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Returning CP-observables to the frames they belong
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Abstract

Optimal kinematic observables are often defined in specific frames and then approxi-
mated at the reconstruction level. We show how multi-dimensional unfolding methods
allow us to reconstruct these observables in their proper rest frame and in a probabilis-
tically faithful way. We illustrate our approach with a measurement of a CP-phase in the
top Yukawa coupling. Our method makes use of key advantages of generative unfolding,
but as a constructed observable it fits into standard LHC analysis frameworks.
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1 Introduction

With the LHC continuing its success story of precision hadron collider physics, the size and com-
plexity of the datasets of the upcoming Run 3 and HL-LHC are challenging the existing analysis
methodology [1–3]. At the same time, the goal of LHC physics has moved from model-based
searches for physics beyond the Standard Model (SM) to a comprehensive analysis of all its
data, based on consistent analysis frameworks like the Standard Model effective theory [4–6].
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The first step in any global analysis based on the fundamental principles of QFT is to de-
termine the underlying symmetries, which are required to construct the effective Lagrangian.
Arguably, the most interesting symmetry in the SM is C P, linked to cosmology through the
Sakharov conditions for baryogenesis [7], with its violation potentially realized in an extended
Higgs sector [8]. In the language of effective theory, C P-violation in the Higgs coupling to vec-
tor bosons is loop-suppressed and arises at dimension six [9–13]. In contrast, C P-violation in
Higgs couplings to fermions can appear at dimension four [14], making a C P-phase in the top
Yukawa coupling the most sensitive link between baryogenesis and LHC physics [15–32].

Obviously, we do not want to leave the test of fundamental Lagrangian symmetries to
a global analysis [33, 34] with limited control over experimental and theoretical uncertain-
ties [35–39], including systematics from parton densities [40]. Instead, we should use dedi-
cated (optimal) observables to target one fundamental symmetry at a time [12,29,30,41–43].
In the Higgs-gauge sector, the optimal observable is the azimuthal angle between the two
tagging jets in weak boson fusion. For associated top–Higgs production, the azimuthal angle
between a charged lepton from one top decay and the down quark from the other plays a sim-
ilar role. Accurately extracting it faces the challenge of identifying the corresponding decay
jet. Another powerful observable probing the Higgs-top interaction is the Collins–Soper an-
gle [23,28,29,44]. Again, the challenge is to map it onto the observed final state after particle
decays, parton shower, and detector effects.

Both of these observables illustrate the common problem that an optimal or ideal kinematic
correlation is usually not defined on the reconstructed final state. So while an optimal observ-
able provides full sensitivity without the need to consider additional phase space correlations,
we pay a prize in its reconstruction.

The standard inference approach for such kinematic correlations is to approximate them at
the reconstruction level. For this approximation, we can use a directly observable correlation
at the reconstruction level or rely on some kind of algorithm. The approximation is unlikely to
be optimal. An improved approach would be to encode the observable in a learned mapping,
for instance, through neural networks. Fundamentally different and, in principle, optimal
alternatives are simulation-based inference [45,46] or the matrix element method [47–50], but
they come at a significant numerical cost and are hard to re-interpret for other measurements.

For cases where an optimal observable is defined in some kinematic frame, we propose
a simplified unfolding approach, where we unfold the reconstruction-level events to the ap-
propriate reference frame, and then construct the optimal observable for the down-stream
task. Unfolding or reconstructing events beyond the immediately available detector output is
a long-standing problem [51–54], undergoing transformative progress through modern ma-
chine learning (ML) [55–63]. One key observation is that forward and backward simulations
are completely symmetric when we interpret them as sampling from conditional probabili-
ties [64, 65]. This motivates ML-unfolding through probabilistic inverse simulations [59, 60,
62], which allows us to reconstruct observables or parameters defined at any level of our for-
ward simulations, for instance, unfolding detector effects, parton shower, particle decays [61],
all the way to measuring fundamental parameters [66]. Machine Learning provides generally
unbinned techniques and allows for a simultaneous reconstruction of the full phase-space,
hence removing the need for a prior reconstruction of any targeted observable [58]. Probabilis-
tic techniques specifically can render the unfolding algorithm valid event by event, resulting
in its viability even for low-statistic measurements [60].

This generative unfolding technique allows us to just reconstruct key observables, which
have the advantage that they can be used in the standard analysis frameworks of ATLAS and
CMS, but with a performance increase from the full set of kinematic correlations learned
through the unfolding. To guarantee stable network predictions and to be able to quanti-
tatively extract the training-induced network uncertainties, we use the Bayesian version [67]
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of the conditional normalizing flows [68, 69], for which the likelihood losses should lead to
well-calibrated results. Eventually, this kind of analysis can serve as a simple starting point for
ML-unfolding, as it can be expanded through additional observables step by step.

In this paper, we use C P-violation through a complex top Yukawa coupling to show how
ML-unfolding techniques can construct and numerically encode observables in the reference
frame where they are defined. In Sec. 2, we first describe our neural network architecture,
the physics task, and the treatment of phase space. In Sec. 3, we introduce our reference
process and discuss our results and potential generalization errors. Finally, Sec. 4 is reserved
for summary and outlook.

2 Reconstructing observables by unfolding

In this study, we propose to use statistical unfolding through inverse simulation [59, 60] to
construct kinematic observables in a specific partonic reference frame. While we are making
use of unfolding techniques in constructing a given observable, the precision, control, and
model dependence of the unfolding is not a limiting factor for our analysis. Instead, we treat
the so-defined observable like any other kinematics construction.

2.1 Generative unfolding

The forward simulation from parton to reconstruction level can be encoded as a likelihood
p(xreco|xpart), such that the transformation of probability densities can be described as the
convolution

p(xreco) =

∫

p(xreco|xpart)p(xpart) dxpart . (1)

The parton level density can be recovered by inverting this process, i.e.

p(xpart) =

∫

p(xpart|xreco)p(xreco) dxreco . (2)

In Eq. (2) the posterior p(xpart|xreco) is constrained through Bayes theorem, with a prior
p(xpart), typically chosen as the SM distribution of the target process [70–72]. This intro-
duces a model dependence, which can in principle be reduced by an iterative application of
Bayes theorem [58,62,64].

Usually the full posterior p(xpart|xreco) is intractable and the above inversion is only at-
tempted in single phase space dimensions. However, we can train generative neural networks
on paired events (xpart, xreco) to estimate the posterior.

Here we will use conditional normalizing flows, or conditional invertible neural networks
(cINNs) for this task [73], the tool of choice for inference in many fields of physics [74, 75].
While generic generative networks work by transforming samples of some simple base distri-
bution q(z) to the desired target distribution p(x), the central idea behind the INN architecture
is to construct an expressive and invertible analytical transformation fθ (x), whose parameters
θ = θ (φ)will be predicted by a neural network with parametersφ, that can instead transform
samples of the target towards an analytic base distribution during training. As a result we have
a model fφ(x) := fθ (φ)(x), that can be inverted to predict our target distribution, while still
allowing for a simple likelihood loss. Accounting for the fact that our target distribution is
conditional, by allowing for an additional argument fφ(x)→ fφ(x , c), we can write this loss
down as

LcINN = KL(p(x |c) ∥ pφ(x , c)) = −
�

log q( fφ(x , c)) + log

�

�

�

�

∂ fφ(x , c)

∂ x

�

�

�

�

�

x ,c∼p(x |c)
, (3)
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i.e. the KL-divergence between the target and generated distribution, which guarantees a
reconstructed posterior whose quantiles are well calibrated to agree with the truth statistics,
as demonstrated in Ref. [60]. Using Eq. (3) we can train a cINN that predicts the posterior
p(xpart|xreco) that is implicitly defined through the training data. Hence, cINNs provide an
efficient method of applying Bayes theorem.

Unfortunately, the loss in Eq. (3) is not tractable in general, due to the second term in
Eq. (3). However, one can restrict fφ(x , c) appropriately to allow for a more or less efficient
computation of the Jacobian [73]. In this paper we opt for rational quadratic spline coupling
blocks [76], one of the more efficient but still expressive options.

It is worth noting that we can choose the target phase space of the cINN flexibly, just
inverting detector effects [60,62], but also jet radiation [60], particle decays [61], or sampling
right into model parameter space using setups like BayesFlow [66].

2.2 Periodic splines

As introduced above, the main part of our cINN is built from coupling layers, specifically ratio-
nal quadratic spline blocks [76], each followed by a random permutation. As we will discuss
in Sec. 2.3, some phase space directions are periodic and we observed that typical coupling
transformations like splines lead to a poor reconstruction of the respective distributions in the
boundary regions. To understand this problem in detail, let us consider a spline transformation

gθ : [−L, L]→ [−L, L] , (4)

with parameters θ . This transformation is given by K different monotonic rational quadrat-
ics, parameterized by K + 1 knot points (xk, yk) and K + 1 derivatives. The boundaries are
(x0, y0) = (−L,−L) and (xK , yK) = (L, L).

For periodic inputs the conditions g(x0) = y0 = −L and g(xK) = yK = L are unnecessarily
restrictive and do not allow the network to map a distribution onto or past the boundaries, to

x2

x3

x4

x5x6

x1

y5
y4

y3

y6

y1 y2

Figure 1: Visualization of a modified coupling transformation for periodic inputs.
This transformation maps K points x i to K points yi on a circle, while we use rational
quadratics to interpolate between two points. The modifications ensure that the x i
and yi can be arbitrarily skewed in relation to one another, and that the derivative
at x1 is consistent with both adjacent rational quadratics.
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represent points on a circle. In addition, we want g ′(x0) = g ′(xK) for periodic inputs, which
is not necessarily true [77]. The first issue can be fixed by replacing gθ with

g̃θ (x) = gθ (x) + g0 + 2Lkx , (5)

with an integer kx chosen such that g̃(x) always lies within [−L, L], and a new parameter g0
added to θ . To solve the second issue, we simply remove one of the derivative parameters
from θ and set g̃ ′

θ
(xK) = g̃ ′

θ
(x0). The resulting transformation g̃θ is visualized in Fig. 1.

With these modifications, the number of parameters encoding the transformation does
not change. This means that we can use the same sub-network to determine θ for, both,
periodic and non-periodic inputs. In practice, we split the input vector to the transformation
into periodic and non-periodic inputs and apply gθ and g̃θ separately to each part. This also
implies that we have to keep track of the permutations between coupling blocks, to be able
to determine the type (periodic or non-periodic) of each input throughout the network. As a
last detail, we factorize the base distribution q(z) (compare Eq. (3)) into a Gaussian part for
non-periodic and a uniform part for periodic dimensions. The latter is a more natural choice
for a bounded feature like an azimuthal angle. Effectively, this amounts to a factor of one
for each uniform dimension, ignoring constant terms to the loss. Naturally, we still have to
consider the Jacobian for all dimensions.

Bayesian neural networks allow us to efficiently control the training stability and estimate
training-related uncertainties. They extend standard architectures for regression, classifica-
tion, or generative networks to distributions for each network weight, providing a key tool for
explainable AI for instance in fundamental physics applications. The uncertainty on the output
can then be extracted through sampling [67,78–81]. For generative networks, the uncertainty
can be defined for the underlying density estimation [3, 50, 68, 69], for which the network
learns an uncertainty map over the target phase space. The critical aspect of Bayesian net-
works is how to make them numerically viable and still retain all their promising features. We
use a variational approximation for the training, combined with independent Gaussians for
each network weight. Such Bayesian networks include an optimal regularization, so they can
outperform their deterministic counterparts with limited extra numerical effort. As always, we
emphasize that the underlying approximations do not have to limit the expressivity of the net-
works when it comes to the sampled uncertainties. Moreover, we can treat the formal bias in
the Gaussian widths as a hyperparameter, which needs to be adjusted and should be checked
for stability.

We use the standard Bayesian version of the cINN, as introduced in Ref. [69], but with
periodic splines. The network is implemented in PYTORCH [82]. In addition, we use the
ADAM [83] optimizer with a constant learning rate. The hyper-parameters employed in our
study are provided in Tab. 1.

2.3 Phase space parametrization

For full high dimensional unfolding, as considered here, the simplest way of encoding LHC
events at the parton-level is through the components of the final-state 4-momenta. However,
it was observed that intermediate particle mass-peaks are poorly reconstructed in this param-
eterization. A problem which was already encountered in Ref. [84]. One way to improve
the reconstruction quality of these peaks is to add a maximum mean discrepancy (MMD) be-
tween a given set of generated and truth distributions in the loss function [84, 85]. As the
name suggests, MMD is a measure for the discrepancy between two distributions. It is rea-
sonably efficient to compute from samples only, although it admits a quadratic scaling with
the batch size, making it a potentially useful tool for generative network training. The disad-
vantage is that the additional loss term complicates the training and consequently limits the
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Table 1: Setup and hyper-parameters of the Unfolding-cINN.

Parameter Value

Block type periodic rational quadratic spline blocks
Number of bins 10
Block Period 2π
Block Domain (non-Periodic) [−5.0,5.0]→ [−5.0, 5.0]

Number of Blocks 16
Layers per Block 5
Units per Layer 256
Weight Prior Type Gaussian
Weight Prior log(σ2) 1.0

Number of Epochs (Bayesian) 100 (200)
Batch Size 1024
Optimizer ADAM

Learning Rate 2.0× 10−4

Total number of training events ∼1.2M
Training/Testing split 80%/20%

precision of the network. For our INN architecture, the computation of an MMD loss requires
samples generated from the latent distribution, making the training twice as computationally
expensive, while the usual INN loss works on latent-space samples. MMD additionally adds
a sizable amount of hyperparameters to the training, making it significantly more difficult to
optimize. In this paper we use, instead of the MMD, a different phase-space parameterization
for improving the reconstruction quality of intermediate particle mass-peaks.

In our case, where the dominant signal and background processes share intermediate mass
peaks, we can learn these features directly, through an appropriate phase space parametriza-
tion. For top decays with 9 degrees of freedom in the final state, a natural parametrization
starts with the corresponding top 4-momentum, and then adds the invariant W -mass and a
set of less sensitive angular observables,

¦

mt , pT,t ,ηt ,φt , mW ,ηt
W ,φ t

W ,ηW
ℓ,u,φW

ℓ,u

©

. (6)

Here mt(W ) indicates the reconstructed invariant mass of the corresponding resonance. The
superscripts t and W indicate the rest frame where the observable is defined, otherwise we
use the laboratory frame. The indices ℓ and u indicate the charged lepton and the up-type
quark for leptonic or hadronic W -decays.

A network trained on this parametrization will reproduce the invariant top and W -mass
distributions faithfully, but with drawbacks in the correlations of the hadronic W -decay. To
extract C P-information, we also want to give the network access to the most important C P-
observables, which we will discuss in detail in Sec. 3.1. This means we will include the Collins-
Soper angle θCS [23,28,29,44] and the angle between the charged lepton and the down-quark
∆φℓd . One such parametrization for the entire t t̄ system with 18 degrees of freedom is
¦

p⃗t t̄ , mtℓ , |p⃗CS
tℓ
|,θCS

tℓ
,φCS

tℓ
, mth

, sign(∆φ t t̄
ℓν)mWℓ , |p⃗t t̄

ℓ |,θ t t̄
ℓ ,φ t t̄

ℓ , |p⃗t t̄
ν |,

sign(∆φ t t̄
du)mWh

, |p⃗t t̄
d |,θ t t̄

d ,∆φ t t̄
ℓd , |p⃗t t̄

u |
©

. (7)

The superscripts CS and t t̄ indicate the Collins-Soper frame of the t t̄-system and the t t̄ rest
frame; the latter rotated such that p⃗t t̄

tℓ
points in the direction of the positive z-axis. Also, tℓ

and th denote the leptonically and hadronically decaying tops, while u and d denote the up-
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and down-quarks from the W -decay. Using sign(∆φ t t̄
AB)mW as a phase space direction makes

it harder for the network to generate the W -peaks, but solves the problem of quadratic phase
space constraints. As mentioned in Sec. 2.2, we can see that one typically encounters periodic
parameters in a parameterization like this, specifically φCS

tℓ
, φ t t̄
ℓ

and ∆φ t t̄
ℓd in this case.

We emphasize that the combination of generative unfolding with the phase space para-
metrization of Eq. (7) is expected to introduce a bias in the unfolding. However, for our appli-
cation, we can ignore this bias given our choice of signal channel and our choice of target ob-
servable. Moreover, a potential bias will render the network-defined observable sub-optimal,
but does not affect its evaluation in a standard analysis.

3 CP-phase from Higgs-top production

The example we choose to illustrate unfolding as a way to define dedicated observables is
associated Higgs and top quark pair production

pp→ t t̄h+ jets→ (bud̄) (b̄ℓ−ν̄) (γγ) + jets, (8)

plus the charge-conjugated process. C P-violating BSM effects modifying the top Yukawa cou-
pling can be parametrized through the Lagrangian [86]

L ⊃ −mt

v
κt t̄(cosα+ iγ5 sinα)th , (9)

where α is the C P-violating phase, κt the absolute value of the top Yukawa coupling, and
v = 246 GeV the Higgs VEV. The SM-limit is κt = 1 and α = 0. Deviations from the SM
will affect Higgs production and the decay. While changes in the scalar Higgs decay will only
impact the total rate, we focus on kinematic effects in the production.

In this paper, we predominantly focus on the {κt ,α} parametrization in Eq. (9), which can
be linked to the standard SMEFT framework used for general LHC analyses at mass dimension
six. In this case, we introduce two Wilson coefficients to modify the top Yukawa [87,88]

L ⊃ ft

Λ2
Ot +

f̃t

Λ2
Õt

≡
�

φ†φ − v2

2

��

ft

Λ2

�

q̄L tRφ̃ + φ̃
† t̄RqL

�

+ i
f̃t

Λ2

�

q̄L tRφ̃ − φ̃† t̄RqL

�

�

, (10)

where φ is the Higgs doublet, φ̃ = iσ2φ
∗, and qL the heavy quark doublet (tL , bL). The

parameters κt and α in Eq. (9) can be computed as

κ2
t =

�

−1+
v3 ftp
2mtΛ2

�2

+

�

v3 f̃tp
2mtΛ2

�2

, and tanα=
f̃t

ft −
p

2mtΛ
2

v3

. (11)

We emphasize that the SMEFT description implicitly assumes that new physics enters through
higher-dimensional operators. In contrast, a C P-phase of the top Yukawa can already arise as a
dimension-4 modification of the SM-Lagrangian, reflected by the scale combination v3/(mtΛ

2)
appearing above.

3.1 CP-observables

There are, fundamentally, two ways of testing the C P-structure of the Higgs Yukawa coupling
introduced in Eq. (9): we can measure the angle α and conclude from a significant devia-
tion α ̸= 0 that C P is violated in the top Yukawa coupling, ideally using simulation-based
inference [29,30,46,89] or the matrix element method [50]. Alternatively, we can define an
optimal observable for C P-violation and test the actual symmetry [12,23,42].
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Classical reconstruction

To search for C P-violation, spin correlations between the top and anti-top quarks in t t̄h pro-
duction are ideal, because the short top-lifetime allows for a transfer of the top-polarization to
the decay products prior to hadronization or spin decorrelation [90]. The angular correlation
between the top-spin and the momenta of the top decay products is given by

1
Γt

dΓ
d cosξi

=
1
2
(1+ βi Pt cosξi) , (12)

where ξi is the angle between the top spin and the i-th particle in the top quark rest frame,
Pt ∈ [0, 1] is the polarization of the top quark, and βi is the spin analyzing power of the i-th
decay product. Due to the left-handed nature of the weak interaction, the charged lepton and
d-quark display the largest spin analyzing power,

βℓ+ = βd̄ = 1 (to leading order). (13)

While one cannot tag a d-jet, it is possible to find efficient proxies. A practical solution is
to select the softer of the two light-flavor jets in the top rest frame. This choice gives a spin
analyzing power for this jet as 50% of that of the charged lepton [29, 91, 92]. Assuming that
the softer W -decay jet in the top rest frame comes from the d-quark, we can now construct
appropriate angular correlations to measure.

Linear CP-observables

The basis of optimal observables testing a symmetry are U-even or U-odd observables, defined
through their transformation properties on the incoming and outgoing states,

O (U |i〉 → U | f 〉) = ±O (|i〉 → | f 〉) , (14)

where in our case U = C P. Furthermore, a genuine U-odd observable is defined as an observ-
able which vanishes in a U-symmetric theory




O
�

L=ULU−1 = 0 . (15)

The two definitions are related in that any U-odd observable is also a genuine U-odd observable
under the condition that the initial state and the phase space are U-symmetric [12,93], so the
genuine U-odd property is weaker.

Unfortunately, we cannot infer a C P-invariant theory from 〈O〉 of a C P-odd observable
alone. While a 〈O〉 ≠ 0 always points to a C P-violating theory, the result 〈O〉 = 0 can appear
in C P-symmetric and in C P-violating theories. To further analyze this case, we can construct
a C P-odd observable that is also odd under the so-called naive time reversal T̂ . Now, the
expectation value of this observable is completely tied to the C P-symmetry of the underlying
theory [12].

C P-odd observables can be constructed either as T̂ -even scalar products of two 4-momenta
or as a T̂ -odd contraction of four independent 4-momenta through the Levi-Civita tensor. For
the t t̄-system of t t̄h production we can use two top momenta and decay momenta

�

pbl
, pl , pν, pbh

, pu, pd

	

. (16)

It is straightforward to construct the C-even, P-odd, and T̂ -odd observable

O = ϵµνσρpµth
pνtℓp

ρ
A pσB , (17)
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Figure 2: Fisher information I for the linear CP-observables sin∆φ t t̄
AB (blue) and OAB

(red), probing the sensitivity to C P-violating phase α in t t̄h production.

with suitable top decay momenta pA,B. We can use the C P-invariance of the initial state and
the phase space for t t̄h production to show that its expectation value in Eq. (17) vanishes in
the SM.

In the t t̄ center of mass frame, we can turn Eq. (17) into a triple product, a standard form
for C P-odd observables,

O = 2 Eth
p⃗tℓ · (p⃗A× p⃗B) . (18)

However, it depends on the top 4-momentum, which are hard to determine accurately. It
can be modified by introducing the azimuthal angle difference ∆φ t t̄

AB = φ
t t̄
A − φ t t̄

B in the t t̄
frame [23,29],

∆φ t t̄
AB = sgn[p⃗tℓ · (p⃗A× p⃗B)]arccos

�

p⃗tℓ × p⃗A

|p⃗tℓ × p⃗A|
· p⃗tℓ × p⃗B

|p⃗tℓ × p⃗B|

�

, (19)

to give us

O = 2pz
t Et pT, A pT, B sin∆φ t t̄

AB , (20)

where we choose ptℓ = {Et , 0, 0, pz
t } and pth

= {Et , 0, 0,−pz
t }. By construction, O and ∆φ t t̄

AB
are sensitive to the linear interference terms in the scattering cross section, and therefore
sensitive to the sign of the C P-phase.

These linear C P-observables can be constructed for various {A, B} pairs, and their C P-
sensitivity dependents on the spin-analyzing power of the particles A and B. We compute
the Fisher information metric I to rank their C P-sensitivity, using MadMiner [29, 46]. The
α-dependent component of I is defined as

I = E
�

∂ log p(x |κt ,α)
∂ α

∂ log p(x |κt ,α)
∂ α

�

, (21)

where p(x |κt ,α) represents the likelihood of a phase space configuration x given the theory
parameters κt and α. E denotes the expectation value at the SM point, (κt ,α)SM = (1,0).
In Fig. 2, we show the Fisher information at parton-level associated with the linear C P-
observables OAB in red and the Fisher information for sin∆φ t t̄

AB in blue.
First, we see that for all combinations (A, B) the Fisher information in OAB is slightly larger

than the Fisher information in sin∆φ t t̄
AB, an effect of the momentum-dependent prefactor in
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OAB. Among the various combinations (A, B), the combination of the lepton and the down-
type quark is the most sensitive. This corresponds to the maximal spin analyzing power for
this pair. Next comes the combination where either the charged lepton or the down quark is
replaced by the b-quark or the W -boson. In this case, the Fisher information is suppressed by
two powers of

βb = βW ∼ 0.4 . (22)

The correlation between a pair of b-quarks or W -bosons is further suppressed by another
factor β2

b,W .

Non-linear observables and Collins-Soper angle

For a given realization of C P-violation in an SM-like interaction vertex, the C P-observable
defined in the previous section is not guaranteed to be the most powerful observable [10].
This is obvious for dimension-6 operators, where the symmetry structure is often combined
with a momentum dependence of the interaction [12], and the two aspects can, in principle,
be tested independently. Comparing the two handles, C P-odd observables are only sensitive
to the interference between the SM-contribution and the C P-violating matrix element, while
observables testing the momentum structure of the interaction vertex can be dominated by
the new-physics-squared contribution. For large C P-phases α, the more promising analysis
strategy will use a general test of the structure of the top-Higgs coupling. This motivates using a
combination of dedicated C P-observables with general interaction probes as an optimal search
strategy.

Several observables have been evaluated as probes of the C P-phase α in Eq. (9) using t t̄h
production [23,28,29]. They include the pseudorapidity difference between the two tops and
the azimuthal angle between the two tops, the Higgs transverse momentum [86, 94], or the
invariant mass of the top and anti-top pair,

�

∆ηt t̄ ,∆φt t̄ , pT,h, mt t̄

	

. (23)

These standard observables can be supplemented with the projection angle [86,94,95]

b4 =
pz,t

|p⃗t |
· pz, t̄

|p⃗ t̄ |
. (24)

Finally, we can use the Collins-Soper angle θCS [44], the angle between the top quark and
the bisector of the incoming hadrons in the t t̄ center of mass frame. The original motivation
for the Collins-Soper angle was to define an observable for the Drell-Yan process pp → ℓ+ℓ−
that corresponds to the scattering angle. Factorization arguments suggest the di-lepton rest
frame, to minimize ISR-effects and then study the angular correlations between the incoming
quarks and the outgoing leptons. In this frame the 3-momenta of the quarks and leptons each
define a plane, and in turn an azimuthal angle and a polar angle between the two planes.

Without ISR the z-axis of the so-defined CS-frame is trivially given by the parton and
hadron directions. Including ISR, we instead define this z-axis as halving the angle between
one of the hadrons and the reverse direction of the other hadron. The Collins-Soper angle
can be used to measure the polarization of the intermediate gauge boson, the weak mixing
angle [96], or the (Lorentz) structure of the interaction vertices. The Collins-Soper angle can
also be used to probe the structure of the Higgs-photon coupling [97, 98] and to boost new
physics searches in h∗→ Z Z , Zh, and t t̄ Z channels [99–102]. Finally, it can be generalized to
t t̄ production, where it is constructed for the top momentum in the t t̄ rest frame [23,103,104].
While the Collins-Soper angle has no specific sensitivity to C P-violation, we view it as the Swiss
Army knife of coupling tests.
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Figure 3: Distributions for the CS-angle θCS, ∆ηtℓ th
, b4, and ∆φtℓ th

, all at parton-
level for semileptonic t t̄h production. The distributions are shown for SM (green),
α= π/4 (blue) and α= π/2 (red).

All above-mentioned kinematic observables are sensitive to the new-physics-squared terms,
proportional to sin2α or cos2α, in the t t̄h rate, with no sensitivity to the sign of the CP-phase.
From Ref. [29], we know the relative sensitivity of these observables to probe the Higgs-top
C P-structure through a modified Fisher information metric, accounting for non-linear effects.
The top-five observables with the highest Fisher information for α are (symbolically written)

∆ηt t̄ > θCS > b4 >∆φt t̄ > pT,h . (25)

We show the parton-level distributions for the four most sensitive observables in the semilep-
tonic t t̄h channel for the SM value α = 0 and α = π/4,π/2 at the LHC with

p
s = 14 TeV in

Fig. 3. Different values of α lead to distinctly different profiles in the distributions.
As alluded to above, the technical challenge and a limitation to the optimality of a given

analysis is to construct the different observables in their respective kinematic frames. Con-
sidering their strong sensitivity on α, we include the leading observables in the phase space
parametrization given in Eq. (7) to target this problem directly.

3.2 Unfolding-based analysis

The standard challenge for every LHC analysis is to extract a small signal from a large (con-
tinuum) background. For our simple study, we will sketch how we can avoid modeling this
step, in principle. A more thorough investigation of how the inclusion of background affects
our method, will be left to future work.

The generative unfolding trained on t t̄h events gives us the probability p(xpart|xreco, S) that
a parton-level signal event xpart, corresponds to an assumed signal event xreco at reconstruction
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level. What we are ultimately interested in, however, is a model parameter α, which could
be a mass, a C P-phase, or any other continuous theory parameter, which affects our signal
distribution. Since we do not know if a particular reco-level event xreco is signal or background,
we only care about the full probability p(α|xreco) of our model parameter, given some reco-
level event xreco which is either signal or background and some prior p(α). Since α does not
change the background, this probability can be split into the distribution p(α|xpart), where
xpart is a parton-level signal event, and the probability p(xpart|xreco) of xpart given xreco:

p(α|xreco) =

∫

p(α|xpart)p(xpart|xreco)dx . (26)

The challenge is to compute p(xpart|xreco) from our unfolding result p(xpart|xreco, S). Using the
definition of conditional probabilities we can write

p(xpart|xreco) =
∑

T∈{S,B}
p(xpart|xreco, T )p(T |xreco)

= p(xpart|xreco, S)p(S|xreco) + p(xpart|xreco, B)(1− p(S|xreco)) , (27)

where the probabilities of xreco being a signal or background event, p(T |xreco), can be encoded
in a trained classifier. Let us consider p(xpart|xreco, B) for a moment. This is defined as the
probability density of any parton-level signal event xpart occuring under the condition that a
background event xreco was measured on reco-level. However, the detector-level measurement
of a background event gives us no information about the probability of a signal event on parton-
level. For this reason, we can drop xreco and write p(xpart|xreco, B) = p(xpart), where p(xpart)
is only constrained through prior knowledge. This includes our model assumptions as well as
phase-space constraints due to a finite center-of-mass energy. We can now write

p(xpart|xreco) = p(xpart|xreco, S)p(S|xreco) + p(xpart)(1− p(S|xreco)) . (28)

What Eq. (28) shows, is that we can limit our unfolding model to extracting p(xpart|xreco, S)
and still include background events into our analysis later, without changing our model.

As given in Eq. (8), we study pp → th t̄ℓh production with h → γγ at the HL-LHC. The
dominant background is continuum t t̄γγ production, subdominant contributions arise from
the process W bb̄(h → γγ). We use MadGraph5_aMC@NLO [105] with NNPDF2.3QED [106]
to generate signal events at leading order with

p
s = 14 TeV, considering the default dynamic

factorization and renormalization scales. The process to determine the factorization scale
µF involves kT clustering the events into a 2 → 2 topology. µF is then defined based on the
transverse mass of the clustered system. The renormalization scale µR is set equal to µF . Signal
events are simulated without kinematic cuts using the HC_NLO_X0 UFO model [107, 108].
Parton showering and hadronization effects are simulated using Pythia 8 [109]. The detector
response is simulated with Delphes 3 [110], using the default ATLAS HL-LHC card [111,112].

Next, we select events containing exactly two photons, two b-tagged jets, one lepton, and
at least two light-flavored jets. The individual particles in the final state are required to satisfy
the acceptance cuts

pT,b > 25 GeV , pT, j > 25 GeV , pT,ℓ > 15 GeV , pT,γ > 15 GeV ,

|ηb|< 4 , |η j|< 5 , |ηℓ|< 4 , |ηγ|< 4 . (29)

At the parton-level, the signal phase space involves eight final state particles; following Sec. 2.3
it requires 22 parameters if we are assuming the Higgs is fully and uniquely reconstructed. The
training dataset involves an event-wise pairing of parton and detector level events with up to
six light-flavored jets, satisfying the selection cuts in Eq. (29). The event at reconstruction
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level requires a variable number of additional degrees of freedom for jet radiation, which
we deal with by zero-padding the missing jets in the input vector to the network, similar to
Ref. [60].1 At the same time the number of degrees of freedom is reduced by the neutrino. An
additional challenge is the combinatorics of the b-jets and light-flavor jets. While the event at
the reconstruction level requires additional degrees of freedom for jet radiation, the number
of degrees of freedom is reduced by the neutrino. An additional challenge is the combinatorics
of the b-jets and light-flavor jets.

3.3 Results

Jet combinatorics The first results from unfolding t t̄h SM-events are presented in Fig. 4. We
train the unfolding network on SM-events and also apply it to SM-events. First, we examine
the robustness of the network to unfold a variable number of jets to the parton-level. For
our lepton-hadron reference process in Eq. (8) two light-flavor jets come from the hadronic
top decay, while additional jets arise from QCD jet radiation. The unfolding network has to
reconstruct the two hard jets at the parton level from a variable number of jets at the detector
level [60]. Note that, here and in the following, we sample only one parton-level prediction
of the cINN for each sampled reco-event in our plots.

To evaluate the unfolding performance, we examine four invariant masses: mtℓ , mth
, mhth

,
and mtℓ th

. We train one network on SM events without ISR and one network on events with
up to six light-flavored jets. In the latter case, we ensure that the input vector to the network
has a fixed length by zero-padding the missing jets. We note that our approach to tackle a
variable number of jets differs from that in Ref. [60] where the numbers of jets is incorporated
as an observable in the training dataset. The corresponding cINN-generated histograms are
shown as solid lines in Fig. 4 and are, here and in the following figures, computed by sampling
one parton-level event from the network for each reco-level event. The parton-level truth is
displayed as dashed lines. We find that unfolded distributions generated by both networks
are in good agreement with the parton-level truth in the bulk of the phase space. Despite the
added combinatorial ambiguity, the performance of both networks is largely comparable. We
also show the uncertainties from the Bayesian setup, represented as 1σ error bands. They test
the stability of the unfolding network similar to an ensemble of networks. It is important to
observe that the truth distributions remain within these error bands.

Reconstructing dedicated observables For Fig. 5 we train the unfolding network on SM
events with up to six light-flavor jets. We compare cINN-generated events at the parton-level
and in the appropriate rest frame with events from a classical reconstruction for four partic-
ularly interesting observables from Sec. 3.1: θCS, ∆ηt t̄ , b4, and ∆φt t̄ . For comparison, we
display the parton-level truth as dashed lines. In the ratio we observe that the generated dis-
tributions agree with the truth within a few percent. Slightly larger deviations in the tails are
due to limited training statistics.

The conventional approach to compute kinematic correlations in the semileptonic t t̄ sys-
tem relies on a complex reconstruction algorithm, with a significant loss of information due to
missing correlations [29]. We show the reconstructed distributions from the classical recon-
struction strategy developed in Ref. [29] as dotted lines. Comparing these distributions to the
cINN-unfolded version, we see that at least for a network trained and tested on SM events, the
improvement from generative unfolding is striking.

Model dependence After observing the significant improvement through our new method
for SM events, we need to test how model-dependent the network training is. In the upper

1We also do not use the total number of jets as an additional input to the network, in contrast to Ref. [60].
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panels of Fig. 6, we reconstruct the usual set of key observables for SM events, but with three
different networks, trained on events generated with the C P-angles α = −π/4, 0,π/4. We
adopt the BSM values α = ±π/4 here, as these choices closely align with the current experi-
mental limits [113, 114]. From Fig. 6 we expect, for instance, the network trained on events
with α = π/4 to be biased towards a broader θCS distribution, a wider rapidity difference
∆ηtℓ,th

, and a flatter b4 distribution. In the different panels we see a slight bias, especially in
the secondary panels. But the bias remains at the order of 10%, at most 20%, much below
the change in the corresponding distributions from varying α. On the other hand, this bias
is significantly larger than the uncertainty band, which suggests that there might be potential
for reducing the model dependence through the iterative method proposed in Ref. [62]. The
corresponding study is beyond the scope of this paper, because it balances a reduced bias of
the unfolding with less statistics, an aspect which we do not include in this proof-of-principle
study.

In the lower panels of Fig. 6 we test the model dependence the other way around, by
unfolding data for different α = −π/4,0,π/4 using a network trained on SM events. The
figure of merit are the ratios of cINN-unfolded and respective truth distributions, shown in
the secondary panels. This situation is closer to the reality of a measurement, where we infer
α by comparing the distribution extracted from data to different simulated hypotheses. As
before, we see a slight bias, now towards the SM structure of a more narrow θCS distribution,
a narrow rapidity difference ∆ηtℓ,th

, and a steeper b4 distribution. Also, as before, the effect
of the bias is much smaller than the effect of α on the data, leaving us optimistic that we can
use the cINN-unfolded distribution to measure α.
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Figure 5: Reconstructing dedicated observables — cINN-generated distributions and
distributions based on classical reconstruction [29] for θCS,∆ηtℓ th

, b4 and∆φtℓ th
for

SM events. The secondary panels show the bin-wise agreement between the cINN-
generated distributions and the parton-level truth.

Naturally, any remaining effects of such a bias would lead to a systematic uncertainty on
α, which, as mentioned above, is likely to be reducible by the iterative method proposed in
Ref. [62]. Luckily the bias here will always be towards α = 0, such that deviations from the
SM will always infer new physics. Conversely, checking which value of α in our data leads
to new physics in simulation, allows us to place a bound on α for data. Any model bias only
affects how conservative this bound will be.

Sensitivity Finally, in Fig. 7, we apply the generative unfolding to SM and α = π/4 events.
The unfolding network is trained on SM events. As a baseline comparison, we also show the
same two curves for classical reconstruction of θCS, following Ref. [29] as dotted lines in the
left panel of Fig. 7.

Here we can see that both approaches suffer from systematic uncertainties. In the classical
approach these uncertainties predominantly originate in simplifying assumptions about recon-
structed objects. The cINN approach gathers uncertainties mostly from model dependence and
additionally from imperfections in the neural network architecture, training and loss function.
Note that missing information on reco-level is also a source of systematic uncertainty for both
approaches. As mentioned earlier, and as can be seen in the left panel of Fig. 7, generative
unfolding leads to a major improvement over classical reconstruction in terms of systematic
bias.

If this improvement actually leads to an improved sensitivity, it is encoded in the difference
between the two unfolded kinematic distributions, shown in solid lines. To quantify this, we
calculate the reduced χ2 values for θCS, ∆ηtℓ th

, b4, and ∆Φtℓ th
between the SM and α= π/4
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Figure 6: Model dependence — cINN-generated distributions for θCS, ∆ηtℓ th
, b4,

and∆φtℓ th
. Upper two rows: unfolding of SM events using three different networks,

trained on data with α = −π/4, 0,π/4. We show the cINN generated, truth and
parton-level reference distributions which were used to train the network in the BSM
cases. Lower two rows: unfolding of events with α = −π/4,0,π/4, with a network
trained on SM events.
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Figure 7: Sensitivity — Left: cINN-generated distributions for θCS from unfolding
events with two α values. These generated distributions are compared to the dis-
tributions obtained from classical reconstruction methods, as described in Ref. [29],
and the respective truth. Right: To quantify the sensitivity of the cINN, as shown
here for θCS, we compute the reduced χ2-value between the distributions (∼120k
events and 64 bins) for both α values, using the Poisson errors of the bin counts.
We do this for the cINN-generated (red), classically reconstructed (green), and truth
distributions (blue) of θCS, ∆ηtℓ th

, b4, and ∆φtℓ th
. In the bottom panel, we also

show the ratio of the reduced χ2-values of the cINN and the classical reconstruction
to the truth. Statistical uncertainties on cINN-generated values are obtained from
the Bayesian setup.

hypotheses, using the Poisson errors of the bin counts. The reduced χ2 values are computed
with ∼120k events and 64 bins, for three scenarios: parton-level truth (blue), classical recon-
struction from Ref. [29] (green), and the cINN-based generative model trained on SM events
(red). A higher χ2 value indicates a greater sensitivity to new physics.

The results show that the unfolding setup leads to an enhancement in sensitivity compared
to the classical reconstruction strategy. This indicates that the generative unfolding approach is
effective in extracting more information from the kinematic distributions, thereby improving
the analysis’ capability to detect and explore new physics phenomena. We further observe
that the network is slightly more consistent in reproducing the sensitivity relations of the true
observable distributions than the classical reconstruction. The latter performs well on some
observables, but quite bad for others. Especially surprising is the classical sensitivity on θCS,
given that the reconstruction here is far from the actual CS-angle.

4 Outlook

Unfolding is one of the most exciting development of analysis preservation and publication at
the LHC. Modern machine learning makes it possible to unfold high-dimensional distributions,
covering all correlations without binning. Generative unfolding defines this unfolding in a
statistically consistent manner. However, using unfolded data is a challenge for the ATLAS
and CMS analysis chains, especially in controlling and estimating uncertainties.

We investigated a simpler application of the unfolding technique, the extraction of a kine-
matic observable in a specific partonic reference frame. It solves the dilemma that on the
one hand an optimal observable requires no complex correlations, but on the other hand such
an observable is, typically, hard to reconstruct. In this case the generated kinematic distribu-
tion can be used like any other observable; the unfolding network is nothing but a kinematic
reconstruction algorithm.
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The perfect examples for a challenging kinematic correlation are the Collins-Soper angle or
the optimal C P-observables in t t̄h production. They allow us to measure a C P-phase in the top
Yukawa coupling, a cosmologically relevant parameter entering an LHC signature at dimen-
sion four and at leading order. We have shown that unfolding allows us to extract the leading
observables for such a C P-phase α, with the help of an appropriate phase space parametriza-
tion. While such a parametrization might shape the unfolded kinematic distribution, this effect
can be controlled through calibration.

First, we have shown that the cINN-unfolding can solve the combinatorics of W -decay jets
vs QCD jet radiation. Second, the unfolded distributions of SM events, with a network trained
on SM events, show excellent agreement with the parton-level truth. Potential differences are
covered by the uncertainty estimate from the Bayesian network. Third, we have tested the
model dependence in two different ways — unfolding SM event using networks trained on
events with different amounts of C P-violation and unfolding events with C P-violation using
a network trained on SM events. For the former, we have found that there exists a small but
significant model dependence, which could be potentially reduced through Bayesian iterative
improvement, though this would require a further detailed analysis beyond the scope of the
current paper. For the latter, the unfolded distributions do not perfectly reproduce the respec-
tive truth, but the bias is much smaller than the kinematic effect of the C P-angle.

All these tests have motivated a comparison of the reach of the HL-LHC for the C P-angle
α, based on classical reconstruction methods and on cINN-unfolded distributions. The gener-
ative unfolding approach effectively extracts more information from kinematic distributions,
enhancing sensitivity to new physics phenomena. This highlights the importance of advanced
machine learning techniques, such as cINNs, for the HL-LHC.

While this study is clearly not the last word on this analysis technique, we consider the
outcome promising enough for an experimental study, with a proper treatment of statistical
limitations, continuum backgrounds, calibration, and iterative improvements of the unfolding
network.

Acknowledgments

Funding information RKB and DG thank the U.S. Department of Energy for financial sup-
port, under grant number DE-SC0016013. Some computing for this project was performed
at the High Performance Computing Center at Oklahoma State University, supported in part
through the National Science Foundation grant OAC-1531128. TH is funded by the Carl-Zeiss-
Stiftung through the project Model-Based AI: Physical Models and Deep Learning for Imaging
and Cancer Treatment. This research is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant 396021762 – TRR 257: Particle Physics Phe-
nomenology after the Higgs Discovery and through Germany’s Excellence Strategy EXC 2181/1
– 390900948 (the Heidelberg STRUCTURES Excellence Cluster).

References

[1] J. M. Campbell et al., Event generators for high-energy physics experiments, SciPost Phys.
16, 130 (2024), doi:10.21468/SciPostPhys.16.5.130.

[2] A. Butter et al., Machine learning and LHC event generation, SciPost Phys. 14, 079
(2023), doi:10.21468/SciPostPhys.14.4.079.

18

https://scipost.org
https://scipost.org/SciPostPhys.17.1.001
https://doi.org/10.21468/SciPostPhys.16.5.130
https://doi.org/10.21468/SciPostPhys.14.4.079


SciPost Phys. 17, 001 (2024)

[3] T. Plehn, A. Butter, B. Dillon, T. Heimel, C. Krause and R. Winterhalder, Modern machine
learning for LHC physicists, (arXiv preprint) doi:10.48550/arXiv.2211.01421.

[4] W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavour
conservation, Nucl. Phys. B 268, 621 (1986), doi:10.1016/0550-3213(86)90262-2.
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