status of the Hessian calculations. First, we have a set of general
statements:
• The warping model-independently contributes positively in itself as in §3.1.
• The underlying negative curvature contributes positively in itself as in [16].
• The type of tachyon identified in a subset of previous power-law stabilized de Sitter

models [61] does not arise here (there is no limit with low energy supersymmetry)
• In general, there is more phase space at higher energies and most contributions to Ve f f

are positive.
These generalities all go in the direction of positive Hessian in this setup. But because

we have variations of the warp and conformal factors, we need a more detailed analysis to
calculate the Hessian in our models. In that direction:
• The trial wavefunction explained at the beginning of this section, when estimated ac-

cording to the structure of our solutions, suggests a small positive lower bound on Ve f f near
the solution. These estimates are crude but conservative in the sense described above.
• In subsection 5.4.1 we explicitly computed the effect on Ve f f of deforming the metric

components toward the end of the filled cusp solution of §5.3 as described, finding a positive
Hessian in these directions. A calculation of the Hessian for more general deformations in
particular examples would be interesting to pursue in more detail.
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5.5 Bulk tadpole estimate

In our treatment of the inhomogeneity thus far in this section, we found that both warp and
conformal factors get sourced, in a way that is consistent with the sign condition (4.12). More-
over, we displayed explicit solutions for the backreacted cusp including additional field varia-
tions, including the end region where Casimir energy is supported.

It is convenient to work with a configuration where most of the fields h in (1.1) are not
turned on, and estimate how much their tadpoles, combined with the gapped Hessian, will shift
them. We undertake that in this section. We argued above in §4 and §5.1 that deformations in
the end regions of the cusp are bounded, leaving us with a localized negative energy source.
What remains is to estimate tadpoles and shifts for bulk deformations, taking into account the
tadpoles in the bulk region and the scale of the gap in the Hessian.

The analysis in the previous subsections already implemented some of the required shifts.
For example, §5.2.1 described the internal spatial variation of the warp and conformal factors
that are sourced by the localized Casimir stress energy, and §5.3 gave some explicit radial
solutions for all fields in the cusp. Any tadpoles for the deformations h in (1.1) arise from the
inhomogeneities. In the bulk regions this is limited by the fact that the fiducial curvature and
flux terms in Ve f f are both homogeneous. There will, however, be contributions to Ve f f from
the∇2v contribution to the full 7-dimensional curvature R(7), treated in §5.2.1. This descends
from the conformally rescaled internal curvature, and may lead to tadpoles in h.

In general, in order to present a simple analysis of (5.1)-(5.2) in our system, in this section
we will start from a conservative estimate for the size of the tadpoles rather than invoking the
details of solutions studied in the previous sections. As we will see shortly, this is sufficient for
our purposes. We expand around our symmetric metric, gH

m
n → gH

m
n + h̃m

n , and we want to
understand if the shifts h̃m

n are small. Here h̃m
n represents any metric deformation (using the

tilde here to distinguish these perturbations from those in decomposition in (1.1)).
Starting from the hyperbolic metric, the tadpoles originate from the inhomogeneity of the

Casimir stress energy. They are of the schematic form

δVe f f

δh̃m
n (y)

∼ tC
n
m(y) , (5.82)

where tC
n
m is the difference in the Casimir stress-energy between its average and the pointwise

values in (4.2).
This is approximately diagonal in the fiducial metric, with entries of order |ρ̄C | ∼ 1/R11

c
where Rc is the minimal size of the circle generating the leading contribution to the Casimir
energy. Expanding to quadratic order,

Ve f f = Ve f f ,H +
1
`9

11

∫
d7 y
p

gH

{
1
2

h̃m
n∆(Total)

nq
mph̃p

q − `
9
11h̃n

m tC
m
n

}
+O(h̃3) . (5.83)

The differential operator∆(Total)mapping symmetric tensors to symmetric tensors has a gapped
spectrum of order 1/`2, given that we solve for the warp factor and C6, as described above in
§5.4.

From this we can express the shift h in the metric as

h̃∼ `9
11∆

−1
(Total) tC , (5.84)

and we want to know whether or not h̃ is a small deformation. To be more specific, we may
expand tC in a basis of eigentensors of ∆(Total), writing

tC =
∑

I

τIϕI , ∆(Total)ϕI = λIϕI , (5.85)
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with ϕI orthogonal to pure gauge modes in the inner product 〈ϕ, ϕ̃〉 =
∫ pgHϕ

m
n ϕ̃

n
m. It is

natural to separate the deformations h̃ into δB and h (1.1), as discussed above. But since for
both the eigenvalues of∆(Total) are gapped at order 1/`2, in this section we combine them for
simplicity. In the bulk of the internal space, tC is slowly varying, so we will only have low-lying
modes contributing to the sum (5.85).

Let us denote by λ0 the minimal eigenvalue of∆(Total). This will generate the largest shift
in h̃ (5.84). We have τ0 ∼ 1/R11

c , giving

h̃∼
`9

11τ0

λ0
ϕ0 ∼

`9
11`

2

R11
c
ϕ0 . (5.86)

In terms of ε defined above (4.11), we now apply the stabilization mechanism (4.9) to elimi-
nate `2 = ˆ̀2`2

11, giving

ˆ̀2 ∼
1

ε1/2R̂5/2
c

, (5.87)

where R̂c = Rc/`11. From that relation we also demand the inequality

ˆ̀4� 1⇒
1
R̂c
� ε1/5 (5.88)

in terms of the quantities defined above in §4. As explained there, this inequality (5.88) is
consistent with R̂c � 1 given ε � 1. Putting together (5.87) and (5.86), we find h̃ � ϕ0
requires

1

R̂11+5/2
c ε1/2

� 1 , (5.89)

and for this to be consistent with (5.88) requires a window

ε27/10�
1

R̂27/2
c
� ε1/2 . (5.90)

This is available as long as ε11/5� 1 which is satisfied in our setup via the tuning a� 1 (4.6).
In summary, the tadpoles in the bulk of the space induced by the Casimir inhomogeneity

lead to small shifts h̃ � ϕ0 away from the fiducial metric. This indicates that we can self-
consistently neglect the higher order terms in (5.83). Some of the details of these shifts were
laid out in the previous subsections. Altogether, these parametric estimates indicate that the
de Sitter minimum suggested by the original 3-term structure explained above in §2 and §4
survives the effects of the inhomogeneity of the Casimir stress energy.

6 No go theorem for AdS

In the previous sections we have described a mechanism to stabilize four-dimensional com-
pactifications with negative internal curvature, showing that with appropriate choices of the
internal manifold the automatically generated Casimir energy provides enough negative en-
ergy to yield metastable de Sitter compactifications.

The simplicity of this set of ingredients is quite consistent with well-known no-go theo-
rems [64–66]. Albeit quite powerful to constrain compactifications at the level of classical
general relativity (without general orientifold planes or quantum effects), these no-go theo-
rems only focus on a very limited set of classical contributions to the stress-energy tensors
obeying standard energy conditions, as we review in detail in Appendix D. It was understood

44

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

soon after the discovery of the cosmological constant [67, 68] that negative sources such as
orientifold planes, intermediate in the expansion about weak coupling and large radius are
required for de Sitter [44,45]. Orientifold planes are classical in string theory but go beyond
general relativity.

It is worth stressing that classically, there is a no go theorem for metastable atoms. Quan-
tum mechanics is essential to the stability of matter, and also enters into the dynamics of stars
stabilized by degeneracy pressure. Quantum effects naturally also enter into compactification
physics. Incorporating such effects to understand quantum gravity backgrounds forbidden
in classical general relativity is not new; non-perturbative effects feature in the KKLT con-
struction [55] and generalizations such as [69]. Casimir energy in particular has been used
in [39,70].

In this section, we revisit these constraints for our present class of four-dimensional M-
theory compactifications, and generalize them to include Casimir energy. This yields a reversal
of the classical no go theorems, enabling a simple no go for AdS solutions in a particular regime.
We summarize the main point here and refer to Appendix D for more general results.

The main ingredient of our analysis is the integrated combination of stress-energy tensors
derived in (D.13), which we specialize here for D = 11, d = 4:

Itot ≡
1
2

∫ √
g(7)e2A

(
5
9

T (4) −
4
9

e2AT (7)
)

, (6.1)

where T (4) and T (7) are respectively the four- and seven- dimensional traces of the total eleven-
dimensional stress energy tensor, with the warping factors stripped off.

Assuming the internal space is smooth and without boundaries, which in our case is true
for the filled-cusps, a combination of the eleven-dimensional Einstein equations integrated
over the internal space (D.12) can be rewritten as

1
GN

R(4) = Iclassical + Iquantum , (6.2)

where we have split (6.1) in its classical and quantum contributions Itot ≡ Iclassical + Iquantum.
With the help of (B.3) (B.4) (B.5) we can explicitate the various pieces in (6.1) for our

present case:

ICas = −2
∫ √

g(7)e4AρC(R) , IF7
= −

4
3`9

11

∫ √
g(7)e4A|F7|2 , (6.3)

so that we obtain

1
GN

R(4) = −
4

3`9
11

∫ √
g(7)e4A|F7|2 + 2

∫ √
g(7)e4A|ρC(R)| , (6.4)

where we have used that the Casimir energy density is negative in our setup. If the Casimir
contribution dominates the one from the flux a dS compactification is allowed, whereas it
would not be in the classical supergravity background without this term. Turning it on its
head, we can also conclude that

No AdS if:
∫ √

g(7)e4A|F7|2 ¶
3
2
`9

11

∫ √
g(7)e4A|ρC(R)| . (6.5)

In our de Sitter construction, these integrated quantities are of the same order of magnitude
and satisfy this inequality. They entered above in the effective potential (3.9) and the hier-
archies (5.21). The no go theorem (6.5) says that in the regime indicated, there are no AdS
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extrema. As a special example of this, if we turn off the F7 flux entirely, the theorem guaran-
tees that AdS will not appear anywhere in the rich landscape descending from the quantum-
corrected compactification containing the Casimir energy. de Sitter extrema are allowed. Even
without flux, at least at the level of averaged sources one finds a dS saddle point at the the
local maximum in figure 3, obtained by balancing the curvature and Casimir terms in the po-
tential for the overall volume. Our models in this paper do contain F7 flux, essential for the
metastable dS minimum in the potential for ` as in figure 3. The result (6.5) shows that in the
more general landscape with or without flux, regardless of the internal geometry, a sufficiently
strong Casimir energy precludes AdS but allows dS. We should note that the right hand side of
(6.5) is limited by the screening effect of the warp factor u= e2A as discussed in §4 and §5.1.

7 Axion and inflationary dynamics

Let us now generalize our construction to incorporate the dynamics of axions descending from
the potential field C3. Being generic bosonic fields in string/M theory, axions play a leading
role in top down models of early and late universe phenomena [71], and they and their sources
are crucial to quantitative entropy counts and landscape statistics.

Starting from M theory on a 7-manifold M7, the 3-form potential C3 of eleven dimensional
supergravity descends to axion fields in the four dimensional theory,

c I =
∫
Σ
(3)
I

C3

`3
11

, I = 1, . . . , b3 , (7.1)

where Σ(3)I is an element of the homology group H3(M7) (given a filling [19] of all the cusps
to make a compact manifold – otherwise we would consider also H3(M7,∂M7)).

We note that in this system, as is true generically in string/M theory, the axions do not come
with scalar saxion particles as would happen in the special case of low energy supersymmetry.
Indeed, axions dominate the spectrum of relatively light fields by a considerable margin – their
number growing with dimensionality in the general case like 2D as well as proliferating with
topology, while metric deformations, with a species number ∼ D2, generically obtain masses
of order 1/` from the rigidity properties of negatively curved Einstein manifolds [16] along
with warping effects [17] as we have seen in detail above.

As discussed above, the flux and curvature contributions are supported over the bulk of
the internal space (rather than the regions near the small Casimir circle). In the bulk of the
internal space, where the warp factor variation is negligible, the axion kinetic terms are of the
form∫ √

−g(11)
F2

4

`9
11
∼
∫

d4 x
√
−g(4)

`7

`9
11

ċ2 1
ˆ̀6
=
∫

d4 x
√
−g(4) f 2 ċ2 ≡

∫
d4 x

√
−g(4)φ̇2

c , (7.2)

with φc = f c the corresponding canonically normalized field with axion decay constant

f ∼
Mp

ˆ̀3
, (7.3)

(where as above we denote ˆ̀ = `/`11). For simplicity here we are taking all scales of order
`; more generally one obtains similar results from a more precise calculation of the overlap of
differential forms

∫
ω∧ ?ω that arises from plugging C3 =

∑
I cIωI into the F2

4 term, with ωI
denoting an integral basis of 3-cohomology elements [1].

In the absence of 4-form flux, this would introduce b3 traditional axion fields, with a pe-
riodic non-perturbative potential generated by Euclidean M2-branes. This setup may apply to
N-flation [72] and other phenomenological scenarios involving axions [73,74].
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Generically, with both types of magnetic fluxes incorporated, there is a multifield axion
monodromy potential in this system, introducing somewhat larger masses (still sub-KK scale),
with a branched potential containing a large field range on each branch suitable for inflation.
The generalized magnetic flux

F̃7 = F7 + C3 ∧ F4 (7.4)

contributes an axion potential to our four-dimensional Einstein frame potential Ve f f of the
form (cf (3.9))

Ṽ7 =
`9

11

2G2
N

∫
d7 y

√
g(7)u2|c

(1
2 |F̃7|2

)
(
∫

d7 y
√

g(7)u|c)2
∼ M4

P
(N7 + cN4)2

ˆ̀21
. (7.5)

For an elegant derivation of this starting from the electric 4-form description, see [29]. The
magnetic 4-form flux adds a contribution to the potential of the form

V4 ∼ M4
P

N2
4

ˆ̀15
. (7.6)

We will work in a regime such that this is subdominant to the de Sitter potential. One way
to express this is that its energy density in eleven dimensions will be much smaller than the
existing terms in the potential, including the curvature. That is, it will satisfy

N2
4

ˆ̀8
�

1
ˆ̀2

. (7.7)

In general, such 4-form flux introduces new asymmetric forces into the system, which could
distinguish the overall size ` from the size `4 of the four-cycle(s) threaded by F4. But this
condition (7.7) implies that the stabilizing effects of the Hessian still maintain the size ∼ ` of

the four-cycle threaded by F4 flux: writing ˆ̀
4 = eδ4 , the relevant terms are

N2
4

ˆ̀8 δσ4 +
1
ˆ̀2δσ

2
4,

leading to a negligible shift δσ4 ∼
N2

4
ˆ̀6 .

As noted in previous works such as [33,53], the flux potential depends on the axion fields,
once the various flux quantum numbers are turned on. In the present case, the stabilization
mechanism is simple, consisting of the three-term structure discussed above for the overall
volume, along with the stabilizing effects of the Hessian from the Einstein action and of the
warp factor in the other directions in field space. The flux contribution to the three-term
structure cannot vary beyond the window in which the three terms admit a metastable solution
for the volume with positive Ve f f . So for simplicity, here we will work in the regime cN4� N7
to avoid a significant change in the flux potential.

In other words, the 4d effective action becomes

S(4) = S(4)dS +
∫

d4 x
√
−g(4)

(
φ̇2

c −
2M3

P
ˆ̀18

φc −
M2

P
ˆ̀15
φ2

c

)
, (7.8)

plus generalizations for multifield models of the same sort. This expansion is useful in the
regime cN4 � N7, with the first (linear) term in the axion potential dominating over the
second (quadratic) term. This hierarchy is compatible with the large field range∆φc , of order
10 Planck units, required for this form of large field inflation

∆c�
N7

N4
⇒
∆φc

MP
�

N7
ˆ̀3N4

∼
ˆ̀3

N4
, (7.9)

where in the last step we used the stabilization mechanism, balancing the flux term against

the curvature term, 42
ˆ̀2 ∼

N2
7

ˆ̀14 ⇒ N7 ∼ ˆ̀6. We are free to incorporate a small N4 here, which
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anyway helps ensure that the 4-form flux potential not destabilize the metric moduli in the
underlying de Sitter model (7.7).

We note that – as also shown explicitly in previous examples of axion monodromy from
string theory such as [30,31,33] – there is not a significant buildup of low-energy fields along
this field range. Since the N7 contribution to the generalized flux potential dominates through-
out the process, with the conditions laid out here we have negligible changes in ` and `4,
implying negligible effects on the corresponding Kaluza-Klein masses.

In this regime, the slow roll parameter εV is given by (3.28)

εV =
1
2

∑
I

(
∂φc,I

Ve f f

Ve f f

)2
1

GN
∼

(
M3

P/
ˆ̀18

C/GN

)2

M2
P ∼

1
ˆ̀36

(
MP

H

)4

, (7.10)

with η ∝ ∂ 2
φc

V ' 0 in the regime of linear potential. Incorporating the current 2σ bound

on the tensor/scalar ratio r [75,76] requires roughly H/MP < 10−7. Thus to obtain slow roll
inflation in the single-field case here requires

εV < 10−2⇒ ˆ̀> 105/6 , (7.11)

which is a simple criterion to satisfy in our model. In the multifield context, which is more
generic, one finds a similar value of r but variable tilt of the primordial power spectrum ac-
cording to simple statistical studies such as [77]. It would be interesting to incorporate this
and other, more detailed aspects of our class of models into the axion dynamics. One aspect
that requires further study and modeling is the exit from inflation.

Other forms of inflation also suggest themselves in this context. With warped regions near
the ends of cusps (or other systoles), one may consider wrapped M5-brane inflation. The
functional formulation of slow roll parameters in §3.2 and §C enables a study of much more
general cosmological dynamics in this landscape, both analytically and numerically. On the
latter front, we next set up a more general approach to numerically analyzing the landscape,
in collaboration with neural networks.

8 Internal fields and neural networks: further exploring the
landscape of hyperbolic compactifications

In the previous sections we have described our dS construction starting from a simple mecha-
nism for stabilizing the volume, and then filling in essential details of the warp and conformal
factor variation, in a large radius regime available via choice of discrete parameters. We illus-
trated these results and tested the general arguments for the positive Hessian via an explicit
backreacted solution in a patch for each cusp. These solutions, displayed in §5.3 exhibited
several properties of interest: tuning of our parameter a, field variations matching those pre-
dicted analytically, and second order stability. Moreover, the cusps are a significant fraction of
the total volume of the space in specific examples such as those in [25] described in appendix
A. But these solutions describe purely radial evolution (and even at this radial level, they in-
volve a special choice of Dehn filling without radial evolution of the transverse torus shape).
The analytic analysis points to similar behavior in the full internal solution, and we view the
radial solutions as a nontrivial test of this.

A natural next step would be to find the explicit backreacted configurations in the whole
internal space for a particular choice of hyperbolic manifold, providing a further numerical test
of our results and determining more details of the effects of inhomogeneities of the sources.
This would enable exploration of the landscape further beyond the fiducial solutions to the
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constraint equation (3.7) that we discussed above. Moreover, methods for approximating
internal solutions yield more general accelerated expansion related to the functional slow roll
parameters discussed in §3.2 and §C. As we will see in this section, this direction of research
meshes very well with modern neural network techniques.

Before continuing, however, we should stress that the finest details are not directly rele-
vant to the existence of the metastable de Sitter solutions, and in any case the setup is subject
to small additional quantum corrections as in §4.2 and subleading details of the Casimir stress
energy. But it is appealing to pursue here given the concrete manifolds available [15] such as
those in §A. So far we used these to establish the tuning parameters we used in our construc-
tion (5.21), but it is a well posed problem to analyze the equations of motion plus one-loop
quantum stress energy in explicit examples.

For a general compactification this level of detail is often out of reach even in many su-
persymmetric compactifications where the fiducial Ricci flat metric is not known in general.
Compactifications where the starting internal space is a Calabi-Yau manifold are well devel-
oped even when the starting metric is not known (for recent progress on Calabi-Yau metrics,
see [78] which analytically constructs metrics for K3, and [79,80] which develop methods for
obtaining Calabi-Yau and more general SU(3) structure metrics numerically).

The absence of an exact solution is true also in empirical physics quite generally – e.g. the
standard ΛC DM cosmological model is under extraordinarily good control without needing
a specific description of each element of structure in the universe. Even there, however, the
fact that cosmic censorship – the screening of singularities by horizons – is an open question
is one indication that further study of PDEs and their relation to singularity theorems remains
worthwhile. Indeed, the prominent role that the warp factor plays in screening would-be
negative energy instabilities in compactifications [5] suggests deeper parallels between the
two problems.

An interesting existing possibility for a more detailed description of string compactification
is when the setup admits a cohomogeneity one formulation, where the Einstein equations
reduce to a set of ODEs. There it is sometimes possible to construct explicit numerical bulk
solutions with a dS4 factor, although boundary variables and defects can be subtle (see [56,81]
for some recent examples). This approach can be understood [63] as arising from an unfixed
modulus in one higher dimension, reduced to 4d. The unfixed scalar evolves in a radial version
of FRW evolution in the extra direction. In general, a counting of boundary conditions allows
for the possibility that suitable physically nonsingular objects can ‘end the world’ consistently
within the range of the ODE solution.

Compared to previous choices of internal compactification, [13, 44, 45, 53, 55, 69], the
higher dimensional hyperbolic setup considered in this paper has the advantage of both being
generic, due to the dominance of negatively curved manifolds, and explicit, due to various
constructive methods for building hyperbolic manifolds. In the following, we will discuss the
general problem of finding explicit details of internal field configurations numerically, showing
how this problem can be naturally rephrased with the language of Machine Learning. We will
use our current hyperbolic example as reference to make the discussion concrete, but the
general methods and ideas apply more broadly.

8.1 PDEs, boundary conditions and NN methods

Our problem is to solve the full set of Einstein+flux PDEs with the stress-energy tensor sourced
by the flux, also taking into account the contribution of the automatically generated Casimir
energy. These equations have to be paired with appropriate boundary conditions. In our
current example, given the decomposition of hyperbolic manifolds in polytopes reviewed in
Appendix A, these are translated to boundary conditions on the polytopes themselves. A stan-
dard method for constructing finite-volume hyperbolic manifolds is by a gluing of polytopes
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via a pairwise map of their facets [15], as in the examples [25]. At each pair of facets thus
glued, the boundary conditions are continuity on the fields and their first derivatives. One may
alternatively work with the fields on a manifold with boundary, such as a polygon, including
Neumann boundary conditions at its totally geodesic facets. We will present an explicit exam-
ple of the latter in section 8.2, incorporating the physics of such boundaries in M theory [82].
Finally, since we are allowing for deformations away from the starting fiducial configurations,
we also have to check a posteriori if the obtained result is self-consistent with the assumptions
that entered in the stress energy tensor used. When we restricted our analysis to the constraint
equation (3.7), we found that the dynamics of the warp factor limits the amount of negative
energy.

As derived in [17] and discussed above, there are two equivalent ways to specify the rel-
evant equations: from the point of view of the eleven-dimensional Einstein equations and
from the point of view of the four-dimensional effective potential. These two points of view
are related by the observation that the four-dimensional part of the eleven-dimensional Ein-
stein equations, δS11

δgµν11
+ T (Cas)

µν = 0, produces the constraint (3.7), which is necessary to de-

fine the four-dimensional off-shell effective potential (3.4). This potential Veff[g(7),φi] is an
internal functional of the internal metric degrees of freedom and of the other fields of the
eleven-dimensional theory, defined such that setting to zero the variations δVeff

δg i j
(7)

reproduces

the internal part of the eleven-dimensional Einstein equations. Requiring stationarity of Veff
also with respect to the matter fields φi enforces their eleven-dimensional equations of motion
(see Appendix B.2 for more details). This approach discards the dynamics of four-dimensional
vectors, which can be taken into account with an ansatz that includes non-diagonal metric
terms, introducing more fields in the four-dimensional theory. As we are going to see in the
next section, this way of organizing the equations, which we have employed in our analytical
estimate and analyses in the rest of the paper, also has a natural application in the development
of numerical methods to solve them.

Before getting into the details of the numerical methods, we can make the discussion a
bit more concrete by quoting here the relevant PDEs. A way to organize the internal metric
fluctuations, which we have used in §5.4 to analyze the Hessian, is to split them in volume-
preserving fluctuations h and conformal variations of the internal metric B. This results in the
parametrization of the eleven-dimensional metric as in (1.1):

g11 = e2Ag(4) + e2B(g(7)H + h) . (8.1)

For simplicity, we will now set h = 0. Defining u = e2A and v = e
5
2 B, the external part of

the eleven-dimensional equations of motion produces the constraint (3.7) specialized to the
geometry (8.1) with h= 0:

δS11

δgµν11
: 0=

∇2u
u
+

8
5
∇2v

v
+ 2
∇u
u
∇v
v
−

1
3

R(7) −
1
6

v4/5

u
R(4) +

1
6

f 2
0

v4/5

u4
−

1
3
`9

11
ρc(y)
v18/5

, (8.2)

while the internal trace, corresponding to variations with respect to B, gives

δVeff

δv
: 0=

∇2u
u
+
∇2v

v
+2
∇u
u
∇v
v
+

3
8

(
∇u
u

)2

−
5
24

R(7)−
7
24

v4/5

u
R(4)−

7
48

f 2
0

v4/5

u4
+

1
6
`9

11
ρc(y)
v18/5

.

(8.3)
In these variables,

f0 = `
6
11

N7∫
d7 ypg u−2v14/5

, (8.4)

and all the metric-related quantities refer to the fiducial hyperbolic metric g(7)H . Such a trun-
cated parametrization allows us, for example, to discuss the backreaction of the conformal
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factor as we did in section 5.2.1. More refined analyses, suited for example to the study the
backreaction in the filled cusp, require us to take into account some of the degrees of freedom
in h. We will see an explicit example in section 8.2. Ultimately, one would like to consider gen-
eral fluctuations {B, h,φ i}, which is equivalent to solving all the eleven-dimensional equations
of motion. We will not perform the full numerical analysis for our current example, but in the
next section we propose a method to make this tractable for general flux compactifications.

8.1.1 Neural Network methods for solving PDEs

Recent years have seen massive development of Artificial Intelligence methods to tackle a
wide range of computational problems, such as computer vision, language prediction, protein
folding [83,84] and numerous applications to scientific data analysis.

The general framework is to model the solution to the problem at hand as an unknown
function, and to design a method that “learns" a good approximation to this unknown function.
In the most common realizations, the learning phase can be done from a fixed sets of known
input-output pairs (i.e. learning by examples), by autonomously exploring a big space of
possibilities and being rewarded for each success, or by learning together with an adversary
that tries to fool the learner. These methods go under the broad name of Machine Learning.

The function that has to be learned is often parametrized by a Neural Network, and the
fact that a good approximation exists is guaranteed by the Universal Approximation Theorem
[85, 86]. This is similar in spirit to Fourier analysis, but it is non-linear in nature. To make
the discussion more concrete, a Feed-Forward Neural Network with n layers and activation
function σ is defined as the nested function

N(x; W, b)≡W nσ(W n−1σ(. . .σ(W 1 x + b1)) + bn−1) + bn , (8.5)

where x ∈ Rk is the input and the W i and bi are respectively matrices and vectors of appro-
priate dimensions, called weights and biases. The width of the i-th layer is the dimension of
bi . Together, they form the set of parameters θ that have to be learned. The nonlinear acti-
vation function σ : R → R is applied to each element of its vector argument. The Universal
Approximation Theorem guarantees that (8.5) can approximate arbitrarily well a large class
of functions.15 The functional form in (8.5) is the simplest architecture, but many others have
been developed with features adapted to the problem at hand or that enjoy some particular
properties. Neural Networks with more than one layer are commonly called deep.

Since the equations that would give the best estimate for the parameters cannot in general
be solved (in the Fourier analogy, these would be the equations that fix the the Fourier coeffi-
cients) the learning problem is often translated to an optimization problem, where, schemati-
cally, the problem of solving the equations Ei(θ ) = 0 is translated to the problem of minimizing
L(θ )≡

∑
i Ei(θ )2 in the space of θ ’s.

Various optimization algorithms designed to tackle this problem exist, with the more com-
mon ones based on some form of gradient descent.16 As the name suggests, this often requires
the computation of the gradients of the function L(θ ), called loss function, with respect to
parameters θ defining the model (or ansatz). Technically, this is done by using an algorithm
called automatic differentiation, which allows to compute the gradients of very complicated
functions efficiently and with small numerical error. Software packages such as PyTorch and
TensorFlow have been developed to apply this technique automatically and to exploit various
hardware architectures. We notice that the efficiency of these packages developed for machine

15The original version of the theorem applies to networks with a single layer and arbitrary width, but it has been
refined to include more general forms, such as in [87,88].

16In other work with G. Panagopoulos we are developing an optimizer based on Born-Infeld dynamics with loss
function related to the target spacetime warp factor.
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learning tasks can also be fruitfully exploited to find numerical solutions to generic problems
that require minimizing a very complicated function, even if this is not the result of Neural
Network ansatz. For example, in [89–91] this has been used to directly minimize the scalar
potential of N = 8 supergravities, finding in this way new four- and five- dimensional AdS
vacua.

The problems described up to now are, in a sense, algebraic. They require to find an
unknown function by exploiting some known relations between its input and outputs such
as training data examples in supervised learning. When dealing with differential equations
such relations are not known, but what are known are relations between the derivatives (with
respect to the inputs, not the parameters) of the unknown function. With this idea in mind,
AI methods, in particular in their incarnation through Neural Network approximations, have
also been proposed to solve partial differential equations. These were first introduced in [92]
and have recently received renewed attention, see for example [93–96].

The simplest method consists of randomly sampling some points xm on the domain and
directly using a Neural Network as ansatz for the solution. In this approach the loss function
is taken to be

L(θ ) =
∑

i

∑
{xm}

Ei(θ )
2 , (8.6)

where Ei are now the PDEs, in which the unknown functions are substituted by N(x;θ ). Evolv-
ing the parameters toward low loss function then produces approximate solutions to the PDEs.
In our context, sufficiently good approximations to solutions yield inflationary dynamics with
small εV and ηV as defined in §3.2C. To solve differential equations it is not enough to solve
them in the bulk, but appropriate boundary conditions have to be imposed. Different ap-
proaches have been developed to take those into account, and can be organized in “hard” and
“soft” methods. In the former case one starts with a parameterization which already enforces
them, while in the latter BCs are solved at the same time as the equations. In the simplest
approach one samples points xa on the boundary and considers the combined loss

L(θ ) =
∑

i

∑
{xm}

Ei(θ )
2 +
∑

j

∑
{xa}

BC j(θ )
2 . (8.7)

Other approaches have also been proposed, such as adversarial ones [97] or using neural
networks as a non-linear approximation of the finite differences coefficients [98] . Although
there is some encouraging early success in situations where traditional numerical methods
perform poorly, such as PDEs in a high number of dimensions [93] or on very complicated
domains [99], to date, a complete theory of Neural Network methods for solving differential
equations has not been developed.

For example, there is no guarantee that these methods converge to a solution of the orig-
inal problem, since (depending on the optimizer) gradient-based optimization methods will
generically converge to local minima, where L is generically non-zero. For more common
machine learning tasks this might not be a problem, since often local minima perform better
in generalizing to unknown examples, but for the application to PDE solving it can be prob-
lematic, since local minima could correspond to configurations that do not solve the original
equations. This price these methods pay is often compensated by other characteristics, such
as scaling much better for high-dimensional problems and being more versatile. Moreover, as
noted above, approximate solutions are of interest in the present context since those may give
new examples of slow roll inflation. In the remainder of this section we want to underline how
the features just presented make Neural Network methods natural candidates to numerically
explore the rich landscape of string/M theory compactifications beyond the part accessible
with analytical methods.

52

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

As discussed in section 8.1, once the constraint (3.7) has been taken into account, the
eleven-dimensional equations of motion are equivalent to minimizing the effective potential
(3.4) with respect to the internal fields. This draws a direct parallel between the loss function
(8.6) and the slow-roll parameter εV as in (3.28)

εV =
GN

8C2

∑
I

(∂φc ,I Veff)
2 , (8.8)

since the differential equations are functional derivatives of the effective potential Ve f f . 17

In other words, minimizing the loss function corresponds to minimizing εV . Finding a con-
figuration where L = 0 would correspond to a bona fide dS solution, while a local minimum
where L∝ εV � 1, describing an approximate solution to the PDEs, would correspond to a
more general accelerated expansion. It is also natural to combine such a method with ana-
lytical estimates, by using approximate analytic solutions as the starting point for the descent
in the Veff landscape. In this process, for the effective potential to be well defined, both the
constraint (3.7) and the relevant boundary conditions have to be enforced. In this paper we
have checked that for our current model the starting point is well-defined by solving the con-
straint equation with different methods in different parts of the internal geometry. The need to
solve the constraint (as is familiar in GR where one requires good initial data) provides some
interesting limitations on the landscape, as discussed in [17]. The constraint and the bound-
ary conditions have to be enforced along all the flow, and a simple strategy to enforce them
could be to add these conditions to the loss function, with a big penalty factor that weights
them more. This will change the shape of the resulting loss, and as for the general boundary
condition problem, it would be important to develop a theory able to distinguish and organize
the different possibilities.

Finally, we also notice that a more direct approach could be attempted. For a fixed choice
of internal fields, which can be approximated with a Neural Network depending on some
parameters θ , the constraint equation (3.7) is a linear inhomogeneous equation for u. This
equation could be directly solved for u by inverting a numerical operator, defining the off-shell
effective potential as an integral of u as in (5.17). If the solution for u is computed with a
method that allows an automatic computation of the gradients with respect to the parameters
θ , the resulting effective potential can be directly used as a loss function, without first deriving
the equations of motion. Once the boundary conditions are properly taken into account, this
approach allows a direct exploration of the landscape of flux compactifications, where any
local minimum corresponds to a metastable solution.

8.2 UV complete warmup: M theory on H3/Γ

The aim of this small section is to show a concrete example of domain and boundary conditions
specification for the internal PDEs. As a simpler UV complete warm-up we can consider an
internal three-dimensional space (thus describing a dS8 solution), with vanishing flux. The
choice of a lower number of internal dimensions is to allow for a simple numerical exploration.
As an extra simplification, we can work with a single polytope, imposing Neumann boundary
conditions at its faces. Physically, these boundaries correspond to Horava-Witten walls in M-
theory. This further simplification is not in general required since, as described in Appendix
A, we can work with more general three-dimensional hyperbolic manifolds by starting with
a single polytope and acting on it with Γ , the Coxeter group of reflections along its facets.

17More precisely, if as in Monte Carlo methods the internal integral in the definition of Veff (see also Appendix
C) is estimated by randomly sampling points {xm} in the internal space, the explicit slow-roll functional (8.8) is
proportional to the loss defined in (8.6). In other words, from (C.15) one can see that both formulas involve an
integral (sum) over points.
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This would only impose the milder requirement of continuity of the functions and their first
derivatives. In the following, we will describe the domain and boundary conditions in detail,
together with a proof of concept of the methods introduced in section 8.1.1. The resulting
configuration is not meant to be physically complete, but it provides a concrete example of an
application of the neural network methods to this class of physical problems.

We can construct a simple three-dimensional polyhedron working in the upper-half space
model as follows. As reviewed in Appendix A, totally geodesic submanifolds, which will be
the faces of our polyhedron, are either vertical planes, or hemispheres centered on the z = 0
boundary. For the set of reflections along the faces to form a Coxeter group, all of them have
to meet with dihedral angles πk , with k an integer. The easiest polytopes one can construct in
this way are simplexes, which exist for n≤ 9 and have all been tabulated (see for example [15,
Chapters 6-7] for more details). A simple three-dimensional construction consists on taking
a single hemisphere centered at the origin and four vertical walls, whose cross section at
z = const. forms a square centered at the origin. We show this construction in Figure 8,
together with the constraints that have to be satisfied in order for the resulting polyhedron to
have correct diehedral angles and finite volume.

To make this geometry dynamical, we want to allow fluctuations around the hyperbolic
metric. A complete analysis requires to take into account all the metric degrees of freedom,
but for illustrative purposes we focus on the simpler deformation

ds2
11 = e2Ads2

4 + e2Qdz2 + R2
c d x2

1 + R2d x2
2 , (8.9)

where A,Q, Rc , R depend on all the internal coordinates.
Since in the fiducial hyperbolic metric eQ = R = Rc = z−1 , at the hemisphere we impose

Neumann boundary conditions (with respect to the UHS metric) for the function A and for
the deformations away from the hyperbolic metric: zRc , zR, zeQ. With this approach we
are implicitly assuming that in the simple deformation (8.9) the internal metric approaches
the hyperbolic one at the hemisphere. In a more complete setup, the full set of boundary
conditions amounts to a Neumann condition for A (with respect to the completely deformed
internal metric) and vanishing of the internal extrinsic curvature at the boundaries of the
polytope.

All in all, on the vertical walls we impose the boundary conditions

∂x i
R= ∂x i

Rc = ∂x i
A= 0 vertical walls , (8.10)

and at the hemisphere we impose

0= z∂zA+ x i∂x i
A hemisphere ,

0= z∂zR+ R+ x i∂x i
R hemisphere ,

0= z∂zRc + Rc + x i∂x i
Rc hemisphere ,

0= z∂zQ+ 1+ x i∂x i
Q hemisphere .

(8.11)

Finally, we implement the Dehn filling condition, which caps off the geometry smoothly at
z = zDF :

z∂zR= −1 , R= 0 , ∂zRc = 0 , ∂zA= 0 at z = zDF . (8.12)

Having introduced the framework, let us present a simple example of an approximate solu-
tion to the equations (8.2) (8.3) obtained via the neural network method introduced in section
8.1.1. We use the domain in figure 8 with L = 2, d = 1. For simplicity we also restrict the prob-
lem to just the warp factor and the internal conformal factor, by setting e2Q = R2

c = R2 = e2Bz−2

and imposing the boundary conditions (8.10)(8.11) at the walls and hemisphere. In the fig-
ure 9 we show an example. This solution goes beyond our purely radially evolving patchwise
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α

d

L

z

x₁

x₂

x₁

L

d

Figure 8: A simple three-dimensional polyhedron composed of a single hemisphere
of radius L centered at the origin of the upper-half space and four vertical walls with
a square cross-section whose half-length is denoted by d. The dihedral angle α is
given by cosα = d

L . For the polyhedron to have finite volume the square in the top-

right view has to be inscribed in the circle, requiring d
L ≤

p
2

2 . Imposing also α = π
k ,

with k an integer, leaves as the only possibilities k = 3,4. At the bottom we show a
3d rendering of the k = 3 case.

solutions in §5.1.15.1.2 since the hemisphere boundary conditions are imposed. The solu-
tion here extends in upper half space coordinates from the hemisphere to zc = 7, requiring
some completion beyond that. In a human-NN collaboration, we have obtained a small εV
configuration from this by matching it to simpler geometries – solving the constraint equation
(3.7) throughout, and bounding εV (C.11). We leave the presentation of the details of this and
scaled up generalizations to future works. In the d = 4 case of interest, a natural starting point
would be manifold covers [27] of the small-volume spaces [52]. It is clear that these methods,
combined with the explicit hyperbolic and Einstein geometries constructed mathematically,
promise to significantly expand our reach in the landscape.
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(a) u as a function of z and x2 at x1 = 0. (b) e2B as a function of z and x2 at x1 = 0.
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(c) Behavior of the different components of the loss function during training.

Figure 9: An approximate neural network solution to the internal PDEs. In panel 9a,
9b we show u and e2B as functions of the two-dimensional slice at x1 = 0. In panel 9c
we show the behavior of the different components of the loss function (8.7) during
the training routine.

9 Discussion and Future directions

In this work, we obtained de Sitter and inflation models from hyperbolic compactifications of
M theory. These have an effective potential (3.4) whose leading term arises from the negative
curvature ∫ √

g(7)(−R(7) + . . . ) =
∫ √

g(7)
(

42
`2
+ . . .

)
. (9.1)

The internal curvature combines with flux, Casimir energy, and warping effects in Ve f f in a
comprehensive mechanism to stabilize the internal dimensions, supporting accelerated expan-
sion of the universe. The competition between the quantum Casimir energy and the classical
contributions to Ve f f requires a stable small circle in the geometry, which arises in explicit
hyperbolic manifolds H7/Γ completed with the filling prescription [19] to Einstein spaces18.
Tuning down the net curvature term, including warping effects, leads to a simple 3-term struc-
ture stabilizing the volume with Casimir energy and flux playing off against the curvature.

The rigidity of negatively curved manifolds in dimension n ≥ 3 combined with the sta-
bilizing effects of the warp factor dynamics [17] goes a long way toward addressing all the
field deformations (with no separate dilaton as there is in perturbative string theory limits).
Our analysis generalizes the stabilizing effects of warping to more general internal configura-

18and likely also other constructions of hyperbolic manifolds with small systoles [20,21]
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tions, applicable near the dressed hyperbolic space augmented by appropriate varying warp
and conformal factors relevant in our system (whose structure we tested in explicit radial solu-
tions in filled cusps). General positivity results building on the warping and curvature effects,
and some example calculations of masses, suggest a gapped Hessian as summarized in §5.4.2,
with small residual tadpole shifts. It would be interesting to test this further and compute the
Hessian in specific examples.

These results arise from detailed analytic estimates and patchwise numerical studies, con-
trolled in a regime (5.21) that is obtained with explicitly available discrete parameters. The
setup is concrete, so that further checks and details of the internal fields may be analyzed us-
ing modern numerical techniques, e.g. in collaboration with artificial neural networks. Axion
physics and inflationary cosmology readily descends from this class of compactifications.

Negatively curved spaces are generic, explicitly constructed starting from a known metric,
and produce a natural source of positive potential energy in four dimensions along with axion
physics. This fits well with current empirical observations, which indicate positive potential
energy leading to accelerated expansion of the universe, with bounds on super-partners and
particle dark matter. Their explicitness and relative simplicity promise to facilitate studies of
cosmological quantum gravity [8,10], with the present example a direct uplift of the M2-brane
theory, a classic example of the AdS/CFT correspondence.

If this is the answer (9.1), what is the question [100]?

9.1 Context and further directions

de Sitter and inflationary constructions in string/M theory are not new; there are several
classes of compactifications which exhibit a consistent playoff of forces. The control param-
eters in Γ , flux quanta, and the filling prescription are analogous to the dimensionality D
in [44, 45, 53, 101], the flux superpotential W0 in [55] [102, 103], various topological condi-
tions in [69] and the genus of the Riemann surfaces in [13]. The explicitness of the ingredients
in the present work is analogous to [8,45,56], but simpler in several respects.

The Casimir source as the crucial negative contribution in the potential is quantum, simi-
larly to [55], but perturbative, with explicitly known stress energy contributions to the equa-
tions of motion (as in other backgrounds such as [39,70]). It shares some features with orien-
tifold planes (classical in string theory) which are essential in all previous de Sitter examples,
as the negative stress energy is localized near the small circles with a metric that is somewhat
analogous to O-plane geometries. But in our setup, the mathematical prescription for finite
small circles – related to the beautiful subject of systolic geometry – combines with warp factor
dynamics to produce a nonsingular configuration of sufficient negative energy. Both cases –
the smooth systoles here and similar setups matching to O-planes or incorporating resolvable
singularities, deserve further study. The competitive but finite negative energy contribution
would likely mesh well with other modern studies of energy conditions [49,50].

There is ample evidence that different sectors of the landscape are connected, via known
transitions changing topology [104–108], chirality [109], and even effective dimensionality
[110–113], with dualities such as [114, 115] relating curvature and dimensionality via the
effective central charge. It would be very interesting to extend those relations to the present
models, via M-brane dynamics. The dynamical connections indicate a unified theory. It is
constrained by mathematical and physical principles, and rich with phenomena that carry
an imprint of the structure of the microphysical theory [1,2,116]. These imprints affect both
phenomenology descending from the theory and key microphysical aspects of quantum gravity
[8, 10]. As an uplift of the M2-brane theory, analogous to the uplift of the D1-D5 theory [8],
the present models can potentially elucidate the holographic description of cosmology via a
generalized T T̄ deformation [117–119] including entropy counts [10, 120]. The structure
of de Sitter in string theory is also relevant for other related approaches such as [121–123]
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and [124, 125]. For example, constructions of candidate wavefunctions of the universe, or
other attempts at a measure, require at least semiclassical control of all dimensions. In the
present context this essentially boils down to hyperbolic space (Euclidean AdS) internally in a
warped product with 4d de Sitter, with electric flux in 4d and 1-loop quantum Casimir energy.
The metastability – rather than stability of de Sitter in quantum gravity – a feature that is not
immediately visible from the bottom up – is automathic here. This feature is crucial to existing
consistency checks of cosmological quantum gravity such as those in [8] [10] and [7]. The
counts of vacua and other statistics will benefit from beautiful mathematical results concerning
distributions of volumes, their relations to systoles [21, 22], cusp densities and horosphere
packings [126], the aforementioned counts of Einstein cusp fillings [19], and others. It would
also be interesting to understand how to obtain a Standard-Model like matter content in our
setup. Different avenues could be pursued here, based on Horava-Witten branes [82], chiral
matter from singularities [127], or intersecting M-brane constructions. There could be novel
connections with mathematical results on hyperbolic manifolds, including their topology [25]
and orbifold constructions.

To sum up, what is remarkable about the present hyperbolic compactifications is their rel-
ative simplicity (in terms of the ingredient list) and naturally stabilizing rigidity properties in
concert with warp factor dynamics – along with a much greater genericity than previously
studied compactification spaces. This combination of simplicity and greater genericity is not
unfamiliar, being somewhat similar to large-flavor expansions in physics more broadly (sim-
ilarly to the large-dimension expansion). In these regions of the string/M theory landscape,
positive potential energy and axion physics abound. Such regimes may well represent the
typical behavior of the string/M theory landscape, and invite further work on applications to
both phenomenology and abstract quantum gravity.
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A Virtual hyperbolic yoga: Explicit examples of compactification
manifolds with discrete tuning parameters

Here we briefly collect mathematical features of the compactification manifolds we use in the
main text. Our construction makes use of finite-volume Einstein manifolds, hyperbolic aside
from possible filled ends of cusps [19]. The key feature for our physical construction is small
systoles around which fermions have antiperiodic boundary conditions, supporting Casimir
energy, along with an upper bound on the overall volume where negative internal curvature
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and 7-form flux are supported.
Specific examples of constructions with small systoles include:
• hyperbolic manifolds obtained via the inbreeding construction [20–22]
• hyperbolic manifolds with cusp ends filled in with a higher dimensional analogue of Dehn

filling to form a closed Einstein space [19]. There are many examples. One particularly simple
class of examples of cusped hyperbolic manifolds appears in [25]. In [19], for any given cusp
there is a choice of Dehn filling corresponding to any of the simple closed geodesics on the
cross sectional T6, leading to finely tunable systole size. It is guaranteed that any finite volume
hyperbolic space is virtually spinnable, i.e. a finite cover admits a spin structure [128]19. The
antiperiodic boundary conditions for fermions that we require are natural: if a small circle is
contractible, the boundary conditions must be antiperiodic, in order to smoothly match to the
fact that spinor →−spinor upon 2π rotation about a point (and if it is not contractible, it is
an option to assign this boundary condition consistently).

We also require an upper bound on the volume in order that the three contributions to
the 4d effective potential – total curvature (including warp factor gradients), Casimir energy,
and flux – can compete as in (5.21). The manifold must also be consistent with the hierarchy
`� Rc � `11 that requires ε� 1 in (4.11), implying an upper bound on the total volume.

The construction of hyperbolic manifolds [15] beautifully combines group theory and ge-
ometry, with numerous general theorems and explicit constructions available in the mathe-
matical literature. These range from elementary constructions gluing polygons, to sophisti-
cated group theoretic studies of various properties of subgroups of hyperbolic isometries. One
method starts from a hyperbolic orbifold, such as a polygon whose facets are fixed points of a
reflection subgroup of the group of hyperbolic isometries. Simple examples of this, with small
volume, for dimension n ≤ 9 appear in [26]. A result known as Selberg’s lemma guarantees
that a torsion-free subgroup Γ exists, yielding a manifold Hn/Γ as a cover of the orbifold; such
examples appear in [27]. A related method constructs a pairwise gluing of the totally geodesic
facets of a set of hyperbolic polygons in a way that avoids singularities in the resulting space.

The recent paper [25] achieves this by a gluing of elementary right-angled polygons. The
group Γ is derived there as a freely action subgroup of the orbifold group defining the funda-
mental right-angled polygon. Although in flat Euclidean space, manifolds constructed from
right-angled polygons – i.e. tori – contain moduli, in hyperbolic space these manifolds are
rigid.

One example satisfying our conditions is the following. We start with the class of exam-
ples in [25]. The set of 7-manifolds in [25] includes a minimal example with 4032 cusps
and volume ∼ 1.3 ∗ 105, so that the ratio nc/v7 appearing in (4.11) is ∼ 1/30. A tuning
∆volume� volume related to the tuning described in the main text (4.13) may be achieved
as follows. We fill cusps with Anderson’s generalization of Dehn filling [19], choosing a differ-
ent simple closed geodesic for different cusps in that construction – similar to a different value
of yc in the cusp (4.1) for different cusps – in order to vary the volume of the total space.
This variation in the volume is very small compared to the volume, as needed in (4.13). For
our purposes, we wish to change the volume contained in bulk regions with negligible Casimir
energy compared to that in Casimir regions. Indeed, as described below (4.13), we may add
‘bulk’ volume with negligible Casimir energy by filling some cusps such that their shortest
geodesic is not small.

Another way to vary the volume, and hence the
∫
−R(7) contribution to the effective po-

tential, is to take covers of the manifold in [25]. Manifest in that construction are totally
geodesic codimension 1 submanifolds H which thread through the cusps of the n-manifolds
in that construction. Cutting the manifold open along H, replicating the resulting space, and
joining k copies together produces a cover of the original manifold which has an asymmetric

19enabling one to sign up for virtual spin classes along with yoga.
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cusp extended by a factor of k along one of the cross sectional directions of the T6. Varying k
in this procedure changes the volume by an amount small compared to the total volume, again
achieving ∆Vol7� Vol7. Again, this may be done in a way that varies the physical quantities
of interest: the cover may proliferate some cusps while extending others, changing the relative
volume contained in Casimir regions compared to bulk regions in the manifold.

More generally, there are numerous studies of the distribution of hyperbolic manifolds with
various properties. There are results about the count of manifolds as a function of volume,
cusp density (related to horosphere packings), and other quantities. With a wealth of explicit
information about this class of compactifications, whose metric is well known, there is much
room for further explicit study of this region of the M theory landscape.

A.1 Hyperbolic manifolds from right angled polygon gluings

For readers who wish to delve into more details of the manifolds obtained in [25] as tessel-
lations of right-angled polygons, in this section we describe more aspects of this construction
and illustrate the case in n = 3 dimensions. The manipulations here also enable one to get a
feel for the rigidity of hyperbolic manifolds.

Working in the upper half space z > 0 with metric

ds2 =
dz2 +

∑n−1
i=1 d x2

i

z2
, (A.1)

the totally geodesic codimension one hypersurfaces, patches of which serve as facets of hyper-
bolic polygons, consist of
• vertical walls ∑

i

ci x i = 0 , ci = const , (A.2)

and
• hemispheres centered at z = 0, x = x0

z2 +
∑

i

(x i − x0i)
2 = R2

hem , (A.3)

for constants x0i , Rhem.
There are many kinds of hyperbolic polygons whose facets are fixed loci of a reflection

group [15, 129]. The examples in [25] have a further simplifying feature that they are built
from right-angled polygons, for which all adjacent sides are at right angles. We illustrate this
for n= 3 in upper half space variables in figure 10.

To construct a manifold from a right-angled polygon with a color scheme consisting of c
distinct colors, we mirror across the facets in such a way that we mirror on each color once.
This produces a space tessellated with 2c copies of P3. We then glue the facets in the following
way. Any facet of color γ is identified with its image under reflection about any facet of color
γ. The resulting space is a hyperbolic manifold of finite volume as depicted in figures 11-12.

Upon mirroring and gluing, each facet becomes a thrice-punctured sphere. With a little
more work one can see other properties, such as the fact that the ideal vertices join up into a
total of 3 cusps.

The warmup we illustrated here is for a minimal color scheme. Many other examples are
possible. For example, we may start from the right angled polygon on the left in figure 11 and
assign more distinct colors, e.g. to the hemisphere patches on the underside. Mirroring on
each of them produces new ideal vertices that form cusps upon gluing. As already mentioned,
this structure generalizes to higher dimensions, including n = 7. Their properties are worked
out explicitly in [25].
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Figure 10: The polygon P3 contains 6 facets drawn in the upper half space. Four are
vertical walls (A.2) and two are patches of hemispheres (A.3). On the right we have
shown the projection of the bottom of the figure to z=0. The vertices labelled by
“i" are ideal vertices, building blocks for cusps. A minimal color scheme is included
following the rules in [25], with no adjacent sides having the same color.

Figure 11: Sketch of the space obtained by mirroring across each color once. On
the left we sketch the entire space. The opposite vertical walls are identified. The
upper right is a top view giving the cross section of the cusp at z →∞ (a.k.a. its
link). Although this cross section, a 6-torus, would have continuous moduli by itself,
these are absent when it is connected to the rest of the space. The lower right is the
mirrored color scheme on the underside of the figure. Hold this pose – the gluings
for the hemisphere patches on the underside are treated in the next figure.

In this class of manifolds, the volume contained in the cusps is a significant fraction of
the volume of the space. As is standard, we define the cusp volume the volume contained in
(4.1) with a minimal value of the radial coordinate y = ymin such that the cusp fits inside the
manifold. At the level of an ideal vertex of the underlying right angled polytope, we similarly
identify a minimal y such that the ideal vertex up to ymin, with its cross sectional Euclidean
(n−1)-polytope, fits in the n dimensional polytope. These polytopes themselves are gluings of
simplices, as described in [130]. A simple (computer-aided) calculation for the relevant n= 7
simplex has a ratio of cusp volume to full volume of .34. This is a lower bound on the fraction
of volume contained in cusps for our n= 7 case, showing that it is a significant fraction of the
total volume of the space.
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Figure 12: Here we depict the gluing procedure for the minimal hyperbolic 3-
manifold in [25], gluing each color to its image under reflection about any facet
of its color. As above, color B is pink and C is blue.

Two specific generalizations are of interest in our de Sitter and inflation construction. One
is to vary the bulk and cusp volumes, obtaining a difference ∆Vol7 � Vol7 related to (4.13).
One way to do that is to take k-fold covers of our underlying manifold,20 cutting along a
totally geodesic manifold – such as the left and right walls of the left image in figure 11.
Replicating this space k times before identifying the walls yields a volume proportional to a
tunable parameter k. The second generalization is to incorporate the filling developed in [19].
By varying the size of the systole which is inversely related to the length of a chosen simple
closed geodesic in the filling procedure [19] (reviewed in the next subsection), we get an
independent parameter useful for separately varying the integrated quantities in (5.21). In
addition to explicitly providing the parameters required in our construction, concrete examples
such as these may be used in more detailed numerical studies.

A.2 Summary of the Dehn Filling to an Einstein space with small systole

Let us provide a short description of the construction [19] for Dehn filling of hyperbolic cusps
by an Einstein manifold. As stressed above and in [19], via a set of discrete choices this yields a
large number of Einstein manifolds for a manifold with nc cusps. Mathematically the number
of choices of filling is infinite for each cusp, while physically we will restrict attention to the
finite number for which the length of the systole exceeds `11.

An approximation of the filling in any dimension n (with n = 7 for our setup) is obtained
as follows. There is a filling for each choice of simple closed geodesic σ in the cusp cross
sectional T n−1. Note that there are infinitely many such geodesics, with sequences that go off
to infinite length. We pick such a geodesic σ with length |σ| in a given torus metric ds2

T n−1 of
size ∼ `.21

We will join the cusp metric (4.1) in the form

ds2 =
dr2

r2
+

r2

r2
join

ds2
T n−1 , (A.4)

20We thank I. Agol for this suggestion.
21A more specific specification (of this order of magnitude) is detailed in [19] in terms of the injectivity radius.
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Figure 13: A long simple closed geodesic σ (blue) in the cusp cross sectional T n−1.

to the twisted Euclidean AdS black hole metric (equation (3.6) of [19])

ds2
BH = [

dr2

V (r)
+ V (r)dθ2 + r2ds2

Rn−2]/Zn−2 , (A.5)

with θ periodic with period β = 4π
(n−1) and

V (r) = r2
(

1−
1

rn−1

)
. (A.6)

The radial position r join is specified as follows22

Figure 14: A schematic of the approximate filled metric in the construction [19],
joined to the cusp at r = r join, as reviewed in the text. A choice of long simple closed
geodesic σ provides a tunably small systole at the tip of the cigar. The joined metrics
(A.4) and (A.5) have a corner at r join since d

p
V

dr |r join
> 1, but one can smooth this

out and perturb slightly to obtain an Einstein metric throughout [19].

√
V (r join)β = |σ| , (A.7)

22In the paper [19] this is denoted R, but we will use different notation to avoid confusion with the radius R
appearing in the main text.
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so that the θ circle has proper size |σ|. In (A.5) the group Zn−2 acts so that the T n−1 at r = r join
is the T n−1 of (A.4), with the θ circle being the simple closed geodesic σ. This works as fol-
lows. Since σ is a simple closed geodesic, the T n−1 may be constructed by modding out Rn

by a Zn group of translations generated by σ and n− 2 other generators (b2, . . . , bn−1). This
set of generators (σ, b2, . . . , bn−1) can be obtained from any other set of generators, such as
the simple orthonormal basis of unit vectors êi for the square tori in [25], by an SL(n− 1,Z)
transformation. As the length |σ| grows, the bi grow in length so their integer linear combi-
nations (in the relevant SL(n−1,Z) transformations) yield the unit vectors êi in that example
(and similarly for more general cases).

The Zn−2 acts on the space [ dr2

V (r)+V (r)dθ2+r2ds2
Rn−2] in (A.5) as in equation (3.7) of [19],

which we reproduce here. At each r, it acts on the S1
θ ×R

n−2 as a Zn−2 with generators

σ(r) =

√
V (r)

V (r join)
σ , bi(r) = bi +

(√
V (r)

V (r join)
− 1

)
bi ·σ
|σ|2

σ . (A.8)

We continuously join the two metrics at the radius r join, albeit with a corner defect there. The
generators (A.8) vary with r giving a T n−1 that changes shape as a function of r and reaches a
diameter of order 1/|σ| at the tip of the cigar r = 1 in the approximate filling metric (A.5) [19].
That is, we can tune the systole size smaller and smaller by choosing larger and larger simple
closed geodesics:

length(systole)∼
`2

|σ|
. (A.9)

It is immediately clear from (A.7) and (A.6) that the two metrics (A.4) and (A.5) agree in
the range 1� r ≤ r join up to corrections of order 1/rn−1 (with exact agreement at r = r join
by construction). The bulk of the paper [19] derives a correction to a smoothed out version
of (A.5) that produces an Einstein metric without any corner defect at r join. As just described,
even the first step of joining the two metrics here produces for large |σ| a space very close to
the cusp, deviating from it where the T n−1 becomes small ∼ 1/|σ|.

Altogether, this construction enables fine tuning control of one combination of our model
parameters as described in the main text around equation (5.21). As stressed in [19], this
infinite set of Einstein metrics parallels the infinite set of Dehn filled hyperbolic metrics for
n= 3. In our physical context, the infinity is cut off by quantum gravity effects (e.g. wrapped
membrane effects) once the systole length reaches `11. As described in the main text, keeping
this length Rc � `11 fits with our stabilization mechanism.

B Equations of motion

In this Appendix we give the equations of motion used in the main text. We take an n-
dimensional internal space, and d external space-time dimensions, with D = d + n = 11.
The case relevant for most of the work is d = 4, n= 7, but for different applications it is useful
to keep (d, n) general.

Let us consider the equations of motion for a metric ansatz

ds2 = g(d)µν d xµd xν + g(n)i j d y id y j

= e2A(y)ds2
symm + e2B(y) g̃(n)i j d y id y j , (B.1)

where ds2
symm is a maximally symmetric d-dimensional spacetime, g(n)i j is the metric in n di-

mensions, and A, B are the warp and conformal factors, respectively. We present first the
D-dimensional equations, and then relate them to variations of the off-shell potential. The
equations will be valid for general internal metric.
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B.1 Higher-dimensional equations of motion

The equations of motion for A and B follow from the d- and n-dimensional traces of

RMN −
1
2

gMN R=
1
2
(`D)

D−2
(
T (flux)

MN + T (Cas)
MN

)
, T (matter)

MN = −
2√
−g(D)

δSmatter

δgMN
, (B.2)

with energy-momentum tensors from internal n-flux and the Casimir contribution. The flux
gives

gµνT (flux)
µν = −

1
(`D)D−2

d
2
|Fn|2 , g i j T (flux)

i j =
1

(`D)D−2

n
2
|Fn|2 . (B.3)

Recalling (4.2), the Casimir contribution is

gµνT (Cas)
µν = −d ρC(Rc) , (B.4)

g i j T (Cas)
i j = −nρC(Rc)− Rcρ

′
C(Rc) = d ρC(Rc) , (B.5)

where in the last step we used ρC(Rc) ∼ −R−d−n
c , valid when Rc varies slowly in the internal

space.
The d-dimensional equation

1√
−g(D)

δS
δA
= −2

(
gµνRµν −

d
2

gMN RMN

)
+ (`D)

D−2Tµµ = 0 (B.6)

then becomes

(d − 2)e−2AR(d)symm + d R(n) − 2d(d − 1)∇2A− d2(d − 1)(∇A)2 − d(`D)
D−2ρC(Rc)−

d
2
|Fn|2 = 0 .

(B.7)
This is proportional to the General Relativity Hamiltonian constraint in our setup with a max-
imally symmetric d-space (otherwise the constraint is just the 00 Einstein equation). The
n-dimensional equation

1√
−g(D)

δS
δB
= −2

(
g i jRi j −

n
2

gMN RMN

)
+ (`D)

D−2T i
i = 0 (B.8)

reads

ne−2AR(d)symm+(n−2)R(n)−2d(n−1)∇2A−d(nd+n−2)(∇A)2+d(`D)
D−2ρC(Rc)+

n
2
|Fn|2 = 0 .

(B.9)
Finally, the equation of motion for the flux reads

∂i1

(√
g(n)edAg i1 j1 . . . g in jn F j1... jn

)
= 0 . (B.10)

The zero mode solution is
Fi1...in = f0 e−dAεi1...in , (B.11)

and flux quantization fixes

1
`n−1

D

∫
Fn ∼ Nn ⇒ f0 ∼ `n−1

D
Nn∫

dn y
√

g(n)e−dA
, Nn ∈ Z . (B.12)

We now give two equivalent forms of these equations that will be useful. In terms of the
variable

u(y)≡ e
d
2 A(y) , (B.13)
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these equations become

(d − 2)R(d)symm u−4/d + d R(n) − 4(d − 1)
∇2u

u
− d(`D)

D−2ρC(Rc)−
d
2
|Fn|2 = 0 , (B.14)

and

nR(d)symmu−4/d + (n− 2)R(n) − 4(n− 1)
∇2u

u
− 4

d + n− 2
d

(∇u)2

u2
+ d(`D)

D−2ρC(Rc) +
n
2
|Fn|2 = 0

(B.15)
respectively.

Lastly, let us give the equations taking into account explicitly the conformal mode e2B in
(B.1), and using the fiducial metric g̃(n)i j . For this, we need the partial traces of the Ricci tensor

gµνRµν = e−2AR(d)symm − de−2B
[
d(∇ g̃A)2 +∇2

g̃A+ (n− 2)∇ g̃A · ∇ g̃ B
]

, (B.16)

g i jRi j = e−2B
[
R(n)g̃ − d∇2

g̃A− d(∇ g̃A)2 − 2(n− 1)∇2
g̃ B − (n− 1)(n− 2)(∇ g̃ B)2

− d(n− 2)∇ g̃A · ∇ g̃ B
]

.

Here ∇ g̃ is the covariant derivative with respect to g̃(n)i j , and R(n)g̃ is its Ricci scalar. The d-
dimensional constraint then becomes

0 = (d − 2)e−2AR(d)symm + de−2BR(n)g̃ − de−2B
{

2(d − 1)∇2
g̃A+ d(d − 1)(∇ g̃A)2 + 2(n− 1)∇2

g̃ B

+ 2(d − 1)(n− 2)∇ g̃A · ∇ g̃ B + (n− 1)(n− 2)(∇ g̃ B)2
}
− d (`D)

D−2ρC(Rc)−
d
2
|Fn|2 .

(B.17)

For the internal n-dimensional trace, we obtain

0 = ne−2AR(d)symm + (n− 2)e−2BR(n)g̃ − (n− 1)e−2B
{

2d∇2
g̃A+

d(nd + n− 2)
(n− 1)

(∇ g̃A)2 (B.18)

+ 2(n− 2)∇2
g̃ B + 2d(n− 2)∇ g̃A · ∇ g̃ B + (n− 2)2(∇ g̃ B)2

}
+ d(`D)

D−2ρC(Rc) +
n
2
|Fn|2 .

As a check, combining these two equations to eliminate R(d)symm, and approximating A and B as
constants, reproduces the extremum of (2.3).

B.2 Effective potential

Let us now consider the dimensionally reduced theory,

Sd =
∫

dd x
√
−g(d)

(
1

GN
R(d) − 2Ve f f

)
. (B.19)

The off-shell potential [17] is identified from the integrated GR constraint (B.14), after adding
a Lagrange multiplier C that fixes the value of the d-dimensional Newton’s constant:

Ve f f =
1

2`D−2
D

∫
dn y

√
g(n) u2

(
−R(n) − 4

d − 1
d
(∇u)2

u2
−

1
d
(`D)

D−2Tµµ

)
+

1
2

C
(

1
GN
−

1
`D−2

D

∫
dn y

√
g(n) u2−4/d

)
. (B.20)
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This requires Tµµ to be independent of u(y). This is satisfied in our case,

−(`D)
D−2 1

d
Tµµ = (`D)

D−2ρC(Rc) +
1
2
|Fn|2 . (B.21)

The variations
δVe f f

δu
= 0 ,

δVe f f

δB
= 0 ,

δVe f f

δC0
= 0 (B.22)

reproduce the equations of motion of §B.1, with the identification C = R(d)symm. The value of
the potential on the d-dimensional constraint, after fixing GN with the Lagrange multiplier C ,
becomes

Ve f f =
d − 2
2d

C
GN

. (B.23)

More generally, however, we need to understand how Ve f f can reproduce all the internal
equations, given that Ve f f depends on Tµµ , while a Ti j needs to appear in order to match the
internal Einstein equations. One needs

Ti j = −
2
d

(
δTµµ
δg i j

−
1
2

gi j T
µ
µ

)
. (B.24)

If the matter action depends on the d-dimensional metric only through the volume element,

Smat ter =
∫

dD x
√
−g(d)

√
g(n) Lmat ter(gi j ,φ, . . .) , (B.25)

then

Tµν = −
2√
−g(D)

δSmat ter

δgµν
= gµνLmat ter ⇒ Tµµ = d Lmat ter . (B.26)

In this case, (B.24) is satisfied because it gives the usual definition for the internal stress tensor:

Ti j = −2
(
δLmat ter

δg i j
−

1
2

gi j Lmat ter

)
. (B.27)

From this, we see that if Lmat ter depends nontrivially on gµν, (B.24) will not be satisfied. Ex-
amples include higher curvature corrections, or more general quantum effects. The sources
we have used in this work (with the approximation where Casimir is slowly varying and dom-
inated by Rc) satisfy the criterion (B.25).

C Slow Roll parameters from the off-shell potential

In this section, we will derive a formula for contributions to εV from certain metric deforma-
tions (reducing to fields φc,I). We will ultimately focus on a region of the cusp where we will
apply our formula, including the four dimensional field corresponding to the level of asymme-
try in the cusp cross section. But we will start more generally.

Let us consider the system

ds2 = u(t, y)ds2
dS4
+ g(7)i j (t, y)d y id y j , (C.1)

and expand the system about a fiducial metric ḡ(7)i j (y). Here, we allow for time and internal
coordinate dependence in deformations away from the fiducial metric, in order to capture
the kinetic normalization required for the four dimensional fields φc,I (3.28) as well as the
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internal gradients. Within a portion of the cusp, we will be interested in a particular set of
deformations captured by the metric

ds2 = u(t, ~y)ds2
dS4
+ e2σrad (t,~y)d y2

rad + R(t, ~y)2
5∑

i=1

d y2
⊥i + Rc(t, ~y)

2d y2
c

= e2A(t,~y)ds2
dS4
+ e2σrad (t,~y)d y2

rad + e2σ(t,~y)
5∑

i=1

d y2
⊥i + e2σc(t,~y)d y2

c , (C.2)

with
σI = σ̄I(y) +∆σI(t, y) (C.3)

describing an expansion about a fiducial metric. The asymmetry relevant to our setup is cap-
tured by the ratio Rc/R. In what follows, we will expand∆σI in a basic of modes Φk, defining
an appropriate normalization to extract the φc,I .

To begin, we need to generalize the derivation of Ve f f in [17] to capture the kinetic terms
for the four dimensional fields. As in [17], this proceeds essentially by inserting into the
eleven-dimensional action S the solution to the equation of motion for the warp factor (the
constraint). The action S contains the 11d Einstein-Hilbert terms, which generates the kinetic
terms for the metric deformations. We need to replace the ∂µA’s in the kinetic action with
the solution for A. There is a simple way to obtain that, using the fixed Newton constant, as
follows. From (3.4), in Ve f f we have the term

C
2

(
1

GN
−
∫

d7 y
√

g(7)u|c

)
, (C.4)

with C a Lagrange multiplier. Once we include dependencies on the four-dimensional coordi-
nates xµ (in particular time t (C.1)(C.2)), a consistency requirement is

∂µ(
√

g(7)u|c) = 0 , (C.5)

enabling the substitution

∂µA= −
1

2
√

g(7)
∂µ(
√

g(7)) . (C.6)

In the particular metric (C.2), this becomes

∂µ(∆σrad + 5∆σ+∆σc + 2A) = 0 . (C.7)

This enables us to replace ∂µA in the action, giving positive kinetic terms for the four-dimensional
fields (e.g. σI). For example, the kinetic term for the internal conformal factor B becomes
positive once we incorporate this substitution.

This results in an effective 4d theory of the following form check notation

S =
1

2GN

∫ √
−g(4)s ymme2A+σrad+5σ+σc

(
R(4)s ymm−GI J∂µ∆σ

I∂ µ∆σJ
)
−
∫ √

−g(4)s ymmVe f f , (C.8)

with GI J a positive symmetric constant matrix.
The next step is to expand the fields in a basis of functions Φk.

∆σI(x , y) =
∑

k

∆σI
k(x)Φk(y) , (C.9)
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with completeness relations

e2A
√

g(7)
∑

k

Φk(y)Φk(y
′) =

1
GN

,∫
d7 y e2A

√
g(7)Φk(y)Φk′(y

′) =
1

GN
δkk′ . (C.10)

Given this, the σI fields that we have defined (C.2), (C.3) contribute to εV as

εV,σ =
∑

k

1
2V 2

e f f
G I J∂∆σI

k
Ve f f ∂∆σJ

k
Ve f f . (C.11)

A similar formula would apply to a full set of internal fields deforming away from any fiducial
metric ḡ(7)i j in (C.1) (related to∆B,∆h, C6 in the decomposition (1.1)). In general this is given
by a Kaluza-Klein reduction on the fiducial space [59,60].

The derivatives ∂∆σI
k
Ve f f give the equations of motion for a de Sitter ansatz for our com-

pactification. A nonzero value corresponds to a tadpole, and contributes to εV . We can use
our formula for εV to quantify how close to accelerated expansion any such configuration is.
To make this more explicit, our next step is to make the definition

Ve f f =
∫

d7 y
√

g(7)f iducial Le f f (g
(7), C6)

=
∫

d7 y
√

g(7)f iducial Le f f (δB, h, C6) →
∫

d7 yLe f f (σ
I) ,

(C.12)

where the last expression is the reduction to the case (C.2).
We will need the derivatives entering into εV (C.11), computing for the cusp case

∂ Ve f f

∂∆σI
k(x)

=
∫

dn y
∂Le f f

∂∆σI(x , y)
∂∆σI

∂∆σI
k(x)

=
∫

dn y
∂Le f f

∂∆σI(x , y)
Φk(y) . (C.13)

Plugging back into (C.11) gives

ε∆~σ = G I J 1
2V 2

e f f

∑
k

∫
dn ydn y ′

∂Le f f

∂∆σI(x , y)
∂Le f f

∂∆σJ (x , y ′)
Φk(y)Φk(y

′) . (C.14)

Applying the completeness relation (C.10) yields

ε∆~σ =
1

2GN

1
V 2

e f f

∫
dn ye−2A−σrad−5σ−σc G I J ∂Le f f

∂∆σI

∂Le f f

∂∆σJ
, (C.15)

where Ve f f is given above in (3.4).
It is useful to note the scaling with the exponentials of A and ~σ, and its dependence on the

domain in which εV has support. For this purpose, we collect these scalings from the formulas
for the factors in (C.15), working in our case of interest d = 4, n= 7.

1
GN
=
∫

e2A
√

g(7)→
∫

d7 ye2A+σrad+5σ+σc , (C.16)

Ve f f =
∫

d7 y Le f f (~σ) =
∫

d7 y
`9

11
e4A+σrad+5σ+σc

(
−R(7) + · · · −

1
2

Ce−2A
)

, (C.17)
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and we recall that R(7) contains terms scaling like e−2σI
. The derivatives

∂Le f f
∂∆σI scale with the

exponentials like the integrand of this expression (C.17). Finally, we note that Ve f f itself is
simply given by (3.8),

Ve f f =
C

2GN
. (C.18)

It is interesting to express the scaling in two cases. First, suppose that the C/u= Ce−2A term is
(at least) of order the other terms in the expressions, as occurs without any particular tuning
or if the C term itself is dominant. Then, putting together these pieces (C.14)(C.16)(C.17)
yields the form

ε~σ ∼

∫
Σε

d7 y u eσrad+5σ⊥+σc∫
Σ7

d7 y u eσrad+5σ⊥+σc
C/u term , (C.19)

for ε, where Σε denotes the domain where the equations of motion are not solved (so we get
contributions to ε), and Σ7 is the entire 7-manifold which contributes to 1/GN .

If the C/u term is subdominant, on the other hand (as in the tuning of interest to ob-
tain small 4d Hubble), the scaling of ε with exponentials and volumes based on the internal
curvature term is

ε~σ ∼

∫
Σε

d7 y e6A+σrad+5σ⊥+σc e−4σ∗

(C`2)2
∫
Σ7

d7 y e2A+σrad+5σ⊥+σc
R(7) terms , (C.20)

where σ∗ is the component of ~σ that gives the strongest contribution among the terms in R(7)

(all of which scale like e−2σI for some I). These formulas are useful for estimating epsilon for
smooth internal configurations where the equations of motion are solved almost everywhere,
but for which some region Σε contributes to εV . This enables a functional generalization of
the analysis of [66].

D Derivation of no go theorems

In this Appendix we derive the inequalities governing general compactifications of D-dimensional
gravitational theories down to d-dimensional vacua. As we are going to see, it is possible to
constrain the d-dimensional cosmological constant in terms of integrated stress-energy ten-
sors. [64–66, 131]. In the interest of making this Appendix self-contained, we repeat here
the main definitions. We work in D-dimensional Einstein frame, such that the D-dimensional
Einstein equations are

RMN −
1
2

gMN R= κ2 1
2

TMN , (D.1)

where TMN ≡ −
2p−g

δSmatter
δgM N and κ2 = `(D−2)

D . Since we want to relate the d-dimensional cur-
vature directly to the matter content, we take the trace of equation (D.1) to eliminate the
D-dimensional Ricci scalar:

R
(

1−
D
2

)
=

1
2
κ2T ⇒ RMN =

1
2
κ2TMN +

1
2
κ2 gMN

T
2− D

. (D.2)

We now specialize this equation to space-times of the form

ds2
D = e2Ads2

symm + ds2
D−d , (D.3)

where A only depends on the (D− d)-dimensional coordinates and ds2
symm is a d-dimensional

vacuum. In particular, denoting the d-dimensional indices by µ,ν, . . . this decomposition re-
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sults in

Rµν = R(d)µν − e2Ag(d)µν (d(∇A)2 +∇2A) (D.4)

= R(d)µν −
1
d

e(2−d)Ag(d)µν∇
2(ed A) , (D.5)

where ∇ is the derivative with respect to gD−d . Plugging it in (D.2) and specializing to the
space-time components we get

R(d)µν =
1
2
κ2Tµν + g(d)µν

(
1
d

e(2−d)A∇2(edA) + e2A 1
2
κ2 T

2− D

)
. (D.6)

Tracing it with gsymm, we obtain

R(d) =
1
2
κ2T (d) + e(2−d)A∇2(edA) +

1
2
κ2 d

2− D
e2AT . (D.7)

Finally, making use of the definitions

T = gMN TMN (D.8)

= e−2Agµν(d)Tµν + g i j Ti j (D.9)

≡ e−2AT (d) + T (D−d) , (D.10)

we can rewrite

R(d) =
1
2
κ2
(

1+
d

2− D

)
T (d) + e(2−d)A∇2(edA) +

d
2− D

e2A 1
2
κ2T (D−d) . (D.11)

Multiplying this equation by e(d−2)A and integrating in the internal space, assuming the internal
space is smooth and without boundaries, we obtain

1
GN

R(d) = Itot , (D.12)

where we have defined the d-dimensional Newton constant as 1
GN
≡ 1

κ2

∫ pgD−d e(d−2)A and
the integrated quantity

Itot ≡
1
2

∫
p

gD−d e(d−2)A
((

1+
d

2− D

)
T (d) +

d
2− D

e2AT (D−d)
)

. (D.13)

Generically, both quantum and classical terms will contribute to the traces of stress energy
tensors. If they do not mix (D.12) can be decomposed as

1
GN

R(d) = Iclassical + Iquantum . (D.14)

The classical no-go theorems [64–66] are obtained by neglecting the Iquantum contribution. For
example, in a generic M-theory setting (without localized sources), Iclassical is given by

Iclassical = IF4
=

1
6

∫
p

g11−d(e
(d−8)A(12− d) f̂ 2

4 − dedA f 2
4 )≤ 0 , (D.15)

where we are working with F4 = ?F7 and we have decomposed F4 = f̂4+ f4, with f̂4 being the
space-time component (which is non-vanishing only for d = 4). The last inequality follows
from f̂ 2

4 ≤ 0 23. From (D.15) we see that without other energy sources dSd compactifications

23In the main text we are in the situation d = 4, f4 = 0, |F7|2 = −e−8A f̂ 2
4 .

71

https://scipost.org
https://scipost.org/SciPostPhys.12.3.083


SciPost Phys. 12, 083 (2022)

are forbidden. In the main text,we have shown how the quantum mechanically generated
Casimir energy evade these restriction.

Localized sources also contribute to the integral Itot. However, since their backreaction on
the internal geometry can be severe, the assumptions that lead us to (D.12) are not generi-
cally valid and have to be analyzed with care. This becomes particularly important for some
negative-tension sources, such as Op-planes in String Theory. For these objects, the very strong
backreaction near their core excises a finite region of space-time in the supergravity approxi-
mation, and the assumptions of a smooth internal geometry with no boundary is false. Math-
ematically, they evade in this way the no-go theorems, an effect which is physically ascribed
to their negative tension.24
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