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Abstract

Itinerant ferromagnetism in dilute Fermi gases is predicted to emerge at values of the
gas parameter where second-order perturbation theory is not accurate enough to prop-
erly describe the system. We have revisited perturbation theory for SU(N) fermions and
derived its generalization up to third order both in terms of the gas parameter and the
polarization. Our results agree satisfactorily with quantum Monte Carlo results for hard-
sphere and soft-sphere potentials for S = 1/2. Although the nature of the phase tran-
sition depends on the interaction potential, we find that for a hard-sphere potential a
phase transition is guaranteed to occur. While for S = 1/2 we observe a quasi-continuous
transition, for spins 3/2 and 5/2, a first-order phase transition is found. For larger spins,
a double transition (combination of continuous and discontinuous) occurs. The critical
density reduces drastically when the spin increases, making the phase transition more
accessible to experiments with ultracold dilute Fermi gases. Estimations for Fermi gases
of Yb and Sr with spin 5/2 and 9/2, respectively, are reported.
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1 Introduction

The well-known Stoner model of itinerant ferromagnetism [1] predicts a transition to a fer-
romagnetic phase for an electron gas when density is increased, due to the interplay between
potential and kinetic energies. Trapped cold Fermi gases offer an ideal platform to study itin-
erant ferromagnetism that, in real materials, has proven to be extremely elusive [2, 3]. This
transition must happen in the repulsive branch, which is metastable with respect to the for-
mation of spin-up spin-down dimers [4]. A first pioneering observation of the ferromagnetic
transition in cold Fermi gases [5] was revised and concluded that pair formation hinders the
achievement of the gas parameters required for observing this transition [6]. Recently, it has
been reported that the ferromagnetic state is effectively observed in a Fermi 7Li gas around
a gas parameter x = kF a0 ≃ 1, with kF the Fermi momentum and a0 the s-wave scattering
length [7]. This transition has been extensively studied from a theoretical point of view, mainly
using quantum Monte Carlo methods [8–15]. These numerical estimations agree to localize
the ferromagnetic transition around x ≃ 1.

Dilute Fermi gases can also be studied using perturbation theory. At first order, the famous
Stoner model [1] predicts a continuous phase transition for S = 1/2 and a first-order one for
S > 1/2. As the Stoner model (Hartree-Fock approximation) in not accurate enough when the
gas parameter grows, a second-order theory was developed long time ago [16–19], but not
applicable when the number of particles in each spin is different. Recently, this perturbative
correction for SU(N) gases has been derived in a fully analytical form in terms of both polariza-
tion and gas parameter [20]. Previous results by Kanno [21] were limited to the hard-sphere
potential and S = 1/2. At second order one observes that the ferromagnetic transition for
S = 1/2 turns to be discontinuous, breaking the asymmetry produced by the Stoner model for
different spin values.

Second-order perturbation energies improve substantially the Stoner model but still are not
accurate enough to study Fermi gases close to the expected critical densities. Old results, at
third-order of perturbation theory, are reported in Ref. [22]. However, to fully characterize the
magnetic behavior of the Fermi gases it is fundamental to know the dependency of the energy
on the gas parameter but also on the spin polarization [23,24]. In the present work, we derive
the energy as a function of both parameters. Unlike the second order, we have not managed
to derive a fully analytical expression. It is worth noticing that, going beyond second order
breaks universality, meaning that the energy dependence is no longer solely determined by the
s-wave scattering length. As we will demonstrate, two additional scattering parameters come
into play in the description: the s-wave effective range and the p-wave scattering length. It is
worth mentioning that, for a spin balanced gas, the fourth order term has been fully derived
in Ref. [25].

In recent years, the experimental production of SU(N) fermions has renewed the theoret-
ical interest in their study. In particular, Ytterbium [26], with spin 5/2, and Strontium [27],
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with spin 9/2, are now available for studying Fermi gases with spin degeneracy never achieved
before. Importantly, Cazalilla et al. [28, 29] showed that Fermi gases made of alkaline atoms
with two electrons in the external shell, such as 173Yb, present an SU(N) emergent symmetry.
They also argued that the ferromagnetic transition must be of first order when S > 1/2, based
on the significant dissimilarities in the mathematical structure between SU(N>2) and SU(2).
The role of interaction effects in SU(N) Fermi gases as a function of N were also studied in
Ref. [30]. Collective excitations in SU(N) Fermi gases with tunable spin were investigated in
Ref. [31]. On the other hand, the prethermalization of these systems was analyzed [32], find-
ing that, under some conditions, the imbalanced initial state could be stabilized for a certain
time. Recently, the thermodynamics of 87Sr for which N can be tuned up to 10 was thoroughly
analyzed in Ref. [33]. For temperatures above the super-exchange energy, the behavior of the
thermodynamic quantities was found to be universal with respect to N [34]. The temperature
dependence of itinerant ferromagnetism in SU(N)-symmetric Fermi gases at second order of
perturbation theory has been studied recently by Huang and Cazalilla [35].

In the present work, we compare our predictions with diffusion Monte Carlo (DMC) re-
sults [9] for S = 1/2. We achieve a satisfactory agreement when considering hard-sphere
fermions up to kF a0 ≃ 1, where the ferromagnetic transition occurs. Interestingly, in contrast
to the observations in second-order perturbation theory, fermions with S = 1/2 exhibit a quasi-
continuous phase transition into the ferromagnetic state. An important result of our study is
that the critical density for itinerant ferromagnetism decreases with N , with values that are
systematically smaller than the ones obtained in second order [20]. Our results are derived
for a generic spin and thus, can be applied to SU(N) fermions. This generalization allows, for
instance, the study of dilute Fermi gases of Ytterbium [26], with spin 5/2, and Strontium [27],
with spin 9/2.

2 Methodology

We study a repulsive Fermi gas at zero temperature with spin S and spin degeneracy ν= 2S+1.
We have used perturbation theory in our analysis, resulting in a combination of analytic results
and numerical estimations as the final outcome. In the dilute gas regime, only particles with
different z-spin component interact via a central potential V (r) (s-wave scattering). However,
since our objective is to obtain the energy up to the third order in the gas parameter, we will
have to consider interactions between particles with varying z-spin components, involving not
only the s-wave scattering length but also the s-wave effective range and the p-wave scattering
length. We discuss the respective terms and carry out their calculations, which require the
evaluation of several challenging integrals.

The first and second order terms have already been calculated in Ref. [20]. The terms
coming from the s-wave effective range and the p-wave scattering length can be obtained ana-
lytically. However, the other contributions to the third-order expansion require a combination
of analytical derivation and numerical integration. The number of particles in each spin chan-
nel is Nλ = CλN/ν, with N the total number of particles and Cλ being the fraction of λ particles
(normalized to be one if the system is unpolarized, Nλ = N/ν, ∀λ). The Fermi momentum of
each species is kF,λ = kF C1/3

λ
, kF being (6π2n/ν)1/3. The kinetic energy is readily obtained as

it corresponds to the one of the free Fermi gas,

T
N
=

3
5
εF

1
ν

∑

λ

C5/3
λ

, (1)

εF = ħh2k2
F/2m being the Fermi energy, and where the summation is extended to include all the

z-spin degrees of freedom. However, obtaining the potential energy is more challenging, re-
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quiring the application of perturbation theory. The formalism that we use is based on previous
works [22,36]. In essence, what is done is to calculate the Feynman diagrams that contribute
to each order of the expansion, and then to substitute the interaction by the K-matrix, which
depends on the low-energy scattering parameters of the potential V . We have generalized
this procedure considering that all the Fermi species can have any spin-channel occupation
and thus including the polarization as a new variable. The potential energy can be written in
terms of the K-matrix,

V =
ħh2Ω

2m

∑

λ1,λ2

∫

dp
(2π)3

np

∫

dp′

(2π)3
np′{K(p,p′;p,p′)−δλ1,λ2

K(p,p′;p′,p)} , (2)

with Ω the volume, and np and np′ the momentum distributions of the free Fermi gas. There-
fore, we have to integrate over two particles (λ1,λ2) that are interacting between themselves
through the K-matrix, which brings information on the potential. The K-matrix up to third
order is written as [22,36,37]

K(Q,P;Q’,P’) = 4πa0 + (4πa0)
2 I(Q, P) + 4πQ2 r0

2
a2

0 + 4πa3
1Q ·Q’+ (4πa0)

3 I2(Q, P)

+ 4πa0

∫

2 dmdm′

(2π)3
(1− nm)(1− nm′)
p+p′2 −m2 −m′2

δ(p+ p′ −m−m′)

×
§

(4πa0)
2

∫

2 dp1dp′1
(2π)3

np1
np′1
δ(p1 + p′1 −m−m′)

p2
1 + p′21 −m2 −m′2

+ (4πa(13)
0 )(4πa(23)

0 )
∑

λ3

(2− 3δλ1,λ3
− 3δλ2,λ3

)

∫

dp1dm1

(2π)3
np1
(1− nm1

)

×
�

δ(p+ p1 −m−m1)
p2 + p2

1 −m2 −m2
1

+
δ(p′ + p1 −m′ −m1)
p′2 + p2

1 −m′2 −m2
1

�ª

+O(a4
0) . (3)

In Eq. (3), Q= (p−p′)/2 and P= P’= p+p′ are the relative momentum and center of mass
momentum, respectively. The parameters r0 and a1 in that equation are the s-wave effective
range and p-wave scattering length, respectively. For K(p,p′;p,p′), Q′ = Q, whereas for
K(p,p′;p′,p), Q′ = −Q. The scattering length a(13)

0 corresponds to the interaction between the

first and third particles and a(23)
0 to the second and third ones. When the interactions between

different channels are the same, a(13)
0 = a(23)

0 = a0. The term proportional to a(13)
0 a(23)

0 , in the
expression of the K-matrix, is a three-body interaction term. On the other hand, the function
I(Q, P) in Eq. (3) is defined as

I(Q, P) =
1

(2π)3

∫

2 dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − p2 − p′2
δ(q+ q′ − p− p′) . (4)

Considering only the first term in the expansion of the K-matrix (3), one gets for the potential
energy (2) the well-know Hartree-Fock energy [1],

�

V
N

�

1
=

2εF

3π





1
ν

∑

λ1,λ2

Cλ1
Cλ2
(1−δλ1,λ2

)



 x , (5)

with x ≡ kF a0 the gas parameter of the Fermi gas.
The second-order term in the gas parameter x derives from the second term of the K-

matrix. This second order term reads

�

V
N

�

2
=
εF

k7
F





1
ν

∑

λ1,λ2

I2(kF,λ1
, kF,λ2

)(1−δλ1,λ2
)



 x2 , (6)
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with

I2(kF,λ1
, kF,λ2

) =
3

16π5

∫

dp np

∫

dp′ np′

∫

2 dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − p2 − p′2
δ(q+ q′ − p− p′) .

(7)
This integral I2 was already obtained in Ref. [20]. In terms of Cλ1

and Cλ2
,

I2(Cλ1
, Cλ2

) =
4k7

F

35π2
Cλ1

Cλ2

C1/3
λ1
+ C1/3

λ2

2
F(y) , (8)

with

F(y) =
1
4

�

15y2 − 19y + 52− 19y−1 + 15y−2
�

+
7
8

y−2
�

y − 1
�4�

y + 3+ y−1
�

ln

�

�

�

�

1− y
1+ y

�

�

�

�

−
2y4

1+ y
ln

�

�

�

�

1+
1
y

�

�

�

�

−
2y−4

1+ y−1
ln

�

�

�

�

1+ y

�

�

�

�

, (9)

and y ≡ (Cλ1
/Cλ2

)1/3. It is worth noticing that for S = 1/2 this term agrees with the Kanno
result [21].

In the following subsections, we calculate the new terms, that are the ones contributing to
the third order in the gas parameter.

2.1 S-wave effective range term

Beyond second-order, one needs to introduce additional scattering parameters other than the
s-wave scattering length and thus the expression is no longer universal. The effective range
term in the K-matrix is 4πQ2 1

2 r0a2
0. First of all, we express Q2 in terms of p and p′,

Q2 =
1
4
(p− p′)2 =

1
4
(p2 + p′2 − 2pp′ cosθ ) . (10)

Then, we substitute the value of K in Eq. (2) and integrate it,

Vr0
=
ħh2Ω

2m

∑

λ1,λ2

∫

dp
(2π)3

np

∫

dp′

(2π)3
np′

4πr0a2
0

8
(p2 + p′2 − 2pp′ cosθ )(1−δλ1,λ2

)

=
ħh2Ω

16mπ3
r0a2

0

∑

λ1,λ2

��k3
F,λ1

3

k5
F,λ2

5
+

k5
F,λ1

5

k3
F,λ2

3

�

(1−δλ1,λ2
)
�

, (11)

where the term containing cosθ gives zero after doing the angular integration. The potential
energy per particle as a function of the parameters Cλ is finally

�

V
N

�

r0

= εF
1
ν

1
10π

∑

λ1,λ2

�

Cλ1
Cλ2

�C2/3
λ1
+ C2/3

λ2

2

�

(kF r0)(kF a0)
2(1−δλ1,λ2

)
�

. (12)

2.2 p-wave term

The inclusion of the p-wave scattering length in the K-matrix (2) introduces additional com-
plexity as it also depends on Q’. The two K-matrix terms that we require differ by a minus
sign: K(p,p′;p,p′) = 4πa3

1Q2, K(p,p′;p′,p) = −4πa3
1Q2. This negative sign causes the term
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proportional to the Kronecker delta to change its sign, thereby introducing interaction between
particles of the same spin. Although this fact may not be immediately evident, it becomes ap-
parent once we integrate and rearrange the terms. Apart from the negative sign, the integral
that needs to be performed is formally similar to the one calculated for the effective range.
Hence, the potential energy per particle is

�

V
N

�

a1

= εF
1
ν

1
5π

∑

λ1,λ2



Cλ1
Cλ2

�C2/3
λ1
+ C2/3

λ2

2

�

(kF a1)
3(1+δλ1,λ2

)



 . (13)

The term (1 + δλ1,λ2
) in Eq.(13) is equivalent to 2δλ1,λ2

+ (1 − δλ1,λ2
). Then, there are

interaction between pairs of different spin, as in all previous terms, which are all proportional
to (1−δλ1,λ2

). But now we also have a term 2δλ1,λ2
, which will give rise to an extra interaction

term between particles of same spin. Particularizing Eq. (13) for the latter contribution,
between particles of same spin, we obtain

�

V
N

�

= εF
1
ν

1
5π

∑

λ1,λ2



Cλ1
Cλ2

�C2/3
λ1
+ C2/3

λ2

2

�

(kF a1)
3(2δλ1,λ2

)





= εF
1
ν

2
5π

∑

λ

C8/3
λ
(kF a1)

3 . (14)

If we split Eq. (13) in two parts, one part containing the interaction between particles of
different spin and another one with this new contribution, one gets

�

V
N

�

a1

=
3
5
εF

1
ν

¨

2
3π

∑

λ

C8/3
λ
(kF a1)

3 +
1

3π

∑

λ1,λ2

�

Cλ1
Cλ2

�C2/3
λ1
+ C2/3

λ2

2

�

(kF a1)
3(1−δλ1,λ2

)
�

)

. (15)

The primary focus of our work is the investigation of highly degenerate and extremely
dilute Fermi gases, assuming that the p-wave interaction among particles of the same spin can
be neglected. Consequently, this term (Eq. 14) will not be taken into account in the Results
section.

2.3 3rd order terms depending on a0

Due to their intricate mathematical nature, we have not been able to calculate the remaining
third order terms in a fully analytical form. These terms are exclusively dependent on the
s-wave scattering length. We used a Monte Carlo integration tool to calculate these terms.

The first term that requires consideration arises from the (4πa0)3 I2(Q, P) term in the K-
matrix expansion. Inserted in Eq. (2), one obtains

V3 =
ħh2Ω

2m

∑

λ1,λ2

∫

dp
(2π)3

np

∫

dp′

(2π)3
np′(4πa0)

3 I2(Q, P)(1−δλ1,λ2
) . (16)

Rearranging the integrals, one can write a more manageable expression,
�

V
N

�

3
= εF

3x3

32π7

1
ν

∑

λ1,λ2

�

(1−δλ1,λ2
)E3(Cλ1

, Cλ2
)
�

, (17)

with

E3(Cλ1
, Cλ2

) =
1

k8
F

∫

dpnp

∫

dp′np′

�

∫

2 dqdq′(1− (1− nq)(1− nq′))
δ(q+ q′ − p− p′

q2 + q′2 − p2 − p′2
)
�2

.

(18)
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Going back to the expression of the K-matrix (2) one can see that there is another pair-like
term, given by

V4 =
ħh2Ω

2m

∑

λ1,λ2

∫

dp
(2π)3

np

∫

dp′

(2π)3
np′(1−δλ1,λ2

)(4πa0)

∫

2 dmdm′

(2π)3
(1− nm)(1− nm′)
p2 + p′2 −m2 −m2

×δ(p+ p′ −m−m′)(4πa0)
2

∫

2 dp1dp′1
(2π)3

np1
np′1

δ(p1 + p′1 −m−m′)

p2
1 + p′21 −m2 −m′2

. (19)

Observing that p and p1 run over the same values, and the same happens for p′ and p′1, we
can interchange the integrals and rewrite the whole expression as

�

V
N

�

4
= εF

3x3

32π7

1
ν

∑

λ1,λ2

�

(1−δλ1,λ2
)E4(Cλ1

, Cλ2
)
�

, (20)

with

E4(Cλ1
, Cλ2

) =
1

k8
F

∫

dm(1− nm)

∫

dm′(1− nm′)
�

∫

2 dpdp′npnp′
δ(p+ p′ −m−m′)
p2 + p′2 −m2 −m2

�2

.

(21)
Finally, the last term in Eq. (2) contains the interaction between three particles. At third order,
this is the only three-body interacting term. Its expression is more involved than the previous
ones,

V5 =
ħh2Ω

2m

∑

λ1,λ2

∫

dp
(2π)3

np

∫

dp′

(2π)3
np′(1−δλ1,λ2

)(4πa0)
3

×
∫

2 dmdm′

(2π)3
(1− nm)(1− nm′)

δ(p+ p′ −m−m′)
p2 + p′2 −m2 −m2

×
∑

λ3

(2− 3δλ1,λ3
− 3δλ2,λ3

)

∫

dp1dm1

(2π)3
np1
(1− nm1

)

×
�

δ(p+ p1 −m−m1)
p2 + p2

1 −m2 −m2
1

+
δ(p′ + p1 −m′ −m1)
p′2 + p2

1 −m′2 −m2
1

�

. (22)

After rearranging, we can write it in a more compact form

�

V
N

�

5
= εF

3x3

32π7

1
ν

∑

λ1,λ2,λ3

�

(1−δλ1,λ2
)(2− 3δλ1,λ3

− 3δλ2,λ3
)E5(Cλ1

, Cλ2
, Cλ3

)
�

, (23)

with

E5(Cλ1
, Cλ2

, Cλ3
) =

1

2k8
F

§

∫

dpnp

∫

dm(1− nm)
�

∫

2dm′dp′(1− nm′)np′

×
δ(p+ p′ −m−m′

p2 + p′2 −m2 −m′2
)
��

∫

2dm1dp1(1− nm1
)np1

δ(p+ p1 −m−m1)
p2 + p2

1 −m2 −m2
1

�

+

∫

dp′np′

∫

dm′(1− nm′)
�

∫

2dmdp(1− nm)np
δ(p+ p′ −m−m′)
p2 + p′2 −m2 −m′2

�

×
�

∫

2dm1dp1(1− nm1
)np1

δ(p′ + p1 −m′ −m1)
p′2 + p2

1 −m′2 −m2
1

�ª

. (24)
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The integrals E3, E4, and E5 were already calculated previously for a non-polarized gas
and S = 1/2 [16–19, 36, 38]. In order to calculate numerically the integrals for spins greater
than 1/2, we have made the assumption that as the concentration of one species increases, all
the other species diminish in the same manner. This particular configuration minimizes the
energy when the total number of particles remains constant [20]. Under these conditions, the
concentrations Cλ for a given polarization P are

C+ = 1+ |P| (ν− 1) , (25)

Cλ ̸=+ = 1− |P| , (26)

with subindex + standing for the spin state with the largest population. The explicit way in
which these integrals are calculated can be found in the Appendices. We have computed these
integrals for different values of the polarization and a range of spin values. More precisely,
we have calculated 201 points between P = 0 and P = 1, with 108 sampling points using an
accurate adaptative Monte Carlo integration [39,40].

2.4 Energy up to third order

Collecting the different terms discussed in previous subsections, we can write a final expression
for the energy of a Fermi gas up to third order in the gas parameter kF a0, and for any spin
degeneracy and polarization,

E
N
=

3
5
εF

§

1
ν

∑

λ

C5/3
λ
+

1
ν

∑

λ

2
3π

C8/3
λ
(kF a1)

3 +
5

3ν

∑

λ1,λ2

��

2
3π
(kF a0)Cλ1

Cλ2

+
4

35π2
Cλ1

Cλ2

C1/3
λ1
+ C1/3

λ2

2
F(y)(kF a0)

2 +
1

10π
Cλ1

Cλ2

�C2/3
λ1
+ C2/3

λ2

2

��

r0

a0
+ 2

a3
1

a3
0

�

(kF a0)
3

+
3

32π7

�

E3 + E4 +
∑

λ3

((2− 3δλ1,λ3
− 3δλ2,λ3

)E5)
�

(kF a0)
3
�

(1−δλ1,λ2
)
�ª

. (27)

3 Results

In this section, we discuss the main results of SU(N) Fermi gases using the framework es-
tablished in the previous section. Unlike the second order analysis, we now introduce two
additional scattering parameters that characterize the interaction: the s-wave effective range
(r0) and the p-wave scattering length (a1). This implies that the specific potential model has
an influence on the derived results beyond the simple dependence on the s-wave scattering
length. Considering our focus on a repulsive gas, unless otherwise stated, we will assume a
hard-sphere potential (r0 = 2 a0/3, a1 = a0), as it provides a somewhat more universal model.

Having a perturbative prediction at our disposal, we can make a comparison between our
results and the existing quantum Monte Carlo data. We compare two sets of values in Fig.
1. The black points are diffusion Monte Carlo (DMC) data for spin 1/2 [9]. This set does
not include P-wave scattering terms between particles with the same z-spin component. The
brown points in the same figure are DMC data by Bertaina et al. [41] which include intra-
species interaction. The blue and purple lines are our theoretical predictions for these two
cases, respectively. Both results correspond to non-polarized gases. As we can see, the energy
is higher when the intra-species interaction is considered. Moreover, although it is not shown
here, intra-species interaction in the fully-polarized gas make the energy increase with the
density [41,42]. In the rest of our results, we do not include this contribution. The orange line
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Figure 1: Energy for S = 1/2 as a function of the gas parameter x = kF a0. We plot
three models: in red, the second-order model; in green (and blue), the third-order
one; and in purple, the third-order one with P-wave intra-species interaction. The
black and brown points are DMC results from Ref. [9] and [41] respectively. The
potential used is hard-spheres (r0 = 2 a0/3, a1 = a0).

corresponds to the fully-polarized gas, the green one stands for the configuration of minimum
energy, that is, at each value of the density, we select the polarization that minimizes the
energy. And finally, the red line corresponds to the second-order energy (universal expansion)
to show the differences with the third-order expansion. We can see how the second-order and
the third-order expansions reproduce the same energy for values of kF a0 ≲ 0.4. Beyond that,
the difference intensifies with increasing density [14]. Concerning the DMC points, although
they are upper-bounds to the exact energy due to the sign problem, they fit pretty well the
third-order curves.

In Fig. 2, we analyze the dependence of the energy with the gas parameter for a soft-
sphere potential. The points are DMC data from Ref. [9]. Here, the scattering parameters are
r0 = 0.424 a0 and a1 = 1.1333 a0. We see that the third-order energies reproduce accurately
the DMC data up to a value of kF a0 ≃ 0.8 and, after that, Eq. 27 starts to depart from the
DMC energies. The reason is that our perturbative expansion works for kF a0 < 1, but also for
kF a1 < 1. As now a1 is larger than a0, the range of convergence has been reduced.

Equation 27 gives the energy as a function of the gas parameter but importantly also as a
function of the polarization. In Fig. 3, we show our results for different gas parameters. One
can see that, until a gas parameter of kF a0 = 0.85, the polarization that minimizes the energy

Figure 2: Energy for S = 1/2 as a function of the gas parameter. We plot two models:
in green, the third-order model; in red, the second-order one. The points are DMC
results from Ref. [9]. The potential used is a soft-sphere model with r0 = 0.424 a0,
and a1 = 1.1333 a0.
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Figure 3: Energy per particle of a S = 1/2 Fermi gas as a function of the polariza-
tion and for different values of the gas parameter. The solid points stand for DMC
results [9] and the crosses to our prediction for the polarization giving the minimum
energy. The potential is a hard-sphere one.

Figure 4: Energy per particle as a function of the gas parameter for spins
S = 1/2,3/2, 5/2,7/2, and 9/2.

(shown as crosses in the figure) is zero. However, at kF a0 = 0.9, the minimum of the energy
moves to a larger polarization. As it is clear in the figure, the DMC points [9] fit progressively
better to our results when the polarization increases. A possible explanation for this behavior
could be the different quality of the model nodal surface used in DMC calculations: it is well
known that the plane-waves Slater determinant used in those DMC calculations is better for a
polarized than for an unpolarized Fermi gas [43,44].

In Fig. (4), we show the energy as a function of the gas parameter for five spin values
S = 1/2, 3/2, 5/2,7/2, and 9/2. It is worth noticing that for S > 1/2 there are not available
DMC to compare with. The results reported in the figure correspond to a hard-sphere interac-
tion. As one can see, the third-order model predicts a ferromagnetic phase transition for the
five spin values, since the curve becomes flat after a certain characteristic x . As observed also
in second order [20], the ferromagnetic transition occurs at lower values of the gas parameter
when S increases. For a same spin value, the critical density decreases when third-order terms
are introduced in the expansion.

In order to gain a deeper understanding of the phase transition, we plot in Fig. 5 the
order parameter (in this instance, the polarization) as a function of the gas parameter x . The
polarization we plot is the one that minimizes the energy at a given x . Indeed, as previously
commented, all gases evolve from a non-polarized to a fully-polarized state. However, there
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Figure 5: Polarization as a function of the gas parameter for spins
S = 1/2,3/2, 5/2,7/2, and 9/2.

Figure 6: Magnetic susceptibility as a function of the gas parameter for spin S = 1/2.
The y-scale is semi-log.

are notable distinctions among them. For spin 1/2, the transition is quasi-continuous, this
fact contrasts with the second-order result reported in Ref. [20] where the transition for spin
1/2 was first order and had a polarization jump of 0.545. By quasi-continuous, we mean that
the transition could be discontinuous, but with a tiny jump. Apparently our results show a
continuous transition, but at third order we no longer have a fully analytical expression and,
hence, our prediction has the limits of our numerical accuracy. For spin 3/2 and 5/2, we
have partial discontinuous transitions, as there is a polarization jump, but it does not reach
P = 1, hence, the label ’partial’. If it reached P = 1 directly, it would be a total discontinuous
transition. Astonishingly, the gases with the last two largest spins, S = 7/2 and 9/2, experience
a continuous transition when increasing the density, but the continuous transition is truncated
because a discontinuous transition occurs before P reaches 1.

Fundamental information on the magnetic properties of the Fermi gases is contained in
the magnetic susceptibility χ,

1
χ
=

1
n

�

∂ 2(E/N)
∂ P2

�

x
. (28)

Third-order results of χ for spin 1/2 are shown in Fig. 6, and the ones for larger spins in Fig. 7.
We split the results in two figures because, as spin 1/2 suffers a quasi-continuous transition,
the magnetic susceptibility diverges. We recall that, for second-order phase transitions, the
susceptibility must diverge. Notice, however, that we obtain a very large value (∼ 2e3) at
kF a0 = 0, 85 and not a real divergence due to our finite numerical precision. If the accuracy
is improved, the critical value increases. The behavior of the magnetic susceptibility for spin
1/2 confirms the behavior of the polarization shown in Fig. 5.
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Figure 7: Magnetic susceptibility as a function of the gas parameter for spins
S = 3/2,5/2, 7/2, and 9/2.

Figure 8: Tan’s constant as a function of the gas parameter for spins
S = 1/2,3/2, 5/2,7/2, and 9/2).

The other χ results for larger spins (Fig. 7) exhibit the behavior we have predicted above.
For spins 3/2 and 5/2, we only have a finite peak, telling us that there is a discontinuous
transition. For spins 7/2 and 9/2, we see the singular double transition (two peaks) that we
have mentioned before. With increasing density, the first peak corresponds to the truncated
continuous transition, and the second peak to the latter first-order phase transition. The two
peaks point to the existence of an intermediate phase between the non-polarized phase and the
fully-polarized one. This phase would be located around the bottom that lies between peaks
in Fig. 7. And, according to Fig. 5, this intermediate phase would have a partial polarization,
hence, the Fermi gas would exhibit some kind of magnetic ordering. The rich phase diagram
that appears in SU(N) Fermi systems have also been pointed out in Ref. [45].

The Tan’s constant,

C =
8πma2

0

νħh2

N
V
∂ (E/N)
∂ a0

, (29)

is a very good tool to locate the density at which the itinerant ferromagnetism transition occurs.
It is so, because right before the transition, the Tan’s constant value is maximum (see Fig. 8).
In terms of the gas parameter, it is

C =
4πnkF

ν

x2

εF

∂ (E/N)
∂ x

. (30)

The Tan’s constant results for five values of the spin are shown in Fig. 8. One can see again
that the transition happens at lower densities when the degeneracy increases.

As we are now beyond universality, it is interesting to explore the role of the s-wave effec-
tive range and p-wave scattering length in the location of the critical density. To reduce the
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dimensionality of the problem, we have analyzed the particular case of a1 = a0 and spin 1/2.
In Fig. 9, we plot the Tan’s constant by changing only the effective range. As one can see,
the critical density changes significantly with r0. Interestingly, increasing r0 the ferromagnetic
transition moves to lower densities making it somehow more accessible in experiments.

Figure 9: Tan’s constant as a function of the gas parameter for spin 1/2. The P-wave
scattering length is a1 = a0 as for the hard-sphere interaction. The effective range
varies from −2 a0 to 5 a0.

Figure 10: Critical gas parameter as a function of the spin value. The black and red
points stand for the hard-sphere (r0 = 2a0/3, a1 = a0) and soft-sphere potentials
(r0 = 0.424 a0, a1 = 1.1333 a0), respectively. The green crosses are second-order
results. The blue crosses are third-order results including only the terms that depend
on a0.

As commented before, the ferromagnetic phase transition happens at lower densities if we
increase the spin of the gas. In Fig. 10, we show the critical gas parameter as a function of
the spin value, up to spin 19/2. The inclusion of third-order terms reduces the critical x∗,
with an effect that increases with the spin due to the enhanced role of interactions between
different spin channels. We report the critical gas parameters obtained using both the hard-
sphere and soft-sphere potentials. The soft-sphere potential is the same we used in Fig. 2,
this means r0 = 0.424 a0 and a1 = 1.1333 a0. The difference between these two potentials
is almost imperceptible except somehow for S = 1/2 where the critical value for soft-spheres
is slightly below the hard-sphere one. It is interesting to explore what is the relevance of the
effective range and p-wave contributions with respect to the one coming from the third-order
terms that depend only on a0 on the critical value. To this end, we show in Fig. 10 third-order
results depending only on a0 (blue crosses). As one can see, the role of r0 and a1 is small for
S > 1/2 but substantial for the particular case S = 1/2. Neglecting the effect of scattering
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parameters others than a0, we estimate that the transition gas parameter is 0.65 for Ytterbium
(S = 5/2), and 0.53 for Strontium (S = 9/2).

4 Conclusions

To summarize, we have derived the expression for the energy of a repulsive SU(N) Fermi gas,
incorporating terms up to third order in the gas parameter and in terms of the spin-channel
occupations. We have extended up to third order our second-order expansion [20], written
also in terms of the spin polarization. We have included the analytic terms dependent on
the s-wave effective range and the p-wave scattering length, while the remaining third-order
terms have been computed numerically. Although these numerical terms introduce some level
of uncertainty, we have managed to minimize it to the best of our abilities. The uncertainty in
the values of P are typically 0.005, and for the energy are about 10−6.

In order to study the Fermi gas, and to reduce the number of variables to explore, we have
selected the occupational configuration that minimizes the energy. At P = 0, all species are
equally occupied, and as P increases, one species increases while all others decrease in the
same manner. However, we point out that our formalism can be applied to any occupational
configuration. One just needs to find the new expressions for the fractions of λ particles Cλ.
In fact, in several experiments, the species’ occupation can be tuned or controlled almost at
will [31, 33] and there are works that have dealt with imbalanced systems [32]. However,
we point out that all these other configurations represent excited states with higher energy
compared to the configuration we have chosen. Consequently, if a Fermi system is capable of
thermalization, it will converge to the behavior predicted in our work. Notice that adopting a
different occupational configuration would yield distinct critical values for the gas parameter
x∗.

The third-order expression allows to reproduce and test numerical values obtained with
diffusion Monte Carlo. In the case of itinerant ferromagnetism, where three scattering param-
eters come into play, the existence of the phase transition could even not exist. This is not
the case for the interactions analyzed in the present work: for a hard-sphere potential and
using the third-order energies, the spin 1/2 Fermi gas exhibits a quasi-continuous magnetic
phase transition, in contrast with the first-order phase transition predicted by the second-order
approximation (universal expansion) [20]. According to Ref. [46], the order of the S = 1/2
ferromagnetic transition is always first-order because the sign of the term P4 ln P in the Landau
expansion must be positive. However, and within our numerical precision, this term is in fact
negative at third-order and thus, the transition becomes quasi-continuous. The same change
of sign is observed in [47] where the authors apply a resummation method. For higher spins
values, we have different situations. Spins 3/2 and 5/2 exhibit a first-order transition. How-
ever, gases with larger spins show a double transition. First, a continuous transition happens,
but, before reaching P = 1, a discontinuous transition truncates it.

Importantly, the inclusion of the third-order terms significantly reduces the critical value
of the gas parameter at which the ferromagnetic transition is expected. For spin 5/2, it occurs
at kF a0 = 0.65, and for spin 9/2, at kF a0 = 0.53. This finding reinforces the notion that
the observation of itinerant ferromagnetism may be more favorable when working with highly
degenerate gases like Yb [26] and Sr [27]. Beyond the second-order approximation, the energy
ceases to be universal in terms of the gas parameters because the s-wave effective range and
p-wave scattering length come into play [22]. However, for larger spins, the region of interest
(where the transition occurs) tends to be at lower densities, as mentioned earlier, leading these
systems toward a new form of universality.
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A Numerical integration of third-order terms

We have three terms contributing at third order of the perturbative series which are numeri-
cally integrated. The first two terms involve interaction between two particles, however, the
third one is a three-body interaction term. In the following subsections, each one of these
terms is analyzed.

A.1 Term E3

The expression of the E3 term is

E
N
= εF

3x3

32π7

1
ν

∑

λ1,λ2

(1−δλ1,λ2
)E3(Cλ1

, Cλ2
) , (A.1)

with

E3(Cλ1
, Cλ2

) =
1

k8
F

∫

dpnp

∫

dp′np′

�

∫

2 dqdq′
1− (1− nq)(1− nq′)

q2 + q′2 − p2 − p′2
δ(q+ q′ − p− p′)

�2

.

(A.2)
We recall that p and q run over kF,λ1

, while p′ and q′ run over kF,λ2
. If we expand the

numerator, where the occupation functions are, we see that we can split the terms: two con-
taining nq and the other one with nqnq′ . This is telling us the volume where we have to
integrate. For the first two terms, nq gives an sphere, and, for the third one, nqnq′ gives a more
complicated volume, as it is the intersection of two spheres. Therefore, we have to solve two
integrals, the one having the volume of a sphere (Sphere-Integral -SI-), and the other one with
the intersection (Sphere-Intersection-Integral -SII-). Then,

E3(Cλ1
, Cλ2

) =
1

k8
F

∫

dpnp

∫

dp′np′

�

SI(p, p′, kF,λ1
)+SI(p, p′, kF,λ2

)−SI I(p, p′, kF,λ1
, kF,λ2

)
�2

.

(A.3)
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The SI terms can be integrated in the following way,

SI(p, p′, kF,λ) =

∫

2dqdq′
nq

q2 + q′2 − p2 − p′2
δ(q+ q′ − p− p′)

=

∫

dq
nq

q2 − q · (p+ p′) + p · p′

=

∫ kF,λ

0

q2dq

∫ π

0

sinθdθ
2π

q2 − q|p+ p′|+ p · p′

= 2π

∫ kF,λ

0

q2dq
1

q|p+ p′|
ln
�

q2 + q|p+ p′|+ p · p′

q2 − q|p+ p′|+ p · p′

�

=
2π
|p+ p′|

§�k2
F,λ

2
−

p2 + p′2

4

�

ln
�k2

F,λ + kF,λ|p+ p′|+ p · p′

k2
F,λ − kF,λ|p+ p′|+ p · p′

�

−
|p+ p′||p− p′|

4
ln
�k2

F,λ + kF,λ|p− p′| − p · p′

k2
F,λ − kF,λ|p− p’| − p · p′

�

+ kF,λ|p+ p’|
ª

. (A.4)

Now, we perform the following change of variable that will be useful later on,

P= p+ p′ , p=
P

2
+Q ,

⇒

Q=
p− p′

2
p′ =

P

2
−Q .

(A.5)

With these new variables the sphere integral can be rewritten as follows,

SI(P,Q, kF,λ) =
2π
P

§�k2
F,λ

2
−

1
2

�

P2

4
+Q2
��
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�

�

�

�

�

kF,λ +
P
2

�2 −Q2

�

kF,λ −
P
2

�2 −Q2

�

�

�
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−
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2
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�
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�2 − P2

4
�

kF,λ −Q
�2 − P2

4

�

�

�

�

+ kF,λP
ª

. (A.6)

When P is zero, SI could diverge, however, taking the limit of P going to zero, one can see
that the result is finite. This function when P → 0 is

SI(0,Q, kF,λ) = 2π
�

2kF,λ −Q ln

�

�

�

�

kF,λ +Q

kF,λ −Q

�

�

�

�

�

. (A.7)

Now, we analyze the SI I term. We first apply the change of variables introduced above,
and then we integrate over P. Then,

SI I(p, p′, kF,λ1
, kF,λ2

) =

∫

2dqdq′
nqnq′

q2 + q′2 − p2 − p′2
δ(q+ q′ − p− p′)

=

∫

dQdP
nP/2+QnP/2−Q

Q2 + P2/4− 2(p2 + p′2)/4
δ(P− p− p′)

=

∫

dQ
nP/2+QnP/2−Q

Q2 − (p−p′)2
4

. (A.8)
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Table 1: Different types of intersection between two spheres depending on the dis-
tance between centers.

Condition Intersection

0≤ P < |kF,λ1
− kF,λ2

| The small sphere

P = |kF,λ1
− kF,λ2

| The small sphere (Inner tangency)

|kF,λ1
− kF,λ2

|< P < (kF,λ1
+ kF,λ2

) Two spherical caps

P = (kF,λ1
+ kF,λ2

) A point (Outer tangency)

P > (kF,λ1
+ kF,λ2

) Null intersection

The term nP/2+QnP/2−Q is telling us the volume that we have to integrate. This comes from
the intersection of spheres

I :
�

Q x +
Px

2

�2

+
�

Q y +
Py

2

�2

+
�

Qz +
Pz

2

�2

≤ k2
F,λ1

, (A.9)

I I :
�

Q x −
Px

2

�2

+
�

Q y −
Py

2

�2

+
�

Qz −
Pz

2

�2

≤ k2
F,λ2

. (A.10)

As we see, we have two spheres with different radii. The first one is centered at
�−Px

2 ,
−Py

2 , −Pz
2

�

with radius kF,λ1
; and the second one is centered at

� Px
2 ,

Py
2 , Pz

2

�

with radius kF,λ2
. And Q

must satisfy both constraints, that is, we have to integrate the intersection of the two spheres.
Depending on the distance between the spheres we will have different kind of intersections.
The distance between the two centers is just P. If P is larger than the sum of both radius,
then there is no intersection and the integral will be zero. If P is lower than the difference of
radii, then the small sphere will be completely inside the big sphere, therefore the intersection
will be the small sphere and the integral will be exactly SI because the volume will be just
an sphere. And finally, when P is smaller than the sum of both radii and larger than their
difference, the intersection corresponds to the sum of two spherical caps, one coming from
each sphere. This explanation is summarized in Table 1 and plotted in Fig. 11.

Therefore, one only needs to analyze the case of spherical caps,
|kF,λ1

− kF,λ2
| < P < (kF,λ1

+ kF,λ2
). As the coordinates of P can take a large set of values

and thus we can have many distributions of the spheres in the space, we will perform a 3D-
rotation in order to set our system in a vertical position regardless of the initial configuration.
More specifically, the sphere with radius kF,λ2

will be at the top, and the one with radius kF,λ1

at the bottom.
We want the following transformations for the rotation:

�−Px
2 ,
−Py

2 , −Pz
2

�

⇒
�

0,0, −P
2

�

and
� Px

2 ,
Py
2 , Pz

2

�

⇒
�

0, 0, P
2

�

, but in fact they are the same transformation because the minus sign
makes no difference, and also the one half multiplying can be taken out. Under this rotation,
the change of variables is

Q x =
Px
q

P2
x + P2

y

Pz

P
Qαx −

Py
q

P2
x + P2

y

Qαy +
Px

P
Qαz , (A.11)

Q y =
Py
q

P2
x + P2

y

Pz

P
Qαx +

Px
q

P2
x + P2

y

Qαy +
Py

P
Qαz , (A.12)

Qz = −

q

P2
x + P2

y

P
Qαx +

Pz

P
Qαz . (A.13)

17

https://scipost.org
https://scipost.org/SciPostPhys.17.2.030


SciPost Phys. 17, 030 (2024)

Figure 11: Sphere-sphere intersections. The grey area is the intersection we are
looking for. P is the distance between centers. kF,λ1

and kF,λ2
are the respective

radii.
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Where Q x ,y,z are the coordinates in the initial configuration, and Qαx ,αy,αz are the new coor-
dinates after the rotation.

Equations (A.9) and (A.10), which were the ones defining the two spheres, become in the
new system of coordinates: (the sub-index α of Q is omitted from now on)

I : Q2
x +Q2

y +
�

Qz +
P
2

�2

≤ k2
F,λ1

, (A.14)

I I : Q2
x +Q2

y +
�

Qz −
P
2

�2

≤ k2
F,λ2

. (A.15)

Changing to cylindrical coordinates,

I : r2 +
�

z +
P
2

�2

≤ k2
F,λ1

⇒ rmax[z] =

√

√

√

k2
F,λ1
−
�

z +
P
2

�2

, (A.16)

I I : r2 +
�

z −
P
2

�2

≤ k2
F,λ2

⇒ rmax[z] =

√

√

√

k2
F,λ2
−
�

z −
P
2

�2

. (A.17)

From the expressions above we can find the value of z at which both spheres coincide, that is
the value of z that will separate the two spherical caps we need to integrate,

zlim =
k2

F,λ1
− k2

F,λ2

2P
. (A.18)

We point out that P can only be zero if both kF,λ’s are equal, and in that case zlim would exactly
be 0.

After all these manipulations, now we are ready to write the final expression of the integral
and the two regions of integration ( Spherical Caps Integral -SCI-)

SC I =

∫

rdrdθdz
nI nI I

r2 + z2 − (p−p′)2
4

, (A.19)

I : r ∈
�

0,

√

√

√

k2
F,λ1
−
�

z +
P

2

�2�

, I I : r ∈
�

√

√

√

k2
F,λ2
−
�

z −
P

2

�2�

,

θ ∈ [0,2π] , θ ∈ [0, 2π] ,

z ∈
�k2

F,λ1
− k2

F,λ2

2P
, kF,λ1

−
P

2

�

, z ∈
� P

2
− kF,λ2

,
k2

F,λ1
− k2

F,λ2

2P

�

.

(A.20)

The final step is to integrate and sum. After some algebra, the final integrated expression
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is

SC I(P,Q, kF,λ1
, kF,λ2

) = 2π
1
2

§

kF,λ1
+ kF,λ2

− P +Q ln

�

�

�

�

Q− kF,λ1
+ P/2

Q+ kF,λ1
− P/2

�

�

�

�

+Q ln

�

�

�

�

Q− kF,λ2
+ P/2

Q+ kF,λ2
− P/2

�

�

�

�

+

�

Q2 + P2/4− k2
F,λ1

�

P
ln

�

�

�

�

�

kF,λ1
− P/2
�2 −Q2

k2
F,λ1
+ k2

F,λ2

2
−

P2

4
−Q2

�

�

�

�

+

�

Q2 + P2/4− k2
F,λ2

�

P
ln

�

�

�

�

�

kF,λ2
− P/2
�2 −Q2

k2
F,λ1
+ k2

F,λ2

2
−

P2

4
−Q2

�

�

�

�

ª

. (A.21)

Following the same reasoning we did in SI, at P = 0 the expression we have obtained can
diverge. If kF,λ1

is equal to kF,λ2
, then P can be 0. In that limit, SCI becomes

SC I(0,Q, kF,λ1
= kF,λ, kF,λ1

= kF,λ) = 2π
§

2kF,λ +Q ln

�

�

�

�

Q− kF,λ

Q+ kF,λ

�

�

�

�

ª

. (A.22)

A summary of the different integration domains is shown in Table 2.
We have been able to solve analytically SI and SII, however, now we should square it

and integrate it again. This second part has not been analytically achieved and numerical
integration has led to the solution. This is written as

E3(Cλ1
, Cλ2

) =
1

k8
F

∫

dpnp

∫

dp′np′

�

SI(P,Q, kF,λ1
) + SI(P,Q, kF,λ2

)− SI I(P,Q, kF,λ1
, kF,λ2

)
�2

.

(A.23)
The final integrals can be simplified because the functions SI and SII only depend on the mod-
ules of p and p′ and the angle θ between them. Moreover, if we perform the following change
of variables kF,λ1

= kF C1/3
λ

, we can get rid of the Fermi momenta and express everything in
terms of Cλ,

E3(Cλ1
, Cλ2

) = 8π2

∫ C1/3
λ1

0

p2dp

∫ C1/3
λ2

0

p′2dp′
∫ 1

−1

d x
�

SI(P,Q, C1/3
λ1
)

+ SI(P,Q, C1/3
λ2
)− SI I(P,Q, C1/3

λ1
, C1/3
λ2
)
�2

, (A.24)

with x = − cosθ , P =
p

p2 + p′2 − 2pp′x , and 2Q =
p

p2 + p′2 + 2pp′x .

Table 2: Summary of the SII integral depending on the value of P.

Condition SII Integral

0≤ P ≤ |kF,λ1
− kF,λ2

| SI(P,Q, min(kF,λ1
, kF,λ2

))

|kF,λ1
− kF,λ2

|< P < (kF,λ1
+ kF,λ2

) SC I(P,Q, kF,λ1
, kF,λ2

)

P ≥ (kF,λ1
+ kF,λ2

) 0
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A.2 Term E4

The E4 contribution to the energy is

E
N
= εF

3x3

32π7

1
ν

∑

λ1,λ2

(1−δλ1,λ2
)E4(Cλ1

, Cλ2
) , (A.25)

with

E4(Cλ1
, Cλ2

) =
1

k8
F

∫

dm(1− nm)

∫

dm′(1− nm′)
�

∫

2 dpdp′
npnp′δ(p+ p′ −m−m′)

p2 + p′2 −m2 −m2

�2

.

(A.26)
The vectors m and p run over kF,λ1

, and m′ and p′ run over kF,λ2
. This term is similar to the

previous term E3, but what is now different is the fact that the external integrals go to infinity
and that the inner part is only the Sphere-Intersection-Integral (SII). Hence, we can rewrite it
in terms of this known function (See Table 2),

E4(Cλ1
, Cλ2

) =
1

k8
F

∫

dm(1− nm)

∫

dm′(1− nm′)
�

SI I(P,Q, kF,λ1
, kF,λ2

)
�2

. (A.27)

As we have done for E3, we can introduce Cλ and simplify the external integrals,

E4(Cλ1
, Cλ2

) = 8π2

∫ C1/3
λ1
+C1/3
λ2

0

P2dP

∫ ∞

−∞
dz

∫ ∞

rmin

rdr
�

SI I(P,Q, C1/3
λ1

, C1/3
λ2
)
�2

, (A.28)

with P = m + m′ and Q = (m − m′)/2. Afterwards, the integrals in Q are transformed
into cylindrical coordinates. The three angular integrals can be done trivially. The rela-
tion between Q, r and z is Q =

p
r2 + z2. The volume of integration of Q comes from

(1 − nm)(1 − nm′) = (1 − nP/2+Q)(1 − nP/2−Q), which is the space out of the intersection of
two spheres. From here, we can know the integration limits of r and z. The minimum value
that r can take depends on P and z, as shown in Table 3.

A.3 Term E5

The last term that contributes to the third-order expansion is a three-body interaction term,

E
N
= εF

3x3

32π7

1
ν

∑

λ1,λ2,λ3

(1−δλ1,λ2
)(2− 3δλ1,λ3

− 3δλ2,λ3
)E5(Cλ1

, Cλ2
, Cλ3

) , (A.29)

with

E5(Cλ1
, Cλ2

, Cλ3
) =

1

2k8
F

§

∫

dpnp

∫

dm(1− nm)
�

∫

2dm′dp′
(1− nm′)np′

p2 + p′2 −m2 −m′2

×δ(p+ p′ −m−m′)
��

∫

2dm1dp1

(1− nm1
)np1

p2 + p2
1 −m2 −m2

1

δ(p+ p1 −m−m1)
�

+

∫

dp′np′

∫

dm′(1− nm′)
�

∫

2dmdp
(1− nm)np

p2 + p′2 −m2 −m′2

×δ(p+ p′ −m−m′)
��

∫

2dm1dp1

(1− nm1
)np1

p′2 + p2
1 −m′2 −m2

1

×δ(p′ + p1 −m′ −m1)
�ª

. (A.30)
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Table 3: Values of rmin depending on P and z. The object kM is defined as
kM = max(kF,λ1

, kF,λ2
).

Condition rmin

P ≤ |kF,λ1
− kF,λ2

| & z ∈
� P

2
− kM ,

P

2
+ kM

�

√

√

√

k2
M −
�

z −
P

2

�2

|kF,λ1
− kF,λ2

|< P < (kF,λ1
+ kF,λ2

) & z ∈
�

−
P

2
− kF,λ1

,
k2

F,λ1
− k2

F,λ2

2P

�

√

√

√

k2
F,λ1
−
�

z +
P

2

�2

|kF,λ1
− kF,λ2

|< P < (kF,λ1
+ kF,λ2

) & z ∈
�k2

F,λ1
− k2

F,λ2

2P
,

P

2
+ kF,λ2

�

√

√

√

k2
F,λ2
−
�

z −
P

2

�2

Else 0

One identifies four inner integrals that have the same formal shape. Each one is of the form

I5,inner =
�

∫

2dm′dp′
(1− nm′)np′

p2 + p′2 −m2 −m′2
δ(p+ p′ −m−m′)

�

. (A.31)

In this integral, we decompose the term (1 − nm′)np′ = np′ − nm′np′ , so we have again a
sphere and the intersection of two spheres. One can proceed then in a similar way to previous
integrals. The spherical part (SI5) is

SI5 =

∫

2dm′dp′
np′

p2 + p′2 −m2 −m′2
δ(p+ p′ −m−m′)

= −
∫

dp′
np′

m2 + p′ · (p−m)− p ·m

= 2π

∫ kF,λ

0

p′2dp′
1

p′|m− p|
ln

�

�

�

�

m2 − p ·m− p′|m− p|
m2 − p ·m+ p′|m− p|

�

�

�

�

= 2π
§

− kF,λ
(m2 − p ·m)
|m− p|2

+
� k2

F,λ

2|m− p|
−
(m2 − p ·m)2

2|m− p|3

�

ln

�

�

�

�

m2 − p ·m− kF,λ|m− p|
m2 − p ·m+ kF,λ|m− p|

�

�

�

�

ª

.

(A.32)

It can be rewritten as

SI5 = 2π
§

− kF,λ
(2Q2 − a)

4Q2
+
�k2

F,λ

4Q
−
(2Q2 − a)2

16Q3

�

ln

�

�

�

�

2Q2 − a− 2kF,λQ

2Q2 − a+ 2kF,λQ

�

�

�

�

ª

, (A.33)

with a = (p2 −m2)/2 and Q = |m− p|/2.
Before doing the sphere intersection part, we define a change of variables that are useful
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for this particular integral,

s=
p′ +m′

2
, p′ = s+

d

2
,

⇒

d= p′ −m′ m′ = s−
d

2
.

(A.34)

Then,

SI I5 =

∫

2dm′dp′
nm′np′

p2 + p′2 −m2 −m′2
δ(p+ p′ −m−m′)

=

∫

dsdd
ns+d/2ns−d/2

p2 −m2

2
+ s · d

δ(p−m+ d)

=

∫

ds
ns+d/2ns−d/2

p2 −m2

2
+ s · d

, where d=m− p . (A.35)

As commented previously, there are three types of intersection: null, two caps and a small
sphere. The null is just zero and the small-sphere case does not happen here because the two
radius are equal. Therefore just one case is missing, the one concerning the two spherical caps.
So SI I5 will be just SC I5. After some algebra, one arrives to

SC I5 = 2π
§8akF,λd − 4ad2

8d3
−
(4a2 − 4ad2 − 4k2

F,λd2 + d4)

8d3
ln

�

�

�

�

a+
�

kF,λ − d/2
�

d

a

�

�

�

�

+
(4a2 + 4ad2 − 4k2

F,λd2 + d4)

8d3
ln

�

�

�

�

a+
�

d/2− kF,λ

�

d

a

�

�

�

�

ª

. (A.36)

Changing variable to Q =
�

�m− p
�

�/2= d/2, we get

SC I5 = 2π
§akF,λQ− aQ2

4Q3
−
(a2 − 4aQ2 − 4k2

F,λQ
2 + 4Q4)

16Q3
ln

�

�

�

�

a+ 2
�

kF,λ −Q
�

Q

a

�

�

�

�

+
(a2 + 4aQ2 − 4k2

F,λQ
2 + 4Q4)

16Q3
ln

�

�

�

�

a+ 2
�

Q− kF,λ

�

Q

a

�

�

�

�

ª

, (A.37)

with a = (p2 −m2)/2.
Therefore, I5,inner is SI5− SC I5, but in both functions there is one situation that can cause

problems, and that is the limit when Q → 0. However, if one calculates separately the limits
for SI5 and SC I5, both give 4πk3

F,λ/(3a), so the total limit is zero. The possible contributions
to I5,inner are summarized in Table 4.

If we look to SI5 and SC I5, we can see that the integrals depend on kF,λ, a and Q. Hence,
they depend on the modulus of both m and p, and also on the relative angle between both
vectors. We recall that a = (p2 −m2)/2 and Q =

p

p2 +m2 + 2pmx/2 with x = − cosθ . In
Eq. (A.38), we show the entire expression of E5, the inner integrals are expressed through the
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Table 4: Summary of the SI5,inner integral depending on the value of Q.

Condition I5,inner Integral

Q = 0 0
0<Q < kF,λ SI5 − SC I5

Q ≥ kF,λ SI5

compact form I5,inner(R, a, kF,λ).

E5(Cλ1
, Cλ2

, Cλ3
) =

1

2k8
F

§

∫

dpnp

∫

dm(1− nm)I5,inner(R, a, kF,λ2
)I5,inner(R, a, kF,λ3

)

+

∫

dp′np′

∫

dm′(1− nm′)I5,inner(R
′, a′, kF,λ1

)I5,inner(R
′, a′, kF,λ3

)
ª

.

(A.38)

We point out that R′ means
p

p′2 +m′2 + 2p′m′x ′/2 and a′ = (p′2 −m′2)/2. In terms of the
concentrations Cλ one arrives to the final expression

E5(Cλ1
, Cλ2

, Cλ3
) = 4π2
§

∫ C1/3
λ1

0

dp

∫ ∞

C1/3
λ1

dm

∫ 1

−1

d x I5,inner(Q, a, kF,λ2
)I5,inner(Q, a, kF,λ3

)

+

∫ C1/3
λ2

0

dp′
∫ ∞

C1/3
λ2

dm′
∫ 1

−1

d x ′ I5,inner(Q
′, a′, kF,λ1

)I5,inner(Q
′, a′, kF,λ3

)
ª

.

(A.39)

We would like to point out that for the three integrals (E3, E4, and E5) we have been able
to reduce high dimensional integrals to just 3D integrals, which makes numerical integration
less costly.

B Terms E3, E4, and E5 for the ground state

In Ref. [20], we proved that a Fermi gas in the ground state chooses a certain spin occupational
distribution. This configuration, that minimizes the energy of the system, is the following: one
species increases, and the rest ones diminish equally. Under these conditions, the concentra-
tions Cλ for a given polarization P are

C+ = 1+ |P| (ν− 1) , (B.1)

C− = 1− |P| , (B.2)

with subindex + standing for the state with the larger population and − for the rest. We point
out that, in this configuration, all the species that decrease have the same Fermi momentum
or, equivalently, the same concentration Cλ. This is important because it reduces the number
of integrals to be carried out. As commented before, the energy corresponding to these terms
is

E
N
=

3
5
εF

�

1
ν

∑

λ1,λ2

§

5
32π7

�

E3+E4+
∑

λ3

�

2−3δλ1,λ3
−3δλ2,λ3

�

E5

�

(kF a0)
3
ª

(1−δλ1,λ2
)
�

. (B.3)
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For E3 and E4, we only have to do a sum over pairs. Therefore, we only have two terms, one
taking into account the combination +−, and the other one accounting for −−,

1
2

∑

λ1,λ2

E3(Cλ1
, Cλ2

)(1−δλ1,λ2
) = (ν− 1)E3(C+, C−) +

(ν− 1)(ν− 2)
2

E3(C−, C−) . (B.4)

Moreover, the second term can be simplified because both concentrations are the same. The
function E3(C−, C−) is the same as its value at zero polarization times C8/3

− ,

1
2

∑

λ1,λ2

E3(Cλ1
, Cλ2

)(1−δλ1,λ2
) = (ν− 1)E3(C+, C−) +

(ν− 1)(ν− 2)
2

E3(1, 1)C8/3
− . (B.5)

The same reasoning done for E3 can be applied to E4,

1
2

∑

λ1,λ2

E4(Cλ1
, Cλ2

)(1−δλ1,λ2
) = (ν− 1)E4(C+, C−) +

(ν− 1)(ν− 2)
2

E4(1, 1)C8/3
− . (B.6)

For E5, as we have a three-body interaction, there are more possible combinations, but they
can be grouped up to four terms,

1
2

∑

λ1,λ2,λ3

E5(Cλ1
, Cλ2

, Cλ3
)(1−δλ1,λ2

)(2− 3δλ1,λ3
− 3δλ2,λ3

) = −(ν− 1)E5(C+, C−, C+)

+ (ν− 1)(2ν− 5)E5(C+, C−, C−) + (ν− 1)(ν− 2)E5(C−, C−, C+)

+ (ν− 1)(ν− 2)(ν− 4)E5(C−, C−, C−) . (B.7)

In the same manner as E3 and E4, the term E5(C−, C−, C−) can be simplified into
E5(1, 1,1)C8/3

− , which is the value at zero polarization times C8/3
− ,

1
2

∑

λ1,λ2,λ3

E5(Cλ1
, Cλ2

, Cλ3
)(1−δλ1,λ2

)(2− 3δλ1,λ3
− 3δλ2,λ3

) = −(ν− 1)E5(C+, C−, C+)

+ (ν− 1)(2ν− 5)E5(C+, C−, C−) + (ν− 1)(ν− 2)E5(C−, C−, C+)

+ (ν− 1)(ν− 2)(ν− 4)E5(1,1, 1)C8/3
− . (B.8)

Therefore, in the ground state, of all the integrals we had to calculate, we only care about five,
which are: E3(C+, C−), E4(C+, C−), E5(C+, C−, C+), E5(C+, C−, C−), and E5(C−, C−, C+).

C Functions E3, E4, and E5 for different spins

In this section, we plot the integrals obtained numerically for different spin values. To simplify
the notation, we use E3 for E3(C+, C−), E4 for E4(C+, C−), E5_1 for E5(C+, C−, C+), E5_2 for
E5(C+, C−, C−), and E5_3 for E5(C−, C−, C+).

25

https://scipost.org
https://scipost.org/SciPostPhys.17.2.030


SciPost Phys. 17, 030 (2024)

C.1 Spin 1/2

Figure 12: E3, E4, E5_1, E5_2 and E5_3 in terms of the polarization P for S = 1/2.
The error bars are smaller than the size of the symbols.
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C.2 Spin 3/2

Figure 13: E3, E4, E5_1, E5_2 and E5_3 in terms of the polarization P for S = 3/2.
The error bars are smaller than the size of the symbols.
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C.3 Spin 5/2

Figure 14: E3, E4, E5_1, E5_2 and E5_3 in terms of the polarization P for S = 5/2.
The error bars are smaller than the size of the symbols.
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C.4 Spin 7/2

Figure 15: E3, E4, E5_1, E5_2 and E5_3 in terms of the polarization P for S = 7/2.
The error bars are smaller than the size of the symbols.
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C.5 Spin 9/2

Figure 16: E3, E4, E5_1, E5_2 and E5_3 in terms of the polarization P for S = 9/2.
The error bars are smaller than the size of the symbols.
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