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Abstract

We investigate the power dissipated by an electronic current flowing through a quan-
tum point contact in a two-dimensional electron gas. Based on the Landauer-Büttiker
approach to quantum transport, we evaluate the power that is dissipated on the two
sides of the constriction as a function of the Fermi energy, temperature, and applied
voltage. We demonstrate that an asymmetry appears in the dissipation, which is most
pronounced when the quantum point contact is tuned to a conductance step where the
transmission strongly depends on energy. At low temperatures, the asymmetry is en-
hanced when the temperature increases. An estimation for the position of the maximum
dissipation is provided.
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1 Introduction

The Landauer-Büttiker approach describes quantum transport through a mesoscopic device by
phase-coherent elastic scattering [1,2]. The electrical conductance of the device is determined
by the quantum transmission of electrons from one attached electrode to another one through
the mesoscopic sample in which the electrons can be scattered. The connection between the
sample and the electrodes is thought to be realized via perfect quasi-one-dimensional leads.
The electrodes are assumed to be large reservoirs, with fixed temperatures and electrochem-
ical potentials, unaffected by outgoing or incoming electrons. The presence of macroscopic
reservoirs allows one to approach the thermodynamic limit of an ideal heat bath and particle
reservoir with a continuous spectrum and the possibility of energy dissipation.

Within the idealized scheme of sample/leads/reservoirs, the energy dissipation occurs
through thermalization of the traveling electrons within the reservoirs [3–5]. However, in
actual physical systems the previous scheme is not so clear-cut, since the separation between
leads and reservoir is somehow arbitrary, and the question of where the dissipation takes place
becomes relevant.

From the experimental point of view, addressing the previous stationary, out of equilib-
rium phenomenon necessitates, in addition to the global measurement of the conductance,
the development of local probes.

In mesoscopic metallic wires a tunnel superconducting probe allowed to determine the
energy distribution of Landau quasiparticles between two reservoir electrodes [6]. For short
wires (1.5µm long) the energy distribution in the middle of the sample is given by the half sum
of the two Fermi distributions of the reservoirs, indicating that the dissipation occurs indeed
in the reservoirs and that the scattering within the wire is almost elastic. On the contrary, for
longer wires (5µm long), away from the electrodes, the electron distribution approaches a
thermal one, indicating that the diffusing quasiparticles within the sample thermalize through
the residual electron-electron interaction.

In the paradigmatic case of a ballistic quantum point contact (QPC), the distinction be-
tween leads and reservoirs is not obvious, and the accepted view is that the transition from
the first to the second element occurs at approximately a distance from the constriction defined
by the phase-coherence length LΦ. Thus, the current description and understanding of con-
ductance quantization in a QPC stems from the theoretical framework settled by the scattering
approach.

Local probes, like the scanning gate microscopy (SGM) allow getting further information
about electronic transport than that yielded by the measurement of the conductance [7–9].
In particular, the behavior of the electron flow, weakly or strongly perturbed by the scanning
tip, could be analyzed within a semiclassical framework in terms of classical trajectories of
noninteracting electrons in a weak and smoothly disordered landscape. However, the above-
mentioned dissipation issues cannot be addressed with such a technique.

Scanning thermal microscopy (SThM) provides a probe of the local temperature, yielding
access to the question of how and where dissipation takes place. In particular, the devel-
opment of a SQUID-on-tip thermometer has recently achieved a nanoscale spatial resolution
(50 − 100nm) with a µK sensitivity [10–12], and allowed to observe a remarkable spatial
separation between where the voltage drops (the resistance) and where the associated Joule
heating (dissipation) occurs.

Our work is motivated by the possibility to detect local temperature changes caused by
an electronic current flow in the quantum transport regime. Of particular interest are mea-
surements of the local heating close to a QPC with and without magnetic field which put in
evidence a spatial asymmetry of the dissipation [13]. On the side of the QPC with lower
electrochemical potential, the dissipated heat is generated by the transmitted electrons which
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thermalize from energies above the Fermi sea. On the opposite side, the transport process
mainly leaves holes in the Fermi sea that thermalize by moving to the surface. For an energy-
independent transmission probability of the QPC, particle-hole symmetry leads to symmetric
power dissipation on the two sides of the QPC [14]. Conversely, experiments on atomic scale
junctions, complemented by a scattering approach with the transmission obtained from ab-
initio calculations [15,16] have yielded asymmetries in the heat dissipation of systems where
the transmission is strongly energy-dependent. Such a heat asymmetry has been shown to be
reduced by inelastic and dephasing effects [17]. Studies based on a hydrodynamic model of
charge and heat flow in inhomogeneous two-dimensional electron systems have also found
asymmetric heat dissipation [18].

In this paper, working within the Landauer-Büttiker formalism of quantum transport, we
calculate the difference between the dissipated power on the two sides of the QPC. We deter-
mine the asymmetry of the dissipation when the transmission through the QPC varies in the
energy range between the two chemical potentials corresponding to conductance quantization
and conductance steps. Moreover, we study the dependence of the appearing asymmetry on
the relevant system parameters (Fermi energy, bias voltage, and temperature) and provide an
estimate for the distance from the QPC to the point of maximum dissipation.

This paper is outlined as follows: In Sec. 2 we present the general description of the en-
ergy dissipation within the Landauer-Büttiker formalism of electronic transport. The theory is
applied in Sec. 3 to a model of a QPC formed by an abrupt constriction in a two-dimensional
electron gas (2DEG). An estimate of the position of maximum dissipation is proposed in Sec. 4.
Conclusions are drawn and some perspectives of our work are discussed in Sec. 5.

2 Energy dissipation on the two sides of a scatterer

Considering a generic mesoscopic sample, the current carried through by noninteracting elec-
trons, from the left (L) to the right (R) reservoir is [3,4]

I =
2e
h

∫ ∞

−∞
dε T (ε, V ) [ f (ε −µL)− f (ε −µR)] . (1)

The equilibrium Fermi-Dirac distribution function f (ε) = [exp (ε/kBT ) + 1]−1 sets the oc-
cupation at the reservoirs, assumed to have both the same temperature T . We note kB the
Boltzmann constant, h the Planck constant, µ̄ the mean electrochemical potential, V the ap-
plied bias voltage, and e the electron charge (e < 0). The electrochemical potential in the left
(right) reservoir is therefore µL(R) = µ̄ ± eV/2, and in the limit of low voltage at zero tem-
perature, the mean electrochemical potential µ̄ is the Fermi energy of the system. In order to
visualize the transfer of electrons from left to right, we will assume V < 0 (and thus µL > µR).
The total transmission coefficient T =

∑NL,NR
a,b |tba|2 is obtained as a sum over the NL and NR

propagating channels in the L and R leads, respectively. We follow the standard notation of
calling t(t ′) and r(r ′) the transmission and reflection submatrices of the [NL+NR]× [NL+NR]
scattering matrix S for particles impinging from the left and right side of the scatterer [5]. The
Landauer-Büttiker zero-temperature linear conductance (∂ I/∂ V )|V=0 follows from Eq. (1),
and writes g = (2e2/h) T (µ̄).

Even if in writing Eq. (1) we ignored the electron-electron interaction, the energy- and bias
voltage-dependent transmission coefficient is difficult to determine, as it results from a self-
consistent treatment of the electron density in the applied electric field [19–21]. Establishing
an ansatz on the spatial dependence of the potential drop allows to avoid the self-consistent
treatment and to use a one-particle approach [22, 23], which is able to account for the main
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Figure 1: Scheme of the zero-temperature dissipation process associated with the
elastic transmission of an electron with energy ε through a generic mesoscopic sam-
ple represented by a scattering matrix S. For presentation purposes, the scatterer is
represented as a potential barrier, and the ansatz of a linear voltage drop within the
scatterer is adopted. The electron densities are taken to be equal on both sides of the
scatterer, ensuring charge neutrality. A traveling electron delivers an energy ε − µR
at the right reservoir, while the hole it leaves behind in the left reservoir releases an
energy µL−ε when neutralized by an electron from the Fermi level. The applied bias
voltage V verifies eV = µL − µR, with µL(R) the electrochemical potential in the left
(right) reservoir and e the electron charge. The bottom of the conduction band in
the unbiased case is chosen as the energy origin.

features experimentally observed in the nonlinear conductance of QPCs [24, 25]. We will es-
tablish in the sequel that, while the total power dissipation scales as V 2, the power asymmetry
is of order V 3. In a systematic expansion in orders of V , applicable to the case of a relatively
small bias voltage, the evaluation of the power asymmetry in the leading order in V only re-
quires considering the transmission coefficient to order V 0, and thus, we will ignore henceforth
the second argument of T (ε, V ).

2.1 General expressions

The dissipated power at the left (L) and right (R) of the scatterer can be expressed as

PL/R =

∫ ∞

−∞
dε pL/R(ε) , (2)

where

pL(ε) =
2
h
(µL − ε)T (ε) [ f (ε −µL)− f (ε −µR)] , (3a)

pR(ε) =
2
h
(ε −µR)T (ε) [ f (ε −µL)− f (ε −µR)] . (3b)

As sketched in Fig. 1, the factors ε − µR and µL − ε represent the thermalization energy of
an excited electron or hole to the Fermi level in the right and left reservoirs, respectively.
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From Eqs. (2) and (3) we verify that the total dissipated power is PT = PL + PR = V I , in
agreement with Ohm’s law. The expressions for the dissipated power are related to the energy
flow through the scatterer [26]

J = 2
h

∫ ∞

−∞
dε ε T (ε) [ f (ε −µL)− f (ε −µR)] , (4)

by PL = µL I/e−J and PR = J −µRI/e.
We are particularly interested in the asymmetry of the dissipation, given by

PA = PR−PL = 2
�

J − µ̄I
e

�

=
4
h

∫ ∞

−∞
dε (ε − µ̄)T (ε) [ f (ε −µL)− f (ε −µR)] . (5)

At zero temperature, the difference of Fermi factors limits the energy integration to the interval
[µR,µL], and therefore the asymmetry PA follows from the energy dependence of T (ε) therein.
In particular, an approximately energy-independent T (ε) in the mentioned interval leads to
an almost negligible PA, while the fact that T (ε) is in most generic situations an increasing
function of ε translates into PA > 0 in the case where µL > µR.

2.2 Low-voltage expansion

A quantitative analysis of the lowest order contributions in the voltage eV = µL−µR is obtained
through an expansion of the transmission

T (ε) = T (µ̄) + (ε − µ̄)T ′(µ̄) + VT ′V (µ̄) +O[(ε − µ̄)2] +O[V 2] +O[V (ε − µ̄)] , (6)

where T ′(ε) denotes the energy-derivative and T ′V (ε) the voltage-derivative of the transmis-
sion function. Inserting Eq. (6) into the expressions (2) and (3) of the dissipated power at
zero temperature yields the lowest order contribution

PL/R =
1
h
T (µ̄)(eV )2 +O[(eV )3] , (7)

which is of second order in the bias voltage, and the same on both sides of the scatterer. Of
course, the sum of the two contributions reproduces the total dissipated power
PT = (2e2/h) T (µ̄)V 2 = gV 2 = V I . The difference of the dissipated powers on the two
sides of the scatterer appears only in third order in V as

PA =
1
3h

T ′(µ̄)(eV )3 +O[(eV )4] . (8)

While the leading-order term of the dissipated power is determined by the transmission at the
mean electrochemical potential T (µ̄), and thus proportional to the conductance, the dominant
term of the asymmetry PA is proportional to the energy derivative of the transmission T ′(µ̄).
The first-order bias-voltage dependence of the transmission can lead to an electric asymmetry
with a current voltage characteristic for which I(−V ) 6= −I(V ). However, it does not affect
the leading order terms in the above expansions. It leads to a third-order term in the power
(7) and a fourth-order term in the asymmetry (8). For the particular situation of a structure
with left-right symmetry, there is no electric asymmetry, one has I(−V ) = −I(V ), and the
transmission coefficient at a given energy must be an even function of the bias voltage, such
that T ′V (µ̄) = 0. In this case, the second-order corrections to the transmission, that are not
written explicitly in Eq. (6), lead only to fourth-order terms in the power (7) and to fifth-order
terms in the asymmetry (8).
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2.3 Low-temperature expansion

In the expansion of the dissipated power for small voltage (see Sec. 2.2), zero temperature was
assumed. We now consider the effect of a small temperature∆PL/R(T ) = PL/R(T )−PL/R(0) on
the dissipated powers PL/R(T ) at finite voltage. The effect of a nonzero temperature is that of
allowing for the occupation of states at energies that are of order kBT above the electrochemi-
cal potentials, while the occupation of the states just below is reduced. Transmission processes
outside the energy window [µR,µL] by about kBT appear, while those inside the interval close
to its edges are reduced, leading to modifications of the asymmetry in the dissipated powers
in the presence of an energy-dependent transmission probability.

In order to get a quantitative estimate of ∆PL/R(T ), we start from the general expressions
(2) and (3). The only temperature dependence is in the Fermi-Dirac distribution functions,
and we can write

∆PL(T ) =
2
h

∫ ∞

−∞
dε (µL − ε)T (ε)[∆ f (ε −µL)−∆ f (ε −µR)] , (9a)

∆PR(T ) =
2
h

∫ ∞

−∞
dε (ε −µR)T (ε)[∆ f (ε −µL)−∆ f (ε −µR)] , (9b)

where we have defined the temperature-induced change of the Fermi-Dirac distribution
∆ f (x) = f (x) − θ (−x), where θ (−x) is the zero-temperature distribution given in terms
of the Heaviside step function. This change ∆ f (x) is significant around x = 0 and exponen-
tially suppressed on a scale of kBT when |x | increases. Therefore, at low temperature, only
energies in the vicinity of the electrochemical potentials µL and µR contribute to the integrals
in Eqs. (9). We then treat the two regions separately in a Sommerfeld expansion approach,
and use Taylor expansions of the transmission around those energies

T (ε) =
∞
∑

n=0

T (n)(µL/R)

n!
(ε −µL/R)

n , (10)

where T (n) is the nth derivative of the transmission with respect to energy. For the dissipated
power on the left, this results in

∆PL(T ) = −
2
h

∞
∑

n=0

T (n)(µL)
n!

In+1 +
2
h

∞
∑

n=0

T (n)(µR)
n!

(In+1 − eVIn) , (11)

where we have defined the integrals

In =

∫ ∞

−∞
dx xn∆ f (x) . (12)

Since ∆ f (x) is an odd function, In = 0 for all even n. For odd n, one has

In = 2(kBT )n+1

∫ ∞

0

dx
xn

1+ ex
= (2πkBT )n+1 (1− 2−n)|Bn+1|

n+ 1
, (13)

where Bn+1 are the Bernoulli numbers. The expansion of the transmission around the elec-
trochemical potential results in an expansion in powers of the temperature. The lowest order
contribution is due to the terms involving I1 = (π2/6)(kBT )2. Collecting all those terms, we
have the lowest order temperature correction to the dissipated power in the left electrode

∆PL(T ) = −
π2

3h

�

T (µL)− T (µR) + eVT ′(µR)
�

(kBT )2 +O[(kBT )4] . (14)

6

https://scipost.org
https://scipost.org/SciPostPhys.12.3.105


SciPost Phys. 12, 105 (2022)

An analogous treatment of the power on the right side yields

∆PR(T ) =
2
h

∞
∑

n=0

T (n)(µL)
n!

(In+1 + eVIn)−
2
h

∞
∑

n=0

T (n)(µR)
n!

In+1 , (15)

and the lowest order correction at low temperature

∆PR(T ) =
π2

3h

�

T (µL)− T (µR) + eVT ′(µL)
�

(kBT )2 +O[(kBT )4] . (16)

It then appears that for a scatterer with constant transmission, the temperature does not
affect the dissipated power, at least in lowest order. In contrast, in a situation where the
transmission T (ε) increases with energy, the correction on the left ∆PL(T ) is negative while
∆PR(T ) increases with temperature. As a consequence, the asymmetry also increases with
temperature, consistent with the result of Ref. [17], and one can even imagine situations where
the dissipated power in the left electrode becomes negative such that a cooling of that electrode
occurs [27].

A strong temperature effect can be expected when a conductance step occurs at an energy
between µR and µL, such that T (µL)− T (µR) = 1 and T ′(µL) = T ′(µR) = 0. Then, one gets
the simple result

∆PL/R(T ) = ∓
π2

3h
(kBT )2 +O[(kBT )4] , (17)

which is independent of the bias voltage.

3 Asymmetric dissipation around a QPC

Among the usual scatterers considered in the mesoscopic regime, a QPC is particularly inter-
esting since at the conductance plateaus T ′(µ̄) = 0, which leads, according to the formalism
developed above, to important consequences on the features of the power dissipation.

3.1 Transmission of an abrupt QPC

The most prominent feature of a QPC is the observed conductance quantization at integer mul-
tiples of 2e2/h [28,29]. The robustness of such a behavior allows for different theoretical de-
scriptions that result in transmission coefficients T (ε) exhibiting, as a function of ε, extended
plateaus separated by fast ascents. Among them, there exists the adiabatic approximation
applicable to a smooth constriction [30], the exact treatment of a double-harmonic-oscillator
saddle-point potential [31], and the wavefunction matching for an abrupt constriction [32].
We adopt the latter description, considering a narrow channel of length L and width 2w con-
necting two wide regions of width 2W , with W � w [see the inset of Fig. 2(a)].

A convenient way of implementing the approach of Ref. [32] is to use the one-to-one cor-
respondence between the quantized channels within the constriction and the transmission
eigenmodes of the scatterer, defined as the eigenvectors of the NL×NL matrix t† t, and labeled
by the positive integer n [9,23]. The quantized channels within the constriction are defined by
a transverse wavevector Qn = πn/2w and a quantized transverse energy En = ħh2Q2

n/2Me (we

note Me the effective electron mass). The associated longitudinal wavevector Kn =
�

k2 −Q2
n

�1/2

is real for the open (conducting) channels with En ≤ ε, and pure imaginary for the closed
(evanescent) channels with En ≥ ε (the wavevector k is defined by ε = ħh2k2/2Me). The
transmission coefficient is T (ε) =

∑NL
n Tn(ε), where Tn(ε) is the nth transmission eigenvalue.
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Figure 2: Dissipated power as a function of the mean electrochemical potential µ̄ at
the right (PR, blue) and left (PL, red) of an abrupt constriction (sketched in the inset
of panel a), together with their difference (PA, ocher) for low bias voltages, progres-
sively departing from the linear regime [(a) and (b)]. Solid lines are for zero tem-
perature, dashed and dotted lines are results for temperatures with kBT/E1 = 0.04
and 0.08, respectively. The chosen energy scale E1 corresponds to that of the first
transverse mode in the narrow part, which for a QPC in a GaAs/AlGaAs heterostruc-
ture is given by E1 ≈ 5.6 eVnm2/(2w)2. Inset of panel b: transmission coefficient as
a function of µ̄/E1.

As remarked in Ref. [32], the channels of the wide region that are not mismatched with
the nth channel of the constriction belong to the interval ∆Qn = [Qn−1,Qn+1]. Restricting
ourselves to the previous interval, we obtain an average generalized longitudinal wavevector

Kn =
w
π

∫

∆Qn

dq
Æ

k2 − q2 . (18)

According to the positioning of k with respect to the integration interval, Kn may have real
and/or imaginary parts. The transmission eigenvalue associated with the channel n is given
by Tn(ε) = τ2

n(ε), with [9]

τn(ε) =
4|Kn|Re{Kn}
|Dn|

, (19)

and
Dn = (Kn +Kn)

2 e−iKn L − (Kn −Kn)
2 eiKn L . (20)

8

https://scipost.org
https://scipost.org/SciPostPhys.12.3.105


SciPost Phys. 12, 105 (2022)

The zero-temperature linear conductance resulting from Eq. (19) [shown in the inset of
Fig. 2(b)] provides a very good approximation to the numerical quantum results [9,32]. The
overall increase of the conductance by plateaus as a function of ε coexists with oscillations
resulting from quantum interference within the abrupt constriction. This resonant behavior is
suppressed when considering more realistic smoother constrictions, as well as by the effect of
finite temperature [33].

The previous approach can be extended in order to incorporate the effect of a finite bias
on the transmission coefficient by using the ansatz of a linear potential drop that occurs within
the QPC [23]. However, as discussed in Sec. 2, we can ignore the resulting corrections if we
restrict ourselves to relatively small bias.

3.2 Dissipated power around an abrupt QPC

In Fig. 2 we present the dissipated power at the right and left of the scatterer (PR in blue and PL
in red), together with their difference (PA in ocher) for the cases of a low and high bias voltage
[Figs. 2(a) and 2(b), respectively]. The solid lines represent the zero temperature result,
dashed and dotted lines are for increasing finite temperatures, resulting from the application of
Eq. (2) with Eqs. (3), (5), and (19), for the abrupt constriction sketched in the inset of Fig. 2(a).
To present data in the figures, we use as energy scale E1 = ħh2π2/8Mew2, which is the lowest
transverse quantized energy in the narrow part of the system. For the case of a two-dimensional
electron gas in a GaAs/AlGaAs heterostructure, this energy is E1 ≈ 5.6eVnm2/(2w)2. For a
QPC of width 2w= 40 nm one therefore has E1 ≈ 3.5 meV, and a temperature of kBT/E1 = 0.1
corresponds to T ≈ 4 K.

3.2.1 Zero-temperature behavior of the dissipation

At low bias voltage, PR and PL follow the increase of the transmission coefficient [shown in
the inset of Fig. 2(b)] as a function of the Fermi energy µ̄, as expected from the low-voltage
expansion of Eq. (7). The power dissipation asymmetry PA is considerably reduced in the
regions where the mean electrochemical potential exhibits conductance plateaus, as a conse-
quence of the approximate symmetry with respect to µ̄ of the integrand in Eq. (5). As expected
from Eq. (8), PA follows the energy-derivative of the transmission curve. Therefore, the power
dissipation on both sides is determined by the transmission of electrons through the QPC, with
each channel contributing to the dissipated power. The asymmetry in the power dissipation
PA is most pronounced close to the conductance steps, where the opening of a new channel
leads to a large energy-dependence of the transmission. An increasing bias voltage leads to a
smoothing of the previous structure, with an increase of PR and PL, and also an increase of
PA that is consistent with the low-voltage limits of Eqs. (7) and (8). The oscillations of the
transmission on the conductance plateaus [see the inset of Fig. 2(b)] are a consequence of the
abrupt shape of the QPC. Since the power dissipation asymmetry follows the energy-derivative
of the transmission, a negative dissipation asymmetry appears at mean electrochemical poten-
tial values where the transmission decreases. That those features are observed in Fig. 2 for
an abrupt QPC confirms the general validity of our low-voltage expansions in Sec. 2.2. How-
ever, such conductance oscillations and points with negative power asymmetry do not occur
in adiabatic QPC models.

The increase of PR with µ̄ and with the bias voltage V is put in evidence in Fig. 3(a), where
the dissipated power in the right lead is shown in colorscale as a function of the bias voltage
and the mean electrochemical potential. The dissipated power increases with increasing bias,
with contributions of the two conductance channels appearing at the energies expected from
the conductance steps [see the inset of Fig. 2(a)]. The asymmetry in dissipated power PA is
shown in Fig. 3(b). For the values of µ̄ corresponding to a conductance plateau Tn(ε) ' 1

9

https://scipost.org
https://scipost.org/SciPostPhys.12.3.105


SciPost Phys. 12, 105 (2022)

0 0.25 0.5 0.75 1

2

4

6

eV/E1

µ̄
/
E

1

−0.1

0

0.1

0.2

hP
A
/
2
E

21

PA

b

2

4

6

µ̄
/
E

1

0

0.25

0.5

0.75

1

hP
R
/
2
E

21

PR

a

Figure 3: Colorscale plot of the dissipated power on the right PR (panel a) and the
difference PA (panel b), as a function of the applied voltage and the mean electro-
chemical potential, at zero temperature.

and PA is close to zero, while on the conductance steps PA strongly increases with the bias
voltage. Horizontal cuts along the voltage axis in Fig. 3 confirm that the increase of PR starts
proportional to the square of the voltage as expected from Eq. (7), while PA starts proportional
to (eV )3 at low voltage as predicted from Eq. (8). At very large voltages, the results should
be taken with care since our model does not include electron-electron interactions. It cannot
be excluded that they influence the transmission and thus also the power dissipation in the
regime of strong bias voltage.

On a larger scale of electrochemical potentials, the dissipated power follows an approxi-
mate law as PR ∝ µ̄1/2. Such a behavior can be traced back to the plateau widening as we
increase the Fermi energy (since En∝ n2, the plateau extent verifies ∆En∝ n∝

p

En). The
dependence of the positions of the conductance steps En ∝ n2 translates into T ≈ n∝ µ̄1/2

and then, since according to Eq. (7), at low voltage PR/L∝ T the dissipated power increases
with the square root of µ̄. In contrast, the asymmetry of the power dissipation PA is propor-
tional to the energy-derivative of the transmission. Since the conductance steps are all of the
same height, and the steepness does not increase with energy, the asymmetry in the subsequent
steps does not increase with µ̄, such that the power difference becomes negligible as compared
to the individual values of dissipated power PR/L when the electrochemical potentials are large
and many conductance channels are open.

3.2.2 Increase of asymmetry with temperature

As expected from the lowest order terms of the low-temperature expansion of the dissipated
powers presented in Sec. 2.3, the maximum values of the asymmetry increase at finite tem-
perature (dashed and dotted lines in Fig. 2). In Fig. 4 the full temperature dependence of the
dissipated power on both sides of the QPC together with the asymmetry (ocher lines) for the
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Figure 4: Dissipated power on the right PR (blue), on the left PL (red), and the
asymmetry PA (ocher) as a function of the temperature, for a mean electrochemical
potential of µ̄/E1 = 1 situated in the first conductance step. Solid and dashed lines
are for voltages of eV/E1 = 0.2 and 0.6, respectively.

mean electrochemical potential tuned close to the first conductance step is shown. It appears
that the increase of the asymmetry continues far beyond the validity of the lowest-order term
(16) of the expansion, up to large values of the temperature with kBT much larger than eV .
The reason for this temperature-induced increase is the possibility to transmit electrons at high
energy, even above the upper (left) chemical potential. These processes remove high-energy
electrons from the left reservoir, and contribute a negative power dissipation there [27]. On
the right side of the QPC, those electrons lead to a particularly high power dissipation due to
the large amount of energy to dissipate. When the upper chemical potential is placed close to
a conductance step, these effects can be important due to the large increase of transmission
with energy, while the processes at energies below the lower (right) chemical potential, that
have an opposite effect, are reduced by much lower transmission values.

4 Estimate of the position of maximum dissipation

The previous analysis considered the asymmetry of the power dissipation between the two
sides of a QPC without providing any spatial resolution. Since preliminary studies [13] were
able to observe a hot spot along the path of the electrons after traversing the QPC, it is impor-
tant to estimate the lengthscale on which the dissipation takes place.

In the formalism described in the last sections we assumed that an electron with energy
ε traverses the constriction elastically, encountering at the right of the QPC a 2DEG with an
electrochemical potential µR. The excess energy ε−µR of this hot electron is dissipated through
inelastic scattering on the scale of the inelastic mean free path

l(ε) = v(ε)τi(ε) . (21)

In the equation above v(ε) =
p

2(ε + eV/2)/Me is the electron velocity at the right of the QPC,
under the assumption that the whole potential drop occurs in the QPC region (as sketched
in Fig. 1) and that the electron motion is ballistic because the small-angle scattering is very
weak. In Eq. (21) τi(ε) stands for the inelastic scattering time (or quasiparticle lifetime) set
by the electron-electron and electron-phonon interactions. The excess energy and the electron
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density of the 2DEG determine the predominance of one mechanism over the other, and, more
generally, whether they can be disentangled or a coupled-mode description is needed.

Sufficiently close to the Fermi energy, Landau quasiparticles have a lifetime limited by
electron-electron interactions, which scales inversely to the square of the excess energy in
three dimensions, and acquires an additional logarithmic correction for the case of the 2DEG
[34,35]. Alternatively, we can write τi(ε) = ħh/2Γ (ε), and obtain the damping rate Γ (ε) from
the imaginary part of the quasiparticle self-energy. For the latter the random phase approxima-
tion can be implemented, treating the electron-electron and electron-phonon couplings on the
same footing [36]. While such an approach needs to be numerically implemented, it has the
advantage of not being restricted to small excess energies, allowing to incorporate the effect
of the finite thickness of the 2DEG, and considering different kinds of phonons (i.e., acoustic
versus optical, bulk versus interface) [37,38]. The quasiparticles can be scattered either by the
excitation of electron-hole pairs or by the emission of a coupled plasmon-phonon mode. For
excess energies below the threshold of the latter mechanism, the damping rate scales approx-
imately as [36,37,39]

Γ (ε)
εF
= a

�

ε

εF
− 1

�2

, (22)

where the dimensionless constant a is weakly dependent on the electron density of the 2DEG.
Putting together Eqs. (21) and (22) for the hot electron arriving in the 2DEG at the right

side of the QPC, we have

l(ε) =
b(ε + eV/2)1/2

(ε −µR)2
, (23)

with b = ħhµR/a
p

2Me.
Assuming that each hot electron with energy ε releases all its excess energy precisely at a

distance l(ε) from the QPC, we define the power dissipated per unit length as

pR(r) =

∫ ∞

−∞
dε pR(ε)δ(l(ε)− r) , (24)

where pR(ε) is given in Eq. (3b), that verifies PR =
∫∞

0 dr pR(r) and therefore simply intro-
duces a change of variables in Eq. (2). We thus have

pR(r) =
pR(ε)
|l ′(ε)|

�

�

�

�

ε=l−1(r)
, (25)

where l ′ is the ε-derivative and l−1 the inverse of the function l defined in Eq. (21). We do
not aim to resolve the angular dependence of the dissipation, and thus r represents the radial
distance from the QPC.

Since l ′(ε)< 0, the position of maximum dissipation will be given by setting

dpR(r)
dr

= −p′R
�

l−1(r)
� dl−1

dr
− pR

�

l−1(r)
� d2l−1

dr2
= 0 . (26)

Given the difficulty to invert the function l(ε), it is convenient to express the condition (26)
in terms of the variable ε as

�

24(ε + eV/2)2 − 8(ε + eV/2)(ε −µR)− (ε −µR)
2
�

pR(ε)

+2(ε + eV/2)(ε −µR) [4(ε + eV/2)− (ε −µR)] p′R(ε) = 0 .

The numerical solution of this transcendental equation yields a value ε∗, and the point of
maximum dissipation r∗ = l(ε∗). While ε∗ does not depend on the parameters a and b, r∗
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Figure 5: Estimate of the distance r∗ at the right of the QPC where the maximum
power dissipation PR occurs, as a function of the bias voltage V . The distances are
given in units of new3, where ne is the electron density of the 2DEG and 2w is the
width of the QPC, while the energies are scaled with the one of the first transverse
mode of the QPC. Solid lines are for values of µ̄ in a conductance step, dashed lines
on plateaus. The green line indicates the slope of a power law r∗ ∝ V−2. The
temperature is given by kBT/E1 = 0.04.

does. For electron densities of 2× 1011 cm−2 and 1012 cm−2 the values of a are roughly equal
to 0.04 and the variation within such an interval is weak [36, 37]. Since the typical electron
densities in this kind of experiments are between 1010 and 1012 cm−2 [40], we adopt the
previous value of a, and provide in Fig. 5 the results for r∗ as a function of the bias voltage,
for various values of µ̄. The general trend is a decrease of r∗ with increasing bias, which is
readily explained since the high energy of the hot electron leads to a large dissipation energy
with a short lifetime. In addition, r∗ increases with µ̄, an effect that is related to the increased
velocity of the hot electrons. At large voltage, the voltage dependence of r∗ approaches the
power law r∗∝ V−2 indicated by the green line. For the second conductance step of a QPC
at µ̄ = 4E1 in a 2DEG with density 2 × 1011 cm−2, and a typical value V ' 4 mV of the bias
voltage, we obtain r∗ ' 2µm, in line with the order of magnitude of the experimental findings
of Ref. [13].

It is important to stress that the previous analysis is valid for bias voltages which are much
smaller than µ̄ since we assumed the form (22) of the damping rate where the excitation of
electron-hole pairs constitutes the first step towards the thermalization within the 2DEG and
which is valid for excess energies below the threshold for the emission of plasmon-phonon
modes. For a density ne = 2× 1011 cm−2, where the plasmon-phonon coupling is weak, such
a threshold happens for |V | = 12 mV, while for ne = 1012 cm−2, where the plasmon-phonon
coupling is strong, the threshold is at |V | = 10 mV [36, 37]. Once this channel is opened, a
dramatic increase of the relaxation rate is associated which is expected to lead to a strong
reduction of r∗.

The present analysis yields an estimation of the position of maximum dissipation, but does
not give any information about the extent of the hot spot. The modelization of this experimen-
tally relevant parameter would require to complement the approach by describing the detail
of the energy flow from the 2DEG to the ionic lattice.
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5 Conclusions

Motivated by spatially resolved nanothermometry measurements in the region of the current
flow through a QPC [13], we have investigated the dissipated power based on a Landauer-
Büttiker quantum transport approach. We have shown that an asymmetry between the power
dissipated on the two sides of the QPC occurs when the transmission of the QPC depends
on energy. For the generic case of a transmission that increases with energy, the dissipated
power is higher on the side of the QPC located downstream with respect to the electron flow.
The asymmetry is most pronounced close to the conductance steps of the QPC where this
energy dependence is particularly strong, while it is weak on the conductance plateaus. A
temperature expansion indicates that the asymmetry is enhanced by increasing temperature
at low temperatures.

For the example of an abrupt QPC, we have used the known result [9, 32] for the energy
dependent transmission of that model to calculate explicitely the dependence of the dissipated
power and the asymmetry on the mean electrochemical potential, the voltage, and the temper-
ature. The results confirm the general considerations of Sec. 2, whose qualitative features are
independent of the details of the QPC modeling. They indicate that when the QPC is tuned to
the first step, one can reach at finite temperature a regime where the power on the upstream
side becomes negative, such that a cooling effect occurs, consistent with the predictions of
Ref. [27].

We have estimated the distance from the QPC to the hot spot where the highest power
dissipation per unit length occurs, based on the relaxation rate of quasiparticle excitations
in a 2DEG of Refs. [36, 37]. The distance of such an expected hot spot from the QPC de-
creases strongly with the applied voltage. Using typical values for experiments, we got an
order of magnitude that is consistent with the preliminary nanothermometry measurements
of Ref. [13].

It will be highly desirable to extend our work towards a theory of the dissipated power in
quantum transport devices with full spatial resolution, with an improved understanding of the
relation between nonlocal quantum transport properties and local energy dissipation.

While we have concentrated our analysis on the experimentally relevant case of a QPC
defined in a 2DEG, the overall conclusion of an asymmetric power dissipation in cases with
a strong energy-dependence of the transmission coefficient is quite general to quantum elec-
tronic transport, and it can be applied to other setups like atomic and molecular junctions [15].
In particular, it can be useful to understand the structural fluctuations of an atomic-scale junc-
tion in a low-temperature scanning tunneling microscope [41]. The dependence of the irre-
versible changes in the properties of the junction on the current direction [42] could have as
origin the asymmetric dissipation that we have characterized in this work.
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